Physics 5B Winter 2008

Solution to the Equation of Motion for Forced Oscillations

The equation of motion for forced oscillations is given by Eq. (14-21) of Gioncoli:
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We shall show that X = A, sin (a)t + ¢o) is a solution of by direct substitution.

2

x=Asin(ot+4¢,) ; %:w,ﬂbcos(a)u%) : (;X = -0’ A sin(ot +¢))

t2

dx*  dx
m¥+ba+ kx = F,cosat —

m|-o’ A sin(ot +¢,) |+ b[ @A, cos(wt +4,) ]+ k[ A sin (et + 4)] = F, cos ot
Expanding the trigonometric functions [cf. page A-4 of Appendix A of Giancoli],
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We now group the various terms by their time dependence.
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The above equation must be valid for all time, which means that the coefficients of
the functions of t must be the same on both sides of the equation. Since there is
nosin et on the right side of the equation, the coefficient of sin @t must be 0.
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Thus we see that Eq. 14-24 of Giancoli is necessary for X = A sin (@t +¢,) to be
the solution. This can be illustrated with the diagram shown below.
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Finally, we equate the coefficients of COS at.
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Thus we see that Eq. 14-23 of Giancoli is also necessary for X = A, sin (60'[ + ¢0)
to be the solution.





