

Ian Hinchliffe

AWRENCE BERKELEY NATIONAL LABORATORY

- I was amazed that
 - The detectors worked "out of the box"
 - The software worked "out of the box"
 - The data and the simulation agreed amazingly well
- First Collision data taken November 20 2009
- ATLAS, CMS had published by March 15 2010
- First 7 TeV data taken March 30 2010
- First 7 TeV result shown at conferences April 19
- So much for the naysayers who claimed "it will take years to understand the LHC detectors"

- How much data?
 - Running conditions
- Types of measurements
 - Things we are sure we know (W cross section)
 - Things we might know (Psi cross section)
 - Things we don't care about but need to know (MC tunings)
- Examples of physics
- Next run in 2013: comments
- I know nothing about the heavy ion program

How much data?

- 900 GeV
 - " million" events
 - Unlikely to be much more
 - "min bias" physics only
- 2.34 TeV
 - Very small data set
 - Unlikely to be more
 - "min bias" only
- 7 TeV
 - Today ~ 10 inverse μb
 - Goal 100 inverse pb in 2010, 1 inverse fb in 2011

About 1 nb-1 collected to date:

- ~65 million inelastic events
- Jets to a few 100 GeV
- Handful of W candidates

Summary of expected event rates

- High pt is limited by
 - Luminosity
 - Detector performance
- Low pt is limited by trigger
 - Total output ~200 Hz
 - Prescales apply to cross-sect
 - 10Hz of min bias
 - 10's Hz of jets (staggered thresholds)
 - Inclusive muons pt>4 GeV (?)
 - Trigger prescales now operating

Expected # SM Events in 1 fb-1 (after trigger and selection)

Process	Number Events
W±→I±v	4M
Z ⁰ →I+I-	400k
ttbar I+jets	6000
ttbar dilepton	2500

Running conditions

- Two variables relevant to physics
 - Integrated luminosity
 - Number of interactions per crossing (in-time pile-up)
- Protons per bunch (Nb), number of bunches (M) and β^* (beam focusing) are variables
 - Lumin ~ $MN_{b}^{2}/\beta*$
- Total stored energy ~ total current in machine
 _ MN_b
- Max luminosity for given safety means large N_b

Running conditions II

- BERKELEY LAB
- Published results are from data without
 pileup

Running conditions III

- This weeks state
 - Testing 10¹¹ per bunch
 - Have reached β *=2m
 - Together would give 10³⁰ luminosity with 4 bunches
- Pressure to deliver luminosity is likely to result in most data taken with ~5 interactions per crossing
 - Not expected in earlier planning
- Caveat: this is my opinion.
 - LHC operations plans fluid

Clean pile-up events seen

Running conditions IV

- Why does this matter?
- Low pt physics
 - All events are the same
 - Must assign all particles to unique vertex
 - Misasignment compromises measurements
 - ATLAS 7 TeV min bias paper vetoed any pileup events (about 0.5%)
 - Data sets may be limited in size
- High pt physics
 - Less impact: mostly on jet resolution

Strong interactions: Low pt

- None of this is calculable
 - "Engineering measurements" vital for future
 - Needed for calibrating luminosity
- Min bias
 - Needed for pile up
 - Measurements: dN/dη,
 - SD/DD/ND comments
- Underlying events
 - Jet energy scale
 - Additional low pt jets (tagging and vetoing)
- Needs running without pile-up
- People will move on from this shortly LAWRENCE BERKELEY NATIONAL LABORATOR

- People talk about "min bias"
 - Misnomer
 - Baised (some kind of trigger or event selection)
 - Unbaised (bunch crossing trigger)
- Results can be difficult to compare to MC
 - Bias must be modeled/corrected
 - Correction can depend on MC model
 - Traditionally results are "corrected" to allow comparison with non-diffractive MC
 - Depends on diffractive contributions (SD/DD)
 - Not well modeled or clearly defined

Min bias: measurements I

LAWRENCE BERKELEY NATIONAL LABORATORY

Evolution from 900 GeV not bad

LAWRENCE BERKELEY NATIONAL LABORATORY

Underlying events

rrrrr

- Most preexisting tunings had too few particles and perhaps too slow energy growth
- Existing estimates of pileup effects on new physics signals unlikely to be far off
- Low pt jets emerging from these events are also OK (see later)
 - Impact on tagging and vetoing of jets in new physics signals likely to be reasonable

Other MC tuning measurements

BERKELEY LAB

- Detailed particle properties
 - Strangeness fractions
 - Baryon fractions
 - Charm fractions
- Expect these results at pLHC and ICHEP
- A few plots follow

K_s and Λ

rrrr

Pi0 and eta

rrrr

BERKELEY

Ш

CMS strangeness

ATLAS charm

LAWRENCE BERKELEY NATIONAL LABORATORY

Low Pt stuff: final comment

- If you care about this, now is your only chance
- Once we have more interesting data, no one will measure it any more

High pt QCD

- Should be calculable
 - Jet distributions
 - Direct photons
- Verify that detector works
- Check that MC have no bugs
- Validate in regions where predictions may be suspect
 - e.g Multi jet final states
- Extrapolate into new physics regions

Current jets

- Low pt jets emerge nicely from min bias
- Jets up to few hundred GeV seen
- Good agreement with MC: (detector simulation surprisingly good)
- Measured both in calorimeters and tracking

Current measurements

CMS

rrrr

BERKELEY LA

ATLAS

7 TeV jets

LAWRENCE BERKELEY NATIONAL LABORATORY

Reach of jets

- 1 inverse pb : 900 GeV
- 100 inverse pb: 1.4 TeV
- 1 inverse fb: 1.7 TeV
- First new physics limit?

Partial list of possible results this summer

- Pt spectrum
- Fragmentation function
- Angular correlation
- Multi-jet events

- 25K Z and 250K W per 100 inverse pb
- Properties well predicted by QCD
 - Production rate, pt and rapidity distributions
- Properties less well predicted
 - Associated jet multiplicity
 - Important for new physics
- W and Z will be used for calibration

W/Z masses

- Z is a "standard candle": LHC cannot improve on LEP
- W mass from CDF/D0 used 500K W's
 - LHC will have more by 2011
 - But dominant issue is systematic errors
 - Often scale with statistics as you get more control events
 - LHC may be able to exploit this
- A very hard measurement
- Is there something more interesting?

W production

- First few events look OK
- PP machine so more W+ than W-
- Expected results
 - Pt and rapidity
 - Rapidity distribution probes PDF's beyond HERA range

W candidates

Z candidates

Top physics as samples increase

- Observation this summer
- Cross section at 7 TeV
 - Well predicted by QCD
 - Can only be wrong in the tails
- Single top (hard)
- Top properties
 - Decays and production properties

No data yet: so only MC

- S/B better than Tevatron: Higher energy
- Need at least one lepton
- Need a few inverse fb to get started
- More data than Tevatron (horizontal lines)
 - 100 inverse pb for dileptons
 - 150 inverse pb for single leptons

Single lepton

- Lepton (isolated) and etmiss distributions (must have a W)
- Many jets
- Presence of b-jets
- Top mass peak
- Same number of + and leptons in signal not in background (not available at Tevatron)
- Backgrounds
 - W+jets
 - Charm and bottom +jets
 - Junk (fake leptons) +jets

Handles to extract top

LAWRENCE BERKELEY NATIONAL LABORATORY

Top with more data

Mass peaks Clean up background This is a 10 TeV simulation Approx same as 500 inverse Pb at 7 TeV

Single top

- Very hard as t tbar is dominant
- Might be possible with much data
- Cannot be sure now
- Possible MC problems?

B-tagging

- Aids greatly in top and new physics
 - Need to measure tagging efficiency and fakes
- Basic methods
 - Vertexing
 - Muons in jets
- (almost) No b's at 900 GeV
 - Understand fakes from K's

Importance of flavor tagging

rrrr

- Production properties may not be well described by "theory"
 - Long history of failed predictions and inadequate measurements
- Inclusive b-jet cross section
 - Needs b-tagging
- Inclusive charm
 - Use D*-D trick
 - Kinematics to remove bottom
- Psi and Upsilon rates: prompt and non prompt

Psi have started to appear

- Must identify muons
- Rates only measureable in restricted kinematic regions

Getting ready for new physics: backgrounds

- Some results come for free out of SM measurements
 - Z prime: SM dilepton mass plot
 - W prime: tail of transverse mass plot
 - Jet compositeness: jet pt distribution
 - Top and W+Jets backgrounds to SUSY
- > 100 inverse pb: New regime

Significant Discovery Potential

- 5σ SUSY discovery above current Tevatron limit with a few 100 pb⁻¹
- Z' $\rightarrow \mu\mu$ up to ~1.5 TeV
- Higgs discovery highly unlikely: 3σ for ~145 to 180 GeV

- Energy will be 13? TeV
 - Redo all the SM measurements with first 100 inverse pb: comparable statisics to current run for top
 - A dedicated no pile-up run may be needed for some studies
 - Then on to new physics

Min bias: what have we learned

- Most previous MC tunings don;t work well
 - More particles than predicted