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Diagonalization of a 2 × 2 real symmetric matrix

Consider the most general real symmetric 2 × 2 matrix

A =

(

a c
c b

)

,

where a, b and c are arbitrary real numbers. In these notes, we will compute the
eigenvalues and eigenvectors of A, and then find the real orthogonal matrix that
diagonalizes A.

The eigenvalues are the roots of the characteristic equation:
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∣
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a − λ c
c b − λ

∣

∣

∣

∣

= (a − λ)(b − λ) − c2 = λ2
− λ(a + b) + (ab − c2) = 0 .

The two roots, λ1 and λ2, can be determined from the quadratic formula. Noting
that (a + b)2 − 4(ab − c2) = (a − b)2 + 4c2, the two roots can be written as:

λ1 = 1

2

[

a + b +
√

(a − b)2 + 4c2

]

and λ2 = 1

2

[

a + b −
√

(a − b)2 + 4c2

]

,

(1)
where by convention we take λ1 ≥ λ2.

Since (a − b)2 + 4c2 ≥ 0 (as the sum of two squares must be non-negative),
eq. (1) implies that λ1 and λ2 are real. We next work out the two eigenvectors
and demonstrate that they are orthogonal. It is convenient to define

D ≡
√

(a − b)2 + 4c2 (2)

We first solve the eigenvalue equation,

(

a c
c b

)(

x
y

)

= 1

2
(a + b + D)

(

x
y

)

,

This yields two equations:

ax + cy = 1

2
(a + b + D)x ,

cx + by = 1

2
(a + b + D)y ,

which can be rewritten as:

1

2
(a − b − D)x + cy = 0 , (3)

cx + 1

2
(b − a − D)y = 0 . (4)
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One can show that eq. (4) is a multiple of eq. (3) [as it must be since the rank of
the matrix A− λ1I is one]. Simply multiply eq. (4) by (a− b−D)/(2c) to obtain

1

2
(a−b−D)x+

(a − b − D)(b − a − D)y

4c
= 1

2
(a−b−D)x+

[D2 − (a − b)2]y

4c
= 0 .

Using eq. (2), D2 − (a − b)2 = 4c2, and the above equation reduces to

1

2
(a − b − D)x + cy = 0 ,

which is equivalent to eq. (3). Solving for y yields

y =
(b − a + D)x

2c
,

which means that the eigenvector corresponding to eigenvalue λ1 is given by

(

x
y

)

1

=
x

2c

(

2c
b − a + D

)

.

Since λ2 differs from λ1 by changing the sign of D, it follows without further
computation that the eigenvector corresponding to eigenvalue λ2 is given by

(

x
y

)

2

=
x

2c

(

2c
b − a − D

)

.

To show that the two eigenvectors are orthogonal, we evaluate the dot product
of (x y)1 and (x y)2, which is equal to x1x2 + y1y2. Inserting the corresponding
vector components, we end up with:

x2

4c2

[

4c2 + (b − a + D)(b − a − D)
]

=
x2

4c2

[

4c2 + (a − b)2
− D2

]

=
x2

c2

[

4c2
− 4c2

]

= 0 ,

after making use of D2 − (a − b)2 = 4c2 [cf. eq. (2)].
We now propose to find the real orthogonal matrix that diagonalizes A. The

most general 2 × 2 real orthogonal matrix S with determinant equal to 1 must
have the following form:

S =

(

cos θ − sin θ
sin θ cos θ

)

.

Using this result, we shall determine θ in terms a, b and c such that

S−1AS =

(

λ1 0
0 λ2

)

,

where λ1 and λ2 are the eigenvalues of A obtained in eq. (1). The most straight-
forward approach is to compute S−1AS explicitly. Since the off-diagonal terms
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must vanish, one obtains a constraint on the angle θ.

S−1AS =

(

cos θ sin θ
− sin θ cos θ

)(

a c
c b

)(

cos θ − sin θ
sin θ cos θ

)

=

(

cos θ sin θ
− sin θ cos θ

)(

a cos θ + c sin θ −a sin θ + c cos θ
c cos θ + b sin θ −c sin θ + b cos θ

)

=

(

a cos2 θ + 2c cos θ sin θ + b sin2 θ (b − a) cos θ sin θ + c(cos2 θ − sin2 θ)

(b − a) cos θ sin θ + c(cos2 θ − sin2 θ) a sin2 θ − 2c cos θ sin θ + b cos2 θ

)

=

(

λ1 0
0 λ2

)

. (5)

The vanishing of the off-diagonal elements of S−1AS implies that:

(b − a) cos θ sin θ + c(cos2 θ − sin2 θ) = 0 .

Using sin 2θ = 2 sin θ cos θ and cos 2θ = cos2 θ − sin2 θ, we can rewrite the above
equation as

1

2
(b − a) sin 2θ + c cos 2θ = 0 .

It follows that:

tan 2θ =
2c

a − b
(6)

after writing tan 2θ = sin 2θ/ cos 2θ.
Let us now consider the range of the angle θ. You might think that 0 ≤ θ < 2π.

However, since

cos(θ + π) = − cos θ , and sin(θ + π) = − sin θ ,

it follows that shifting θ → θ + π simply multiplies S by an overall factor of −1.
Thus, S−1AS is unchanged. Hence, without loss of generality, we may assume
that 0 ≤ θ < π. Unfortunately, eq. (6) does not distinguish between the two
intervals 0 ≤ θ ≤ π/2 or π/2 ≤ θ < π, since tan 2θ = tan(2θ + π) is unchanged if
θ → θ + π/2.

However, we have not yet used all the available information. In particular, the
diagonal elements of eq. (5) also provide some information on the possible values
of θ. Summing the diagonal terms of the matrices in eq. (5) yields:

λ1 + λ2 = (a cos2 θ + 2c cos θ sin θ + b sin2 θ) + (a sin2 θ − 2c cos θ sin θ + b cos2 θ)

= (a + b)(cos2 θ + sin2 θ) = a + b ,

which is independent of θ. This is not surprising since we know that

Tr A = λ1 + λ2 = a + b .
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However, λ1 − λ2 does depend on θ:

λ1 − λ2 = (a cos2 θ + 2c cos θ sin θ + b sin2 θ) − (a sin2 θ − 2c cos θ sin θ + b cos2 θ)

= (a − b)(cos2 θ − sin2 θ) + 4c sin θ cos θ = (a − b) cos 2θ + 2c sin 2θ . (7)

From eqs. (1) and (7), we obtain

λ1 − λ2 =
√

(a − b)2 + 4c2 = (a − b) cos 2θ + 2c sin 2θ . (8)

Using eq. (6) to write:

a − b =
2c

tan 2θ
=

2c cos 2θ

sin 2θ
,

and inserting this on the left hand side of eq. (8), the latter reduces to:

(a−b) cos 2θ+2c sin 2θ = 2c
cos2 2θ

sin 2θ
+2c sin 2θ =

2c

sin 2θ

(

cos2 2θ + sin2 2θ
)

=
2c

sin 2θ
.

Substituting this result back into eq. (8) and solving for sin 2θ, we find:

sin 2θ =
2c

√

(a − b)2 + 4c2
(9)

We can also obtain cos 2θ using eqs. (6) and (9):

cos 2θ =
a − b

√

(a − b)2 + 4c2
(10)

Eq. (9) tells us in which quadrant θ lives. If 0 < θ < 1

2
π, then sin 2θ > 0, which

implies that c > 0. If 1

2
π < θ < π, then sin 2θ < 0, which implies that c < 0.

Thus, the sign of c determines the quadrant of θ. Eq. (10) provides additional
information. For c > 0, the sign of a − b determines whether 0 < θ < 1

4
π or

1

4
π < θ < 1

2
π. The former corresponds to a − b > 0 while the latter corresponds

to a− b < 0. Likewise, if c < 0, the sign of a− b determines whether 1

2
π < θ < 3

4
π

or 3

4
π < θ < π. The former corresponds to a − b < 0 while the latter corresponds

to a − b > 0. The borderline cases are likewise determined:

c = 0 and a > b =⇒ θ = 0 ,

c = 0 and a < b =⇒ θ = 1

2
π ,

a = b and c > 0 =⇒ θ = 1

4
π ,

a = b and c < 0 =⇒ θ = 3

4
π .

If c = 0 and a = b, then A = I and it follows that S−1AS = S−1S = I, which is
satisfied for any invertible matrix S. Consequently, in this limit θ is undefined.
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