Supersymmetry Without Prejudice at the LHC

Conley, Gainer, JLH, Le, Rizzo arXiv:1005.ASAP

J. Hewett, **1**0

Supersymmetry With or Without Prejudice?

- The Minimal Supersymmetric Standard Model has ~120 parameters
- Studies/Searches incorporate simplified versions
 - Theoretical assumptions @ GUT scale
 - Assume specific SUSY breaking scenarios (mSUGRA, GMSB, AMSB...)
 - Small number of well-studied benchmark points
- Studies incorporate various data sets
- Does this adequately describe the true breadth of the MSSM and all its possible signatures?
- The LHC is turning on, era of speculation will end, and we need to be ready for all possible signals

More Comprehensive MSSM Analysis

Berger, Gainer, JLH, Rizzo, arXiv:0812.0980

- Study Most general CP-conserving MSSM
 - Minimal Flavor Violation
 - Lightest neutralino is the LSP
 - First 2 sfermion generations are degenerate w/ negligible Yukawas
 - No GUT, SUSY-breaking assumptions
- → pMSSM: 19 real, weak-scale parameters scalars:

 $m_{Q_1}, m_{Q_3}, m_{u_1}, m_{d_1}, m_{u_3}, m_{d_3}, m_{L_1}, m_{L_3}, m_{e_1}, m_{e_3}$ gauginos: M₁, M₂, M₃ tri-linear couplings: A_b, A_t, A_τ Higgs/Higgsino: μ, M_A, tanβ

Perform 2 Random Scans

Linear Priors 10⁷ points – emphasize moderate masses

 $\begin{array}{l} 100 \; GeV \leq m_{sfermions} \; \leq 1 \; TeV \\ 50 \; GeV \leq |M_1, \; M_2, \; \mu| \leq 1 \; TeV \\ 100 \; GeV \leq \; M_3 \leq 1 \; TeV \\ \sim 0.5 \; M_Z \leq \; M_A \; \leq 1 \; TeV \\ 1 \leq tan\beta \leq 50 \\ |A_{t,b,\tau}| \leq 1 \; TeV \end{array}$

Log Priors $2x10^{6}$ points – emphasize lower masses and extend to higher masses $100 \text{ GeV} \le m_{\text{sfermions}} \le 3 \text{ TeV}$

 $\begin{array}{ll} 10 \ \text{GeV} \leq |M_1, \, M_2, \, \mu| \leq 3 \ \text{TeV} \\ 100 \ \text{GeV} \leq \ M_3 \leq 3 \ \text{TeV} \end{array}$

 $\begin{array}{l} \textbf{\sim}0.5 \ M_Z \leq \ M_A \ \leq 3 \ TeV \\ 1 \leq tan\beta \leq 60 \end{array}$

 $10 \text{ GeV} \leq |A_{t,b,\tau}| \leq 3 \text{ TeV}$

Absolute values account for possible phases only Arg (M_i μ) and Arg (A_f μ) are physical

Set of Experimental Constraints I

- Theoretical spectrum Requirements (no tachyons, etc)
- Precision measurements:
 - $\Delta \rho$, Γ (Z \rightarrow invisible)
 - $\begin{array}{rl} & \Delta(g-2)\mu ~??? ~(30.2 \pm 8.8) \times 10^{-10} & (0809.4062) \\ & (29.5 \pm 7.9) \times 10^{-10} & (0809.3085) \\ & (\sim\!\!14.0 \pm 8.4) \times 10^{-10} & (Davier/BaBar-Tau08) \\ & \rightarrow (-10 \ to \ 40) \ \times 10^{-10} & to \ be \ conservative.. \end{array}$
- Flavor Physics
 - b \rightarrow s γ , B \rightarrow $\tau \nu$, B_s $\rightarrow \mu \mu$
 - Meson-Antimeson Mixing : Constrains 1st/3rd sfermion mass ratios to be < 5 in MFV context

Set of Experimental Constraints II

Dark Matter

- Direct Searches: CDMS, XENON10, DAMA, CRESST I
- Relic density: $\Omega h^2 < 0.1210 \rightarrow 5yr$ WMAP data
- Collider Searches: complicated with many caveats!
 - LEPII: Neutral & Charged Higgs searches Sparticle production Stable charged particles
 - Tevatron: Squark & gluino searches
 - Trilepton search
 - Stable charged particles
 - **BSM Higgs searches**

Survival Rates: 1 CPU Century Later

file	file Description				
slha-okay.txt	SuSpect generates SLHA file	99.99 %			
error-okay.t×t	Spectrum tachyon, other error free	77.29%			
lsp-okay.txt	LSP the lightest neutralino	32.70 %			
deltaRho-okay.t×t	Δho	32.61 %			
gMinus2-okay.txt	g-2	21.69 %			
b2sGamma-okay.txt	$b ightarrow s \gamma$	6.17 %			
Bs2MuMu-okay.t×t	$B ightarrow \mu \mu$	5.95 %			
vacuum-okay.t×t	No CCB, potential not UFB	5.92 %			
Bu2TauNu-okay.t×t	B ightarrow au u	5.83 %			
LEP-sparticle-okay.t×t	LEP sfermion checks	4.72 %			
invisibleWidth-okay.txt	Invisible Width of Z	4.71 %			
susyhitProb-okay.txt	Heavy Higgs not problematic for SUSY-HIT	4.69 %			
stableParticle-okay.txt	Tevatron stable chargino search	4.19 %			
chargedHiggs-okay.t×t	LEP/ Tevatron charged Higgs search	4.19 %			
neutralHiggs-okay.txt	LEP neutral Higgs search	1.73 %			
directDetection-okay.txt	WIMP direct detection	1.55 %			
omega-okay.t×t	Ωh^2	0.74 %			
Bs2MuMu-2-okay.t×t	$B ightarrow \mu \mu$	0.74 %			
stableChargino-2-okay.t×t	Tevatron stable chargino search	0.72 %			
triLepton-okay.t×t	Tevatron trilepton	0.72 %			
jetMissing-okay.txt	Tevatron jet plus missing	0.70 %			
final-okay.txt	Final after cutting models with e.g. light stop, sbottoms	0.68 %			

• Flat Priors : 10⁷ models scanned , ~ 68.4 K (0.68%) survive

• Log Priors : 2x10⁶ models scanned , ~ 2.8 K (0.14%) survive

Gluino (and Squarks) Can Be Light !!

Character of the NLSP: it can be anything!

NLSP-LSP Mass Splitting

ATLAS SUSY Analyses with a Large Model Set

• We have passed these ~70k MSSM models through the ATLAS SUSY analysis suite, designed for mSUGRA , to explore its sensitivity to this far broader class of SUSY models

• We employed ATLAS SM backgrounds (Thanks!!!), their associated systematic errors & statistical criterion for SUSY 'discovery', etc. (No data on background distributions are used in the analyses due to potentially large 'NLO' shape uncertainties)

• We first need to verify that we can approximately reproduce the ATLAS results for their benchmark mSUGRA models with our analysis techniques in each channel

• By necessity there are some differences between the two analyses....

This is extremely CPU intensive!

ATLAS has already made use of some of these models!

ATLAS NOTE

ATL-PUB-2009-XXX

July 20, 2009

Prospects for Supersymmetry and Univeral Extra Dimensions discovery based on inclusive searches at a 10 TeV centre-of-mass energy with the ATLAS detector

The ATLAS collaboration

Abstract

This note presents an evaluation of the discovery potential of Supersymmetry and Universal Extra Dimensions for channels with jets, leptons and missing transverse energy. The LHC running scenario at a centre-of-mass energy of 10 TeV, delivering an integrated luminosity of 200 pb⁻¹ for the 2009-2010 run is investigated.

The ATLAS SUSY analyses:

- 2,3,4-jet +MET
- 11, ≥4–jet +MET
- SSDL

- $\tau +\geq 4j + MET$
- $\geq 4j w / \geq 2btags + MET$
- Stable particle search

- OSDL
- Trileptons + (0,1)-j + MET

FEATURE

ISASUGRA generates spectrum & sparticle decays

NLO cross section using PROSPINO & CTEQ6M

Herwig for fragmentation & hadronization

GEANT4 for full detector sim

SuSpect generates spectra with SUSY-HIT[#] for decays

NLO cross section for ~85 processes using PROSPINO** & CTEQ6.6M

PYTHIA for fragmentation & hadronization

PGS4-ATLAS for fast detector sim

** version w/ negative K-factor errors corrected

version w/o negative QCD corrections & with 1st & 2nd generation fermion masses included as well as explicit small ∆m chargino decays

ATLAS Benchmark Tests: 4jets + MET

Meff distribution for 4-jet, 0 lepton analysis

Sample Model Results

Number of Models Observed in each Analysis with 1 fb⁻¹ @ 5σ

Analysis	# with Zn>5, no pystop	# with Zn>5, incl. pystops
4j0l	59537 (88.962 %)	59978 (87.708 %)
2j0l	58719 (87.74 %)	59208 (86.582 %)
1l4j	28560 (42.675 %)	28624 (41.858 %)
1l3j	45228 (67.581 %)	45405 (66.397 %)
1l2j	47011 (70.245 %)	47226 (69.06 %)
OSDL	7360 (10.998 %)	7364 (10.769 %)
SSDL	14280 (21.338 %)	14289 (20.895 %)
3lj	9139 (13.656 %)	9149 (13.379 %)
3lm	1843 (2.7539 %)	1847 (2.7009 %)
tau	57088 (85.303 %)	57483 (84.059 %)
b	49760 (74.353 %)	50113 (73.282 %)

 \star τ ID & reconstruction in PGS has large fake rate

Number of Models Observed in each Analysis with 10 fb⁻¹ @ 5σ

	Analysis	# with Zn>5, no pystop	# with Zn>5, incl. pystops
5	4j0l	59682 (89.179 %)	60125 (87.923 %)
	2j0l	58806 (87.87 %)	59296 (86.71 %)
	1l4j	30565 (45.671 %)	30638 (44.803 %)
	1l3j	49636 (74.168 %)	49878 (72.938 %)
	1l2j	49854 (74.493 %)	50108 (73.274 %)
	OSDL	7957 (11.89 %)	7961 (11.642 %)
	SSDL	21487 (32.107 %)	21531 (31.485 %)
	3lj	11702 (17.486 %)	11714 (17.13 %)
	3lm	1953 (2.9182 %)	1958 (2.8632 %)
	tau	58931 (88.057 %)	59348 (86.786 %)
	b	51782 (77.374 %)	52147 (76.256 %)

Improvement in some analyses but not others

Background systematics are **particularly** important for both the 4j0l & 2j0l channels .. but not so much for the others:

Required number of signal events for observation

Reducing Systematics: $50\% \rightarrow 20\%$

L(fb ⁻¹)	1	10	1	10	
Analysis	50	50h	20	20 <i>h</i>	
4j0l	88.962	89.179	99.009	99.093	
2j0l	87.74	87.87	98.676	98.754	
1l4j	42.675	45.671	57.968	64.074	
113j	67.58	74.168	72.967	84.116	
112j	70.244	74.493	79.399	86.972	
OSDL	10.997	11.89	23.272	27.446	
SSDL	21.337	32.107	25.161	39.138	
3lj	13.656	17.486	19.386	28.857	
3lm	2.7538	2.9182	4.916	5.8947	
tau	85.303	88.057	97.139	98.657	
ь	74.352	77.374	91.915	94.97	

This would be a very significant improvement in reach!

The number of models observed in n different analyses with 1 fb⁻¹

# passed	# models no pystop	# models incl. pystops	# models nopy no tau
0	240 (0.35862%)	1135 (1.6597 %)	389 (0.58126%)
1	751 (1.1222 %)	812 (1.1874 %)	957 (1.43 %)
2	2110 (3.1528 %)	2168 (3.1703 %)	8561 (12.792 %)
3	8232 (12.301 %)	8334 (12.187 %)	12055 (18.013 %)
4	12416 (18.552 %)	12608 (18.437 %)	6953 (10.389 %)
5	6962 (10.403 %)	7019 (10.264 %)	12697 (18.972 %)
6	11970 (17.886 %)	12022 (17.58 %)	12290 (18.364 %)
7	11890 (17.766 %)	11925 (17.438 %)	6358 (9.5003 %)
8	6033 (9.0147 %)	6038 (8.8296 %)	3138 (4.6889 %)
9	2898 (4.3303 %)	2900 (4.2408 %)	2714 (4.0553 %)
10	2654 (3.9657 %)	2655 (3.8825 %)	812 (1.2133 %)
11	768 (1.1476 %)	768 (1.1231 %)	0 (0 %)

The number of models observed in n different analyses with 10 fb⁻¹

# passed	# models no pystop	# models incl. pystops	# models nopy no tau
0	177 (0.26448%)	1050 (1.5354 %)	286 (0.42735%)
1	565 (0.84424%)	625 (0.91396%)	756 (1.1296 %)
2	1521 (2.2727 %)	1581 (2.3119 %)	6795 (10.153 %)
3	6697 (10.007 %)	6803 <mark>(9.9482 %</mark>)	10199 (15.24 %)
4	10348 (15.462 %)	10515 (15.376 %)	6688 (9.9934 %)
5	6929 <mark>(</mark> 10.354 %)	6996 <mark>(10.</mark> 23 %)	13714 (20.492 %)
6	13165 (19.672 %)	13235 (19.354 %)	10347 (15.461 %)
7	10140 (15.152 %)	10176 (14.881 %)	9477 (14.161 %)
8	9088 <mark>(13.5</mark> 8 %)	9104 (13.313 %)	4146 (6.1951 %)
9	3885 (5.8051 %)	3888 (5.6855 %)	3590 (5.3643 %)
10	3518 (5.2567 %)	3519 (5.1459 %)	926 (1.3837 %)
11	891 (1.3314 %)	892 (1.3044 %)	0 (0 %)

Why are models not observed?

- 1. Sometimes cross section is too small
- 2. Sometimes background uncertainties are too large
- 3. Something else....

Examine 4j0l analyses

What processes produce the \geq 4j+MET events ???

Undetected Models: Is it 'just the mass' ??

Significances for the 4j0l search...there IS a GENERAL reduction in S as the gluino mass increases. BUT we also see that there is quite a spread in significance at any fixed value of the mass.

Mass splittings leading to soft jets can be quite important.. but that's not all of it either :

Signals: all squarks decay almost exclusively (~90%) to gluinos, with (~3%) to j + LSP & (~6%) to j + chargino. The squark-gluino mass splittings are in excess of 100 GeV. These generate a smallish 2j0l signal after cuts. $Z_n \sim 4.4$ in 2j0l

• The gluinos are nearly degenerate with the LSP , e.g., $\Delta m = 12.6 \text{ GeV}$, so their decays to jj+LSP or 'detector stable' charginos are too soft to populate 4j0l . Note that there are no significant sources of leptons, b's or τ 's here. Stable particle searches are important in this case .

- $q_L \rightarrow j + \chi_1^0$ (17%), χ_1^{\pm} (35%), gluino (46%)
- $u_R \rightarrow j + \chi_2^0$ (18%), gluino (81%); gluino $\rightarrow j + d_R$
- $d_R \rightarrow j + \chi_2^0$; $\chi_2^0 \rightarrow \chi_1^{\pm} + W$ the chargino is stable
- Most of the decays end up as stable charginos so there is very little MET although there are many jets. No leptons or τ 's & few b's

How often do these 'famous' decay chains actually occur in our model set??

It appears that this is not GENERALLY a common Mode in our sample

Summary

• The pMSSM has a far richer phenomenology than conventional SUSY breaking scenarios as the sparticle properties can be vastly different

 Light partners can exist which have avoided LEP & Tevatron constraints and may also be difficult to observe at the LHC due to small mass differences or squirky spectra

• Substantial SM background systematics, compressed mass spectra & processes with low signal rates due to unusual decays lead to models being missed by the inclusive analyses.

• Long-lived particle searches are important.

BACKUP SLIDES

Cut Effectiveness: I (after M_{eff} cut)

Analysis	# with Zn>5, no pystop	# with Zn>5, incl. pystops
4j0l_1: 4 hard jets	66745 (99.733 %)	67289 (98.399 %)
4j0l_2: $E_{\rm miss}^T > 0.2 M_{\rm eff}$	66036 (98.673 %)	66556 (97.327 %)
4j0l_3: trans. sph.	63615 (95.056 %)	64071 (93.693 %)
4j0l_4: jets not near E^T_{\mathrm{miss}}	62857 (93.923 %)	63306 (92.574 %)
4j0l_5: no lepton	59537 (88.962 %)	59978 (87.708 %)
2j0l_1: 2 hard jets	66610 (99.531 %)	67173 (98.229 %)
2j0l_2: $E_{\rm miss}^T > 0.3 M_{\rm eff}$	63573 (94.993 %)	64089 (93.719 %)
2j0l_3: jets not near E^T_{\mathrm{miss}}	63062 (94.229 %)	63568 (92.957 %)
2j0l_4: no lepton	58719 (87.74 %)	59208 (86.582 %)
1l4j_1: one isolated lepton	57665 (86.165 %)	58037 (84.869 %)
1l4j_2: no additional leptons	57374 (85.73 %)	57739 (84.433 %)
1l4j_3: four hard jets	47585 (71.103 %)	47777 (69.866 %)
1l4j_4: $E_{\text{miss}}^T > 0.2 M_{\text{eff}}$ and $E_{\text{miss}}^T > 100$	41798 (62.456 %)	41930 (61.316 %)
1l4j_5: trans. sph.	36400 (54.39 %)	36489 (53.359 %)
1l4j_6: $M_T > 100$	28560 (42.675 %)	28624 (41.858 %)
1l3j_1: one isolated lepton	66813 (99.834 %)	67917 (99.317 %)
1l3j_2: no additional leptons	66804 (99.821 %)	67902 (99.295 %)
1l3j_3: three hard jets	60755 (90.782 %)	61204 (89.5 %)
1l3j_4: $E_{\text{miss}}^T > 0.25 M_{\text{eff}}$ and $E_{\text{miss}}^T > 100$	54449 (81.359 %)	54763 (80.082 %)
1l3j_5: trans. sph.	51457 (76.889 %)	51714 (75.623 %)
1l3j_6: $M_T > 100$	45228 (67.581 %)	45405 (66.397 %)

fla t

1 fb ⁻

Cut Effectiveness: II

1l2j_1: one isolated lepton	66271 (99.024 %)	67208 (98.28 %)
1l2j_2: no additional leptons	66233 (98.967 %)	67155 (98.203 %)
1l2j_3: two hard jets	62773 (93.797 %)	63329 (92.608 %)
1l2j_4: $E_{\rm miss}^T > 0.3 M_{\rm eff}$ and $E_{\rm miss}^T > 100$	57237 (85.525 %)	57616 (84.254 %)
1l2j_5: trans. sph.	53403 (79.796 %)	53696 (78.521 %)
1l2j_6: $M_T > 100$	47011 (70.245 %)	47226 (69.06 %)
OSDL_1: OSDL	33406 (49.916 %)	33513 (49.007 %)
OSDL_2: four hard jets	11993 (17.92 %)	12003 (17.552 %)
OSDL_3: $E_{\rm miss}^T > 0.2 M_{\rm eff}$ and $E_{\rm miss}^T > 100$	9916 (14.817 %)	9922 (14.509 %)
OSDL_4: trans. sph.	7360 (10.998 %)	7364 (10.769 %)
SSDL_1: SSDL	26800 (40.045 %)	26876 (39.302 %)
SSDL_2: four hard jets	14281 (21.339 %)	14290 (20.897 %)
SSDL_3: $E_{\text{miss}}^T > 100$	14280 (21.338 %)	14289 (20.895 %)
SSDL_4: $E_{\text{miss}}^T > 0.2 M_{\text{eff}}$	14280 (21.338 %)	14289 (20.895 %)
3lj_1: at least three leptons	16310 (24.371 %)	16345 (23.902 %)
3lj_2: at least one hard (200 GeV) jet	9139 (13.656 %)	9149 (13.379 %)
3lm_1: at least three leptons	5128 (7.6624 %)	5140 (7.5164 %)
3lm_2: at least one OSSF pair with $M>20{\rm GeV}$	4460 (6.6643 %)	4471 (6.5381 %)
3lm_3: lepton track isolation	4460 (6.6643 %)	4471 (6.5381 %)
$3lm_4: E_{miss}^T > 30$	4306 (6.4342 %)	4315 (6.31 %)
3lm_5: $M < M_Z$ for any OSSF pair	1843 (2.7539 %)	1847 (2.7009 %)

Cut Effectiveness: III

tau_1: four hard jets	66900 (99.964 %)	67568 (98.807 %)
tau_2: $E_{\rm miss}^T > 100$	66895 (99.957 %)	67524 (98.742 %)
<pre>tau_3: jets not near E^T_{\mathrm{miss}}</pre>	66883 (99.939 %)	67498 (98.704 %)
tau_4: no lepton	66780 (99.785 %)	67379 (98.53 %)
tau_5: at least one tau	64358 (96.166 %)	64839 (94.816 %)
tau_6: $E_{\rm miss}^T > 0.2 M_{\rm eff}$	61618 (92.072 %)	62061 (90.754 %)
tau_7: $_{M_T>100}$ (of hardest tau and $E_{ m miss}^T$)	57088 (85.303 %)	57483 (84.059 %)
b_1: 4 hard jets with $p_T > 50$ GeV	66923 (99.999 %)	67893 (99.282 %)
b_2: leading jet with $p_T > 100$ GeV	66923 (99.999 %)	67892 (99.281 %)
b_3: $E_{\text{miss}}^T > 100 \text{ GeV}$	66923 (99.999 %)	67841 (99.206 %)
b_4: $E_{\rm miss}^T > 0.2 M_{\rm eff}$	66923 (99.999 %)	67775 (99.109 %)
b_5: trans sph.	66923 (99.999 %)	67669 (98.954 %)
b_6: at least 2 b-tags	49760 (74.353 %)	50113 (73.282 %)

Reducing Systematics: $50\% \rightarrow 20\%$ (cont.)

Number of analyses	Flat	Flat high- ${\cal L}$	Log	$\operatorname{Log} \operatorname{high} \mathcal{L}$
0	0.032873	0.025402	17.726	12.025
1	0.071722	0.046321	5.4596	4.9067
2	0.51999	0.20322	7.8093	7.0145
3	4.3302	2.2742	9.3642	7.9475
4	16.018	9.6976	16.966	14.824
5	7.7833	5.9306	7.8438	8.1894
6	14.044	17.512	8.7768	13.407
7	26.452	21.287	10.815	9.8825
8	10.361	14.058	5.5287	7.9475
9	6.9391	8.6217	3.4554	4.8376
10	9.9768	15.67	3.9046	5.8051
11	3.471	4.674	2.3497	3.2135

Sample Failure Analyses

Example: Model 53105

Heavier squarks essentially decay into gluinos + jets & then...

gluino(282.8) $\rightarrow d_R^{\sim}(201.7)$ j	100%	∆m =81.1 GeV
$d_R(201.7) \rightarrow \chi_2^0(193.8)$ j	97%	∆m =7.9 GeV
$\chi_2^0 (193.8) \rightarrow I_{R^{\pm}}(163.9) I$	100%	∆m =30.0 GeV
$I_{R^{\pm}}(163.9) \rightarrow I^{\pm} + MET(152.5)$	100%	∆m =11.4 GeV

Model *fails* ATLAS (4,2)j0l cuts due to the presence of leptons!

- Signals depend on what squarks do with the highly compressed gaugino spectrum. (Note $\chi^{\pm} \rightarrow LSP+W^* \quad w/\Delta m=11.7 \text{ GeV}$)
- •B(s \rightarrow j + MET) ~0.11-0.37 \rightarrow (4,2)j0l rates which are too small
- •B(s \rightarrow j + $\chi_{2,3}$ ⁰) ~ 0.07-0.68 \rightarrow ~soft τ 's + MET as only staus are accessible \rightarrow few (B~0.35) soft leptons from tau decays

•B(s \rightarrow j + χ_1^{\pm}) ~ 0–0.57 \rightarrow soft jets/leptons + MET

However: Model 56838

is quite similar...BUT.. comparable production σ 's this model is FOUND $gg \rightarrow ss+2j$, $gs \rightarrow ss+j$

There are more decays of gluinos to sbottoms here. Signals again depend on what squarks do with the compressed gaugino spectrum. They have BFs to charginos & neutralinos comparable to Model 949.

- However, $\chi_{2,3}^0$ now will decay quite differently with reasonable BFs into final states with significant light leptons !
- 56838 is seen in both the (2,3)j1l analyses

- $d_R \rightarrow j + \chi_2^0$ (2%), gluino (98%);
- gluino \rightarrow j+ u_R (50%), (u,d)_L (28%)
- $u_L \rightarrow j + \chi_1^0$ (33%), χ_1^{\pm} (67%); $d_L \rightarrow j + \chi_1^0$ (34%), χ_1^{\pm} (66%);
- $u_R \rightarrow j + \chi_1^0$; χ_1^{\pm} is detector stable ($c\tau \sim 35m$)

Long-lived searches in cascades are important !

- $u_R \rightarrow j + \chi_1^0$ (3%), χ_3^0 (22%), gluino (75%)
- gluino \rightarrow j+ d_R (23%) , (u,d)_L (76%)
- $u_{L} \rightarrow j + \chi_{1}^{0}$ (12%), χ_{1}^{\pm} (87%); $d_{L} \rightarrow j + \chi_{1}^{0}$ (66%), χ_{1}^{\pm} (32%);
- $d_R \rightarrow j + \chi_1^0$ (81%), χ_3^0 (18%); $\chi_3^0 \rightarrow h \chi_1^0$ (21%), $W \chi_1^{\pm}$ (60%)
- $\chi_1^{\pm} \rightarrow W^* \chi_1^0$ ($\Delta m \sim 10.4 \text{ GeV}$)

Note the compressed spectrum here leading to softer jets

- $u_R(867) \rightarrow j + gluino(763); gluino \rightarrow j + d_R(74\%), (u,d)_L(7\%)$
- $u_{L}(734) \rightarrow j + \chi_{1}^{0}(27\%), \chi_{1}^{\pm}(67\%)$ [581,584];
- $d_{L}(738) \rightarrow j + \chi_{1}^{0}(33\%), \chi_{1}^{\pm}(57\%);$
- $d_R \rightarrow j + \chi_1^0$; $\chi_1^{\pm} \rightarrow W^* \chi_1^0$ ($\Delta m \sim 3.8 \text{ GeV}$)

Note: Z_n ~4.2 for (2,4) j0l analyses

Signals depend on the very light winos & bino in the spectrum. (Note χ^{\pm}_{1} are again detector stable)

•B(s \rightarrow j + MET) ~0.07–0.34 \rightarrow (4,2)j0l rates which are too small

•B(s_R \rightarrow j + χ_2^0) ~ 0.92 $\rightarrow \chi_2^0$ decays inside the detector to $\chi_1^{\pm} w/c\tau \sim 1 cm$!

•B($s_L \rightarrow j + \chi_1^{\pm}$) ~ 0.66 $\rightarrow j$ +stable Long-lived searches!!

Signals depend on the interplay of the gluino and weak gaugino mass spectra. (Note χ_1^{\pm} are 'just' detector stable, i.e, $c\tau \sim 25m$ with $\Delta m = 141.2$ MeV)

•Squark decays to gluinos (B> 0.95 for s_R , ~0.4 for s_L) & somewhat hard jets, i.e., $\Delta m > 70$ GeV. s_L have B~0.2 for j+MET, too small for (2,4)j0l searches, as well as B~0.4 for $j+\chi_1^{\pm}$ decays. Few hard b's and very few leptons or τ 's.

•B(g \rightarrow 2j + MET) ~0.35, B(g \rightarrow 2j + χ_1^{\pm}) ~0.65

A bit more complex than most but still killed by BF

 $\Delta m(d_R -g) \sim 420 \text{ GeV}, \quad \Delta m(u_L,d_L -g) \sim 20-25 \text{ GeV}, \\ \Delta m(g -u_R) \sim 195 \text{ GeV}, \quad \Delta m(u_R -LSP) \sim 90 \text{ GeV}$

- $c\tau(\chi_1^{\pm}) \sim 25m; \Delta m(\chi_2^0 LSP) \sim 17 \text{ GeV}$
- $\chi_2^0 \rightarrow (\gamma, Z^*) + LSP(\sim 5, 25\%), \rightarrow W^* + \chi_1^{\pm} (\sim 70\%)$

	DD G	TT	1 + 1-													
	PDG	W1C	ith	,,	-										u docave to t	
ΑY	100002	6.1U4646)798+00	#	sup_L	deca	ys								ul uecays to .	
	BR 040604F0F 04	NDA	10000000		IDZ	· ·	н .	DD /	T		1	10				
-	0.04263153E-01	4	1000022			4	₩. 22. ·	вк(~ рр,	'u_ь	->	~cni	_10 u)				
-	L.77955300E-02	4	1000023			4	₩. 22. ·	вк(~ рр,	'u_ь	->	~cni	_20 u)			a +i (~3%)	
د ب	3.96664/83E-04	2	1000025			2	# . # .	BR(~ ₽₽/~	u_L	->	~cni	_30 u)				
L ر	L.99959783E-U3	4	1000033			4	# . # .	БК(~ рр/	'u_ь	->	~cni	_40 u)			LSP +J (~30%)
C 6	5.4393U277E-U1	2	1000027			1 ;	# . 4 ·	DК(~ рп/	'u_ь	->	~cni	_1+ a)			$x \pm \pm i$ (64%)	
).439231396-04	2	1000037			1 ; 2 ;	# . # .	οκι~ οп/	'и_ь т	_>	~CHI_	_2+ u)			$\chi_1 - + J (~0 + 70)$	
	.030003332-02	4	1000021			4	#	DR(~	'u_ь	-/	~y	u)				
	PDG	Wid	lth													
ΑY	2000002	1.465074	82E-01	#	sup R	deca	ys									
	BR	NDA	ID1		ID2											
1	L.05051938E-03	2	1000022			2	# :	BR (~	u R	->	~chi	10 u)			u decays to «	0
9	9.98949481E-01	2	1000023			2	# :	BR (~	u_R	\rightarrow	~chi	_20 u)	\leftarrow		uR uccays to X	2° ⊤J
	PDG	Wid	lth													
ÀΥ	1000001	6.010587	'67E+00	#	sdown	L de	ca	ys								
	BR	NDA	ID1		ID2										d. decays to :	
0	.19502731E-01	2	1000022			1	# :	BR (~	_T_p.	\rightarrow	~chi	_10 d)			al accays to .	
5	5.54071069E-03	2	1000023			1 ;	# :	BR (~	d_L	\rightarrow	~chi	_20 d)				
1	L.44382012E-03	2	1000025			1 ;	# :	BR (~	d_L	\rightarrow	~chi	_30 d)			$ = 1 \pm (- \Sigma 0 /) $	
3	3.35582851E-03	2	1000035			1	# :	BR (~	d_L	\rightarrow	~chi	_40 d)			g +j (~5%)	
ť	5.07976276E-01	2	-1000024			2	# :	BR (~	d_L	\rightarrow	~chi	_1- u)	\leftarrow		ISP ±i (~32%	
1	L.36988317E-02	2	-1000037			2	#	BR (~	d_L	\rightarrow	~chi	_2- u)				
4	₽.84818017E-02	2	1000021			1 ;	# :	BR (~	d_L	\rightarrow	~g	d)			γ ₁ ± +i (~61%)	
	PDG	Wid	lth													
ΑY	2000001	3.058420)14E+01	#	sdown_	_R de	ca	ys								
	BR	NDA	ID1		IDZ											
]	L.29360144E-05	2	1000022			1	# . ,, .	BR (~		->	~chi	_10 d)				
1		2	1000023			1	# 	BR(~		->	~chi	_20 d)				
5	0.06488508E-05	2	1000025			1	# . #	BR(~	a_R	->	~chi	_30 a) _40 -31				
1	41365858E-U4	2	1000035			1	# . #	BR(~	a_R	->	~chi_	_40 d)	1	(de defension a	+i
-	9.82912356E-U1	Z	1000021			T	₩	BR(~	'a_R	->	~g	a)				' J

Gluino initiated cascades leading to XI+I- MET

Inclusive Branching fraction

Stable SUSY Searches at LHC

Long Lived/Stable Sparticles in the 71k Samp with $c\tau > 20m$

 \rightarrow 9462 (97,1) models w/ one (2,3) long-lived particle(s) !

- 8982 are lightest charginos
- 20 are second neutralinos
- 338 are sbottom_1's
- 179 are stau_1's
- 61 are stops
- 5 are gluinos
- 49 are c_R
- 17 are μ_R
- 8 are c_L

etc.

Particles with $c\tau > 20m$ will be declared 'detector stable' in our analysis

NB: 4-body & CKM suppressed loop decays, e.g., $b_1^{\sim} \rightarrow b^* (s,d) + LSP$ are missing, i.e., $\Delta m < m_{bottom}$ from SUSY-HIT

$\tilde{b}_1 \rightarrow s, d + LSP$ induced decay lengths for $\Delta m < r$

ст (cm)

Semi-Stable Sparticles in the 71k Sample with 200 μm < $c\tau$ < 20m

- 8326 models with at least 1 semi-stable state
- 344 (14) have 2 (3) of them
- 8187 are charginos
- 724 are second neutralinos
- 44 are stops
- 90 are gluinos
- 8 are c_L
- 6 are c_R
- 6 are d_R (s_R) etc.

Particles decaying inside the detector will require some special analyses to study but will likely not be seen by inclusive SUSY searches since their decay products are very soft.

Example: Long-Lived Charginos

Example: Detector Decaying Stops

Example: Long–Lived χ_2^0 s

ст (m)

What Next?

- Obtain & understand more of the details of the 14 TeV case.
 We have an *enormous* volume of data to look at...
- Examine the 7 TeV case... BUT not yet! While we have the ATLAS background data for 10 TeV, the 7 TeV results are not yet available as they are currently being generated. It would be nice to do this study soon !
- It may be interesting to do a similar analysis to this for other SUSY setups, e.g., the case of the gravitino LSP or...
- Dark matter analyses are ongoing(e.g., Ice Cube)

Search Significance Correlations : Dependence on the Lightest Squark Mass

As the lightest of the u,d-squarks get heavier one might expect a qualitative fall off in the signal significance in the 2j0l &4j0l searches... here we see that this correlation is rather weak.

Lightest Squark Mass vs. Gluino Mass

Some models w/ light squarks & gluinos ARE missed here & adding lumi does not necessarily help much in all cases

There is an even weaker correlation betweer small mass splittings for the squarks

59

What about the other channels ??

• In the case of (2,4)j1l searches we can ask whether the model fails the ATLAS searches due to the 'hadronic' or the 'leptonic' parts of the cuts...

The same holds true for the 2j0l analysis

Significance Gain

Significance Gain

 $N_{\!s}$ required to get 5σ discovery

Benchmark Model Process Cross Sections

4 jet, 0 lepton analysis

- 1. At least four jets with $p_T > 50$ GeV, at least one of which must have $p_T > 100$ GeV; and $E_T^{\rm miss} > 100$ GeV
- 2. $E_T^{\text{miss}} > 0.2 M_{\text{eff}}$
- 3. Transverse sphericity $S_T > 0.2$
- 4. $\Delta\phi$ between each of three hardest jets and $E_T^{
 m miss}$ must be greater than 0.2
- 5. Reject events with an electron or muon.

3 jet, 0 lepton analysis

- 1. At least three jets with $p_T > 100$ GeV, at least one of which must have $p_T > 150$ GeV; and $E_T^{\rm miss} > 100$ GeV
- 2. $E_T^{\text{miss}} > 0.25 M_{\text{eff}}$
- $_{3}$ $\Delta\phi$ between each of three hardest jets and $E_T^{
 m miss}$ must be greater than 0.2
- 4. Reject events with an electron or muon.

2 jet, 0 lepton analysis

- 1. At least two jets with $p_T > 100$ GeV, at least one of which must have $p_T > 150$ GeV; and $E_T^{\rm miss} > 100$ GeV
- 2. $E_T^{\text{miss}} > 0.3 M_{\text{eff}}$
- 3. $\Delta\phi$ between each of two hardest jets and $E_T^{
 m miss}$ must be greater than 0.2
- 4. Reject events with an electron or muon.

One lepton, 4 jet analysis

- 1. Exactly one isolated electron or muon.
- No additional leptons with p_T > 10 GeV.
- 3. At least four jets with $p_T > 50$ GeV, at least one of which must have $p_T > 100$ GeV
- 4. $E_T^{\text{miss}} > 100 \text{ GeV}$ and $E_T^{\text{miss}} > 0.2 M_{\text{eff}}$
- 5. Transverse sphericity $S_T > 0.2$
- Tranverse mass M_T > 100 GeV
- 7. Reject events with an electron or muon.

One lepton, 3 jet analysis

- 1. Exactly one isolated electron or muon.
- No additional leptons with p_T > 10 GeV.
- 3. At least three jets with $p_T > 100$ GeV, at least one of which must have $p_T > 150$ GeV
- 4. $E_T^{\text{miss}} > 100 \text{ GeV}$ and $E_T^{\text{miss}} > 0.25 M_{\text{eff}}$
- 5. Transverse sphericity $S_T > 0.2$
- Tranverse mass M_T > 100 GeV
- 7. Reject events with an electron or muon.

One lepton, 2 jet analysis

- 1. Exactly one isolated electron or muon.
- 2. No additional leptons with $p_T > 10$ GeV.
- 3. At least two jets with $p_T > 100$ GeV, at least one of which must have $p_T > 150$ GeV
- 4. $E_T^{\text{miss}} > 100 \text{ GeV}$ and $E_T^{\text{miss}} > 0.3 M_{\text{eff}}$
- 5. Transverse sphericity $S_T > 0.2$
- Tranverse mass M_T > 100 GeV
- 7. Reject events with an electron or muon.

OSDL analysis

- 1. Two opposite-sign leptons with $p_T > 10$ GeV and $|\eta| < 2.5$; no additional leptons
- 2. At least four jets with $p_T > 50$ GeV, at least one of which must have $p_T > 100$ GeV
- 3. $E_T^{\text{miss}} > 100 \text{ GeV}$ and $E_T^{\text{miss}} > 0.2 M_{\text{eff}}$
- 4. Transverse sphericity $S_T > 0.2$

SSDL analysis

- 1. Exactly two same-sign leptons with $p_T > 20$ GeV
- 2. At least four jets with $p_T > 50$ GeV, at least one of which must have $p_T > 100$ GeV
- $E_T^{\text{miss}} > 100 \text{ GeV}$
- 4. $E_T^{\text{miss}} > 0.2 M_{\text{eff}}$

Trilepton + jet analysis

- At least three leptons with p_T > 10 GeV
- At least one jet with p_T > 200 GeV

Trilepton + E_T^{miss} analysis

- 1. At least three leptons with $p_T > 10$ GeV
- 2. At least one OSSF dilepton pair with M > 20 GeV
- 3. Lepton track isolation: less than 1 (2) GeV maximum P_T of any track within $\Delta R < 0.2$ of a muon (electron). 4. $E_T^{\text{miss}} > 30 \text{ GeV}$
- 5. $M < M_Z 10$ GeV for any OSSF dilepton pair

τ analysis

- 1. At least four jets with $p_T > 50$ GeV, at least one of which must have $p_T > 100$ GeV
- $E_T^{\text{miss}} > 100 \text{ GeV}$
- $_{3,-\Delta\phi}$ between each of three hardest jets and $E_T^{
 m miss}$ must be greater than 0.2
- 4. Reject events with an electron or muon.
- 5. At least one $_{T}$ with $p_{T}>40$ GeV and $|\eta|<2.5$

```
6. E_T^{\text{miss}} > 0.2 M_{\text{eff}}
```

7. Tranverse mass $M_T > 100$ GeV, using the hardest $_{ au}$ and $E_T^{
m miss}$

b-jet analysis

- 1. At least four jets with $p_T > 50$ GeV
- 2. at least one of which must have $p_T > 100 \text{ GeV}$

```
E_T^{\rm miss} > 100 \, {\rm GeV}
```

4.
$$E_T^{\text{miss}} > 0.2 M_{\text{eff}}$$

- 5. Transverse sphericity $S_T > 0.2$
- 6. At least two jets tagged as b -jets