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A tale of many scales

✦ Collider processes characterized by many 
scales:  s, sij, Mi, ΛQCD, ...

✦ Large Sudakov logarithms arise, which 
need to be resummed (e.g. parton showers, 
mass effects, aspects of underlying event)

✦ Effective field theories provide modern, 
elegant approach to this problem based on 
scale separation (factorization theorems) 
and RG evolution (resummation)



Soft-collinear factorization

✦ Factorize cross section:

✦ Define components in 
terms of field theory 
objects in SCET

✦ Resum large Sudakov 
logarithms directly in 
momentum space using 
RG equations 

H

J J

J J

S

dσ ∼ H({sij}, µ)
�

i

Ji(M2
i , µ)⊗ S({Λ2

ij}, µ)

Sen 1983; Kidonakis, Oderda, Sterman 1998



Soft-collinear effective theory (SCET)

✦ Two-step matching procedure: 

✦ Integrate out hard modes,                              
describe collinear and soft                          
modes by fields in SCET

✦ Integrate out collinear modes                           
(if perturbative) and match                          
onto a theory of Wilson lines

SCET soft Wilson 
linesSM

integrate out 
hard fields

integrate out 
collinear fields

hard

collinear

soft

sij

M2
i

Λ2
ij =

M4
i

sij

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002; ...



anomalous-dimension matrix of n-jet SCET operators

SCET for n-jet processes
✦ n different types of collinear quark and gluon 

fields (jet functions Ji), interacting only via 
soft gluons (soft function S)

✦ Hard contributions (Q ~ √s) are integrated out 
and absorbed into Wilson coefficients:

✦ Scale dependence controlled by RGE:

Hn =
�

i

Cn,i(µ) O
ren
n,i (µ)

d

d lnµ
|Cn({p}, µ)� = Γ(µ, {p}) |Cn({p}, µ)�

Bauer, Schwartz 2006



Goal: NLO+NNLL resummation
✦ Necessary ingredients:

✦ Hard functions: from fixed-order results for 
on-shell amplitudes (but need amplitudes!) 

✦ Jet functions: from imaginary parts of two-
point functions; needed at one-loop order 
(depend on cuts, jet definitions) 

✦ Soft functions: from matrix elements of 
Wilson-line operators

✦ Yields jet cross sections (not parton rates)
✦ Goes beyond parton showers, which are accurate 

only at LL order even after matching



Evolution of hard functions

✦ Technically most challenging aspect besides 
the computation of the hard functions is their 
evolution, governed by anomalous-dimension 
matrix of n-jet operators:

✦ We have obtained completely general, multi-
loop expressions for the anomalous-dimension 
matrices for generic n-jet processes with both 
massless and massive partons
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calculated in [11], where its color structure was found to
be proportional to that obtained at one-loop order.

In this Letter we propose an all-order generalization of
Catani’s result (2) valid for an arbitrary on-shell n-parton
scattering amplitude. We find that in a minimal subtrac-
tion scheme the color structure of the IR pole terms is
simpler than anticipated based on Catani’s work [1]. In
fact, to all-loop order the 1/ε pole term contains only
the structures 1 and Ti · Tj . Our analysis is based on
effective field theory and shares many similarities with
that of [7]. However, in our case the hard, jet, and soft
functions are defined in terms of matrix elements of dif-
ferent types of fields in the effective theory and are in
one-to-one correspondence with different physical scales.
The corresponding definitions in [7] are less intuitive.

Our key observation is that the IR singularities of on-
shell amplitudes in massless QCD are in one-to-one corre-
spondence to the UV poles of operator matrix elements in
soft-collinear effective theory (SCET) [12, 13]. They can
be subtracted by means of a multiplicative renormaliza-
tion factor Z (a matrix in color space), whose structure
is constrained by the renormalization group (RG). SCET
is the appropriate effective theory to analyze scattering
processes at large momentum transfer, which involve jets
(or individual hadrons) with small invariant masses. It
separates hard contributions associated with the large
momentum transfer from low-energy contributions as-
sociated with the small invariant masses of the initial-
and final-state particles. For a general n-jet observable,
the effective theory involves a set of collinear fields for
each direction of large energy flow, which describe the
QCD dynamics inside the individual jets. It also con-
tains soft quark and gluon fields, which mediate low-
energy interactions among the jets. Hard interactions
are integrated out and absorbed into the Wilson coeffi-
cients of operators built from soft and collinear fields. A
generic n-jet process is mediated by an effective Hamilto-
nian Hn =

∑

i Cn,i(µ)Oren
n,i (µ), where the sum runs over

a basis of SCET operators built from n distinct types of
collinear fields. The bare matrix elements of these oper-
ators are UV divergent and are renormalized in the MS
scheme. Their divergences are absorbed into a renormal-
ization factor via Oren

n,i (µ) =
∑

j Zij(µ, ε)Obare
n,j (ε). For

physical quantities, the scale dependence of the Wilson
coefficients Cn,i(µ) cancels against that of the matrix el-
ements of the renormalized operators.

In a physical process with initial- and final-state
hadrons, the soft and collinear scales are set by nonper-
turbative dynamics or experimental cuts. Let us now
consider (slightly) off-shell n-parton amputated Green’s
functions Gn({p}). In this case the jet-scale Λ2

J is set
by the off-shellness p2

i of the fields, and the soft scale is
Λs ∼ Λ2

J/Q, where Q is a typical hard momentum trans-
fer. The Green’s functions are obtained by taking matrix
elements of the above effective Hamiltonian, which can
be written as

Gn({p}) = lim
ε→0

∑

i,j

Cn,i(µ)Zij(µ, ε) 〈Obare
n,j (ε)〉 , (3)

where we suppress the dependence of the quantities on
the right-hand side on the parton momenta. To ob-
tain on-shell n-parton scattering amplitudes from these
Green’s functions one takes the limit p2

i → 0. This intro-
duces IR divergences, which can be regulated by evalu-
ating the effective-theory matrix elements in d = 4 − 2ε
dimensions. Doing so renders the matrix elements of the
operators Obare

j trivial: in the limit p2
i → 0 both the soft

and the jet scales tend to zero, and all loop diagrams
in the effective theory become scaleless and vanish. The
bare matrix elements are thus reduced to trivial Dirac
and color structures. Since the IR divergences are inde-
pendent of the spin structure, we will not make the Dirac
structures explicit but simply absorb them into the Wil-
son coefficients. The on-shell Green’s functions are then
directly proportional to the Wilson coefficients of n-jet
SCET operators in the MS scheme. In the color-space
basis notation of (2), the effective Hamiltonian reads
Hn = 〈Oren

n |Cn〉, and we have

|Cn({p}, µ)〉 = lim
ε→0

Z
−1(ε, {p}, µ) |Gn(ε, {p})〉 . (4)

This notation is convenient but unconventional, in that
our Wilson coefficients and operators are not separately
color singlets and Lorentz scalars. The scattering ampli-
tudes |Mn(ε, {p})〉 are obtained by contracting the am-
putated on-shell Green’s functions with the spinors and
polarization vectors associated with the external parti-
cles. Their singularities are thus governed by the same
Z matrix.

The logarithm of the renormalization factor Z in (4)
is related via Γ = −d lnZ/d lnµ to the anomalous-
dimension matrix Γ governing the RG evolution of the
n-jet SCET operators Oren

n . The same quantity controls
the evolution of the Wilson coefficients, and hence of the
minimally subtracted on-shell scattering amplitudes, via
the evolution equation

d

d lnµ
|Cn({p}, µ)〉 = Γ |Cn({p}, µ)〉 . (5)

We will now present a conjecture for the exact form of
the anomalous-dimension matrix. In general, Γ = Γc+s

is determined by the anomalous-dimension contributions
of collinear and soft modes in the SCET matrix ele-
ments. An important feature of SCET is that the in-
teractions of collinear fields with soft gluons can be re-
moved by field redefinitions and absorbed into soft Wil-
son lines [12]. Interactions with soft quarks are power
suppressed and can be ignored. Moreover, the different
collinear sectors in SCET do not interact with each other.
This allow us to decompose Γ = Γs +

∑

i γi
c, where the

one-particle collinear contributions are diagonal in color
space. Hence, contributions to the anomalous dimension
involving correlations between several partons only reside
in the soft contribution Γs. After the decoupling trans-
formation the soft matrix element is a vacuum expecta-
tion value 〈0|S1 . . .Sn|0〉 of n light-like Wilson lines, one



Anomalous dimension to two loops

✦ General result:

✦ Generalizes structure found for massless case
✦ Novel three-parton terms appear at two-loop 

order

with TF = 1
2 . Here mi denote the masses of the heavy quarks. Note that, as an alternative

to (2), one can convert the expression for the Z factor from the effective to the full theory by
replacing αs → ξ−1 αQCD

s . We will make use of this possibility in Section 4 to predict the IR
poles of the qq̄ → tt̄ and gg → tt̄ amplitudes in full QCD.

The relation

Z−1(ε, {p}, {m}, µ)
d

d lnµ
Z(ε, {p}, {m}, µ) = −Γ({p}, {m}, µ) (4)

links the renormalization factor to a universal anomalous-dimension matrix Γ, which governs
the scale dependence of effective-theory operators built out of collinear SCET fields for the
massless partons and heavy-quark effective theory (HQET [32]) fields for the massive ones. For
the case of massless partons, the anomalous dimension has been calculated at two-loop order
in [7, 8] and was found to contain only two-parton color-dipole correlations. It has recently
been conjectured that this result may hold to all orders of perturbation theory [10, 14, 16]. On
the other hand, when massive partons are involved in the scattering process, then starting at
two-loop order correlations involving more than two partons appear [25], the reason being that
constraints from soft-collinear factorization and two-parton collinear limits, which protect the
anomalous dimension in the massless case, no longer apply [26].

At two-loop order, the general structure of the anomalous-dimension matrix is [26]

Γ({p}, {m}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij

+
∑

i

γi(αs)

−
∑

(I,J)

TI · TJ

2
γcusp(βIJ , αs) +

∑

I

γI(αs) +
∑

I,j

TI · Tj γcusp(αs) ln
mIµ

−sIj

+
∑

(I,J,K)

ifabc T a
I T b

J T c
K F1(βIJ , βJK , βKI) (5)

+
∑

(I,J)

∑

k

ifabc T a
I T b

J T c
k f2

(

βIJ , ln
−σJk vJ · pk

−σIk vI · pk

)

+ O(α3
s) .

The one- and two-parton terms depicted in the first two lines start at one-loop order, while
the three-parton terms in the last two lines start at O(α2

s). Starting at three-loop order also
four-parton correlations would appear. The notation (i, j, . . . ) etc. refers to unordered tuples
of distinct parton indices. We have defined the cusp angles βIJ via

cosh βIJ =
−sIJ

2mImJ

= −σIJ vI · vJ − i0 = wIJ . (6)

They are the hyperbolic angles formed by the time-like Wilson lines of two heavy partons.
The physically allowed values for wIJ are wIJ ≥ 1 (one parton incoming and one outgoing),
corresponding to βIJ ≥ 0, or wIJ ≤ −1 (both partons incoming or outgoing), corresponding
to βIJ = −b + iπ with real b ≥ 0.1 The first possibility corresponds to space-like kinematics,

1This choice implies that sinhβ =
√

w2 − 1. Alternatively, we could have used βIJ = b − iπ with b ≥ 0, in
which case sinhβ = w

√
1 − w−2. We have confirmed that our results are the same in both cases.
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new!

massless partons

massive partons

Mitov, Sterman, Sung: 0903.3241; Becher, MN: 0904.1021

extracted from:
Korchemsky, Radyushkin 1987



Calculation of three-parton terms

✦ Relevant two-loop diagrams:

✦ Surprisingly simple answer:

with:

3.3 Derivation of f2

While the three-parton contribution described by F1 is interesting on general grounds, there are
not many processes of phenomenological importance in which three massive, colored partons
are produced in a high-energy collision. For instance, searches for heavy, colored superpartners
at the LHC will most likely focus on the pair production of squarks and gluinos. Hence, the
three-parton term proportional to the function f2 in (5) is of greater practical importance.
This function can be obtained from the result (30) by writing w23 = −σ23 v2 · p3/m3, w31 =
−σ31 v1 · p3/m3 and taking the limit m3 → 0 at fixed vI · p3. In that way, we obtain

f2

(

β12, ln
−σ23 v2 · p3

−σ31 v1 · p3

)

= 3 lim
m3→0

F1(β12, β23, β31) . (32)

Starting from the expression for F (2)
1 given earlier, we immediately derive the two-loop coeffi-

cient

f (2)
2

(

β12, ln
−σ23 v2 · p3

−σ13 v1 · p3

)

= −4g(β12) ln
−σ23 v2 · p3

−σ13 v1 · p3
, (33)

where g(β) has been defined above. We believe it is not an accident that the function f2

is linear in its second argument, but that this feature persists to all orders of perturbation
theory. The reason is that the logarithm

ln
−σ23 v2 · p3

−σ13 v1 · p3
≡ ln

−2σ23 v2 · p3

µ
− ln

−2σ13 v1 · p3

µ
(34)

is really the difference of two divergent collinear logarithms, and in order for the scale de-
pendence to cancel between terms depending on one of the two logarithms, the dependence
should be single logarithmic.

3.4 Properties of the universal functions

We finish this section by collecting some useful properties of the three-parton correlation
functions. We first note that, at least to two-loop order, we can rewrite the above relations in
the suggestive form

F1(β12, β23, β31) =
1

3

∑

I,J,K

εIJK

αs

4π
g(βIJ) γcusp(βKI , αs) ,

f2

(

β12, ln
−σ23 v2 · p3

−σ13 v1 · p3

)

= −
αs

4π
g(β12) γcusp(αs) ln

−σ23 v2 · p3

−σ13 v1 · p3
,

(35)

where γcusp(β, αs) and γcusp(αs) are the cusp anomalous dimensions entering the two-parton
terms in (5), and at one-loop order

γcusp(β, αs) = γcusp(αs) r(β) , with r(β) = β coth β , (36)

where γcusp(αs) has been given in (9). Whether a factorization of the three-parton terms into
a cusp anomalous dimension times a function of another cusp angle persists at higher orders
of perturbation theory is an interesting open question.
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anti-symmetric in 
heavy-parton indices

where [dx] ≡ dx1 dx2 dx3 δ(1−x1 − x2 −x3), and all integrals run from 0 to 1. This result can
be recast into the five-fold Mellin-Barnes representation

I(w12, w23, w31) = 2(w23 w31 + w12)
1

(2πi)5

∫ +i∞

−i∞

[ 5
∏

i=1

dzi

]

(2w23)
2z1−1(2w31)

2z2−1(2w12)
2z3

×
Γ(1 − 2z1) Γ(1 − 2z2)

Γ(z1 + z2 + z3 + z4 + z5)
Γ(−2z3) Γ(−z4) Γ(z1 + z3) Γ(z1 + z5) Γ(z2 − z5) Γ(z3 + z5)

× Γ(z1 + z2 + z4) Γ(z2 + z3 + z4) Γ(z2 + z4 + z5) Γ(1 − z2 − z4 − z5) . (27)

Decomposing the wIJ variables in terms of exponentials of cusp angles, wIJ = cosh βIJ =
(αIJ + α−1

IJ )/2 with αIJ ≡ eβIJ , we can convert the factors (2wIJ)2zK into powers of αIJ by
introducing three more Mellin-Barnes parameters. By applying Barnes’ Lemmas repeatedly,
we can then reduce the representation (27) to a three-fold one:

I(w12, w23, w31) = 2(w23 w31 + w12)
1

(2πi)3

∫ +i∞

−i∞

dz1 dz2 dz3 α−2z3
12 α−1−2z1

23 α−1−2z2
31

× Γ(−z1 − z3) Γ(1 + z1 − z3) Γ(−z1 + z3) Γ(1 + z1 + z3)

× Γ2(−z2 − z3) Γ2(1 + z2 − z3) Γ2(−z2 + z3) Γ2(1 + z2 + z3) .

(28)

The remaining integrals can be performed by closing the contours and summing up the
residues. The resulting expression for I is rather complicated, but the totally anti-symmetrized
sum needed in (25) turns out to be amazingly simple:

F (2) non−planar
1 = −

4

3

∑

I,J,K

εIJK β2
IJ βKI coth βKI . (29)

In dealing with the Mellin-Barnes representations we have used the program package MB [36]
and associated packages found on the MB Tools web page [37]. We have checked the answer
for this diagram numerically using sector decomposition [38]. We have also checked that for
Euclidean velocities our result for the triple-gluon diagram agrees numerically with a position-
space based integral representation derived in [25]. Combining all contributions, we finally
find

F (2)
1 (β12, β23, β31) =

4

3

∑

I,J,K

εIJK g(βIJ) βKI coth βKI , (30)

where we have introduced the function

g(β) = coth β

[

β2 + 2β ln(1 − e−2β) − Li2(e
−2β) +

π2

6

]

− β2 −
π2

6
. (31)

The constant term −π2/6 has been added by hand, so that g(β) vanishes for β → ∞. Its
effect cancels in the anti-symmetrized sum over terms in (30).
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Figure 1: Two-loop Feynman graphs (top row) and one-loop counterterm diagrams

(bottom row) contributing to the two-loop renormalization factor Z
(2)
s .

where here and below the superscripts in parenthesis refer in an obvious way to the order in
the expansion in powers of αs/4π. The tree-level matrix element is 〈〈Os〉〉(0) = 1. The equation

above thus expresses the two-loop renormalization factor Z
(2)
s in terms of two contributions,

Z(2)
s = −

[

〈〈Obare
s 〉〉(2) + 〈〈Obare

s 〉〉(1)Z(1)
s

]

UV poles
. (21)

The function F1 is derived from the pole terms in Z
(2)
s with totally anti-symmetric color

structure, so we can limit the discussion to Feynman graphs involving the color generators of
all three partons. Diagrammatically, the first contribution on the right-hand side contains the
UV poles of the planar and non-planar two-loop graphs shown in the first row in Figure 1. The
second contribution corresponds to the UV poles of the one-loop diagrams with a counterterm
insertion, as illustrated in the second row of the figure. In the calculation of the UV poles we
regularize IR divergences by assigning residual external momenta li to the Wilson lines, with
ωi ≡ −vi · li > 0. While the individual contributions depend on the ωi regulators, their sum
does not. Also, for concreteness we perform the calculation with three outgoing Wilson lines
in the fundamental representation. Afterwards we replace the color matrices arising from the
Feynman rules by ta → T a to convert to the color-space formalism. For an incoming line the
color matrix would get transposed, and in addition one would pick up a minus sign since the
velocity in the corresponding heavy-quark propagator is reversed. As a result, in this case the
correspondence would be (−ta)T → T a, in accordance with the rules given in [29, 30].

We find that the 1/ε pole terms in the sum of all diagrams can be written as

〈〈Obare
s 〉〉(2) + 〈〈Obare

s 〉〉(1)Z(1)
s = −

2

ε2

∑

(I,J,K)

(TI · TJ ) (TI · TK) (βIJ cothβIJ) (βIK coth βIK)

−
3

2ε
ifabc T a

1 T b
2 T c

3 F (2)
1 (β12, β23, β31) + . . . , (22)
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EFT-based predictions for top-quark pair 
production at hadron colliders

Ahrens, Ferroglia, MN, Pecjak, Yang: 0912.3375 & 1003.5827 (v2 to  appear)



State of the art
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Top-pair production at partial NNLO

✦ Anomalous-dimension matrices in s-channel 
singlet-octet basis for                   channels:

4.1 Anomalous-dimension matrices

The first step is to derive the explicit form of the anomalous-dimension matrix (5) in a given
color basis for the partonic amplitudes (see, e.g., [5, 39]). We adopt the s-channel singlet-
octet basis, in which the tt̄ pair is either in a color-singlet or color-octet state. For the
quark-antiquark annihilation process ql(p1) + q̄k(p2) → ti(p3) + t̄j(p4), we thus choose the
independent color structures as

|c1〉 = δij δkl , |c2〉 = (ta)ij (ta)kl . (51)

For the gluon fusion process ga(p1) + gb(p2) → ti(p3) + t̄j(p4), we use the basis

|c1〉 = δab δij , |c2〉 = ifabc (tc)ij , |c3〉 = dabc (tc)ij . (52)

Here a, b, i, j, k, l are color indices. We find that the anomalous-dimension matrix for the qq̄
channel can be written in the form

Γqq̄ =

[

CF γcusp(αs) ln
−s

µ2
+ CF γcusp(β34, αs) + 2γq(αs) + 2γQ(αs)

]

1

+
N

2

[

γcusp(αs) ln
(−s13)(−s24)

(−s) m2
t

− γcusp(β34, αs)

]

(

0 0

0 1

)

+ γcusp(αs) ln
(−s13)(−s24)

(−s14)(−s23)

[(

0 CF

2N

1 − 1
N

)

+
αs

4π
g(β34)

(

0 CF

2

−N 0

)]

+ O(α3
s) ,

(53)

where s ≡ s12 is the square of the partonic center-of-mass energy. The term proportional to
g(β34) stems from the three-parton contributions

−
[

f2

(

β34, ln
−s13

−s14

)

+ f2

(

β34, ln
−s24

−s23

)

]

(

0 CF

2

−N 0

)

. (54)

With the help of the second relation in (35) this can be recast into the product of g(β34) times
a conformal cross ratio [14] of four momentum invariants. Similarly, for the gg channel we
obtain

Γgg =

[

N γcusp(αs) ln
−s

µ2
+ CF γcusp(β34, αs) + 2γg(αs) + 2γQ(αs)

]

1

+
N

2

[

γcusp(αs) ln
(−s13)(−s24)

(−s) m2
t

− γcusp(β34, αs)

]







0 0 0

0 1 0

0 0 1






(55)

+ γcusp(αs) ln
(−s13)(−s24)

(−s14)(−s23)













0 1
2 0

1 −N
4

N2−4
4N

0 N
4 −N

4






+

αs

4π
g(β34)







0 N
2 0

−N 0 0

0 0 0












+ O(α3

s) .
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Top-pair production at partial NNLO

✦ Can use these results to predict leading singular 
terms near partonic threshold

✦ Obtain NNLO coefficients of distributions

 and (partially) of δ(1-z)
✦ Yields presently best estimate of NNLO terms
✦ Note: includes some subleading terms ~ ln(z) 

beyond distributions

z = M2/ŝ→ 1

terms that become singular in the β → 0 limit are accounted for in our approach. The reverse
statement is not true. A resummation based on the β → 0 expansion does not account for
the bulk of the terms that become singular in the z → 1 limit, and our analysis suggests that
subleading terms in β are by no means generically small.

6.4.2 Other approaches and kinematics

Since in this paper we are interested in the invariant mass distribution of the tt̄ pair, we have
adopted the so-called pair-invariant mass (PIM) kinematics, which is defined by

N1(P1) + N2(P2) → tt̄(p3 + p4) + X(k) . (112)

When calculating the transverse-momentum and rapidity distributions of the top quark, with
the momentum of the anti-top quark integrated over, one instead considers the one-particle
inclusive (1PI) kinematics, which can be written as

N1(P1) + N2(P2) → t(p3) + X ′[t̄](p′4) , (113)

where here the final state X ′ contains the t̄ quark accompanied by additional emissions (see
e.g. [42, 43]). In both cases, the threshold limit corresponds to the limit in which these extra
emissions are soft, implying k0 → 0 and p′24 → m2

t , respectively. In the PIM case, this implies
M2 → ŝ, where M2 = (p3 + p4)2 and ŝ = (p1 + p2)2 can be calculated without reference to
the unobserved momentum k. In the 1PI case, it implies s4/ŝ = (1 − 2E3/

√
ŝ) → 0, where

s4 = ŝ + t1 + u1 can be calculated from (3) without reference to the unobserved momentum
p′4, and E3 denotes the energy of the top quark in the partonic center-of-mass frame.

Although the PIM and 1PI kinematics are applicable in different differential distributions,
they can both be integrated over to obtain the total cross section. In the sense that they
are both applicable in the limit where the extra emissions are soft, threshold resummation
for the total cross section based on PIM or 1PI kinematics amounts to resumming the same
leading contributions, but differs by subleading corrections. Several authors have found signif-
icant numerical differences between the results obtained using the two kinematic schemes (see
e.g. [42–44]). Therefore, it is interesting to work out the 1PI kinematics also in our approach.

Before moving onto 1PI kinematics, it is however necessary to point out an important
difference between our results and previous ones obtained using PIM kinematics. In the tradi-
tional approach, the leading singular terms in (1− z) are written in terms of the distributions
Pn(z) = [lnn(1− z)/(1− z)]+, while in our approach they are more naturally written in terms
of the distributions

P ′
n(z) =

[
1

1 − z
lnn

(
M2(1 − z)2

µ2z

)]

+

. (114)

The additional factor of z in the logarithms is a subleading effect, but it is relevant in practice.
This has been studied in detail for the simpler cases of Drell-Yan [64] and Higgs production [66],
but analogous remarks hold also in the present case. Of crucial importance in this context is the
fact that our resummation method works directly in momentum space [62], and as a result the
matching onto analytical fixed-order expressions is particularly transparent. We have observed
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In order to derive fixed-order formulas from (92), we first set µh = µs = µf = µ. In that
case the evolution matrix U is equal to unity, and η = 2aΓ(µf , µs) → 0. The formula for the
hard-scattering kernels then becomes

C(z, M, mt, cos θ, µ) = c̃(∂η, M, mt, cos θ, µ)

(
M

µ

)2η e−2γEη

Γ(2η)

z−η

(1 − z)1−2η

∣∣∣∣∣
η=0

, (93)

where

c̃(L, M, mt, cos θ, µ) = Tr
[
H(M, mt, cos θ, µ) s̃(L, M, mt, cos θ, µ)

]
. (94)

By using (74) and (90) in combination with the analytic expressions for the hard and soft
functions at NLO, it is possible to determine all terms proportional to ln µ in the two-loop
hard function H(2)(M, mt, cos θ, µ), as well as all terms proportional to L in the two-loop soft
function s̃(2)(L, M, mt, cos θ, µ). This information allows us to derive an approximate expres-
sion for c̃ at NNLO. By inserting that formula for c̃ into (93), we obtain the corresponding
NNLO expression for the hard-scattering kernel C. The results are conventionally written in
terms of the plus distributions

Pn(z) =

[
lnn(1 − z)

1 − z

]

+

. (95)

However, the right-hand side of (93) is more conveniently expressed in terms of the distribu-
tions

P ′
n(z) =

[
1

1 − z
lnn

(
M2(1 − z)2

µ2z

)]

+

. (96)

It is possible to show that taking the derivatives with respect to η and the limit η → 0 in (93)
is equivalent to making the following set of replacements in c̃(L, M, mt, cos θ, µ):

1 → δ(1 − z) ,

L → 2P ′
0(z) + δ(1 − z) ln

(
M2

µ2

)
,

L2 → 4P ′
1(z) + δ(1 − z) ln2

(
M2

µ2

)
,

L3 → 6P ′
2(z) − 4π2P ′

0(z) + δ(1 − z)

[
ln3

(
M2

µ2

)
+ 4ζ3

]
,

L4 → 8P ′
3(z) − 16π2P ′

1(z) + 128ζ3P
′
0(z) + δ(1 − z)

[
ln4

(
M2

µ2

)
+ 16ζ3 ln

(
M2

µ2

)]
. (97)

In order to translate the P ′
n into the conventional Pn distributions, we employ the general rela-
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Top-pair production at NNLL+NLO

✦ Solving RG equations, leading singular terms 
can be resummed to all orders in perturbation 
theory with NNLL accuracy

✦ Resummed hard-scattering coefficients in 
momentum space:

✦ Then match onto NLO fixed-order results

Becher, MN 2006 

where η = 2aΓ(µs, µf). The soft scale µs should be chosen such that the contribution from
the soft function to the cross section is perturbatively well-behaved, and will be discussed in
detail in Section 6.

Combining the results for the hard and soft functions, our final resummed expression for
the hard-scattering kernel is

C(z, M, mt, cos θ, µf) = exp
[
4aγφ(µs, µf)

]

× Tr

[

U(M, mt, cos θ, µh, µs) H(M, mt, cos θ, µh) U †(M, mt, cos θ, µh, µs)

× s̃

(
ln

M2

µ2
s

+ ∂η, M, mt, cos θ, µs

)]
e−2γEη

Γ(2η)

z−η

(1 − z)1−2η
. (92)

For values µs < µf the parameter η < 0, and one must use a subtraction at z = 1 and
analytic continuation to express integrals over z in terms of star (or plus) distributions [86].
Formula (92) can be evaluated order-by-order in RG-improved perturbation theory, using the
standard counting ln µh/µs ∼ ln(1− z) ∼ 1/αs. The perturbative solutions for the RG factors
needed to evaluate the evolution matrix U to NLO in this counting scheme are given in
(A.2), (A.3), and (A.5) of the Appendix. The correspondence between this counting and the
standard counting of logarithms (e.g. NLL, NNLL), along with the accuracy of the anomalous
dimensions and matching functions needed at a given order, can be summarized as follows:

RG-improved PT log accuracy Γcusp γh, γφ H , s̃

LO NLL 2-loop 1-loop tree-level

NLO NNLL 3-loop 2-loop 1-loop

In the remainder of the paper we will use the logarithmic counting (e.g. NNLL) when referring
to the resummed results obtained in this section. These results are valid for the leading-
order term in the threshold expansion in (1 − z), whereas the full result at NLO in fixed-
order perturbation theory also contains information on subleading terms. In phenomenological
applications we can match the resummed results with the NLO fixed-order results to achieve
an NLO+NNLL precision. The method for doing this is described in Section 6.

5.2 Approximate NNLO results

In the previous subsection we derived a formula for the resummed differential cross section,
which is valid up to NNLL order. Starting from (92), it is also possible to obtain expressions
for the differential cross section which are valid in fixed-order perturbation theory [56]. Indeed,
our results allow one to obtain analytic expression for all of the coefficients multiplying singular
plus distributions in the variable (1−z) appearing in the hard-scattering kernels up to NNLO.
With the same method, which is outlined below, it is also possible to determine analytically,
up to O(α4

s), the scale-dependent parts of the coefficient multiplying δ(1 − z).
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In the previous subsection we derived a formula for the resummed differential cross section,
which is valid up to NNLL order. Starting from (92), it is also possible to obtain expressions
for the differential cross section which are valid in fixed-order perturbation theory [56]. Indeed,
our results allow one to obtain analytic expression for all of the coefficients multiplying singular
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Top-pair production at NNLL+NLO

✦ Solving RG equations, leading singular terms 
can be resummed to all orders in perturbation 
theory with NNLL accuracy

✦ Resummed hard-scattering coefficients in 
momentum space:

✦ Then match onto NLO fixed-order results
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which is valid up to NNLL order. Starting from (92), it is also possible to obtain expressions
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× u†(M, mt, cos θ, µf , µs) s̃(∂η, M, mt, cos θ, µs) u(M, mt, cos θ, µf , µs)
1

ω

(
ω

µs

)2η e−2γEη

Γ(2η)
,

(91)

where η = 2aΓ(µs, µf).
Combining the results for the hard and soft functions, the final resummed result for the

hard-scattering kernel is

C(z, M, mt, cos θ, µf) = exp
[
4aγφ(µs, µf)

]

× Tr

[
U(M, mt, cos θ, µh, µs) H(M, mt, cos θ, µh) U †(M, mt, cos θ, µh, µs)

× s̃

(
ln

M2

µ2
s

+ ∂η, M, mt, cos θ, µs

) ]
e−2γEη

Γ(2η)

z−η

(1 − z)1−2η
. (92)

For values µs < µf the parameter η < 0, and one must use a subtraction at z = 1 and analytic
continuation to express integrals over z in terms of star (or plus) distributions.

The formula (92) can be evaluated order-by-order in RG-improved perturbation theory,
using the standard counting ln µh/µs ∼ ln(1 − z) ∼ 1/αs. The perturbative solutions for
the RG-factors needed to evaluate the evolution matrix U to NLO in this counting are given
in (125), (126), and (129) of the Appendix. The correspondence between this counting and
the standard log counting (e.g. NLL, NNLL), along with the accuracy of the anomalous
dimensions and matching functions needed at a given order, can be summarized as follows:

RG-impr. PT log accuracy Γcusp γh, γφ H , s̃

LO NLL 2-loop 1-loop tree-level

NLO NNLL 3-loop 2-loop 1-loop

In the rest of the paper we will use the log counting (e.g. NNLL) when referring to the
resummed results obtained in this section. These results are valid for the leading-order term
in the threshold expansion in 1−z, whereas the full result at NLO in fixed-order perturbation
theory also contains information on subleading terms. In phenomenological applications we
can match the resummed results with the NLO fixed-order results to achieve an NNLL+NLO
precision; the method for doing this is described in Section 6.

5.1 Approximate NNLO results

In the previous subsection we derived a formula for the resummed differential cross section,
which is valid up to NNLL order. Starting from (92), it is also possible to obtain expressions
for the differential cross section which are valid in fixed-order perturbation theory [47]. Indeed,
our results allow one to obtain analytic expression for all of the coefficients multiplying singular

21



Dominance of threshold terms

✦ Fixed-order results for invariant mass 
distribution at Tevatron and LHC:

✦ Leading singular terms near partonic threshold 
                        give dominant contributions even 
at low and moderate M values
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Figure 2: Fixed-order predictions for the invariant mass spectrum at LO (light bands) and
NLO (dark bands) for the Tevatron (left) and LHC (right). We use MSTW2008NLO PDFs [87]
with αs(MZ) = 0.120. The width of the bands reflects the uncertainty of the spectrum under
variations of the matching and factorization scales. The dashed lines refer to the leading terms
in the threshold expansion.

dark NLO bands and the dashed lines is due to the small contributions from the subleading
terms dσNLO,subleading in (102). The fact that, even at these relatively low values of M , the
leading terms provide a very good approximation to the full NLO result provides a strong
motivation to study within our formalism higher-order corrections to integrated quantities
such as the total cross section and forward-backward asymmetry, which receive their dominant
contributions from low values of the invariant mass.

We will always do the matching onto fixed-order results as in (102) and (103), when the goal
is to provide quantitative phenomenological predictions. Such a matching is straightforward
for integrated quantities such as the total cross section and forward-backward asymmetry,
since the NLO results in fixed order are available in analytic form. For the invariant mass
distribution, on the other hand, the fixed-order NLO results are available in the form of Monte
Carlo programs such as MCFM [88]. This makes it difficult to get accurate values of the top-
quark pair invariant mass spectrum at high M , where the differential cross section is small,
and makes it impractical to calculate the spectrum with the scale choice µf = M used in
the next section, since doing so would require to run the program separately at each point
in µf . (Monte Carlo programs generate the invariant mass spectrum by first producing a set
of events for a given µf , and then grouping them into bins in M). When we study certain
aspects of the invariant mass distribution in Section 6.1, we will take the NLO correction in the
threshold approximation, so that (102) and (103) are evaluated with dσNLO → dσNLO, leading.
This is still a good approximation to the full NLO result, and allows us to study the qualitative
behavior of the invariant mass spectrum with µf = M over a large range of M , as well as
PDF uncertainties, in a simple way. For this purpose, we also define an NNLO approximation
which includes only the singular terms at threshold in the NLO correction:

dσNNLO, leading = dσNLO, leading + dσ(2), approx . (104)
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Invariant mass distributions

✦ Fixed-order vs. resummed PT (matched to NLO):
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Figure 8: Left: Fixed-order predictions for the invariant mass spectrum at LO (light), NLO
(darker), and approximate NNLO (dark bands) for the Tevatron (top) and LHC (bottom).
Right: Corresponding predictions at NLL (light) and NLO+NNLL (darker bands) in re-
summed perturbation theory. The width of the bands reflects the uncertainty of the spectrum
under variations of the matching and factorization scales, as explained in the text.

added the uncertainties associated with variations of µh, µs, and µf in quadrature. We have
also included uncertainties associated with the PDFs, by using the set of MSTW2008NNLO
PDFs from [87] at 90% confidence level. The perturbative scale uncertainties are smaller or
comparable than those from the PDFs only once the NNLL or approximate NNLO corrections
are taken into account. For the practical reasons explained earlier, we have not matched the
higher-order results with the fixed-order NLO results. However, the threshold approximation
works rather well. For reference, at the Tevatron the exact NLO results are (38.6+5.1

−5.2) fb/GeV
for M = 400 GeV and (24.8+4.5

−4.8) · 10−3 fb/GeV for M = 1000 GeV, while at the LHC they are
(654+98

−89) fb/GeV for M = 400 GeV and (6.84+1.40
−1.11) fb/GeV for M = 1000 GeV. The deviations

from the leading NLO terms shown in the second line in both parts of the table are smaller
than 7% for the Tevatron and 5% for the LHC.

6.2 Invariant mass distribution: Phenomenological results

After these systematic studies, we now present our final results for the tt̄ invariant mass
distributions at the Tevatron and LHC. Here and below, we will use different sets of PDFs,
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Invariant mass distributions

✦ High-mass region (Tevatron):
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Figure 9: Left: Fixed-order predictions for the K factor and invariant mass spectrum at
LO (light), NLO (darker), and approximate NNLO (dark bands) for the Tevatron. Right:
Corresponding predictions at NLL (light) and NLO+NNLL (darker bands) in resummed per-
turbation theory. The width of the bands reflects the uncertainty of the spectrum under
variations of the matching and factorization scales, as explained in the text.

as appropriate for the order of the perturbative approximation employed. Strictly speaking,
theoretical predictions obtained in resummed perturbation theory would require PDF sets
extracted from data using resummed predictions for the relevant cross sections; however, such
PDF sets do not exist at present. Since our resummed expressions include the bulk of the
perturbative corrections appearing one order higher in αs, we use NLO parton densities for
the NLO and NLL approximations, and NNLO parton densities for the approximate NNLO
and matched NLO+NNLL approximations, as summarized in Table 2. The associated running
couplings αs(µ) are taken in the MS scheme with five active flavors, using one-loop running
at LO, two-loop running at NLO, and three-loop running at NNLO.

We begin by studying in more detail the invariant mass spectrum at relatively low values
of M , where it is the largest, in fixed-order and resummed perturbation theory. Contrary to
the previous section, we now match the results in resummed perturbation theory with the
exact fixed-order results at NLO using the MCFM program, according to (102). In this way
we obtain state-of-the-art predictions, which include everything known about the perturbative
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Comparison with CDF data

✦ Overlay (not a fit!) for mt=173.1 GeV:
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Figure 12: Comparison of the RG-improved predictions for the invariant mass spectrum with
CDF data [9]. The value mt = 173.1GeV has been used. No fit to the data has been performed.

6.3 Total cross section: Phenomenological results

The total cross section is obtained in our approach by integrating numerically the doubly
differential cross section in the ranges −1 < cos θ < 1 and 2mt < M <

√
s. In this case it

is a simple matter to match onto NLO in fixed-order perturbation theory, using the analytic
results of [16]. To do this, however, we can no longer correlate the factorization scale µf

with M , as we did when studying the invariant mass spectrum. Instead, we should resort to
representative average values of M , which characterize the spectrum in the region yielding
sizable contributions to the total cross section. One possibility is to take the location of the
peak in the dσ/dM distributions, which is Mpeak ≈ 375 GeV for the Tevatron and Mpeak ≈
385 GeV for the LHC (see Figure 8). Another possibility is to take the average value 〈M〉 of the
distributions, for which we find 〈M〉 ≈ 445 GeV for the Tevatron and 〈M〉 ≈ 485 GeV for the
LHC. [Check numbers!] As previously, we take the fixed value µf = 400GeV as our default
choice. On the other hand, we are still free to choose the hard and soft scales as we have done
so far and match with the fixed-order result as shown in (102). We display in Table 3 the
central values and scale uncertainties for the total cross section obtained using this procedure.
The results in resummed perturbation theory use µh = M and µs chosen according to (105) by
default, and the uncertainties are obtained by varying these scales and the factorization scale
µf up and down by a factor of two and adding the different uncertainties in quadrature. The
perturbative uncertainties in the fixed-order results are obtained by varying the factorization
scale up and down by a factor of two from its default value. In addition to the perturbative
uncertainties, we also list the PDF uncertainties obtained by evaluating the cross section with
the appropriate set of MSTW2008 PDFs at 90% confidence level. As shown in Table 2, the
LO cross sections are evaluated using LO PDF sets, the NLL and NLO cross sections using
NLO PDF sets, and the NNLL and approximate NNLO cross sections using NNLO PDF sets.
These different classes of predictions are separated by horizontal lines.
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Invariant mass distributions

✦ High-mass region (LHC):
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Figure 10: Left: Fixed-order predictions for the K factor and invariant mass spectrum at LO
(light), NLO (darker), and approximate NNLO (dark bands) for the LHC. Right: Correspond-
ing predictions at NLL (light) and NLO+NNLL (darker bands) in resummed perturbation
theory. The width of the bands reflects the uncertainty of the spectrum under variations of
the matching and factorization scales, as explained in the text.

series for the spectrum. Our results are shown in Figure 8. The bands reflect uncertainties in
scale variations according to the same procedure explained in the previous paragraph, but in
this case with µf = 400GeV by default. For the range of M in the plot, this choice is very
close to our preferred scheme µf = M , but allows for a simple matching with the fixed-order
results from MCFM. One sees that the perturbative uncertainty estimated by scale variations
is by far the smallest at NLO+NNLL order.

We now consider the region of higher invariant masses, for which the dominance of the
threshold terms is even more pronounced, as indicated by the convergence of the dark bands
and dashed lines in Figure 2 toward higher M values. Figure 9 shows our results for the
Tevatron, both in fixed-order and resummed perturbation theory. Figure 10 shows the cor-
responding results for the LHC. It is impractical to match onto fixed-order results obtained
using the MCFM program in this case; however, the differences compared with the shown
curves are so small that they would hardly be visible on the scales of the plots. The upper

34

different shape!



Features of inv. mass distribution

✦ Mass dependence (pole scheme):

✦ In future, this may provide high-precision 
determination of top-quark mass
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Figure 17: Position of the peak of the invariant mass distribution (left) and of the mean
invariant mass 〈M〉 (right) as functions of the top-quark mass.

Mpeak [GeV] 〈M〉 [GeV]

LO 375.6+0.5
−0.4 450.2+1.7

−1.5

NLL 374.5+0.2
−0.2 443.3+0.6

−0.8

NNLL 376.1+0.2
−0.2 445.5+0.4

−0.3

NNLL + NLO 375.2+0.3
−0.2 445.0+0.4

−0.4

Table 7: Values of the peak position of the mean invariant mass, obtained with mt = 173.1GeV.

smaller than the present experimental error in this parameter, it is nevertheless useful to
consider predictions for the cross section (and distributions) parameterized in terms of a more
suitable mass parameter. For the purpose of illustration, we investigate in the following the
impact of using the MS mass mt(µ). We do this by changing the value of the pole mass mt

at different orders in perturbation theory, such that the “physical” mass mt(µ) remains the
same. This is implemented through the relation

mt = mt(µ)

[
1 +

αs(µ)

π
d(1) +

(
αs(µ)

π

)2

d(2) + . . .

]
, (122)

where for QCD (N = 3) with nf = 5 active, massless flavors [102–104]

d(1) =
4

3
+ Lm , d(2) =

2053

288
+

π2

18
+

π2

9
ln 2 −

ζ3

6
+

379

72
Lm +

37

24
L2

m , (123)

with Lm = ln(µ2/m2
t (µ)). We use a fixed input value mt ≡ mt(mt) = 164.0GeV, chosen such

that at two-loop order the corresponding pole-scheme parameter mt in (122) coincides with
our default value mt = 173.1GeV. In lower orders we adjust mt such that the MS mass stays
unchanged, which leads to the values collected in Table 8. In Figure 18, we show the impact
on the invariant mass distribution of choosing mt in the way described above. Compared with
Figure 8, we observe an improved convergence of the perturbation theory, both in fixed order
and after threshold resummation. This finding, which has previously been made in [48], could

49



Features of inv. mass distribution

✦ Spectrum predictions in MS scheme, obtained 
with                                 :

✦ Improved convergence

mt [GeV]

LO 164.0

NLO, NLL 171.7

NNLO, NNLL 173.1

Table 8: Values of the pole mass mt in different orders of perturbation theory, corresponding
to a fixed value mt(mt) = 164.0GeV.
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Figure 18: Left: Resummed results for dσ/dM , changing mt at different orders in perturbation
theory as shown in Table 8. Right: The same but in fixed order.

have been anticipated by looking at Figure 16 and Table 8. The increase of the cross section
and invariant mass distributions in higher orders is to a large extent compensated by the effect
of increasing the value of the pole mass.

7 Conclusions

We have studied higher-order perturbative corrections to the doubly differential cross section
for tt̄ hadroproduction in the partonic threshold region, where the invariant mass of the tt̄
pair approaches the partonic center-of-mass energy. This involved using soft-collinear effective
theory to derive a factorization formula expressing the hard-scattering kernels as products
of matrix-valued hard and soft matching coefficients in this kinematic regime, calculating
these coefficients to NLO in perturbation theory, and solving the RG equations for these
functions directly in momentum space to achieve NNLL accuracy for the resummed differential
cross section. We also presented an approximate NNLO formula, which includes all terms
proportional to singular plus distributions in the variable (1− z), as well the scale-dependent
part of the coefficient of the δ(1 − z) term. The momentum-space resummation techniques
allow for a straightforward matching of the resummed results with the exact results at NLO
in fixed-order perturbation theory. We used this fact to perform numerical studies of the
invariant mass distribution, the total cross section, and the forward backward asymmetry at
NLO+NNLL order.
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theory as shown in Table 8. Right: The same but in fixed order.

have been anticipated by looking at Figure 16 and Table 8. The increase of the cross section
and invariant mass distributions in higher orders is to a large extent compensated by the effect
of increasing the value of the pole mass.

7 Conclusions

We have studied higher-order perturbative corrections to the doubly differential cross section
for tt̄ hadroproduction in the partonic threshold region, where the invariant mass of the tt̄
pair approaches the partonic center-of-mass energy. This involved using soft-collinear effective
theory to derive a factorization formula expressing the hard-scattering kernels as products
of matrix-valued hard and soft matching coefficients in this kinematic regime, calculating
these coefficients to NLO in perturbation theory, and solving the RG equations for these
functions directly in momentum space to achieve NNLL accuracy for the resummed differential
cross section. We also presented an approximate NNLO formula, which includes all terms
proportional to singular plus distributions in the variable (1− z), as well the scale-dependent
part of the coefficient of the δ(1 − z) term. The momentum-space resummation techniques
allow for a straightforward matching of the resummed results with the exact results at NLO
in fixed-order perturbation theory. We used this fact to perform numerical studies of the
invariant mass distribution, the total cross section, and the forward backward asymmetry at
NLO+NNLL order.
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invariant mass 〈M〉 (right) as functions of the top-quark mass.
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smaller than the present experimental error in this parameter, it is nevertheless useful to
consider predictions for the cross section (and distributions) parameterized in terms of a more
suitable mass parameter. For the purpose of illustration, we investigate in the following the
impact of using the MS mass mt(µ). We do this by changing the value of the pole mass mt

at different orders in perturbation theory, such that the “physical” mass mt(µ) remains the
same. This is implemented through the relation

mt = mt(µ)

[
1 +

αs(µ)

π
d(1) +

(
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d(2) + . . .

]
, (122)

where for QCD (N = 3) with nf = 5 active, massless flavors [102–104]
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with Lm = ln(µ2/m2
t (µ)). We use a fixed input value mt ≡ mt(mt) = 164.0GeV, chosen such

that at two-loop order the corresponding pole-scheme parameter mt in (122) coincides with
our default value mt = 173.1GeV. In lower orders we adjust mt such that the MS mass stays
unchanged, which leads to the values collected in Table 8. In Figure 18, we show the impact
on the invariant mass distribution of choosing mt in the way described above. Compared with
Figure 8, we observe an improved convergence of the perturbation theory, both in fixed order
and after threshold resummation. This finding, which has previously been made in [48], could
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Velocity distribution

✦ Transform to relative 3-velocity of top quarks 
in      rest frame:

✦ Top quarks are predominantly relativistic,      
βt ~ 0.4-0.9 not small
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Figure 11: Distributions dσ/dβt at the Tevatron (left) and LHC (right).

two plots show K factors, which are defined as the ratio of the cross section to the default
lowest-order prediction dσLO,def/dM . Contrary to Figure 7, we now use the same normaliza-
tion in both fixed-order and resummed perturbation theory, so that the two spectra can more
readily be compared to each other. The lower plots show the corresponding spectra directly.
We observe similar behavior as in the low-mass region. The bands obtained in fixed-order
perturbation theory become narrower in higher orders and overlap. The bands obtained in
resummed perturbation theory are narrower than the corresponding ones at fixed order. The
leading-order resummed prediction is already close to the final result.

The information contained in Figures 8–10 can be represented differently in terms of the
very useful distribution dσ/dβt, with βt defined as in (4). A simple change of variables yields

dσ

dβt
=

2mtβt

(1 − β2
t )

3
2

dσ

dM
. (106)

The resulting spectra for the Tevatron and LHC, obtained using RG-improved perturbation
theory, are shown in Figure 11. As before, the distributions are normalized such that the area
under the curves corresponds to the total cross section. Recall that the physical meaning of
the variable βt is that of the 3-velocity of the top quarks in the tt̄ rest frame. The distributions
show that the dominant contributions to the cross section arise from the region of relativistic
top quarks, with velocities of order 0.4–0.8 at the Tevatron and 0.5–0.9 at the LHC. We will
come back to the significance of this observation in the next section.

In Figure 12, we compare our RG-improved prediction for the invariant mass spectrum
to a measurement of the CDF collaboration obtained using the “lepton + jets” decay mode
of the top quark [9]. We observe an overall good agreement between our prediction and the
measurement, especially for higher values of M . Apparently, there is no evidence of non-
standard resonances in the spectrum. The only small deviation from our prediction concerns
the peak region of the distribution, shown in more details in the right plot. This deviation
has also been observed in [9], where a Monte Carlo study of the SM expectation has been
performed.
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to the appearance of several kinematic variables. The current frontier is NLL calculations for
the differential distributions [44, 52] and the forward-backward asymmetry [53]. Extending
these results to NNLL order has been made possible by our recent calculation of the two-loop
anomalous-dimension matrices [54, 55]. We have presented an approximate NNLO formula
for the tt̄ invariant mass distribution in [56]. The goal of the present paper is to derive
a renormalization-group (RG) improved expression for the doubly differential cross section
at NNLL order, in which all threshold-enhanced terms are resummed. We will match this
expression with the exact fixed-order NLO results and study the top-pair invariant mass
distribution, the forward-backward asymmetry, and the total cross section at NLO+NNLL
order. The predictions obtained in this way are the most precise available at present.

The paper is organized as follows. In Section 2 we review the kinematics and the structure
of factorization in the threshold region. We then derive the factorization formula for the
hard-scattering kernels into products of hard and soft matrices using soft-collinear effective
theory (SCET) in Section 3. In Section 4 we present the calculation of the hard and soft
matrices at NLO, and describe several checks on our results. Section 5 deals with the RG
properties of the hard and soft functions. We derive a formula for the resummed cross section
in momentum space using RG methods and describe its evaluation at NNLL order. We
also review the derivation of the approximate NNLO formula, which has been presented first
in [56]. In Section 6 we perform numerical studies of the invariant mass distribution, the total
cross section, and the forward-backward asymmetry, utilizing both RG-improved perturbation
theory at NNLL order and the NNLO approximate formula. We conclude in Section 7.

2 Kinematics and factorization at threshold

We consider the process

N1(P1) + N2(P2) → t(p3) + t̄(p4) + X(pX) , (1)

where X is an inclusive hadronic final state. At Born level this proceeds through the qq̄
annihilation and gluon-fusion channels

q(p1) + q̄(p2) → t(p3) + t̄(p4) ,

g(p1) + g(p2) → t(p3) + t̄(p4) , (2)

where p1 = x1P1 and p2 = x2P2. We define the kinematic invariants

s = (P1 + P2)
2 , ŝ = (p1 + p2)

2 , t1 = (p1 − p3)
2 − m2

t , u1 = (p2 − p3)
2 − m2

t , (3)

and momentum conservation at Born level implies ŝ + t1 + u1 = 0.
In this section we consider the structure of the differential cross section near the partonic

threshold. While the fully differential cross section depends on three kinematic variables, in
this paper we are mainly interested in the doubly differential cross section expressed in terms
of the invariant mass M of the tt̄ pair and the scattering angle θ between "p1 and "p3 in the
partonic center-of-mass frame. To describe this distribution we introduce the variables

z =
M2

ŝ
, τ =

M2

s
, βt =

√

1 −
4m2

t

M2
. (4)

2

tt̄



Total cross section

✦ Computed at NLO already in 1988
✦ Usually, resummation is done around absolute 

threshold at s=4mt2

✦ Mixed Coulomb and soft gluon singularities 
arise for 

✦ Obtain partial NNLO results                                
based on small-β expansion

✦ But this covers only a tiny                      portion 
of phase space!

Figure 13: Phase space in the (ŝ, M2) plane. In the blue region along the diagonal threshold
singularities arise, and the cross sections receives its main contributions. In the small green
region near the origin Coulomb singularities appear and the small-β expansion applies.

soft-gluon) resummation for Drell-Yan or Higgs production at fixed value of the lepton pair or
Higgs boson mass. Even though one can never be sure how accurately the full NNLO correc-
tion to a cross sections is approximated by a subset of calculable terms, we strongly believe
that our treatment provides an approximation that captures more physics than that based on
the β → 0 limit. We therefore expect our predictions for the invariant mass distribution, total
cross section, and forward-backward asymmetry to be the most reliable available at present.

Having just argued that the β → 0 limit is not of much relevance for the total cross section,
it is nevertheless interesting to study how well our predictions fare in this region. Since in our
case the top quarks are generically not at rest in their center-of-mass frame, we are not dealing
with Coulomb singularities, and hence our approximate prediction for the NNLO corrections
to the cross section misses a subset of terms involving potential-gluon exchange. We will now
study in more detail which of the singular terms in the β → 0 limit can be recovered in our
approach. To this end, we write the total cross section in the form

σ(s, m2
t ) =

α2
s

m2
t

∑

ij

∫ s

4m2
t

dŝ

s
ffij

(
ŝ

s
, µ

)
fij

(
4m2

t

ŝ
, µ

)
. (107)

We can obtain an expression for the perturbative functions fij by integrating (5) over all of
phase-space, in which case we find

α2
s fij

(
4m2

t

ŝ
, µ

)
=

8πm2
t

3ŝ

∫ √
ŝ

2mt

dM

M

∫ 1

−1

d cos θ

√

1 −
4m2

t

M2
Cij

(
M2

ŝ
, M, mt, cos θ, µ

)
. (108)

We can now evaluate the above formula in the limit ŝ → 4m2
t . Defining expansion coefficients
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Total cross section

✦ Fact that             and                                     
shape of βt distribution                                  
imply that small-β region                                        
is unimportant for the                                           
total cross section 

✦ In our approach, soft                                    
gluon effects are resummed also far above 
absolute threshold

✦ Different systematics & more accurate results!
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Figure 11: Distributions dσ/dβt at the Tevatron (left) and LHC (right).

two plots show K factors, which are defined as the ratio of the cross section to the default
lowest-order prediction dσLO,def/dM . Contrary to Figure 7, we now use the same normaliza-
tion in both fixed-order and resummed perturbation theory, so that the two spectra can more
readily be compared to each other. The lower plots show the corresponding spectra directly.
We observe similar behavior as in the low-mass region. The bands obtained in fixed-order
perturbation theory become narrower in higher orders and overlap. The bands obtained in
resummed perturbation theory are narrower than the corresponding ones at fixed order. The
leading-order resummed prediction is already close to the final result.

The information contained in Figures 8–10 can be represented differently in terms of the
very useful distribution dσ/dβt, with βt defined as in (4). A simple change of variables yields

dσ

dβt
=

2mtβt

(1 − β2
t )

3
2

dσ

dM
. (106)

The resulting spectra for the Tevatron and LHC, obtained using RG-improved perturbation
theory, are shown in Figure 11. As before, the distributions are normalized such that the area
under the curves corresponds to the total cross section. Recall that the physical meaning of
the variable βt is that of the 3-velocity of the top quarks in the tt̄ rest frame. The distributions
show that the dominant contributions to the cross section arise from the region of relativistic
top quarks, with velocities of order 0.4–0.8 at the Tevatron and 0.5–0.9 at the LHC. We will
come back to the significance of this observation in the next section.

In Figure 12, we compare our RG-improved prediction for the invariant mass spectrum
to a measurement of the CDF collaboration obtained using the “lepton + jets” decay mode
of the top quark [9]. We observe an overall good agreement between our prediction and the
measurement, especially for higher values of M . Apparently, there is no evidence of non-
standard resonances in the spectrum. The only small deviation from our prediction concerns
the peak region of the distribution, shown in more details in the right plot. This deviation
has also been observed in [9], where a Monte Carlo study of the SM expectation has been
performed.
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✦ Comparison of approximations to NLO 
corrections (including parton luminosities):

NLO
NLO, leading

NLO, leading PIM
NLO, beta-exp.

0 0.2 0.4 0.6 0.8 1
!3

!2

!1

0

1

2

3

4

qq̄ channelα
s

co
rr

ec
ti

on
[p

b
]

β

√
s = 1.96 TeV

NLO

NLO, leading

NLO, leading PIM

NLO, beta-exp.

0 0.2 0.4 0.6 0.8 1
!0.2

0.0

0.2

0.4

0.6

0.8

1.0

gg channelα
s

co
rr

ec
ti

on
[p

b
]

β

√
s = 1.96 TeV

NLO
NLO, leading
NLO, leading PIM
NLO, beta-exp.

0 0.2 0.4 0.6 0.8 1
!20

!10

0

10

20

qq̄ channelα
s

co
rr

ec
ti

on
[p

b
]

β

√
s = 7 TeV

NLO
NLO, leading
NLO, leading PIM
NLO, beta-exp.

0 0.2 0.4 0.6 0.8 1
!40

!20

0

20

40

60

80

100

gg channelα
s

co
rr

ec
ti

on
[p

b
]

β

√
s = 7 TeV

NLO
NLO, leading

NLO, leading PIM

NLO, beta-exp.

0 0.2 0.4 0.6 0.8 1
!50

!25

0

25

50

qq̄ channelα
s

co
rr

ec
ti

on
[p

b
]

β

√
s = 14 TeV

NLO
NLO, leading
NLO, leading PIM
NLO, beta-exp.

0 0.2 0.4 0.6 0.8 1
!200

!100

0

100

200

300

400

500

gg channelα
s

co
rr

ec
ti

on
[p

b
]

β

√
s = 14 TeV

Figure 14: The αs corrections to dσ/dβ for the different approximations mentioned in the text
at the Tevatron and LHC, with µf = mt. The plots on the left side show the qq̄ channel, those
on the right the gg channel.

using this expansion plus the potential terms in (111) (labeled “β-exp.+potential”). [Which
version to compare?] We notice that the NLO+NNLL resummed results and the small-β
expansion differ by xxx% at the Tevatron and yy% at the LHC, and that the µ dependence
of the predictions obtained using the small-β expansion is markedly smaller, especially at the
LHC. [Why significant? Not true at Tevatron!] On the other hand, the effect of adding the
potential-gluon contributions to the small-β expansion, which cannot be reproduced in our
approach, is always small, ranging between 1% and 2.5%. We conclude that the bulk of the
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✦ Detailed predictions for total cross sections:

✦ Singular terms dominate NLO corrections
✦ Resummation stabilizes scale dependence

Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σLO 4.49+1.71
−1.15

+0.24
−0.19 84+29

−20
+4
−5 217+70

−49
+10
−11 495+148

−107
+19
−24

σNLL 5.07+0.37
−0.36

+0.28
−0.18 112+18

−14
+5
−5 276+47

−37
+10
−11 598+108

−94
+19
−19

σNLO, leading 5.49+0.78
−0.78

+0.31
−0.20 134+16

−17
+7
−7 341+34

−38
+14
−14 761+64

−75
+25
−26

σNLO 5.79+0.79
−0.80

+0.33
−0.22 133+21

−19
+7
−7 341+50

−46
+14
−15 761+105

−101
+26
−27

σNLO+NNLL 6.30+0.19
−0.19

+0.31
−0.23 149+7

−7
+8
−8 373+17

−15
+16
−16 821+40

−42
+24
−31

σNNLO, approx (scheme A) 6.14+0.49
−0.53

+0.31
−0.23 146+13

−12
+8
−8 369+34

−30
+16
−16 821+71

−65
+27
−29

σNNLO, approx (scheme B) 6.05+0.43
−0.50

+0.31
−0.23 139+9

−9
+7
−7 349+23

−23
+15
−15 773+47

−50
+25
−27

Table 3: Results for the total cross section in pb, using the default choice µf = 400GeV.
The first set of errors refers to perturbative uncertainties associated with scale variations, the
second to PDF uncertainties. The most advanced prediction is the NLO+NNLL expansion
highlighted in gray.

Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σLO 6.66+2.95
−1.87

+0.34
−0.27 122+49

−32
+6
−7 305+112

−76
+14
−16 681+228

−159
+26
−34

σNLL 5.20+0.40
−0.36

+0.29
−0.19 103+17

−14
+5
−5 253+44

−36
+10
−10 543+101

−88
+18
−19

σNLO, leading 6.42+0.42
−0.76

+0.35
−0.23 152+7

−15
+8
−8 381+12

−32
+16
−17 835+18

−60
+29
−30

σNLO 6.72+0.36
−0.76

+0.37
−0.24 159+20

−21
+8
−9 402+49

−51
+17
−18 889+107

−106
+31
−32

σNLO+NNLL 6.48+0.17
−0.21

+0.32
−0.25 146+7

−7
+8
−8 368+20

−14
+19
−15 813+50

−36
+30
−35

σNNLO, approx (scheme A) 6.72+0.45
−0.47

+0.33
−0.24 162+19

−14
+9
−9 411+49

−35
+17
−20 911+111

−77
+35
−32

σNNLO, approx (scheme B) 6.55+0.32
−0.41

+0.33
−0.24 149+10

−9
+8
−8 377+28

−23
+16
−18 832+65

−50
+31
−29

Table 4: Same as Table 3, but with the “educated” scale choice µf = mt.

A few comments are in order concerning the results shown in the table. At NLO the
cross sections σNLO, leading evaluated using only the leading singular terms from the threshold
expansion reproduce between 95% (for the Tevatron) to almost 100% (for the LHC) of the
exact fixed-order result at the default values of the factorization scale. The subleading terms
in (1 − z), obtained by integrating dσNLO, subleading, contribute the remaining few percent. In
other words, the singular terms capture about 85% of the NLO correction at the Tevatron and
practically 100% of it at the LHC. We cannot say whether the threshold expansion works so
well also at higher orders in perturbation theory, although this does not seem unreasonable.
Our best prediction is obtained by matching the fixed-order result with the resummed result
at NLO+NNLL accuracy and is highlight in gray. The effect of resummation is roughly a
10–15% enhancement over the fixed-order NLO result. A more important effect is that the
resummation stabilizes the scale dependence significantly. Concerning the approximate NNLO
schemes, the results from scheme A are noticeably higher than those from scheme B, but these
differences are well inside the quoted errors. Since the two schemes differ only by terms
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✦ Small-β expansion misses important NLO effects: 

✦ Likely that this remains true at NNLO

scale uncertainty PDF uncertainty

Cross section (pb) Tevatron LHC (7TeV) LHC (10TeV) LHC (14TeV)

σNLO 5.79+0.79
−0.80

+0.33
−0.22 133+21

−19
+7
−7 341+50

−46
+14
−15 761+105

−101
+26
−27

σNLO, leading 5.49+0.78
−0.78

+0.31
−0.20 134+16

−17
+7
−7 341+34

−38
+14
−14 761+64

−75
+25
−26

σNLO, β-exp. v1 6.59+0.96
−0.95

+0.38
−0.25 151+15

−18
+8
−8 386+30

−39
+15
−16 863+49

−73
+29
−30

σNLO, β-exp. v2 8.22+0.54
−0.88

+0.49
−0.33 157+12

−16
+8
−8 395+24

−36
+14
−15 877+49

−73
+29
−30

σNLO+NNLL 6.30+0.19
−0.19

+0.31
−0.23 149+7

−7
+8
−8 373+17

−15
+16
−16 821+40

−42
+24
−31

σNNLO, β-exp. v1 6.98+0.17
−0.40

+0.37
−0.27 156+2

−6
+8
−8 394+2

−10
+16
−17 871+0

−14
+29
−31

σNNLO, β-exp.+potential v1 6.95+0.16
−0.39

+0.36
−0.26 159+3

−7
+8
−8 401+6

−12
+17
−17 888+7

−19
+30
−32

σNLO, β-exp. v2 8.22+0.54
−0.88

+0.49
−0.33 157+12

−16
+8
−8 395+24

−36
+14
−15 877+49

−73
+29
−30

σNNLO, β-exp.+potential v2 7.30+0.00
−0.18

+0.39
−0.28 158+3

−6
+8
−8 398+7

−13
+16
−17 880+12

−22
+29
−31

Table 5: Results for the total cross section in pb, using the default choice µf = 400 GeV. Some
numbers from Table 3 are compared with results obtained from different implementations of
the small-β expansion (see text for explanation). The errors have the same meaning as before.

are always a good approximation to the exact NLO results, at both the Tevatron and the LHC.
On the other hand, the small-β expansion version 2 tends to overestimate the cross section at
the Tevatron by more than 2 pb. By incorporating the exact Born prefactors (version 1) the
small-β expansion works better, but still it overestimate the exact results by about 1 pb. At
the LHC, the small-β expansion happens to give results closer to the exact answers. However,
as we will now explain, this is a coincidence. In Figure 14 we plot the NLO corrections to
the cross sections, including the parton luminosities, as functions of β. The solid curves show
the exact results, the dot-dashed curves our leading singular terms, and the dotted curves the
resuls obtained using version 1 of the small-β expansion (the dashed curves will be explained
in the next subsection). In the small-β region, all the approximations work rather well as
expected. With increasing β, the different approximations start to deviate from one another.
We observe that, at both the Tevatron and the LHC, our approximations always reproduce the
shapes of the exact results quite well, which is not at all achieved by the small-β expansion.
The fact that the small-β expansion overestimates the cross section at the Tevatron, where the
qq̄ channel dominates, is evident from the left plots in Figure 14. At the LHC, where the gg
channel dominates, the small-β expansion does not reproduce the shapes of the exact results,
even though it happens that the integrated cross sections are close to the exact ones due to
a coincidental cancellation. However, it is unlikely that a similar cancellation will happen at
NNLO.

We next compare our best prediction, NLO+NNLL, to the best prediction in obtained
using the small-β expansion at NNLO. Without knowing the exact expression for the NNLO
corrections, it is hard to tell which one is closer to the true answer, but we can study the
validity of small-β expansion by investigating the effects of the subleading terms in β that
are contained in our results. We have included in Table 5 the numerical results for the cross
section obtained by evaluating the small-β expansion (110) of our approximate NNLO formula,
without including the extra potential terms (labeled “β-exp.” in the table), and that obtained
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✦ Mass dependence (pole scheme):

✦ Extract                                    , in agreement 
with world average mt=(173.1±1.3) GeV 

NLO + NNLL
NLL 

D!  dilepton analysis
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Figure 16: Dependence of the total cross section on the top-quark mass defined in the pole
scheme. The NLL and NLO+NNLL bands indicate the combined scale uncertainties, the
blue band represents the dependence of the D0 measurement of the cross section on mt, as
described in [99].

6.6 Sensitivity to the top-quark mass

Up to this point our results were obtained using the default value mt = 173.1GeV for the
top-quark mass defined in the pole scheme. Figure 16 shows the dependence of the total
cross section on the value of mt. We show our NLL and NNLL+NLO results, again as bands
representing the errors due to the different scale uncertainties. We compare our result with a
recent measurement of the total cross section performed by the D0 collaboration [99]. From
the figure we determine the top-quark mass to be mt = (166.4+10.3

−7.6 )GeV, which is consistent
with the latest world average mt = (173.1+1.3

−1.3)GeV [1].
As we have seen, there are still rather large uncertainties in using the total cross section as

a mean to extract the top-quark mass. We therefore investigate what additional information
can be gained from the invariant mass distribution. On the left in Figure 17, we show the
position of the peak of the invariant mass distribution, Mpeak, as a function of mt. On the
right we show the corresponding dependence of the mean invariant mass 〈M〉. We do not show
the errors arising from scale variations, as they would be too small to be visible on the scales
of the plots. As illustrated in Table 7, both observables turn out to be very stable under the
change of the order of perturbation theory. (Observing that the shifts between different orders
are larger than those indicated by the scale variations, we however note that scale variation
might not be a good estimator of the uncertainty.) They show an almost linear dependence
on the mass of the top quark, which leads to a nearly linear translation of errors. A precise
measurement of one of these observables would thus lead to a direct measurement of mt with
about the same precision. Of course this can only be taken as a qualitative remark at the
moment, but with increasing data this might become an important strategy for a precision
measurement of mt.

It is a well-known fact that the pole mass defined in perturbation theory is an ill-defined
concept, as it is plagued by renormalon ambiguities in higher orders of perturbation theory
[100, 101]. While the corresponding intrinsic uncertainty in mt is of order ΛQCD and thus
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top-quark mass defined in the pole scheme. Figure 16 shows the dependence of the total
cross section on the value of mt. We show our NLL and NNLL+NLO results, again as bands
representing the errors due to the different scale uncertainties. We compare our result with a
recent measurement of the total cross section performed by the D0 collaboration [99]. From
the figure we determine the top-quark mass to be mt = (166.4+10.3

−7.6 )GeV, which is consistent
with the latest world average mt = (173.1+1.3

−1.3)GeV [1].
As we have seen, there are still rather large uncertainties in using the total cross section as

a mean to extract the top-quark mass. We therefore investigate what additional information
can be gained from the invariant mass distribution. On the left in Figure 17, we show the
position of the peak of the invariant mass distribution, Mpeak, as a function of mt. On the
right we show the corresponding dependence of the mean invariant mass 〈M〉. We do not show
the errors arising from scale variations, as they would be too small to be visible on the scales
of the plots. As illustrated in Table 7, both observables turn out to be very stable under the
change of the order of perturbation theory. (Observing that the shifts between different orders
are larger than those indicated by the scale variations, we however note that scale variation
might not be a good estimator of the uncertainty.) They show an almost linear dependence
on the mass of the top quark, which leads to a nearly linear translation of errors. A precise
measurement of one of these observables would thus lead to a direct measurement of mt with
about the same precision. Of course this can only be taken as a qualitative remark at the
moment, but with increasing data this might become an important strategy for a precision
measurement of mt.

It is a well-known fact that the pole mass defined in perturbation theory is an ill-defined
concept, as it is plagued by renormalon ambiguities in higher orders of perturbation theory
[100, 101]. While the corresponding intrinsic uncertainty in mt is of order ΛQCD and thus
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Figure 10: Top quarks (antitop quarks) are preferably emitted in the direction of the incoming
quark (antiquark). Anti top quarks are preferably emitted at small rapidity, while top quarks
are more abundantly emitted in the forward or backward directions.

By evaluating both the numerator and the denominator of Eq. (110) up to O(α3
s) in fixed-

order perturbation theory, and considering only the leading terms in (1 − z), one finds

At
FB

∣∣∣
FO

LO

= 3.3+0.8
−0.6 % , (113)

where the superscript and subscript in the r. h. s. of Eq. (113) reflect the uncertainty obtained
by varying the scale in the range M/2 < µ < 2M at each point in the integrands in Eq. (110).
If the scale is allowed to vary in the range mt/2 < µ < 2mt, one obtains a slightly larger
result:

At
FB

∣∣∣
FO

LO

= 4.8+2.0
−1.1 % . (114)

By employing the approximate NNLO formulas for the invariant mass distribution it is now
possible to evaluate both the numerator and the denominator of the asymmetry up to O(α4

s)
(while as usual neglecting subleading terms in (1 − z)); in this case the asymmetry becomes

At
FB

∣∣∣
FO

NLO

= 5.1+0.7
−0.6 % (M/2 ≤ µ ≤ 2M) ,

At
FB

∣∣∣
FO

NLO

= 6.2+0.5
−0.7 % (mt/2 ≤ µ ≤ 2mt) . (115)

The use of the resummed differential distributions dσ/dM in the calculation of Eq. (110)
leads to

At
FB

∣∣∣
RES

NLL

= 5.7+3.2
−3.1 % ,

At
FB

∣∣∣
RES

NNLL

= 5.8+0.8
−0.8 % . (116)

With this notation we indicate that both the numerator and the denominator of the asymmetry
in the first (second) line in Eq. (116) were evaluated by employing the NLL (NNLL) resummed
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Forward-backward asymmetry

✦ At Tevatron, top-quark are emitted preferably 
in direction of incoming quark

✦ Define inclusive asymmetry:

✦ Surprising result by CDF:

a charge-symmetric averaged cross section as follows

d2∆σ

dMd cos θ
≡ 1

2

[
d2σN1N2→tt̄X
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The notation in Eqs. (106) makes clear that in the process labeled by the superscript N1N2 →
tt̄X (N1N2 → t̄tX) the angle θ indicates the scattering angle of the top quark (antitop quark)
in the partonic center of mass frame. The double differential asymmetry is then defined as
the ratio of the quantities introduced in Eqs. (106):
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. (107)

We are mainly interested in the total asymmetry which can be obtained by integrating the
differential cross sections appearing in Eqs. (106) with respect to M and θ:
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Since as a consequence of the charge conjugation symmetry in QCD
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(where f indicates a generic numerical value), the charge asymmetry can be interpreted as a
forward-backward asymmetry for top quarks. In particular,
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At leading order in QCD (O(α2
s)), the charge-asymmetric cross section introduced in the

first of Eqs. (106) is zero; this quantity receives non-vanishing contributions starting from
O(α3

s). In particular, non vanishing contributions to the charge-asymmetric cross section arise
if, in the interference of one-loop and tree-level diagrams, the top-quark fermionic line and the
light-quark fermionic line are connected by three gluons. The same observation applies also
to the interference of two tree-level diagrams with three particles in the final state. In Fig. 9
we show the interference of the planar box with the tree-level diagram and the corresponding
interference of real emission diagrams. The other contribution to the asymmetry at O(α3

s) in
the quark-annihilation channel originates from the interference of the crossed box and tree-level
diagram (or from the corresponding real emission case). This can be visualized by imagining
to cross the two gluons on the left side of the heavy quark triangle in Fig. 9. The color factors
multiplying the structure in Fig. 9 or its crossed counterpart are respectively
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Figure 9: Examples of interferences contributing to the charge-asymmetric cross section. The
two-particle cut corresponds to the interference of a one-loop box with the tree-level diagram,
while the three-particle cut corresponds to the interference of tree-level diagrams with a tt̄g
final state.

where f 2
abc = (N2 − 1)N and d2

abc = (N2 − 1)(N2 − 4)/N . When the color factors are stripped
off, the interference in Fig. 9 and its crossed counterpart satisfy the relation

dσN1N2→tt̄X
planar = −dσN1N2→t̄tX

crossed . (112)

The relation in Eq. (112) holds both for the three-particle cuts and for the two-particle cuts.
Therefore, the charge asymmetric cross section is proportional to d2

abc. The interference of
the one-loop box diagrams with the tree level diagram gives a positive contribution to the
asymmetry, which is partially canceled by the asymmetry originating from the interference of
initial- and final-state radiation diagrams. An additional small contribution to the asymmetry
at O(α3

s) originates from the flavor excitation channel gq(q̄) → tt̄X at tree level. The gluon-
fusion channel does not contribute to the charge-asymmetric cross section.

The study of the charge-asymmetric cross section at O(α3
s) shows that top quarks (antitop

quarks) are preferably emitted of the direction of the incoming quark (antiquark); conse-
quently, in pp̄ collisions top quarks are preferably emitted in the direction of the incoming
proton [19, 20]. At the LHC, the QCD-induced charge asymmetry is zero since in this case
there are two identical protons in the initial state. However, it is possible to show that top
antiquarks are predominantly produced at smaller rapidities than top quarks; this fact can be
exploited in order to define measurable asymmetries also at the LHC [76]. The situation is
schematically shown in Fig. (10).

The top-quark pair-production forward-backward asymmetry can be measured both in the
laboratory frame and in the tt̄ rest frames. Near the partonic threshold the tt̄ rest frame and the
incoming partons rest frame coincide; it is therefore interesting to employ the formulas derived
in the previous sections to calculate the forward-backward asymmetry in the parton rest
frame. The resummation of partonic threshold effects at NLL order in the forward-backward
asymmetry was first considered in [44]. By employing the expressions for the invariant mass
distribution derived above, it is possible to improve the available calculations of the charge
asymmetry in the threshold limit, both in fixed order perturbation theory and when employing
resummation techniques.

[Please check the numbers, are they still up to date?]
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Forward-backward asymmetry

✦ Non-zero contributions arise first at one-loop 
order, from interference terms such as:

✦ Predictions:
0.2 < µf/TeV < 0.8 mt/2 < µf < 2mt

∆σFB [pb] At
FB [%] ∆σFB [pb] At

FB [%]

NLL 0.29+0.16
−0.16 5.8+3.3

−3.2 0.31+0.16
−0.17 5.9+3.4

−3.3

NLO, leading 0.19+0.09
−0.06 5.2+0.4

−0.4 0.31+0.16
−0.10 5.7+0.5

−0.4

NLO 0.25+0.12
−0.07 6.7+0.6

−0.4 0.40+0.21
−0.13 7.4+0.7

−0.6

NLO+NNLL 0.40+0.06
−0.06 6.6+0.6

−0.5 0.45+0.08
−0.07 7.3+1.1

−0.7

NNLO, approx (scheme A) 0.37+0.10
−0.08 6.4+0.9

−0.7 0.48+0.11
−0.10 7.5+1.3

−0.9

NNLO, approx (scheme B) 0.34+0.08
−0.07 5.8+0.8

−0.6 0.45+0.09
−0.09 6.8+1.1

−0.8

Table 6: The asymmetric cross section and forward-backward asymmetry at the Tevatron,
evaluated at different orders in perturbation theory in the partonic center-of-mass frame. The
errors refer to perturbative uncertainties related to scale variations, as explained in the text.

these up and down by a factor of two and adding the different uncertainties in quadrature.
The uncertainties in the fixed-order results are obtained by varying µf up and down by a
factor of two. The counting used in the table refers to the order at which the differential cross
section itself is needed, relative to α2

s; this differs slightly from the counting in fixed order
used in [21], which would count, for instance, our NLO as LO. To obtain the result in fixed
order at NLO, we have used the formulas in Appendix A of [21]. At both µf = 400GeV and
µf = mt, the NLO threshold terms recover about 80% of the full result in fixed order, which
is roughly in line with our findings for the NLO corrections to the cross section. The table
also includes our results for the forward-backward asymmetry. In calculating the asymmetry,
we first evaluate the numerator and denominator of the ratio At

FB = ∆σFB/σ to a given order
in RG-improved or fixed-order perturbation theory, and then further expand the ratio itself.
When performing the calculation in this way, the errors in the asymmetry at NLO are actually
smaller than those at NLO+NNLL order, even though the scale variations in the numerator
and denominator of the ratio are much larger. We note, however, that if we chose instead to
not further expand the ratio, the NLO result would be decreased by about 20%, while the
NLO+NNLL result changes only by about 5% and should therefore be considered the more
reliable prediction. In [21], an overall factor of 1.09 due to electroweak corrections is included
for the asymmetry. However, a smaller correction was recently obtained in [92], and it is also
scale-dependent. Therefore we have chosen not to include these corrections in our results.

Our results are in good agreement with the previous findings reported in [53, 93]. We
have not performed the calculation in the pp̄ frame, but expect that the boost to this frame
decreases the asymmetry by roughly 30%, as found in [93]. On the other hand, the CDF
collaboration at the Tevatron recently reported the value At

FB(exp) = (19.3 ± 6.9) % for the
asymmetry in the pp̄ frame [12]. The measured asymmetry exceeds the predicted one by about
two standard deviations. In light of our results, we conclude that higher-order QCD effects
are not sufficient to explain the large experimental value. Possible explanations of this fact in
the framework of several new physics scenarios were recently investigated in [93–98].
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Conclusions
✦ Effective field theory provides efficient tools for 

addressing difficult collider-physics problems 
✦ Systematic “derivation” of factorization theorems 

(known ones and ones to be discovered) and 
simple, transparent resummation techniques

✦ Detailled applications exist for Drell-Yan, Higgs,  
and top-quark pair production

✦ Longer-term goal is to understand resummation 
at NNLL+NLO order for jet processes, such as 
pp→n jets+V/H at LHC (with n≤3, V=γ,Z,W)


