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Intensity of single slit diffraction

1. General considerations

Following Giancoli, section 35-2 (and quoting some of the text), we consider the slit divided up
into N very thin strips of width ∆y as indicated in the figure below. Note that the width of the slit
is D = N∆y.

Each strip sends light in all directions to a screen on the right. We take the rays heading for any
particular point on the distant screen to be parallel, all making an angle θ with the horizontal as
shown above. We choose the strip width ∆y � λ so that all the light from a given strip is in phase.
The strips are of equal size, and if the whole slit is uniformly illuminated, we can take the electric
field wave amplitudes from each thin strip to be equal. However, the separate amplitudes from the
different strips will differ in phase. The phase difference in the light coming from adjacent strips is
given by:

∆β =
2π

λ
∆y sin θ ,

since the difference in path length is ∆y sin θ. The total amplitude on the screen at any angle θ
(denoted by Eθ) will be the sum of the separate wave amplitudes due to each strip. Finally, we take
the limit of N → ∞ and ∆y → 0, where the limits are taken such that the product, D = N∆y, is
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held fixed. Explicitly,1

Eθ = lim
N→∞

∆y→0

E0

N

[

sinωt + sin(ωt + ∆β) + sin(ωt + 2∆β) + . . . + sin
(

ωt + (N − 1)∆β
)

]

,

where ∆β = 2π∆y sin θ/λ. As in the case of the two-slit interference experiment, if the distance
from the slit to the screen, L, is much larger than D, then the electric field vectors from the light
rays originating from each of the strips are essentially parallel.

2. Calculation of the intensity

The (time-averaged) intensity of the resulting wave at the screen, located at an angle θ with
respect to the symmetry axis of the slit (as shown in the figure), is proportional to E2

θ averaged over
one full cycle of the wave. Thus, we can write:

I(θ) = K〈E2
θ 〉 ,

where K is a constant (to be determined below) and the brackets 〈· · · 〉 indicate a time-average over
one cycle of the wave. Our first task is to obtain a closed-form expression for Eθ, which we rewrite
below using the summation notation:

Eθ = lim
N→∞

∆y→0

E0

N

N−1
∑

n=0

sin (ωt + n∆β) .

Since D = N∆y is the width of the slit (which is fixed), it is convenient to substitute 1/N = ∆y/D
in the expression above, which yields

Eθ = lim
∆y→0

E0

D

N−1
∑

n=0

sin

(

ωt +
2πn∆y sin θ

λ

)

∆y =
E0

D

∫ D

0

sin

(

ωt +
2πy sin θ

λ

)

dy .

The last step above is a consequence of the definition of the definite integral, which can be computed
by approximating the area under the curve sin(ωt + 2πy sin θ/λ) between y = 0 and y = D with N
rectangular slices, each of width ∆y. The exact result for the area then follows by taking N → ∞
and ∆y → 0, keeping D = N∆y fixed, as indicated by the equation above.

To compute the above integral, we introduce a change of variables:

z = ωt +
2πy sin θ

λ
.

Then, dz = (2π sin θ/λ)dy. Writing dy in terms of dz, and expressing the integrand in terms of z
then yields:

Eθ =
λE0

2πD sin θ

∫ ωt+2πD sin θ/λ

ωt

sin z dz ,

after noticing that if y = 0 then z = ωt, and if y = D then z = ωt + 2πD sin θ/λ (which determine
the limits of integration over z). This last integral is elementary, and we obtain:

Eθ =
−λE0

2πD sin θ

[

cos

(

ωt +
2πD sin θ

λ

)

− cosωt

]

.

It is convenient to employ the trigonometric identity:

cosA − cosB = −2 sin

(

A + B

2

)

sin

(

A − B

2

)

,

1Note that for θ = 0, we obtain Eθ=0 = E0 sin ωt, which defines the amplitude E0.
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with A ≡ ωt + 2πD sin θ/λ and B ≡ ωt to obtain:

Eθ =
λE0

πD sin θ
sin

(

ωt +
πD sin θ

λ

)

sin

(

πD sin θ

λ

)

.

Following Eq. 35-6 of Giancoli, we introduce the notation:

β ≡
2πD sin θ

λ
.

Then, we can write:

Eθ = E0 sin
(

ωt + 1
2β

) sin(β/2)

β/2
.

As noted at the beginning of this section, the (time-averaged) intensity I(θ) is given by

I(θ) = K〈E2
θ 〉 ,

where K is a constant (to be determined below) and the brackets 〈· · · 〉 indicate a time-average over
one cycle of the wave. Note that the only time-dependence is in the factor sin

(

ωt + 1
2β

)

, which is
squared when one computes E2

θ . Moreover,

〈

sin2
(

ωt + 1
2β

)〉

=
〈

cos2
(

ωt + 1
2β

)〉

,

since the functions sin2
(

ωt + 1
2β

)

and cos2
(

ωt + 1
2β

)

differ only in phase by 90◦, and thus must

average to the same result when averaged over a full cycle. Using sin2
(

ωt + 1
2β

)

+cos2
(

ωt + 1
2β

)

= 1,
we conclude that:

〈

sin2
(

ωt + 1
2β

)〉

= 1
2 .

Hence

I(θ) = 1
2KE0

(

sin(β/2)

β/2

)2

, where β ≡
2πD sin θ

λ
.

Finally, we define I0 ≡ I(θ = 0). When θ = 0, we see that β = 0. Noting that

lim
β→0

sin(β/2)

β/2
= 1 ,

it then follows that
I0 ≡ I(θ = 0) = 1

2KE2
0 .

Hence, we arrive at our final result:

I(θ) = I0

(

sin(β/2)

β/2

)2

, where β ≡
2πD sin θ

λ
,

which coincides with the results of Eqs. 35-6 and 35-7 of Giancoli.
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3. An alternative derivation

Let us return to the expression:

Eθ = lim
N→∞

∆y→0

E0

N

[

sinωt + sin(ωt + ∆β) + sin(ωt + 2∆β) + . . . + sin
(

ωt + (N − 1)∆β
)

]

,

Another strategy for evaluating this limit is to first compute the sum of the N terms shown above
in closed form. Then take the limit of N → ∞ and ∆y → 0, with D = N∆y held fixed. In fact, the
technique of phasor diagrams employed by Giancoli in Section 35-2 effectively performs the above
sum and then takes the limit using a geometrical representation of the sum. This method is quite
powerful, since it allows one to employ simple geometric and trigonometric reasoning to explicitly
evaluate the expression above.

However, one can also perform the sum directly using algebraic techniques. Although these
methods require slightly more sophisticated manipulations (as compared to the derivation of section 2
above), this approach may hold some interest. Here, I will simply quote the result for the sum of
the N terms above (with a proof relegated to an appendix):

1

N

[

sin ωt + sin(ωt + ∆β) + . . . + sin
(

ωt + (N − 1)∆β
)

]

= sin
(

ωt + 1
2 (N − 1)∆β

) sin(N∆β/2)

N sin(∆β/2)
.

We can check that this formula produces a known result for N = 2. If we write δ ≡ ∆β, then

sin ωt + sin(ωt + δ) = sin(ωt + δ/2)
sin δ

sin(δ/2)
= 2 sin(ωt + δ/2) cos(δ/2) ,

after using sin δ = 2 sin(δ/2) cos(δ/2). The N = 2 result was used in class to derive the intensity of
the two-slit experiment. It is easily established using the trigonometric identity

sin A + sinB = 2 sin

(

A + B

2

)

cos

(

A − B

2

)

.

Returning to the formula for the sum of the N sine terms above, we can now compute the intensity
that results from the superposition of these N terms. As before, the (time-averaged) intensity is
given by I(θ) = K〈E2

θ 〉, where K is a constant to be determined. Using

〈

sin2
(

ωt + 1
2 (N − 1)∆β

)〉

= 1
2 ,

it follows that

IN (θ) = 1
2KE2

0

(

sin(N∆β/2)

N sin(∆β/2)

)2

, where ∆β ≡ 2π∆y sin θ/λ ,

and IN (θ) is the total intensity due to the superposition of N sources. Since ∆β = 0 when θ = 0, it
follows that IN0 ≡ IN (θ = 0) = 1

2KE2
0 , where we have used the fact that:

lim
∆β→0

sin(N∆β/2)

N sin(∆β/2)
= 1 .

Hence,

IN (θ) = IN0

(

sin(N∆β/2)

N sin(∆β/2)

)2

= IN0

(

sin(πD sin θ/λ)

N sin(π∆y sin θ/λ)

)2

,

after using D = N∆y.
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Finally, we are ready to take the limit of ∆y → 0 [in which case N = D/∆y → ∞]. Note that
we can make use of the small angle approximation to obtain:

lim
∆y→0

N sin(π∆y sin θ/λ) = πN∆y sin θ/λ = πD sin θ/λ .

Thus, if we define I(θ) ≡ lim
N→∞

IN (θ) and I0 ≡ lim
N→∞

IN0, it follows that

I(θ) = I0

(

sin(πD sin θ/λ)

πD sin θ/λ

)2

.

The above result can be rewritten as:

I(θ) = I0

(

sin(β/2)

β/2

)2

, where β ≡
2πD sin θ

λ
,

which is precisely the formula for the intensity as a function of the angle θ obtained in section 2.
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Appendix: derivation of the sum of N sine functions

In this appendix, I provide a derivation of the formula:

1

N

[

sin ωt + sin(ωt + ∆β) + . . . + sin
(

ωt + (N − 1)∆β
)

]

= sin
(

ωt + 1
2 (N − 1)∆β

) sin(N∆β/2)

N sin(∆β/2)
.

The derivation of the formula makes use of complex numbers, so it is beyond the scope of this
class. But, you can return to this proof later if you take Physics 116A (or an equivalent course). To
follow all the steps, you will need to be familiar with Euler’s formula:

eiθ = cos θ + i sin θ .

It follows that sin θ = Im eiθ, where Im instructs you to take the imaginary part of the corresponding
expression. Euler’s formula also implies that:

eiθ + e−iθ = 2 cos θ , and eiθ − e−iθ = 2i sin θ .

All these results are used at some point in the analysis below.

Using the summation notation, and denoting δ ≡ ∆β,

N−1
∑

n=0

sin(ωt + nδ) = Im

N−1
∑

n=0

ei(ωt+nδ) = Im eiωt
N−1
∑

n=0

einδ

= Im eiωt

(

1 − eiNδ

1 − eiδ

)

= Im eiωt

(

1 − eiNδ

1 − eiδ

) (

1 − e−iδ

1 − e−iδ

)

= Im eiωt (1 − eiNδ)(1 − e−iδ)

2 − eiδ − e−iδ

=
−1

2(1 − cos δ)
Im

[

eiωte−iδ/2eiNδ/2(eiNδ/2 − e−iNδ/2)(eiδ/2 − e−iδ/2)
]

=
2

1 − cos δ
sin(Nδ/2) sin(δ/2) Im

[

eiωte−iδ/2eiNδ/2
]

=
2

1 − cos δ
sin(Nδ/2) sin(δ/2) sin

(

ωt + 1
2 (N − 1)δ

)

.

At line two of the above equation, we performed the sum of a geometric series according to the well
known formula2

N−1
∑

n=0

xn =
1 − xN

1 − x
,

where x ≡ eiδ .

Finally, we note the trigonometric identity 1
2 (1 − cos δ) = sin2(δ/2). It then follows that:

N−1
∑

n=0

sin(ωt + nδ) = sin
(

ωt + 1
2 (N − 1)δ

) sin(Nδ/2)

sin(δ/2)
,

which is the desired result. Dividing both sides of this equation by N ant putting δ ≡ ∆β yields the
summation formula quoted at the beginning of this appendix.

2To derive the sum of a finite geometric series, define SN ≡ 1+x+x2+ . . .+xN−1. Then xSN = x+x2+ . . .+xN .
It follows immediately that SN − 1 = xSN − xN . Solving this simple equation for SN yields SN = (1 − xN )/(1 − x).
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