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Determinant and the Adjugate

In these notes, I shall provide a formal definition of the determinant of an n × n

matrix. I will then introduce the adjugate (also known as the classical adjoint) of an
n×n matrix and show how it is related to the inverse of the matrix (if the inverse exists).
Finally, I shall provide a proof of Cramer’s rule.

The formulae presented in these notes for the determinant and the inverse of a matrix
are mainly of theoretical interest. They often can be used in proofs of other mathematical
statements. However, if you are interested in the most efficient methods of numerical
computations, the formulae exhibited in these notes become very impractical once n

becomes larger than 4. Indeed, the row reduction technique discussed in class is the
preferred method for computing both determinants and matrix inverses in practical
numerical applications,∗ as discussed in Appendix A.

1. Even and odd permutations

In order to present the definition of the determinant, one must first understand
the concept of even and odd permutations. Consider a set consisting of the first n

positive integers, {1, 2, . . . , n}. A permutation of this set consists of a reordering of the
elements of the set. In all, there are n! possible permutations, where I am including the
null permutation which corresponds to the case where no numbers are reordered. For
example, starting from {1, 2, 3}, there are six possible distinct permutations in total,
which are listed below:

{1, 2, 3} , {2, 1, 3} , {1, 3, 2} , {2, 3, 1} , {3, 1, 2} , {3, 2, 1} . (1)

A transposition is defined to be a permutation in which a pair of integers are inter-
changed. For example, starting from {1, 2, 3}, one can perform three different transpo-
sitions: 1 ↔ 2, 1 ↔ 3 and 2 ↔ 3, which results in the permutations corresponding to
the following reorderings, {2, 1, 3} , {3, 2, 1} , {1, 3, 2} listed in eq. (1). Moreover, any
permutation is equivalent to a sequence of transpositions. As an example, if I consider
the permutation {1, 2, 3} → {3, 1, 2}, I can accomplish this permutation by the following
sequence of transpositions,

{1, 2, 3} → {1, 3, 2} → {3, 1, 2} .

The sequence of transpositions is not unique. Another possible sequence of transpositions
to describe the permutation {1, 2, 3} → {3, 1, 2} is

{1, 2, 3} → {3, 2, 1} → {3, 1, 2} .

However, you will notice that in both cases, an even number of transpositions (i.e, two)
were used to perform the permutation {1, 2, 3} → {3, 1, 2}. It is not difficult to prove

∗See the class handout entitled, Elementary Row Operations and Some Applications.
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the following statement:

A permutation is defined to be even if and only if the number of transposi-
tions needed to carry out the permutation is an even number. Likewise, a
permutation is defined to be odd if and only if the number of transpositions
needed to carry out the permutation is an odd number. A given permutation
must be either even or odd (it cannot be both). In particular, starting from
{1, 2, . . . , n}, there are precisely 1

2
n! even permutations and 1

2
n! odd possible

permutations.

The null permutation is even and a transposition is an odd permutation. Thus, in
the case of n = 3, starting from {1, 2, 3}, the permutations given in eq. (1) separate out
into three even permutations [{1, 2, 3} , {3, 1, 2} , {2, 3, 1}] and three odd permutations
corresponding to the three possible transpositions [{2, 1, 3} , {1, 3, 2} , {3, 2, 1}].

2. The determinant defined

Given an n×n matrix A = [aij ], where we are denoting the matrix elements of A by
aij , the determinant of A (denoted by detA) is defined ti be

detA =
∑

P

(−1)Pa1j1a2j2a3j3 · · · anjn , (2)

where the sum
∑

P denotes the sum over all possible permutations P of the column
indices, {1, 2, 3, . . . , n} → {j1, j2, j3 . . . , jn}, and the symbol (−1)P is defined as,

(−1)P =

{

+1 , if the permutation P is even,

−1 , if the permutation P is odd.

To see how this definition works, let us consider the case of a 2× 2 matrix,

A =

(

a11 a12
a21 a22

)

.

Using eq. (2), we note that there are two possible permutations P : the even (null)
permutation {1, 2} → {1, 2} and the odd permutation (in this case a transposition),
{1, 2} → {2, 1}. Hence,

detA ≡

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

= a11a22 − a12a21 ,

where I have employed the notation for the determinant of a matrix introduced in
eqs. (3.1) and (3.2) on p. 89 of Boas.

Notice that the column indices {j1, j2, j3, . . . , jn} that appear in eq. (2) are all distinct
integers corresponding to a reordering (i.e., permutation) of {1, 2, 3, . . . , n}. As a check,
you should verify that in the case of n = 3, eq. (2) yields,
∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

= a11a22a33 + a13a21a32 + a12a23a31 − a12a21a33 − a11a23a32 − a13a22a11 .

(3)

2



One can rewrite eq. (2) in another way by introducing the Levi-Civita symbol,
ǫj1j2j3···jn, which is defined as follows,

ǫj1j2j3···jn =











+1 , if {j1, j2, j3, . . . jn} is an even permutation of {1, 2, 3, . . . n},

−1 , if {j1, j2, j3, . . . jn} is an odd permutation of {1, 2, 3, . . . n},

0 , if not all the integers j1, j2, j3, . . . , jn are distinct.

(4)

In particular, since {1, 2, 3, . . . , n}, where the integers appear in increasing order, corre-
sponds to the null permutation, it follows that ǫ123···n = +1. Moreover, the Levi-Civita
symbol satisfies the following property–it changes sign under the interchange of any pair
of indices. Symbolically, this property can be exhibited as follows,

ǫj1j2···jk···jℓ···jn = −ǫj1j2···jℓ···jk···jn , (5)

after interchanging the two indices jk ↔ jℓ.
As an example, in the case of n = 3, the integers {j1, j2, j3} of the Levi-Civita symbol

ǫj1j2j3 can take on 33 = 27 possible values. But in only 3! = 6 cases are the integers
{j1, j2, j3} distinct. It then follows that

ǫ123 = ǫ312 = ǫ231 = +1 ,

ǫ213 = ǫ132 = ǫ321 = −1 ,

ǫ111 = ǫ112 = ǫ113 = ǫ121 = ǫ122 = ǫ131 = ǫ133 = ǫ211 = ǫ212 = ǫ221 = ǫ222

= ǫ223 = ǫ232 = ǫ233 = ǫ311 = ǫ313 = ǫ322 = ǫ323 = ǫ331 = ǫ332 = ǫ333 = 0 . (6)

Using the Levi-Civita symbol, the definition of the determinant of the n× n matrix
A = [aij ] can be written as the following n-fold sum,

detA =
n

∑

j1=1

n
∑

j2=1

n
∑

j3=1

· · ·
n

∑

jn=1

ǫj1j2j3···jna1j1a2j2a3j3 · · · anjn . (7)

Although the sum consists of nn terms, the Levi-Civita symbol is zero unless the el-
ements of {j1, j2, j3, . . . , jn} are distinct integers corresponding to a permutation of
{1, 2, 3, . . . , n}. Thus, the sum actually consists of n! non-vanishing terms and coin-
cides precisely with our original definition of the determinant given in eq. (2).

Sometimes, an alternate (more symmetrical looking) version of eq. (7) is given,

ǫi1i2i3···indetA =

n
∑

j1=1

n
∑

j2=1

n
∑

j3=1

· · ·

n
∑

jn=1

ǫj1j2j3···jnai1 j1ai2 j2ai3 j3 · · · ain jn . (8)

Since ǫ123···n = +1, it follows that setting i1 = 1, i2 = 2, i3 = 3, . . . , in = n in eq. (8)
simply reproduces eq. (7). The version given by eq. (8) is simply a consequence of the
antisymmetry property of the Levi-Civita symbol given in eq. (5). For further details,
you may consult Chapter 10, Section 5 on pp. 508–509 of Boas.

Many of the properties of the determinant can be established using one of the defi-
nitions of the determinant given in this section. For example, if the matrix A has two
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identical rows, then its determinant is zero. Here is one way of proving this result.
Suppose the first two rows of A are identical. Then, a2j2 = a1j2 . Then, in eq. (7), we
have

n
∑

j1=1

n
∑

j2=1

ǫj1j2j3···jna1j1a1j2a3j3 · · ·anjn =

n
∑

j2=1

n
∑

j1=1

ǫj2j1j3···jna1j2a1j1a3j3 · · · anjn

= −
n

∑

j1=1

n
∑

j2=1

ǫj1j2j3···jna1j1a1j2a3j3 · · · anjn

= 0 , (9)

In the first step above, we simply performed a relabeling of indices by renaming the
index j1 by j2 and renaming the index j2 by j1. In the penultimate step, we employed
the antisymmetry property of the Levi-Civita symbol [cf. eq. (5)] and used the fact
that multiplication of two numbers is commutative [i.e., a1j2a1j1 = a1j1a1j2]. Moreover,
since these are finite sums in eq. (9), changing the order of summation does not modify
the end result. Since the only number that is equal to its negative is zero, the final
conclusion is established. Inserting the result of eq. (9) back into eq. (7), we conclude
that det A = 0. The same type of reasoning works if the ith row and jth row of the
matrix A are identical.

It is not too difficult to prove that all of the above results hold if the rows and columns
of A are interchanged. For example, the corresponding result analogous to eq. (2) is,

detA =
∑

P

(−1)Pai11ai22ai33 · · · ainn , (10)

where A = [aij ] is an n×n matrix and the sum is taken over all possible permutations P
of the row indices, {1, 2, 3, . . . , n} → {i1, i2, i3 . . . , in}. This definition can be rewritten
in a form analogous to eq. (7) by employing the Levi-Civita symbol,

detA =
n

∑

i1=1

n
∑

i2=1

n
∑

i3=1

· · ·
n

∑

in=1

ǫi1i2i3···inai11ai22ai33 · · · ainn . (11)

Finally, the result analogous to eq. (8) is,

ǫj1j2j3···jndetA =

n
∑

i1=1

n
∑

i2=1

n
∑

i3=1

· · ·

n
∑

in=1

ǫi1i2i3···inai1 j1ai2 j2ai3 j3 · · · ain jn . (12)

Indeed, it is straightforward to show that eqs. (8) and (12) are consistent with each
other. The proof is presented in Appendix B.

The transpose of a matrix A (denoted by AT) is obtained from A by interchanging
its rows and columns. That is, if A = [aij ] then AT = [aji]. In light of the results quoted
above, it then follows that

detA = detAT . (13)

In particular, since we have already shown that if a matrix has two identical rows then
its determinant is zero, one can also conclude that if a matrix has two identical columns
then its determinant is zero.
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3. Defining the determinant via the expansion in cofactors

There is another definition of the determinant called the Laplace expansion (or equiv-
alently the cofactor expansion), in which the determinant is defined recursively. One
starts with a 1×1 matrix (which is equivalent to a real or complex number), and defines
the determinant of this matrix by

det [c] = c .

The Laplace expansion then defines the determinant of an n × n matrix in terms of
determinants of (n − 1) × (n − 1) matrices. In this way, one can build up the formula
for the determinant of an n × n matrix step by step, by first obtaining the expression
for the determinant of a 2× 2 matrix, then a 3× 3 matrix and so on.

To exhibit the relevant formulae, one must first define the minor and the cofactor of
the element aij of the n× n matrix A = [aij ]. The minor of aij , denoted by Mij , is the
determinant of the (n − 1) × (n − 1) matrix obtained from A by deleting the ith row
and the jth column of A. The cofactor of aij, denoted by Cij is related to Mij by a sign
factor as follows,

Cij = (−1)i+jMij . (14)

Given an n× n matrix A = [aij ], where the cofactor of aij is Cij, the determinant of
A is given by the following Laplace expansion,

detA =
n

∑

j=1

a1jC1j . (15)

The expansion in cofactors exhibited in eq. (15) makes use of the first row of A. However,
there is nothing special about the first row. Performing the expansion in cofactors by
employing any row of A will yield the same result. Thus, the cofactor expansion about
row i is given by,

detA =
n

∑

j=1

aijCij , for any fixed choice of i = 1, 2, . . . , n. (16)

In light of eq. (13), one can also evaluate the determinant of A by using any column in
the expansion in cofactors. Thus the cofactor expansion about column j is given by,

detA =
n

∑

i=1

aijCij , for any fixed choice of j = 1, 2, . . . , n. (17)

It is not difficult to derive eqs. (16) and (17) from eqs. (7) and (11), respectively (e.g., see
Ref. 1). Here, we will be content to demonstrate the validity of the cofactor expansion
about the first row for the determinant of a 3× 3 matrix. In light of eq. (3),
∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

= a11a22a33 + a13a21a32 + a12a23a31 − a12a21a33 − a11a23a32 − a13a22a11

= a11(a22a33 − a23a32) + a12(a23a31 − a21a33) + a13(a21a32 − a22a31)

= a11C11 + a12C12 + a13C13 . (18)
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One can now use eq. (16) to establish an important result. Given the n × n matrix
A = [aij ], we wish to evaluate the following sum,

n
∑

j=1

akjCij , (19)

where the indices k and i can take on any integer value between 1 and n. If k = i, then
the above sum is equal to detA [cf. eq. (16)]. If k 6= i, consider the matrix A′ = [a′ij ]
obtained from A by replacing the ith row of A by its kth row. That is, the ith and kth
rows of A′ are identical, with

a′ij = a′kj = akj .

Then, it follows that detA′ = 0. But, we can use the cofactor expansion about the ith
row of A′ to write,

0 = detA′ =

n
∑

j=1

a′ijC
′

ij =

n
∑

j=1

akjCij . (20)

Note that for a fixed value of i, the cofactors C ′

ij of the ij matrix element of A′ are
equal to the cofactors Cij of the ij matrix element of A, since C ′

ij and Cij computed
by deleting the ith row (and jth column) of A′ and A, respectively, and computing the
determinant of the resulting matrix. But the matrices A and A′ differ only in their ith
row, so the cofactors of each element of the ith row of A and A′ must be the same.

Combining eqs. (16) and (20), we can write one equation by employing the Kronecker
delta,

δik detA =
n

∑

j=1

akjCij , (21)

where

δik =

{

1 , for i = k,

0 , for i 6= k.
(22)

A similar result can be obtained by using the cofactor expansion about the jth
column,

δjk detA =

n
∑

i=1

aikCij , (23)

4. The adjugate of a matrix and its relation to the matrix inverse

Given an n × n matrix A = [aij ], the cofactor of aij , which is denoted by Cij , was
defined in eq. (14). One can now introduce the matrix of cofactors, C = [Cij]. That
is, the matrix elements of the matrix of cofactors are given by the cofactors of the
corresponding matrix elements of A. The adjugate (or classical adjoint) of A, denoted
by adjA, is defined as the transpose of the matrix of cofactors,

adjA = CT . (24)

That is, the matrix elements of adjA are given by (adjA)ij = Cji.
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Using the definition of the adjugate, one can rewrite eq. (21) as

δik detA =
n

∑

j=1

akj(adjA)ji . (25)

Recalling the definition of matrix multiplication, if A = [aij] and B = [bij ] are n × n

matrices, the matrix elements of the product AB are given by

(AB)ij =

n
∑

k=1

aikbkj . (26)

Hence, eq. (25) is equivalent to

δik detA = [A(adjA)]ki . (27)

Likewise, a similar argument based on eq. (23) yields,

δjkdetA = [(adjA)A]jk . (28)

Introducing the n × n identity matrix I, whose matrix elements are I = [δij ], eqs. (27)
and (28) are equivalent to the matrix equations,

A(adjA) = (adjA)A = (detA)I . (29)

By definition, the matrix inverse A−1 satisfies AA−1 = A−1A = I. Hence, it follows
from eq. (29) that if detA 6= 0, then

A−1 =
adjA

detA
. (30)

If detA = 0, then the matrix inverse of A does not exist.
We end this section by proving a formula discovered originally by Cauchy,

det (adjA) =
[

detA
]n−1

, where A is an n× n matrix. (31)

The first step in the proof makes use of the observation that for any constant c and n×n

matrix A, it follows from eq. (2) that det (cA) = cndetA. Hence eq. (30) yields

det (adjA) = (detA)ndetA−1 . (32)

The final step makes use of the following property of determinants,

det (AB) = detA detB , (33)

which was proven in class with the help of row reduction techniques. Taking B = A−1

and noting that det (AA−1) = det I = 1, it follows from eq. (33) that detA detA−1 = 1.
Hence, assuming that detA 6= 0 (which is required if A−1 exists), one can conclude that

detA−1 =
1

detA
,

Inserting this last result into eq. (32), we end up with eq. (31) as advertised.
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5. Proof of Cramer’s rule

Cramer’s rule: Consider a set of n equations and n unknowns,

A











x1

x2
...
xn











=











w1

w2
...
wn











, (34)

where A is an n× n coefficient matrix, under the assumption that detA 6= 0, the wj are
known numbers and the xj are the unknowns whose values we wish to compute. Then,
Cramer’s rule states that the unique solution to this set of equations is given by

xj =
det A(j)

det A
, i = 1, 2, 3 . . . , n , (35)

where the matrix A(j) is obtained by replacing the jth column of A with the right hand
side of eq. (34).

Proof:

Eq. (34) can be rewritten symbolically as:

Ax = w , (36)

where A is an n× n matrix and x and w are n-component vectors, whose components
are explicitly exhibited in eq. (34). Multiplying eq. (36) on the left by A−1 (which exists
under the assumption that detA 6= 0) yields the unique solution,

x = A−1
w . (37)

Employing eq. (30),

x =
1

detA
(adjA)w . (38)

Eq. (38) can be written in terms of the components,

xj =
1

detA

n
∑

k=1

(adjA)jkwk . (39)

Consider now the matrix A(j) obtained by replacing the jth column of A with the
right hand side of eq. (34). We can compute its determinant by employing the cofactor
expansion about column j by using eq. (17),

detA(j) =

n
∑

k=1

[A(j)]kjCkj , for any fixed choice of j = 1, 2, . . . , n. (40)
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where Cij is the cofactor of the matrix element [A(j)]ij . Since the cofactor Cij is computed
by deleting the jth column (and the ith row) of the matrix A(j), it follows that Cij is
also the cofactor of the matrix element aij of the matrix A = [aij ] (since the latter differs
from A(j) only in the elements that appear in the jth column). Thus, in light of eq. (24),
(adjA)jk = Ckj, and one can rewrite eq. (40) as,

detA(j) =
n

∑

k=1

(adjA)jk[A
(j)]kj , for any fixed choice of j = 1, 2, . . . , n. (41)

By definition, the matrix element of A(j) in the kth row and jth column is wk. That is,
[A(j)]kj = wk, and eq. (41) yields,

detA(j) =

n
∑

k=1

(adjA)jkwk , for any fixed choice of j = 1, 2, . . . , n. (42)

Comparing eqs. (39) and (42), it follows that

xj =
det A(j)

det A
, for any fixed choice of j = 1, 2, . . . , n. (43)

Hence, eq. (35) is proven.

APPENDIX A: How not to numerically evaluate a determinant

The formulae for the determinant of an n × n matrix given in these notes are of
theoretical interest but of little practical use if n is large. The following results quoted
in Ref. 2 may be of interest in this regard. If eq. (2) is used to evaluate the determinant of
an n×n matrix, then (n−1)·n! multiplications are required. Assuming that a computer
can perform 106 multiplications and neglecting all other operations, the determinant of
an 11×11 matrix would take roughly one hour of computing time to evaluate. Under the
same assumptions, to evaluate the determinant of a 100× 100 matrix would take about
3× 10146 years (to be compared with the age of the universe which is approximately 14
billion years).

Can we do better by employing the cofactor expansion [e.g. eq. (16)] to compute
the determinant? To evaluate the determinant of an n × n matrix, one is required to
perform approximately (e− 1)n! multiplications, where e ≃ 2.718 is Napier’s constant.
So, under the same assumptions as before, to evaluate the determinant of a 100 × 100
matrix would take about 5× 10144 years. Not much of an improvement.

This is why for any sizable matrix, the most efficient way to evaluate the determinant
is to employ the row reduction technique to convert the original matrix into an upper
(or lower triangular form). The determinant of the resulting upper (or lower) triangular
matrix is then given by the product of its diagonal elements. Given an n × n matrix,
it can be shown that the number of multiplications required to evaluate a determinant
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using the row reduction technique is of O(n3) when n is large (e.g., see Ref. 3). Thus
under the assumptions made above, the determinant of a 100× 100 matrix can be done
using a computer algorithm based on row reduction in about 1 second!

Similar remarks also apply to the numerical evaluation of a matrix inverse.

APPENDIX B: Proof that eqs. (8) and (12) are consistent

It is straightforward to show that eqs. (8) and (12) are consistent. To verify this
claim, one multiplies both sides of eq. (8) by ǫi1i2i3···in and then sums both sides over the
n indices i1, i2, i3, . . . , in. One can perform the n-fold sum on the left hand side of the
resulting equation by making use of the identity,

n
∑

i1=1

n
∑

i2=1

n
∑

i3=1

· · ·

n
∑

in=1

ǫi1i2i3···inǫi1i2i3···in = n! . (44)

This identity follows immediately from the definition of the Levi-Civita symbol [eq. (4)],
since of the nn terms in the n-fold sum, only n! terms are nonzero (corresponding to
values of {i1, i2, i3, . . . , in} that are distinct and permutations of {1, 2, 3, . . . , n}). Each
of the n! non-vanishing terms of the n-fold sum is equal to either (+1)(+1) = 1 or
(−1)(−1) = 1. Hence, the sum exhibited in eq. (44) is equal to n! as indicated.

Thus, after multiplying both sides of eq. (12) by ǫi1i2i3···in and performing the n fold
sum using eq. (44), it follows that,

detA =
1

n!

n
∑

i1=1

n
∑

i2=1

n
∑

i3=1

· · ·
n

∑

in=1

n
∑

j1=1

n
∑

j2=1

n
∑

j3=1

· · ·
n

∑

jn=1

ǫi1i2i3···inǫj1j2j3···jnai1 j1ai2 j2ai3 j3 · · · ain jn .

(45)
Likewise, after multiplying both sides of eq. (12) by ǫj1j2j3···jn and performing the n fold
sum with an identity analogous to eq. (44), one also obtsains eq. (45). Hence, eqs. (8)
and (12) are consistent as claimed above.
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