Discovery Potential for Slepton LSPs in R-Parity Violating SUSY

Sebastian Grab
Santa Cruz Institute for Particle Physics
University of California, Santa Cruz

West Coast LHC Theory meeting
Santa Cruz, May 21, 2010

in collaboration with
K. Desch, H. Dreiner, S. Fleischmann
and T. Stefaniak
Outline

1 Introduction
 - R-Parity Violation
 - LSP Candidates

2 Stau LSPs at the LHC
 - Multi Lepton Final States
 - Discovery Potential with Early LHC Data

3 Summary and Outlook
Introduction

R-Parity Violation

MSSM with R-parity violation (RPV)

General superpotential of the MSSM superfields:

\[
W_{Rp} = (Y_E)_{ij} L_i H_d \bar{E}_j + (Y_D)_{ij} Q_i H_d \bar{D}_j + (Y_U)_{ij} Q_i H_u \bar{U}_j + \mu H_d H_u,
\]

\[
W_{Rp} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \chi'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_u.
\]

The lepton/baryon number violating terms lead to proton decay. It is sufficient to suppress \(\Delta L \neq 0\) or \(\Delta B \neq 0\) terms to keep proton stable.

[Dreiner, Luhn, Thormeier, Phys.Rev.D73:075007,2006]
Effects of RPV

What will change if R-parity is violated?

- Sparticles can be produced singly, possible on resonance.
- Neutrino masses can be generated.
- The RGEs get additional contributions.
- The lightest supersymmetric particle (LSP) is not stable anymore.
 ⇒ The LSP is no dark matter (DM) candidate.
 ⇒ The LSP can be charged.

LSP candidates

\[\tilde{\chi}_1^0, \tilde{\chi}_1^\pm, \tilde{\ell}^\pm_{L/Rj}, \tilde{\tau}_1, \tilde{\nu}_i, \tilde{q}_{L/Rj}, \tilde{b}_1, \tilde{t}_1, \tilde{g} \]

Potential other DM RPV candidates:

Assume mSUGRA framework \cite{Allanach:2004sk}.

\[
\lambda \lesssim O(10^{-2}), \quad M_0 = 100 \text{ GeV}, \quad A_0 = -100 \text{ GeV}, \quad \mu > 0.
\]

\[\tilde{\tau}_1 \text{ LSP as well motivated as } \tilde{\chi}_1^0 \text{ LSP.}\]
What is the $\tilde{\tau}_1$ LSP discovery potential with early LHC data?

Benchmark scenario BC1

- $M_0 = A_0 = 0$
- $\lambda_{121} = 0.032$
- $\tan \beta = 13$
- $M_{1/2} = 400$ GeV
- $\text{sgn}(\mu) = +1$.

LHC Phenomenology of BC1

4-body decay of $\tilde{\tau}_1$ LSP

Promising LHC signatures:

$$PP \rightarrow \tilde{q}_R \tilde{q}_R$$
$$\rightarrow (q\tilde{\chi}_1^0)(q\tilde{\chi}_1^0)$$
$$\rightarrow (q\tau\tilde{\tau}_1)(q\tau\tilde{\tau}_1)$$
$$\lambda_{121} \rightarrow (q\tau\ell\ell\nu)(q\tau\ell\ell\nu)$$

- Excess of electrons and muons.
- Easy to identify in early LHC data.
Electron Multiplicity at $\sqrt{S} = 7$ TeV for BC1

Note: Fast detector simulation included using Delphes.
Electron p_T Distribution at $\sqrt{S} = 7$ TeV for BC1

p_T of hardest electron

Note: Fast detector simulation included using Delphes.
Cutflow for BC1

events for 1fb$^{-1}$ at $\sqrt{s} = 7$ TeV.

<table>
<thead>
<tr>
<th>cut</th>
<th>signal</th>
<th>$t\bar{t}$</th>
<th>S/\sqrt{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>no cuts</td>
<td>283</td>
<td>156000</td>
<td>0.2</td>
</tr>
<tr>
<td>$p_T(1st \mu^{\pm}) > 40$ GeV</td>
<td>142</td>
<td>16745</td>
<td>0.3</td>
</tr>
<tr>
<td>$p_T(1st e^{\pm}) > 32$ GeV</td>
<td>126</td>
<td>1492</td>
<td>2.9</td>
</tr>
<tr>
<td>$p_T(2nd e^{\pm}) > 7$ GeV</td>
<td>114</td>
<td>166</td>
<td>8.4</td>
</tr>
<tr>
<td>$\sum p_T^\ell > 230$ GeV</td>
<td>86</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>$HT' > 300$ GeV</td>
<td>57</td>
<td>3.4</td>
<td>31</td>
</tr>
</tbody>
</table>

with HT' the p_T sum of the four hardest jets.

\Rightarrow $S/B \approx 17$.

\Rightarrow Systematic uncertainty of SM backgrounds not problematic.

\Rightarrow Discovery of BC1 possible with early data!
Cuts work well beyond BC1.
Efficiency better for low $\tan \beta$ (\rightarrow heavier $\tilde{\tau}_1$ LSP.).
Discovery Potential at $\sqrt{S} = 7$ TeV

minimal luminosity in pb^{-1} for $S/\sqrt{B} > 5$

- Scenarios with $\tilde{m}_{\text{squark}} \lesssim 1$ TeV can be tested with 200pb^{-1}.
- Low-tan β scenarios easier to discover (\rightarrow heavier $\tilde{\tau}_1$ LSP).
Summary

- Including R-parity violation allows $\tilde{\tau}_1$ LSP in mSUGRA.
- $\tilde{\tau}_1$ LSP might decay via 4-body decay.
- Promising LHC signature for early data: multi-lepton final states.
- Discovery with $\mathcal{O}(10^{pb^{-1}} - 100^{pb^{-1}})$ possible.

Outlook

- Scenario BC1 will be found or excluded next year!
- Investigate other decay modes of the $\tilde{\tau}_1$ LSP, e.g. $\tilde{\tau}_1 \rightarrow u\bar{d}$ via λ'_{311}.
- Investigate \tilde{e}_R LSP scenarios.
 [Dreiner, SG, Stefaniak, work in progress]
Assume: $PP \rightarrow \tilde{q}\tilde{q} \rightarrow (q\tilde{\chi}_1^0)(q\tilde{\chi}_1^0) \rightarrow (q\tau\tilde{\tau}_1)(q\tau\tilde{\tau}_1)$.

<table>
<thead>
<tr>
<th>coupling</th>
<th>$\tilde{\tau}_1^+$ decay</th>
<th>LHC signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda_{121} = -\lambda_{211}$</td>
<td>$\tau^+\mu^+e^-\bar{\nu}_e$</td>
<td>$2j + 4\tau + 4\ell + E_T$</td>
</tr>
<tr>
<td></td>
<td>$\tau^+\mu^-e^+\nu_e$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\tau^+e^+e^-\bar{\nu}_\mu$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\tau^-e^-e^+\nu_\mu$</td>
<td></td>
</tr>
<tr>
<td>$\lambda_{122} = -\lambda_{212}$</td>
<td>$\tau^+\mu^+\mu^-\bar{\nu}_e$</td>
<td>$2j + 4\tau + 4\ell + E_T$</td>
</tr>
<tr>
<td></td>
<td>$\tau^+\mu^-\mu^+\nu_e$</td>
<td>with $\ell = e, \mu$</td>
</tr>
<tr>
<td></td>
<td>$\tau^+e^+\mu^-\bar{\nu}_\mu$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\tau^-e^-\mu^+\nu_\mu$</td>
<td></td>
</tr>
<tr>
<td>$\lambda_{131} = -\lambda_{311}$</td>
<td>$e^+\nu_e$</td>
<td></td>
</tr>
<tr>
<td>$\lambda_{132} = -\lambda_{312}$</td>
<td>$\mu^+\nu_e$</td>
<td></td>
</tr>
<tr>
<td>$\lambda_{231} = -\lambda_{321}$</td>
<td>$e^+\nu_\mu$</td>
<td>$2j + 2\tau + 2\ell + E_T$</td>
</tr>
<tr>
<td>$\lambda_{232} = -\lambda_{322}$</td>
<td>$\mu^+\nu_\mu$</td>
<td></td>
</tr>
<tr>
<td>$\lambda_{123} = -\lambda_{213}$</td>
<td>$\mu^+\bar{\nu}_e$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$e^+\bar{\nu}_\mu$</td>
<td></td>
</tr>
<tr>
<td>$\lambda_{133} = -\lambda_{313}$</td>
<td>$e^+\bar{\nu}_\tau$</td>
<td>$2j + 2\tau + 2\ell + E_T$</td>
</tr>
<tr>
<td></td>
<td>$\tau^+\bar{\nu}_e$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\tau^+\nu_e$</td>
<td></td>
</tr>
<tr>
<td>$\lambda_{233} = -\lambda_{323}$</td>
<td>$\mu^+\bar{\nu}_\tau$</td>
<td>$2j + 3\tau + 1\ell + E_T$</td>
</tr>
<tr>
<td></td>
<td>$\tau^+\bar{\nu}_\mu$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\tau^+\nu_\mu$</td>
<td></td>
</tr>
</tbody>
</table>
\[PP \rightarrow \tilde{q}\tilde{q} \rightarrow (q\tilde{\chi}_1^0)(q\tilde{\chi}_1^0) \rightarrow (q\tau\tilde{\tau}_1)(q\tau\tilde{\tau}_1). \]

<table>
<thead>
<tr>
<th>coupling (\lambda'_{1jk})</th>
<th>(\tilde{\tau}_1^+) decay</th>
<th>LHC signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau^+ u_j \bar{d}_k e^+)</td>
<td>(6j + 4\tau + \ell\ell)</td>
<td></td>
</tr>
<tr>
<td>(\tau^+ u_j \bar{d}_k e^-)</td>
<td>(6j + 4\tau + \ell + \not{E}_T)</td>
<td></td>
</tr>
<tr>
<td>(\tau^+ d_j \bar{d}_k \bar{\nu}_e)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau^+ d_j \bar{d}_k \nu_e)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>coupling (\lambda'_{2jk})</th>
<th>(\tilde{\tau}_1^+) decay</th>
<th>LHC signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau^+ u_j d_k \mu^+)</td>
<td>(6j + 4\tau + \not{E}_T)</td>
<td></td>
</tr>
<tr>
<td>(\tau^+ u_j \bar{d}_k \mu^-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau^+ d_j d_k \bar{\nu}_\mu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau^+ d_j d_k \nu_\mu)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>coupling (\lambda'_{3jk})</th>
<th>(u_j d_k)</th>
<th>LHC signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6j + 2\tau)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assume: $PP \rightarrow \tilde{q}\tilde{q} \rightarrow (q\tilde{\chi}_1^0)(q\tilde{\chi}_1^0) \rightarrow (q\tau\tilde{\tau}_1)(q\tau\tilde{\tau}_1)$.

\[
\begin{array}{c|c|c}
\text{coupling} & \tilde{\tau}_1^+ \text{ decay} & \text{LHC signature} \\
\chi''_{i,j,k} & \tau^+ u_i d_j d_k & 8j + 2\tau \\
\tau^+ \bar{u}_i \bar{d}_j \bar{d}_k &
\end{array}
\]
Mass Reconstruction in BC1

With 1000 signal events (after cuts):

- Take hardest lepton.
- Find nearest lepton in ΔR with opposite charge.
- Find nearest tau lepton (to vector sum of leptons).

Note: $m_{\tilde{\tau}_1} = 147$ GeV.

\Rightarrow Mass reconstruction difficult (→ combinatorial backgrounds).
Muon Multiplicity at $\sqrt{S} = 7$ TeV for BC1

isolated muons with $p_T > 6$ GeV and $|\eta| < 2.7$
Jet Multiplicity at $\sqrt{S} = 7$ TeV for BC1

jets with $p_T > 20$ GeV and $|\eta| < 5.0$
Jet p_T Distribution at $\sqrt{S} = 7$ TeV for BC1

p_T of hardest jet
TauMultiplicity at $\sqrt{S} = 7$ TeV for BC1

jets with $p_T > 10$ GeV and $|\eta| < 2.5$
Summary and Outlook

Tau ID with Delphes

ID efficiency in $Z \rightarrow \tau\tau + 1\text{jet}$ for Delphes

Fake rate in $Z \rightarrow \tau\tau + 1\text{jet}$ for Delphes

ID efficiency in BC 1 for Delphes

Fake rate in BC 1 for Delphes
Summary and Outlook

Tau ID with PGS

Sebastian Grab (SCIPP)
Santa Cruz, May 2010

1.0
0.7
0.4
0.1

0.0
20
40
60
80
100
120

ID efficiency in $Z \rightarrow \tau \tau + 1$jet for PGS

Fake rate in $Z \rightarrow \tau \tau + 1$jet for PGS

1.0
0.5
0.0
0.005
0.010
0.015
0.020
0.025

20
40
60
80
100

ID efficiency in BC 1 for PGS

Fake rate in BC 1 for PGS
Missing Energy in BC1

Summary and Outlook

Sebastian Grab (SCIPP)
Summary and Outlook

Discovery Potential at \(\sqrt{S} = 7 \text{ TeV} \)

\(S/\sqrt{B} \) for \(fb^{-1} \) at \(\sqrt{S} = 7 \text{ TeV} \).

![Graph showing discovery potential with \(\tan(\beta) \) on the y-axis and \(M_{1/2} \) on the x-axis, with color coding for \(S/\sqrt{B} \).]
Significance includes 50% systematic uncertainty for SM backgrounds.
selected signal events for fb$^{-1}$ at $\sqrt{S} = 7$ TeV.
Summary and Outlook

$\tilde{\tau}_1$ LSP Parameter Space

LSP mass

![Graph showing LSP mass parameter space with axes $\tan(\beta)$ and $M_{1/2}$ in GeV, and color scale indicating $m_{\tilde{\tau}_1}$ in GeV.](image)
$\tilde{\tau}_1$ LSP Parameter Space

$M_{1/2}$ [GeV] vs $\tan \beta$ with a color scale indicating $|m_{\tilde{\chi}^0_1} - m_{\tilde{\tau}_1}|$ [GeV].
Summary and Outlook

\(\tilde{\tau}_1 \) LSP Parameter Space

![Plot of \(\tan \beta \) vs. \(M_{1/2} \) with color scale for \(m_\tilde{g} \) in GeV]
\tilde{\tau}_1 \text{ LSP Parameter Space}
What is the \tilde{e}_R LSP discovery potential with early LHC data?

[Dreiner, SG, Stefaniak, work in progress]
Large R-Parity couplings can change RGE running of the $\tilde{\nu}_R$ mass. [Dreiner, SG, Phys.Lett.B679:45-50,2009]

$M_0 = 150$ GeV, $M_{1/2} = 300$ GeV, $A_0 = -1000$ GeV, $\tan \beta = 10$, sgn(μ) = +1

$\Rightarrow \tilde{\nu}_R$ good candidate for LSP.
Summary and Outlook

LHC Phenomenology of \tilde{e}_R LSP

decay chain for \tilde{q}_R

Promising LHC signatures:

$$PP \to \tilde{q}_R \tilde{q}_R$$
$$\to (q\tilde{\chi}_1^0)(q\tilde{\chi}_1^0)$$
$$\to (qe\tilde{e}_R)(qe\tilde{e}_R)$$
$$\lambda_{231} \to (qe\mu\nu_\tau)(qe\tau\nu_\mu)$$

- 4 charged leptons in the final state.
- Easy to identify in early LHC data.
Discovery Potential at $\sqrt{S} = 7$ TeV

Cuts: $N_\ell \geq 3$, $N_j \geq 2$, $M_Z + 10\text{GeV} \leq M_{\ell^+\ell^-} \leq M_Z - 10\text{GeV}$, $M_{\text{eff}} > 300\text{GeV}$.

Scenarios with $\tilde{m}_{\text{squark}} \lesssim 1$ TeV can be tested with 500 pb$^{-1}$.

Smaller significances for $m_{\tilde{e}_R} \approx m_{\tilde{\chi}_1^0}$.

Sebastian Grab (SCIPP)
Santa Cruz, May 2010