
Physics 116A Fall 2019

Rotation Matrices in two, three and many dimensions

1. Proper and improper rotation matrices in n dimensions

A matrix is a representation of a linear transformation, which can be viewed as a
machine that consumes a vector and spits out another vector. A rotation is a trans-
formation with the property that the vector consumed by the machine and the vector
spit out by the machine have the same length. That is, physically rotating a vector by
an angle θ leaves the length of the vector unchanged. As a matrix equation, if R is a
rotation matrix and ~v is a vector, then

~w = R~v , where ‖~w‖ = ‖~v‖. (1)

In eq. (1), the length of the vector ~v is denoted by ‖~v‖. Note that if ~v is a vector in
an n-dimensional space, then in terms of the components of ~v = (v1, v2, . . . , vn) and
~w = (w1, w2, . . . , wn), eq. (1) is equivalent to

wi =

n∑

j=1

Rijvj , (2)

where Rij are the matrix elements of the rotation matrix R. In addition, the length of
the vector ~v is given by the n-dimensional generalization of the Pythagorean theorem,

‖~v‖ =
√

v2
1
+ v2

2
+ . . .+ v2n , (3)

with a similar formula for the length of ~w.
Let us now ask the following question: what is the most general form of the matrix R

such that the lengths of the vectors ~v and ~w are equal, as specified in eq. (1)? That is,
what is the most general form of R in eq. (2) such that

n∑

i=1

wiwi =

n∑

i=1

vivi , (4)

which is the condition that must be satisfied if ‖~v‖ = ‖~w‖ in light of eq. (3). To
answer this question, we insert eq. (2) into the left hand side of eq. (3). Here, we must
be careful with indices and write:

wiwi =
n∑

j=1

Rijvj

n∑

k=1

Rikvk . (5)

The second time we write wi as a sum on the right hand side of eq. (5), one must
use a different summation index (e.g., k), since the index j has already been used as a
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summation index in the first sum. The best way to see this is to take a simple example,
say with i = 1 and n = 2. Then eq. (5) yields

w2

1
= (R11v1 +R12v2)(R11v1 +R12v2) . (6)

It would be wrong to write

wiwi =

n∑

j=1

RijvjRijvj , WRONG!,

which in our simple example with i = 1 and n = 2 would yield w2

1
= R2

11
v2
1
+ R2

12
v2
2
,

thereby missing the cross terms that appear when multiplying out the two factors on
the right hand side of eq. (6).

Since the sums in eq. (5) consist of a finite number of terms, one can move the
summation signs to the left and reorder the terms being multiplied to obtain,

wiwi =

n∑

j=1

n∑

k=1

RijRikvjvk . (7)

Next, we sum over the free index i on both sides of eq. (7) and use eq. (4) to obtain,

n∑

i=1

wiwi =
n∑

i=1

n∑

j=1

n∑

k=1

RijRikvjvk =
n∑

i=1

vivi . (8)

One can now use the following trick. Recalling the definition of the Kronecker delta
symbol,

δjk =

{
1 , if j = k,

0 , if j 6= k,
(9)

it follows that the right hand side of eq. (8) can be rewritten as

n∑

i=1

vivi =
n∑

j=1

n∑

k=1

δjkvjvk . (10)

As this is one of the crucial steps in the analysis, you should convince yourself that
eq. (10) is an identity (e.g., by examining the case of n = 2 and writing out the sums
explicitly). One can now insert eq. (10) back into eq. (8) to obtain,

n∑

i=1

n∑

j=1

n∑

k=1

RijRikvjvk =
n∑

j=1

n∑

k=1

δjkvjvk . (11)

Interchanging the order of summation,

n∑

j=1

n∑

k=1

n∑

i=1

RijRikvjvk =

n∑

j=1

n∑

k=1

δjkvjvk . (12)
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Moving the right hand side above over to the left hand side of eq. (12) yields,

n∑

j=1

n∑

k=1

[(
n∑

i=1

RijRik

)
− δjk

]
vjvk = 0 . (13)

Let us denote the expression inside the square brackets as,

Ajk ≡
(

n∑

i=1

RijRik

)
− δjk , (14)

in which case, eq. (13) is equivalent to

n∑

j=1

n∑

k=1

Ajkvjvk = 0 . (15)

In the above analysis, I never specified a specific value for the vj. In other words, if one
were to rotate any vector ~v, the end result would still be eq. (15). This observation
implies that eq. (15) must be true for any choice of the vj . Consequently, it must be
true that Ajk = 0 for all j, k = 1, 2, . . . , n.1 Inserting Ajk = 0 into the left hand side of
eq. (14) yields out final result,

n∑

i=1

RijRik = δjk . (16)

To interpret eq. (16), I remind you that the jk element of the product of two n×n
matrices is given by the formula [cf. eq. (9.3) in Chapter 3, p. 138 of Boas],

(BC)jk =

n∑

i=1

BjiCik . (17)

Inserting B = RT and C = R in eq. (17) and using eq. (16) then yields the matrix
equation RTR = I. In obtaining this result, we noted that the matrix elements of the
identity matrix are Iij = δij , and the transpose of a matrix interchanges the rows and
columns, so that (RT)ji = Rij . In conclusion, eq. (16) in matrix form is equivalent to
the statement that

RTR = I . (18)

A matrix R that satisfies eq. (18) is called an orthogonal matrix. Multiplying both
sides of eq. (18) on the right by R−1 and using RR−1 = I yields,

RT = R−1 . (19)

1For example, choose ~v = (1, 0, 0, . . . , 0) and insert this choice in eq. (15) to obtain A11 = 0. Now
keep on choosing vectors with different components, and eventually you will see that Ajk = 0 for all
j, k = 1, 2, . . . , n.
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which can also be used as the definition of an orthogonal matrix. Finally, multiplying
both sides of eq. (19) on the left by R and again using RR−1 = I yields,

RRT = I . (20)

Hence, orthogonal matrices are matrices that satisfy R−1 = RT, or equivalently satisfy,

RTR = RRT = I . (21)

We conclude that rotation matrices must be real orthogonal matrices.
Next, consider the following question. Can any real n × n orthogonal matrix be

identified as some rotation matrix in n-dimensional space [which is the converse of
statement following eq. (21)]? To gain some insight, let us take the determinant of both
sides of eq. (18). Recall that det I = 1 and that for any n × n matrices B and C, we
have det(BC) = (detB)(detC). Finally, for any matrix B, we have det(BT) = detB.
Making use of these properties, eq. (18) yields,

det(RTR) = (detRT)(detR) = (detR)2 = det I = 1 . (22)

It then follows that2

detR = ±1 . (23)

That is, some real orthogonal matrices have determinant equal to 1, whereas other real
orthogonal matrices have determinant equal to −1. In these notes, I shall explore the
explicit forms for rotation matrices in 2 and 3 dimensions. Extending those results to
n dimensions, one can show that any real n × n orthogonal matrix with determinant
equal to 1 can be identified as some rotation matrix in n dimensions. A real orthogonal
matrix with determinant equal to −1 can be identified as a product of a rotation and
a reflection.

The above observation leads to the following nomenclature. A real orthogonal
matrix R with detR = 1 provides a matrix representation of a proper rotation. The
most general rotation matrix R represents a counterclockwise rotation by an angle θ
about a fixed axis that is parallel to the unit vector n̂.3 The rotation matrix operates on
vectors to produce rotated vectors, while the coordinate axes are held fixed. In typical
parlance, a rotation refers to a proper rotation. Thus, in the following sections of these
notes we will often omit the adjective proper when referring to a proper rotation.

A real orthogonal matrix R with detR = −1 provides a matrix representation of
an improper rotation.4 To perform an improper rotation requires mirrors. That is, the
most general improper rotation matrix is a product of a proper rotation by an angle θ
about some axis n̂ and a mirror reflection through a plane that passes through the
origin and is perpendicular to n̂.

2Note that eq. (23) implies that detR 6= 0. This result implies that the inverse of a rotation matrix,
R−1 always exist. We implicitly used this fact to go from eq. (18) to eq. (19), so this step is now
justified.

3The corresponding inverse matrix R−1 represents a clockwise rotation by an angle θ about a fixed
axis that is parallel to the unit vector n̂. With this observation, you can quickly check that RR−1 = I,
as expected.

4To distinguish matrices representing improper rotations from those of proper rotations, we shall
employ the notation R to denote an improper rotation matrix.
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Finally, it is instructive to consider the following question: how many real indepen-
dent parameters (which we shall denote by N below) describe a real orthogonal n× n
matrix? To answer this question, we start with eq. (16). A general real n × n ma-
trix possesses n2 parameters (corresponding to its n2 matrix elements). But, eq. (16)
imposes constraints on these n2 parameters. Consider first the case of j = k. Then
eq. (16) reduces to,

n∑

i=1

RijRij = 1 , for j = 1, 2, . . . , n. (24)

That is, eq. (24) constitutes n independent constraint equations. Next, we consider
the case of j 6= k, Then eq. (16) reduces to

n∑

i=1

RijRik = 0 , for j < k with j, k = 1, 2, . . . , n. (25)

Note that one only has to consider j < k, since the equations for j > k do not give any
further independent constraints.5 To determine the number of independent constraint
equations that are contained in eq. (25), one must simply count up the number of
possible choices of j < k, with j, k = 1, 2, . . . , n. The number of pairs {j, k} with j 6= k
is equal to n2 − n (after subtracting off the n pairs with j = k). Of these n2 − n pairs,
half of them have j < k and half of them have j > k. Hence, eq. (25) constitutes
1

2
n(n− 1) constraint equations.
One can conclude that the number of constraint equations imposed by eq. (16) on

the n2 parameters of the matrix R is

n+ 1

2
n(n− 1) = 1

2
n(n + 1) . (26)

Subtracting this value from the n2 parameters of a real n× n matrix leaves us with

N ≡ n2 − 1

2
n(n+ 1) = 1

2
n(n− 1) (27)

independent (unconstrained) parameters. That is, a real orthogonal n × n matrix
depends on N = 1

2
n(n− 1) independent parameters.

Consider how this works for n = 2 and n = 3. In the case of n = 2, eq. (27) yields
N = 1. This is not surprising, since the most general two-dimensional rotation consists
of a rotation by an angle θ in the plane. Thus, we identify θ as the one independent
parameter. In the case of n = 3, eq. (27) yields N = 3. This is again not a surprise.
Indeed, as noted above, the most general rotation in three dimensions consists of a
counterclockwise rotation by an angle θ about a fixed axis that lies along the unit
vector n̂. The direction of n̂ is fixed by two angles θn and φn, corresponding to its
polar angle and azimuthal angle with respect to a fixed z-axis. Thus, the three angles,
{θ, θn, φn} constitute the three independent parameters that describe an arbitrary
three-dimensional proper rotation.

5To verify this claim, rewrite eq. (25) as
∑n

i=1
RikRij = 0 for j > k and notice that this is precisely

the same form as eq. (25) in the case of k < j.
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2. Properties of 2 × 2 proper and improper rotation matrices

In the case of n = 2. it is easy to work out the form of the most general real
orthogonal matrix. Taking R = ( a b

c d ), and imposing RRT = I [cf. eq. (19)],
(
a b
c d

)(
a c
b d

)
=

(
1 0
0 1

)
. (28)

Performing the matrix multiplication, we end up with,
(
a2 + b2 ac+ bd
ac+ bd c2 + d2

)
=

(
1 0
0 1

)
. (29)

Thus, we obtain three constraint equations, as expected from eq. (26) ,

a2 + b2 = 1 , (30)

c2 + d2 = 1 , (31)

ac + bd = 0 . (32)

We now consider separately the cases of proper and improper rotations. In the case
of proper rotations, we add a fourth equation to eqs. (30)–(32),

detR = ad − bc = 1 . (33)

Suppose that b 6= 0 and c 6= 0.6 From eq. (32), it follows that d = −ac/b. Substituting
this into eq. (33) yields,

a2 + b2 = −b

c
. (34)

Combining eqs. (30) and (34), we conclude that b = −c. Plugging this result back into
eq. (32) yields a = d. With these results, eq. (31) is automatically satisfied in light of
eq. (30). Hence, the most general 2× 2 real orthogonal matrix with determinant equal
to 1 is given by,7

R =

(
a b

−b a

)
, with a2 + b2 = 1 and |a| ≤ 1, |b| ≤ 1. (35)

Without loss of generality, we can set a = cos θ and b = ±
√
1− a2 = ± sin θ, since

cos θ and sin θ satisfy the same properties as a and b, namely, sin2 θ + cos2 θ = 1 and
| sin θ| ≤ 1, | cos θ| ≤ 1 for 0 ≤ θ < 2π. Indeed, the rotation matrix,

R =

(
cos θ − sin θ
sin θ cos θ

)
, where 0 ≤ θ < 2π , (36)

represents a proper counterclockwise rotation by an angle θ in the plane, as discussed
in class (see p. 127 of Boas).

6The case of b = 0 or c = 0 can be treated separately. This is left as an exercise for the student.
These special cases will not change the general result obtained in eq. (35).

7Note that |a| ≤ 1 and |b| ≤ 1 is actually a consequence of a2 + b2 = 1.
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In the case of improper rotations, we start with R = ( a b
c d ) and impose RRT = I,

which again yields eqs. (28)–(32). We then add a fourth equation to eqs. (30)–(32),

detR = ad− bc = −1 . (37)

Suppose that b 6= 0 and c 6= 0 (with the case of b = 0 or c = 0 again left as an exercise
for the student). From eq. (32), it follows that d = −ac/b. Substituting this into
eq. (33) yields,

a2 + b2 =
b

c
. (38)

Combining eqs. (30) and (34), we conclude that b = c. Plugging this result back into
eq. (32) yields a = −d. With these results, eq. (31) is automatically satisfied in light
of eq. (30). Hence, the most general 2 × 2 real orthogonal matrix with determinant
equal to −1 is given by,

R =

(
a b
b −a

)
, with a2 + b2 = 1 and |a| ≤ 1, |b| ≤ 1. (39)

We can again set a = cos θ and b = ±
√
1− a2 = ± sin θ. Thus, an example of an

improper rotation matrix is,

R =

(
cos θ sin θ
sin θ − cos θ

)
, where 0 ≤ θ < 2π . (40)

This matrix satisfies the property, R 2 = I.
Note that we can express R given in eq. (40) as the product of a proper rotation

and a reflection,

R =

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 −1

)
. (41)

In particular, looking at the effect of
(
1 0

0 −1

)
on the vector ~v = (x, y),

(
1 0
0 −1

)(
x
y

)
=

(
x

−y

)
,

it follows that the effect of
(
1 0

0 −1

)
is to reflect a two dimensional vector through the

x-axis. Note that our statement that real orthogonal 2 × 2 matrices depend on one
real parameter applies both to proper and improper rotations, since the presence or
absence of a reflection does not alter the parameter count.

However, R 2 = I suggests that the action of R consists of a pure reflection through
a fixed line that lies in the x–y plane, since two successive applications of such a
reflection is equivalent to the identity transformation. Indeed, in the class handout
entitled Eigenvalues and eigenvectors of rotation matrices, it is shown that the action
of R corresponds to a reflection through a straight line of slope tan

(
1

2
θ
)
that passes

through the origin. This result can be verified by a geometric argument, which is left
as an exercise for the reader.

In conclusion, an arbitrary real orthogonal 2× 2 matrix with determinant −1 cor-
responds to a pure reflection through a fixed line that passes through the origin.

7



3. Properties of the 3 × 3 proper rotation matrix

It becomes quickly evident that the methods used in the previous section become
much less practical for n = 3. In this section I shall present the explicit form of the
3× 3 proper rotation matrix along with its most important properties. A derivation
of the rotation matrix is given in an Appendix to these notes.

As previously noted, the most general three-dimensional rotation, which we hence-
forth denote by R(n̂, θ), can be specified by an axis of rotation pointing in the direction
of the unit vector n̂, and a rotation angle θ. Conventionally, a positive rotation angle
corresponds to a counterclockwise rotation. The direction of the axis is determined by
the right hand rule. Namely, curl the fingers of your right hand around the axis of
rotation, where your fingers point in the θ direction. Then, your thumb points perpen-
dicular to the plane of rotation in the direction of n̂. In general, rotation matrices do
not commute under multiplication. However, if both rotations are taken with respect
to the same fixed axis, then

R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1 + θ2) . (42)

Simple geometric considerations will convince you that the following relations are
satisfied:

R(n̂, θ + 2πk) = R(n̂, θ) , k = 0,±1 ± 2 . . . , (43)

[R(n̂, θ)]−1 = R(n̂,−θ) = R(−n̂, θ) . (44)

Combining these two results, it follows that

R(n̂, 2π − θ) = R(−n̂, θ) , (45)

which implies that any three-dimensional rotation can be described by a counterclock-
wise rotation by an angle θ about an arbitrary axis n̂, where 0 ≤ θ ≤ π.8 However, if
we substitute θ = π in eq. (45), we conclude that

R(n̂, π) = R(−n̂, π) , (46)

which means that for the special case of θ = π, R(n̂, π) and R(−n̂, π) represent the
same rotation. In particular, note that

[R(n̂, π)]2 = I . (47)

Indeed for any choice of n̂, the R(n̂, π) are the only non-trivial rotation matrices whose
square is equal to the identity matrix. Finally, if θ = 0 then R(n̂, 0) = I is the identity
matrix (sometimes called the trivial rotation), independently of the direction of n̂.

8There is an alternative convention for the range of possible angles θ and rotation axes n̂. We say
that n̂ = (n1, n2, n3) > 0 if the first nonzero component of n̂ is positive. That is n3 > 0 if n1 = n2 = 0,
n2 > 0 if n1 = 0, and n1 > 0 otherwise. Then, all possible rotation matrices R(n̂, θ) correspond to
n̂ > 0 and 0 ≤ θ < 2π. However, we will not employ this convention in these notes.
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We now present an explicit form for R(n̂, θ). Since R(n̂, θ) describes a rotation by
an angle θ about an axis n̂, the formula for R(n̂, θ) will depend on the angle θ and
on the coordinates of n̂ = (n1 , n2 , n3) with respect to a fixed Cartesian coordinate
system. Note that since n̂ is a unit vector, it follows that,

n2

1
+ n2

2
+ n2

3
= 1 . (48)

We can also express n̂ in terms of its polar and azimuthal angles (θn and φn, respec-
tively) with respect to a fixed z-axis. In particular,

n1 = sin θn cosφn , (49)

n2 = sin θn sinφn , (50)

n3 = cos θn . (51)

One can check that eq. (48) is indeed satisfied. Thus, n̂ depends on two independent
parameters, θn and φn, which together with the rotation angle θ constitute the three
independent parameters that describe a three dimensional rotation.

The explicit formula for the real orthogonal 3× 3 matrix R(n̂, θ) with determinant
equal to 1 is given by,

R(n̂, θ) =




cos θ + n2

1
(1− cos θ) n1n2(1− cos θ)− n3 sin θ n1n3(1− cos θ) + n2 sin θ

n1n2(1− cos θ) + n3 sin θ cos θ + n2

2
(1− cos θ) n2n3(1− cos θ)− n1 sin θ

n1n3(1− cos θ)− n2 sin θ n2n3(1− cos θ) + n1 sin θ cos θ + n2

3
(1− cos θ)




(52)
One can easily check that eqs. (43) and (44) are satisfied. In particular, as indicated

by eq. (45), the rotations R(n̂, π) and R(−n̂, π) represent the same rotation,

Rij(n̂, π) =



2n2

1
− 1 2n1n2 2n1n3

2n1n2 2n2

2
− 1 2n2n3

2n1n3 2n2n3 2n2

3
− 1


 = 2ninj − δij , (53)

where the Kronecker delta symbol was introduced in eq. (9). Finally, as expected,
Rij(n̂, 0) = δij , independently of the direction of n̂. I leave it as an exercise to the
student to verify explicitly that R = R(n̂, θ) given in eq. (52) satisfies the conditions
RRT = I and det R = +1.

Although eq. (52) looks complicated, one can present an elegant expression for the
matrix elements of R(n̂, θ), denoted below by Rij . Indeed, it is not difficult to check
that the following expression for Rij is equivalent to the matrix elements of R(n̂, θ)
exhibited in eq. (52),

Rij(n̂, θ) = cos θ δij + (1− cos θ)ninj − sin θ

3∑

k=1

ǫijknk (54)
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where ǫijk is the Levi-Civita epsilon symbol, which is defined as follows,

ǫijk =





+1 , if {i, j, k} is an even permutation of {1, 2, 3},
−1 , if {i, j, k} is an odd permutation of {1, 2, 3},
0 , if not all the integers 1,2,3 are distinct.

(55)

Note that ǫijk is the n = 3 version of the Levi-Civita symbol introduced in the class
handout entitled Determinant and the Adjugate.

Eq. (54) is called the Rodriguez formula for the 3× 3 rotation matrix R(n̂, θ). One
possible derivation of this formula is provided in Appendix A.

It is instructive to check special cases of eq. (52). For example, suppose we choose
n̂ = k corresponding to a rotation axis that points along the positive z-direction. In
this case, n1 = n2 = 0 and n3 = 1, and eq. (52) yields

R(k, θ) =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 , (56)

which reproduces eq. (7.18) of Chapter 3 on p. 129 of Boas. Of course, eq. (56) is the
expected result given the form of the two-dimensional rotation matrix given in eq. (36).

Likewise, one can choose either n̂ = i or n̂ = j corresponding to rotation axes that
point along the positive x-direction (i.e., n2 = n3 = 0 and n1 = 1) or along the positive
y-direction (i.e., n1 = n3 = 0 and n2 = 1), respectively. In theses cases, eq. (52) yields,

R(i, θ) =



1 0 0
0 cos θ − sin θ
0 sin θ cos θ


 , (57)

R(j, θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 . (58)

Note that eq. (58) reproduces eq. (7.20) of Chapter 3 on p. 129 of Boas.

4. Properties of the 3 × 3 improper rotation matrix

An improper rotation matrix is an orthogonal matrix, R, such that det R = −1.
The most general three-dimensional improper rotation, denoted by R(n̂, θ), consists of
a product of a proper rotation matrix, R(n̂, θ), and a mirror reflection through a plane
normal to the unit vector n̂, which we denote by R(n̂). In particular, the reflection
plane passes through the origin and is perpendicular to n̂. In equations,

R(n̂, θ) ≡ R(n̂, θ)R(n̂) = R(n̂)R(n̂, θ) . (59)
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Note that the improper rotation defined in eq. (59) does not depend on the order
in which the proper rotation and reflection are applied. The matrix R(n̂) is called
a reflection matrix, since it is a representation of a mirror reflection through a fixed
plane. In particular,

R(n̂) = R(−n̂) = R(n̂, 0) , (60)

after using R(n̂, 0) = I. Thus, the overall sign of n̂ for a reflection matrix has
no physical meaning. Note that all reflection matrices are orthogonal matrices with
detR(n̂) = −1, with the property that:

[R(n̂)]2 = I , (61)

or equivalently,
[R(n̂)]−1 = R(n̂) . (62)

In general, the product of a two proper and/or improper rotation matrices is not
commutative. However, if n̂ is the same for both matrices, then eq. (42) implies that:9

R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1 + θ2) , (63)

R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1)R(n̂, θ2) = R(n̂, θ1 + θ2) , (64)

after making use of eqs. (59) and (61).
The properties of the improper rotation matrices mirror those of the proper rotation

matrices given in eqs. (43)–(47). Indeed the properties of the latter combined with
eqs. (60) and (62) yield:

R(n̂, θ + 2πk) = R(n̂, θ) , k = 0,±1 ± 2 . . . , (65)

[R(n̂, θ)]−1 = R(n̂,−θ) = R(−n̂, θ) . (66)

Combining these two results, it follows that

R(n̂, 2π − θ) = R(−n̂, θ) . (67)

We shall adopt the convention (employed in Section 2) in which the angle θ is defined
to lie in the interval 0 ≤ θ ≤ π. In this convention, the overall sign of n̂ is meaningful
when 0 < θ < π. In contrast, for θ = π, eq. (67) implies that R(n̂, π) = R(−n̂, π).

The matrix R(n̂, π) is special. Geometric considerations will convince you that

R(n̂, π) = R(n̂, π)R(n̂) = R(n̂)R(n̂, π) = −I . (68)

That is, R(n̂, π) represents an inversion, which is a linear operator that transforms all
vectors ~x → −~x. In particular, R(n̂, π) is independent of the unit vector n̂. Eq. (68)

9Since det[R(n̂, θ1)R(n̂, θ2)] = det R(n̂, θ1) det R(n̂, θ2) = −1, it follows that R(n̂, θ1)R(n̂, θ2)
must be an improper rotation matrix. Likewise, R(n̂, θ1)R(n̂, θ2) must be a proper rotation matrix.
Eqs. (63) and (64) are consistent with these expectations.
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is equivalent to the statement that an inversion is equivalent to a mirror reflection
through a plane that passes through the origin and is perpendicular to an arbitrary
unit vector n̂, followed by a proper rotation of 180◦ around the axis n̂. Sometimes,
R(n̂, π) is called a point reflection through the origin (to distinguish it from a reflection
through a plane). Just like a reflection matrix, the inversion matrix satisfies

[R(n̂, π)]2 = I . (69)

In general, any improper 3 × 3 rotation matrix R with the property that R 2 = I is a
representation of either an inversion or a reflection through a plane that passes through
the origin.

Given any proper 3 × 3 rotation matrix R(n̂, θ), the matrix −R(n̂, θ) has deter-
minant equal to −1 and therefore represents some improper rotation which can be
determined as follows:

−R(n̂, θ) = R(n̂, θ)R(n̂, π) = R(n̂, θ + π) = R(−n̂, π − θ) , (70)

after employing eqs. (68), (63) and (67). Two noteworthy consequences of eq. (70) are:

R(−n̂, 1
2
π) = −R(n̂, 1

2
π) , (71)

R(n̂) ≡ R(n̂, 0) = −R(n̂, π) , (72)

where we have used eq. (46) in obtaining the second equation above.
We now present an explicit formula for the real orthogonal 3 × 3 matrix R(n̂, θ)

with determinant equal to −1,

R(n̂, θ) =




cos θ − n2

1
(1 + cos θ) −n1n2(1 + cos θ)− n3 sin θ −n1n3(1 + cos θ) + n2 sin θ

−n1n2(1 + cos θ) + n3 sin θ cos θ − n2

2
(1 + cos θ) −n2n3(1 + cos θ)− n1 sin θ

−n1n3(1 + cos θ)− n2 sin θ −n2n3(1 + cos θ) + n1 sin θ cos θ − n2

3
(1 + cos θ)




(73)
One can easily check that eqs. (65) and (66) are satisfied. In particular, as indicated

by eq. (60), the improper rotations R(n̂, 0) and R(−n̂, 0) represent the same reflection
matrix,10

Rij(n̂, 0) ≡ Rij(n̂) =



1− 2n2

1
−2n1n2 −2n1n3

−2n1n2 1− 2n2

2
−2n2n3

−2n1n3 −2n2n3 1− 2n2

3


 = δij − 2ninj . (74)

Finally, as expected,
Rij(n̂, π) = −δij ,

independently of the direction of n̂. I leave it as an exercise to the student to verify
explicitly that R = R(n̂, θ) given in eq. (73) satisfies the conditions RRT = I and
det R = −1.

10Indeed, eqs. (53) and (74) are consistent with eq. (72) as expected.
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As in the case of eq. (52), one can provide an elegant expression for the matrix
elements of R(n̂, θ), denoted below by Rij. Indeed, it is not difficult to check that the
following expression for Rij is equivalent to the matrix elements of R(n̂, θ) exhibited
in eq. (73),

Rij(n̂, θ) = cos θ δij − (1 + cos θ)ninj − sin θ

3∑

k=1

ǫijknk (75)

which is the analog of the Rodriguez formula given in eq. (54).
Note that our statement that real orthogonal 3×3 matrices depend on three real pa-

rameters (θ, θn, φn) applies both to proper and improper rotations, since the presence
or absence of a reflection does not alter the parameter count.

5. Determining the reflection plane of an improper rotation

A general three-dimensional improper rotation matrix, R(n̂, θ) = R(n̂, θ)R(n̂), is
the product of a proper rotation and a reflection. The reflection R(n̂) corresponds to
a mirror reflection through a plane perpendicular to n̂ that passes through the origin,
and R(n̂, θ) represents a counterclockwise rotation by an angle θ with respect to the
rotation axis n̂. One can easily identify the equation for the reflection plane, which
passes through the origin and is perpendicular to n̂. The unit normal to the reflection
plane, n̂ = n1i + n2j + n2k = (n1, n2, n3), is a vector perpendicular to the reflection
plane that passes through the origin, i.e. the point (x0, y0, z0) = (0, 0, 0). Any vector
~v = (x, y, z) that lies in the reflection plane is perpendicular to n̂ and thus satisfies
n̂·~v = n1x+ n2y + n3z = 0. Hence, the equation of the reflection plane is given by,

n1x+ n2y + n3z = 0 . (76)

Note that this equation for the reflection plane does not depend on the overall sign
of n̂. This makes sense, as both n̂ and −n̂ are perpendicular to the reflection plane.

The equation for the reflection plane can also be derived directly as follows. In the
case of θ = π, the unit normal to the reflection plane n̂ is undefined so we exclude
this case from further consideration. If θ 6= π, then the reflection plane corresponding
to the improper rotation R(n̂, θ) does not depend on θ. Thus, we can take θ = 0 and
consider R(n̂) which represents a mirror reflection through the reflection plane. Any
vector ~v = (x, y, z) that lies in the reflection plane is unaffected by the reflection and
thus satisfies

R(n̂)~v = ~v . (77)

Hence, eq. (77) provides an equation for the reflection plane, which in light of eq. (74)
is explicitly given by,



1− 2n2

1
−2n1n2 −2n1n3

−2n1n2 1− 2n2

2
−2n2n3

−2n1n3 −2n2n3 1− 2n2

3





x
y
z


 =



x
y
z


 . (78)
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The matrix equation, eq. (78), is equivalent to:




n2

1
n1n2 n1n3

n1n2 n2

2
n2n3

n1n3 n2n3 n2

3





x
y
z


 = 0 . (79)

Assume that n1 6= 0.11 Applying two elementary row operations, the matrix equation
given in eq. (79) can be transformed into reduced row echelon form,



n2

1
n1n2 n1n3

0 0 0
0 0 0





x
y
z


 = 0 .

The solutions to this equation are all x, y and z that satisfy n1x+n2y+n3z = 0, which
reproduces the equation of the reflection plane quoted in eq. (76), as expected.

Appendix: Derivation of the Rodriguez formula

In this Appendix, we shall derive a formula for R(n̂, θ). Consider the three dimen-
sional rotation of a vector ~x into a vector ~x ′, which is described algebraically by the
equation,

~x ′ = R(n̂, θ)~x , where ‖~x′‖ = ‖~x‖. (80)

Since we are rotating the vector ~x around an axis that is parallel to the unit vector n̂,
it is convenient to decompose ~x into a component parallel to n̂ and a component
perpendicular to n̂. Such a decomposition has the following form,

~x = ~x‖ + ~x⊥ , where ~x‖ ≡ x‖n̂. (81)

Note that ~x⊥ is vector that lives in the two-dimensional plane perpendicular to n̂,
whereas ~x‖ lives on a one-dimensional line parallel to n̂. In the above notation, the
unbolded symbol x‖ is the length of the vector ~x‖.

One can obtain convenient formulae for ~x‖ and ~x⊥ in terms of ~x and n̂ as follows.
First, note that

n̂·~x⊥ = 0 , n̂× ~x‖ = 0 , (82)

which are equivalent to the statements that ~x⊥ is perpendicular to n̂ and ~x‖ is parallel
to n̂. If we now compute the dot product n̂·~x using eqs. (81) and (82), then it follows
that

n̂·~x = n̂·~x‖ = x‖ . (83)

Substituting for x‖ back in eq. (81) yields,

~x‖ = n̂(n̂·~x) . (84)

11The case of n1 = 0 can be treated separately. One can check that special cases such as this one
do not modify the end result.
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Figure 1: In the diagram above, the two-dimensional plane in which ~x⊥ resides is indicated by
the circular disk. We can designate this plane as the x–y plane, where the x-direction is parallel to
−n̂×(n̂×~x) and the y-direction is parallel to n̂×~x. In light of eq. (87), the vector ~x⊥ = −n̂×(n̂×~x)
points in the positive x-direction, and the vector ~x ′

⊥
is obtained by a counterclockwise rotation of ~x⊥

by an angle θ as exhibited above. This figure is taken from a lecture entitled Representing Rotation

given by Matt Mason.

From this result, we can derive an equation for ~x⊥. Using eqs. (81) and (84),

~x⊥ = ~x− ~x‖ = ~x− n̂(n̂·~x) . (85)

We can rewrite the above equation in a fancier way by using a well know vector identity
[see eq. (3.8) of Chapter 6 on p. 280 of Boas], which yields

n̂× (n̂× ~x) = n̂(n̂·~x)− ~x . (86)

Hence, an equivalent form of eq. (85) is

~x⊥ = −n̂× (n̂× ~x) . (87)

To derive a formula for ~x ′ = R(n̂, θ)~x, the key observation is the following. By
decomposing ~x according to eq. (81), a rotation about an axis that points in the n̂

direction only rotates ~x⊥, while leaving ~x‖ unchanged. Since ~x⊥ lives in a plane, all
we need to do is to perform a two-dimensional rotation of ~x⊥ . The end result is the
rotated vector,

~x ′ = ~x ′
‖ + ~x ′

⊥ , (88)

where ~x ′
‖ = R(n̂, θ)~x‖ = ~x‖ and ~x ′

⊥ = R(n̂, θ)~x⊥. This result is depicted in Figure 1.

Referring to Figures 1 and 2, we see that the rotated vector ~x ′
⊥ is obtained by

a counterclockwise rotation of ~x⊥ by an angle θ in the two dimensional x–y plane.
In order to check that Figure 2 makes sense as drawn, one should verify that ~x⊥ is
perpendicular to n̂× ~x, and both these vectors are are mutually perpendicular to the
unit vector n̂. Moreover, ‖~x⊥‖ = ‖n̂× ~x‖ as indicated in Figure 2.
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y

x
θ

n̂× ~x

~x
′

⊥

~x⊥ = −n̂× (n̂× ~x)

Figure 2: The rotated vector ~x ′

⊥ is obtained by a counterclockwise rotation of ~x⊥ by an angle θ in
the two dimensional x–y plane. Note that ‖~x ′

⊥
‖ = ‖~x⊥‖ = ‖n̂ × ~x‖. By projecting the vector ~x

′

⊥

down to the x and y axes, it follows that ~x ′

⊥
= (n̂× ~x) sin θ −

[
n̂× (n̂× ~x)

]
cos θ.

It is convenient to define the following two unit vectors that point along the x and y
axes, respectively,

ê1 ≡
~x⊥

‖~x⊥‖
=

−n̂× (n̂× ~x)

‖n̂× (n̂× ~x)‖ , ê2 ≡
n̂× ~x

‖n̂× ~x‖ . (89)

Note that n̂·ê1 = n̂·ê2 = 0, since for any vector ~A the cross product n̂ × ~A is
perpendicular to n̂ by the definition of the cross product. Thus, ê1 and ê2 lie in the
plane perpendicular to n̂ as required. To show that ê1 and ê2 are orthogonal, i.e.,
ê1 ·ê2 = 0, one can make use of eq. (86),

[
n̂(n̂·~x)− ~x

]
·(n̂× ~x) = (n̂ · ~x) n̂·(n̂× ~x)− ~x·(n̂× ~x) = 0 , (90)

where again we have noted that n̂×~x is perpendicular both to n̂ and to ~x. Finally, in
order to verify that ‖~x⊥‖ = ‖n̂× ~x‖, we shall employ the well known vector identity,

‖~A× ~B‖2 = ‖~A‖2‖~B‖2 − (~A· ~B)2. It then follows that

‖~x⊥‖2 = ‖n̂× (n̂× ~x)‖2 = ‖n̂× ~x‖2 = ‖~x‖2 − (n̂·~x)2 , (91)

after using the fact that the length of the unit vector ‖n̂‖ = 1 and n̂·(n̂× ~x) = 0.
Figure 2 provides a geometric method for finding an expression for ~x ′

⊥ in terms
of ~x⊥. By projecting the vector ~x ′

⊥ down to the x and y axes in Figure 2, it follows
that ~x ′

⊥ is the vector sum of the two projected vectors. That is,

~x ′
⊥ = (n̂× ~x) sin θ −

[
n̂× (n̂× ~x)

]
cos θ . (92)

It is straightforward to verify that ‖~x ′
⊥‖ = ‖~x⊥‖, which implies that a counterclockwise

rotation of ~x⊥ by an angle θ yields ~x ′
⊥, as required. In particular, in light of eqs. (91)

and (92), one can compute ‖~x ′
⊥‖2 ≡ ~x ′

⊥ ·~x
′
⊥ as follows:12

‖~x ′
⊥‖2 = ‖n̂×~x‖2 sin2 θ+‖n̂×(n̂×~x)‖2 cos2 θ = ‖~x⊥‖2(sin2 θ+cos2 θ) = ‖~x⊥‖2 . (93)

12In the computation shown in eq. (93), the cross term vanishes since n̂× ~x and n̂× (n̂× ~x) are
perpendicular, which implies that their dot product is zero.
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Finally, by using eq. (84),

~x ′
‖ = ~x‖ = n̂(n̂·~x) , (94)

since ~x‖ lies along the direction of the axis of rotation, n̂, and thus does not rotate.
Adding the results of eqs. (92) and (94), we conclude that

~x ′ = ~x ′
‖ + ~x ′

⊥ = n̂(n̂·~x) + (n̂× ~x) sin θ −
[
n̂× (n̂× ~x)

]
cos θ . (95)

Eq. (95) is equivalent to to the equation ~x ′ = R(n̂, θ)~x, where the matrix R(n̂, θ)
is given by eq. (52). To verify this assertion is a straightforward but tedious exercise
in expanding out the components of the corresponding cross products. However, if you
are comfortable in using the Levi-Civita epsilon symbol, then one can directly obtain
the Rodriguez formula given in eq. (54) by writing out eq. (95) in terms of components.
The components of the cross product are given by [see, e.g. eq. (5.11) of Chapter 10
on p. 511 of Boas],

(n̂× ~x)i = −(~x× n̂)i = −
3∑

j=1

3∑

k=1

ǫijkxjnk . (96)

Similarly, using eq. (86),

[
n̂× (n̂× ~x)

]
i
= [n̂(n̂·~x)− ~x

]
i
= ni

(
n∑

j=1

njxj

)
− xi . (97)

Hence, the components of eq. (95) are,

x′
i = ni

(
n∑

j=1

njxj

)
− sin θ

3∑

j=1

3∑

k=1

ǫijkxjnk − cos θ

{
ni

(
n∑

j=1

njxj

)
− xi

}

= xi cos θ +
3∑

j=1

[
(1− cos θ)ninj − sin θ

3∑

k=1

ǫijknk

]
xj

=

3∑

j=1

[
δij + (1− cos θ)ninj − sin θ

3∑

k=1

ǫijknk

]
xj , (98)

after employing the identity, xi =
∑

3

j=1
δijxj . Comparing eq. (98) with eq. (80) written

in component form,

x′
i =

3∑

j=1

Rij(n̂, θ)xj , (99)

one can immediately read off the expression for Rij(n̂, θ),

Rij(n̂, θ) = δij + (1− cos θ)ninj − sin θ

3∑

k=1

ǫijknk , (100)

which coincides with the Rodriguez formula given in eq. (54).

17


