
Physics 116A Solutions to midterm practice problems Fall 2019

1. Evaluate the following limits:

(a) lim
x→0

(

1 + x

x
− 1

sin x

)

Using the Taylor expansion for sin x about x = 0,

lim
x→0

(

1 + x

x
− 1

sin x

)

= lim
x→0

(

1 +
1

x
− 1

sin x

)

= lim
x→0

(

1 +
1

x
− 1

x− 1
6
x3 +O(x5)

)

= lim
x→0

[

1 +
1

x
− 1

x

(

1

1 + 1
6
x2 +O(x4)

)]

.

We can omit theO(x4) term in the denominator. Using the expansion of the geometric
series

1

1− y
=

∞
∑

n=0

yn = 1 + y +O(y2) ,

we may take y ≡ −1
6
x2 to obtain:

1

1 + 1
6
x2

= 1− 1
6
x2 +O(x4) .

Hence,

lim
x→0

(

1 + x

x
− 1

sin x

)

= lim
x→0

(

1 +
1

x
− 1

x

[

1− 1
6
x2 +O(x4)

]

)

= lim
x→0

(

1 + 1
6
x+O(x3)

)

= 1 .

Note that our calculation above also provides the behavior as x → 0, as well as the
order of the neglected terms.

(b) lim
n→∞

√
n2 + 3n− n ,

Using the expansion
√
1 + x = 1 + 1

2
x + O(x2), where x ≡ 3/n in the computation

below,

lim
n→∞

√
n2 + 3n− n = lim

n→∞

(

n

√

1 +
3

n
− n

)

= lim
n→∞

n

(

√

1 +
3

n
− 1

)

= lim
n→∞

(

n

[

1 +
3

2n
− 1 +O(n−2)

])

= lim
n→∞

[

3
2
+O(n−1)

]

= 3
2
.
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(c) lim
x→∞

ln x√
x
.

By L’Hospital’s rule,

lim
x→∞

ln x√
x

= lim
x→∞

1/x
1
2
x−1/2

= lim
x→∞

2√
x
→ 0 .

The moral of the story: xp (for any p > 0) grows faster than ln x as x → ∞.

2. Find the radius of convergence of the following three series:

(a)
∞
∑

n=1

xn

ln(n + 1)

Using the ratio test,

lim
n→∞

∣

∣

∣

∣

xn+1

ln(n+ 2)

ln(n+ 1)

xn

∣

∣

∣

∣

= |x| lim
n→∞

ln(n+ 2)

ln(n+ 1)
= |x| < 1 .

By ratio test we know that the series converges for −1 < x < 1. Thus, the radius of
convergence is 1.

(b)

∞
∑

n=0

(n!)2xn

(2n)!

Using the ratio test,

lim
n→∞

∣

∣

∣

∣

(n + 1)!2xn+1

(2n+ 2)!

(2n)!

(n!)2xn

∣

∣

∣

∣

= lim
n→∞

(n + 1)2|x|
(2n+ 1)(2n+ 2)

=
|x|
4

< 1 .

Thus, the radius of convergence is 4.

(c)
∞
∑

n=0

n2(x− 5)n

5n(n2 + 1)

Using the ratio test,

lim
n→∞

∣

∣

∣

∣

(n + 1)2(x− 5)n+1

5n+1[(n + 1)2 + 1]

(n2 + 1)5n

n2(x− 5)n

∣

∣

∣

∣

= lim
n→∞

(n+ 1)2(n2 + 1)

n2(n2 + 2n+ 2)

|x− 5|
5

=
|x− 5|

5
< 1 .

Thus, we see that |x− 5| < 5 or 0 < x < 10. That is, the radius of convergence is 5.
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3. Determine whether the following series are absolutely convergent, conditionally
convergent or divergent.

(a)

∞
∑

n=1

(−1)n
n

n + 1
, (b)

∞
∑

n=1

(−1)n

2 lnn
, (c)

∞
∑

n=2

1

n lnn
.

For series (a), use the preliminary test.

lim
n→∞

n

n+ 1
= 1 6= 0 .

Thus, series (a) diverges.

Series (b) satisfies the conditions of the alternating series test. In particular, the
terms of the series are monotonically decreasing, since since ln(n + 1) > lnn implies
that

0 <
1

2ln(n+1)
<

1

2lnn
.

Moreover, the coefficients of the series approach zero as n → ∞,

lim
n→∞

1

2lnn
= 0 .

Therefore series (b) is convergent. To show that series (b) is not absolutely convergent,
we examine the convergence properties of the series

∞
∑

n=1

1

2 lnn
.

We can show that this series is divergent using the comparison test. First, use the
fact that e > 2 to conclude that elnn > 2lnn. Consequently,

1

2lnn
>

1

elnn
=

1

n
=⇒

∞
∑

n=1

1

2lnn
>

∞
∑

n=1

1

n
.

Since the harmonic series is known to be divergent, it follows that
∞
∑

n=1

1

2lnn
diverges

as well. Hence, series (b) is not absolutely convergent, in which case it must be
conditionally convergent.

For series (c), we employ the integral test:

∫

∞ dn

n lnn
=

∫

∞ d lnn

lnn
= ln(lnn)

∣

∣

∣

∣

∞

= ∞ .

Thus, series (c) is divergent.
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4. Without using your calculator, compute the cube root of 1.09, with an accuracy
of four decimal places.

To solve this problem, we use the binomial expansion:

(1 + x)p = 1 +

∞
∑

n−1

p(p− 1)(p− 2) · · · (p− n + 1)
xn

n!

= 1 + px+ 1
2
p(p− 1)x2 + 1

6
p(p− 1)(p− 2)x3 + · · · .

We shall use this result to approximate

3
√
1.09 = (1 + 0.09)1/3 .

Put p = 1/3 and x = 0.09 into the binomial expansion [eq. (1)]. Then

3
√
1.09 = (1 + 0.09)1/3 = 1 + 1

3
(0.09) +

(

1
2

) (

1
3

) (

−2
3

)

(0.09)2 + · · ·

= 1 + 0.03− 0.0009 + · · ·

≈ 1.0291 .

To be sure that we have four decimal place accuracy, look at the size of the first
neglected term:

(

1
6

) (

1
3

) (

−2
3

) (

−5
3

)

(0.09)3 = 4.5× 10−5 ,

which only affects the fifth decimal place. Thus, to four decimal place accuracy,
3
√
1.09 = 1.0291.

5. What is the behavior of the function:

f(x) = −1 +
1

x2

[

1

(1 + x2)3/2
− 1

(1 + x2)5/2

]

,

as x → 0? (Obtaining the limit as x → 0 is not sufficient.)

Using the binomial expansion,

(1 + x2)p = 1 + px2 + 1
2
p(p− 1)x4 +O(x6) ,

twice, we compute:

f(x) = −1 +
1

x2

[

1

(1 + x2)3/2
− 1

(1 + x2)5/2

]

= −1 +
1

x2

[

1− 3
2
x2 + 15

8
x4 − 1 + 5

2
x2 − 35

8
x4 +O(x6)

]

= −1 + 1− 5
2
x2 +O(x4)

= −5
2
x2 +O(x4)
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6. Evaluate f(x) = ln
√

(1 + x)/(1− x) − tan x at x = 0.0015 without a calculator.
Determine the numerical accuracy of your result. Is your calculator a useful tool for
this problem? (Try it!)

The relevant Maclaurin series are given in the class handout on Taylor series.

ln(1 + x) = x− 1
2
x2 + 1

3
x3 − 1

4
x4 + 1

5
x5 − 1

6
x6 + 1

7
x7 − 1

8
x8 +O(x9) ,

ln(1− x) = −x− 1
2
x2 − 1

3
x3 − 1

4
x4 − 1

5
x5 − 1

6
x6 − 1

7
x7 − 1

8
x8 +O(x9) ,

tanx = x+ 1
3
x3 + 2

15
x5 + 17

315
x7 +O(x9) .

Hence, we can expand f(x) about x = 0 to obtain:

f(x) = 1
2
[ln(1 + x)− ln(1− x)]− tanx

= 1
2

[

(

x− 1
2
x2 + 1

3
x3 − 1

4
x4 + 1

5
x5 − 1

6
x6 + 1

7
x7 − 1

8
x8
)

−
(

−x− 1
2
x2 − 1

3
x3 − 1

4
x4 − 1

5
x5 − 1

6
x6 − 1

7
x7 − 1

8
x8
)

]

−
(

x+ 1
3
x3 + 2

15
x5 + 17

315
x7
)

+O(x9)

= 1
15
x5 + 4

45
x7 +O(x9) .

Using the first term of the approximation just obtained, f(x) ≃ 1
15
x5, and plugging

in the numbers, we obtain:

f(0.0015) ≈ (0.0015)5

15
= (155×10−20)/15 = 34×54×10−20 = 81×625×10−20 = 5.0625×10−16 .

To determine the accuracy of this approximation, we compute the second term in the
series approximation for f(x),

4(0.0015)7/45 = 1.51875× 10−21 = 0.000002× 10−16 ,

which is negligible compared to the leading term of the expansion.

7. For each expression find all possible values and express your result both in the
form x+ iy and in polar form reiθ, where θ is the principal value of the argument.

(a) i77 + i202

Let us first determine the x+ iy form of the number. The key observation is that
i4 = 1. Thus if we can divide 77 and 202 by four, only the remainder matters. For
this problem, 77 = 4(19) + 1 and 202 = 4(50) + 1, in which case,

i77 + i202 = i4(19)+1 + i4(50)+2 = i1 + i2 = −1 + i =
√
2 e3iπ/4 .
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The last step was accomplished by writing −1+ i = reiθ and noting that the complex
magnitude of −1 + i is:

r = | − 1 + i| =
√

(−1)2 + 12 =
√
2 .

The argument θ is determined from tan θ = y/x = −1. Since −1 + i corresponds to
(x, y) = (−1, 1), which lies in the second quadrant of the complex plane, it follows
that θ = 135◦ = 3π/4.

(b)
3 + i

2 + i

To determine the x+ iy form, we multiply the numerator and denominator by the
conjugate of the denominator.

3 + i

2 + i
=

(

3 + i

2 + i

)(

2− i

2− i

)

=
(6 + 1)− i

4 + 1
= 7

5
− 1

5
i .

Writing 7
5
− 1

5
i = reiθ, we obtain:

r =

√

72

52
+

1

52
=

√

49 + 1

25
=

√
2 and tan θ = −1

7
.

Since 7
5
− 1

5
i lies in the fourth quadrant of the complex plane, we must have −π/2 <

θ < 0. A numerical computation yields θ = −0.1419, so that

3 + i

2 + i
=

√
2e−0.1419i .

(c)
√

−2 + 2i
√
3

First, we determine the polar form for −2 + 2i
√
3 ≡ r0e

iθ0 .

r0 =

√

(−2)2 + (2
√
3)2 =

√
4 + 12 = 4 and tan θ0 = −

√
3 .

Since (−2, 2
√
3) resides in the second quadrant of the complex plane, if follows that

θ0 = 2π/3. Hence,

−2 + 2i
√
3 = 4e2πi/3+2πik , k = 0,±1,±2, . . . .

Taking the square root then yields:
√

−2 + 2i
√
3 =

√
4e2πi/3+2πik = 2eiπ/3+πik = ±2eiπ/3 .

We can now determine the x+ iy form of the square root by writing:
√

−2 + 2i
√
3 = ±2eiπ/3 = ±2

(

cos 1
3
π + i sin 1

3
π
)

= ±(1 +
√
3 i) ,

where we have used cos(π/3) = 1
2
and sin(π/3) =

√
3/2.
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(d)

(

1 + i

1− i

)4

The simplest way to evaluate this expression is to separately express the numerator
and denominator in polar form. Using

1 + i =
√
2eiπ/4 , 1− i =

√
2e−iπ/4 ,

it follows that:
(

1 + i

1− i

)4

=

( √
2eiπ/4√
2e−iπ/4

)4

=
(

eiπ/2
)4

= e2πi = 1 .

(e) 4
√
16

Let us first write 16 in polar form, 16 = 16e2kπi, where k = 0 , ±1 , ±2 , . . ..
Taking the fourth root then yields:

4
√
16 = (16)1/4 =

(

16e2kπi
)1/4

= 2ekπi/2

Only four distinct roots exist, which correspond to k = −1, 0, 1, 2:

4
√
16 = 2e−πi/2, 2e0i/2, 2eπi/2, 2eπi .

Those are the polar forms for the four roots. The x + iy forms are easily obtained
using Euler’s formula. The end result is: 4

√
16 = −2i, 2, 2i,−2.

8. Let z = 1 − i. Express each of the following in the form of x + iy. For any
multi-valued function, you should indicate all possible values of the result.

(a) cos(1/z)

We compute 1/z by multiplying the numerator and denominator by 1 + i,

1

1− i
=

(

1

1− i

)(

1 + i

1 + i

)

=
1 + i

1 + 1
= 1

2
+ 1

2
i

Using the addition formula for the cosines, cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2,

cos(1/z) = cos

(

1

1− i

)

= cos(1
2
+ 1

2
i) = cos(1

2
) cos(1

2
i)− sin(1

2
) sin(1

2
i)

= cos(1
2
) cosh(1

2
)− i sin(1

2
) sinh(1

2
) ,

after using cos(iz) = cosh z and sin(iz) = i sinh z. Plugging in the following numbers:
cos(1

2
) = 0.877583, sin(1

2
) = 0.479426, cosh(1

2
) = 1.12763, and sinh(1

2
) = 0.521095,

we arrive at:
cos(1/z) = 0.989585− 0.249826i
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(b) zz

Using z ≡ 1− i =
√
2e−iπ/4 and the definition of the power function,

zz =
(√

2e−iπ/4
)1−i

= exp

{

(1− i) ln(
√
2e−iπ/4)

}

= exp

{

(1− i)[1
2
ln 2− iπ/4 + 2πik]

}

= exp

{

1
2
ln 2− π/4 + 2πk

}

e−i( 1
2
ln 2+π/4)

=
√
2e−π/4+2πk

[

cos
(

1
2
ln 2 + 1

4
π
)

− i sin
(

1
2
ln 2 + 1

4
π
)]

, k = 0,±1,±2, . . . .

There are infinitely many solutions, which is characteristic of a power of a complex
number with nonzero imaginary component.

(c) tan(z − 1)

Using the definition of tan θ,

tan θ =
sin θ

cos θ
=

1

i

(

eiθ − e−iθ

eiθ + e−iθ

)

,

we have for z = 1− i,

tan(z − 1) = tan(−i) =
1

i

(

e1 − e−1

e1 + e−1

)

= −i tanh(1) = −0.761594i .

(d) Ln z

First express z in polar form so z =
√
2e−iπ/4. The principal value of the argument,

which lies in the interval −π < Arg z ≤ π, is Arg(1− i) = −π/4. Thus we have:

Ln z = Ln
(√

2e−iπ/4
)

= 1
2
Ln2− 1

4
iπ = 0.346574− 0.785398i

(e) arg z

In part (d), we noted that Arg(1− i) = −π/4. Hence,

arg z = Arg z + 2πk = −1
4
π + 2πk , k = 0,±1,±2, . . . .
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9. Solve for all possible values of the real numbers x and y in the following equations:

(a) x+ iy = y + ix.

Equating the real and imaginary parts, one obtains x = y as the only solution.

(b)
x+ iy

x− iy
= −i.

Multiplying both sides by x− iy yields

x+ iy = −y − ix .

Equating the real and imaginary parts, one obtains x = −y as the only solution.

10. Find the disk of convergence of the following complex power series:

(a)

∞
∑

n=0

(n!)2

(2n)!
zn

Using the complex version of the ratio test, the computation is identical to that
of problem 2(b). The series therefore converges inside the disk |z| < 4 in the complex
plane. That is, the radius of convergence is 4.

(b)
∞
∑

n=1

z2n

(2n+ 1)!
.

Again we use the ratio test:

lim
n→∞

∣

∣

∣

∣

z2n+2

(2n+ 3)!

(2n+ 1)!

z2n

∣

∣

∣

∣

= |z2| lim
n→∞

(2n+ 1)!

(2n+ 3)(2n+ 2)((2n+ 1)!

= |z2| lim
n→∞

1

(2n+ 3)(2n+ 2)
= 0 ,

for all finite values of z. Therefore, the sum converges for all finite z in the complex
plane. The radius of convergence is infinite.

(c)

∞
∑

n=1

(z − i)n

n!
.

Again we use the ratio test:

lim
n→∞

∣

∣

∣

∣

(z − i)n+1

n+ 1

n

(z − i)n

∣

∣

∣

∣

= |z − i| lim
n→∞

n

n + 1
= |z − i| .

Therefore the sum converges for |z − i| < 1, and the radius of convergence is 1.
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11. Evaluate the integral
∫ π

0

sin 3x cos 4x dx .

We shall evaluate this integral by replacing the sine and cosine by their exponential
forms,

sin 3x =
e3ix − e−3ix

2i
, and cos 4x =

e4ix − e−4ix

2
.

Expanding the integral out then evaluating each term we find:

∫ π

0

sin 3x cos 4x dx =

∫ π

0

(

e3ix − e−3ix

2i

)(

e4ix + e−4ix

2

)

dx

=
1

4i

∫ π

0

(

e7ix + e−ix − eix − e−7ix
)

dx

=
1

4i

[

1

7i
e7ix − 1

i
e−ix − 1

i
eix +

1

7i
e−7ix

] ∣

∣

∣

∣

π

0

= −6

7
.

12. Evaluate the following quantities:

(a) (1)π

(b) arg(ex+iy), where x and y are real numbers

We evaluate the two complex numbers above as follows:

(a) Using the definition of the power function,

1π = eπ ln 1 = eπ(2πin) , for n = 0 ± 1,±2,±3, . . . ,

where we have used the fact that the multi-valued complex logarithm is defined by

ln z = Ln|z| + i(Arg z + 2πn) , for n = 0 ± 1,±2,±3, . . . , (1)

so that ln 1 = 2πin. We now use Euler’s formula to express 1π in x+ iy form,

1π = e2π
2in = cos(2π2n) + i sin(2π2n), for n = 0 ± 1,±2,±3, . . . .

(b) If we write ex+iy in polar form, we can write ex+iy = exeiy = reiθ, where r = ex

and θ = y. Thus arg(ex+iy) = y + 2πn, where n is any integer.
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13. Find all complex number solutions z to the equation, ez = 1− i.

The solution of ez = 1− i is z = ln(1− i). To evaluate this, we use the polar form
to write 1− i =

√
2 e−iπ/4. Hence,

z = ln(1− i) = 1
2
Ln 2− iπ

4
+ 2nπi ,

where n is an arbitrary integer.

14. Consider the real-valued function:

f(x) = 1
2
ln

(

1 + x

1− x

)

.

(a) Derive the Taylor series expansion of f(x) about the point x = 0. Write the
series using summation notation (that is, you will need to determine the general term
in the series).

As a first step, we shall write:

1
2
ln

(

1 + x

1− x

)

= 1
2
[ln(1 + x)− ln(1− x)] . (2)

We can then employ eq. (13.4) on p. 26 of Boas,

ln(1+x) =
∞
∑

n=1

(−1)n+1xn

n
= x− 1

2
x2+ 1

3
x3− 1

4
x4+ 1

5
x5−· · · , for −1 < x ≤ 1 . (3)

By replacing x with −x in the above expansion, we obtain:

ln(1−x) = −
∞
∑

n=1

xn

n
= −x− 1

2
x2− 1

3
x3− 1

4
x4− 1

5
x5−· · · , for −1 ≤ x < 1 , (4)

where we have used (−1)n+1(−x) = (−1)n+1(−1)nxn = −xn. Inserting these two
series expansions into eq. (2), we see that all even power terms cancel, which leaves
us with:

1
2
ln

(

1 + x

1− x

)

=

∞
∑

n=0

x2n+1

2n+ 1
= x+ 1

3
x3 + 1

5
x5 + · · · , for − 1 < x < 1 (5)

Note that this result is in fact given explicitly in Example 1 on p. 36 of Boas.
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(b) Determine all possible values of x for which the series obtained in part (a)
converges.

If we require that x satisfy the conditions specified in eqs. (3) and (4), we would
conclude that −1 < x < 1, as indicated in eq. (5). We can check this using the ratio
test, by evaluating

ρ ≡ lim
n→∞

∣

∣

∣

∣

x2n+3

2n+ 3
· 2n+ 1

x2n+1

∣

∣

∣

∣

= |x|2
(

lim
n→∞

2n+ 1

2n+ 3

)

= |x|2 .

Thus, by the ratio test, the series given in eq. (5) converges for ρ < 1, which implies
that |x| < 1, and we conclude that the radius of convergence is equal to 1. The points
x = ±1 must be checked independently. But, since ln[(1 + x)/(1− x)] diverges when
x = 1 and when x = −1, we confirm that all possible values of x for which the series
given in eq. (5) converges lie within the open interval −1 < x < 1.

(c) Evaluate explicitly the sum

∞
∑

n=0

1

22n
1

2n+ 1
.

Use your calculator to compute the sum of the first four terms of the series, and
compare this numerical approximation with the exact result.

Plugging x = 1
2
into eq. (5), we immediately obtain

1
2
ln

(

1 + 1
2

1− 1
2

)

=

∞
∑

n=0

1

22n+1

1

2n+ 1
.

Multiplying both sides of the equation by 2, and evaluating the argument of the
logarithm then yields

ln 3 =

∞
∑

n=0

1

22n
1

2n+ 1

Using my calculator, I then compute:

1 + 1
4
· 1
3
+ 1

16
· 1
5
+ 1

64
· 1
7
= 1.098065 ,

which should be compared to ln 3 = 1.098612. Thus, we have accuracy to four
significant figures (not bad for a four-term approximation!). This series obviously
converges much faster than the series for ln 2 obtained by setting x = 1 in eq. (3).
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15. Assume that p is a real parameter such that −1 < p < 1.

(a) Compute the following sum:

∞
∑

n=0

pneinθ . (6)

The sum of an infinite geometric series is given by:

∞
∑

n=0

zn =
1

1− z
, for |z| < 1 , (7)

which is valid for any complex number z that lies within the unit circle centered at
the origin of the complex plane.

By setting z = peiθ, we recognize eq. (6) as a geometric series. Hence,

∞
∑

n=0

pneinθ =

∞
∑

n=0

(peiθ)n =
1

1− peiθ
, for − 1 < p < 1 (8)

Note that since p is a real parameter, the condition |peiθ| < 1 is equivalent to |p| < 1,
or equivalently −1 < p < 1.

(b) Using the results of part (a), compute the sum

∞
∑

n=0

pn cos(nθ) .

Verify that your result for the sum in part (b) has the correct form in the θ → 0 limit.

Using the fact that Re(einθ) = cosnθ, we simply take the real part of eq. (8),

∞
∑

n=0

pn cos(nθ) = Re

(

∞
∑

n=0

pneinθ

)

= Re

(

1

1− peiθ

)

.

To evaluate the last expression, we write:

1

1− peiθ
=

(

1

1− peiθ

)(

1− pe−iθ

1− pe−iθ

)

=
1− pe−iθ

1− p[eiθ + e−iθ] + p2
=

1− p cos θ + ip sin θ

1− 2p cos θ + p2
,

(9)
where we have used

cos θ = 1
2
(eiθ + e−iθ)
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in the last step. Thus, taking the real part of eq. (9), we end up with

∞
∑

n=0

pn cos(nθ) =
1− p cos θ

1− 2p cos θ + p2
, for − 1 < p < 1

Finally, we check the θ → 0 limit. Inserting θ = 0 into the sum formula above, and
using cos 0 = 1,

∞
∑

n=0

pn =
1− p

1− 2p+ p2
=

1− p

(1− p)2
=

1

1− p
, for − 1 < p < 1 ,

which is the correct formula for the sum of an infinite geometric series [cf. eq. (7)].
As a bonus, one can also obtain the corresponding sum formula with the cosine

function replaced by the sine function. Since Im(einθ) = sinnθ, we can take the
imaginary part of eq. (9) and use it to obtain:

∞
∑

n=0

pn sin(nθ) =
p sin θ

1− 2p cos θ + p2
, for − 1 < p < 1 .

16. Consider the following matrices:

A =





1 0 2
3 −1 0
0 5 1



 , B =





1 1 0
0 2 1
3 −1 0



 ,

Compute AB, BA, det A, det B, det AB and det BA. Verify that AB 6= BA and
det AB = (det A)(det B).

First we compute the two matrix products AB and BA,

AB =





1 0 2
3 −1 0
0 5 1









1 1 0
0 2 1
3 −1 0



 =





7 −1 0
3 1 −1
3 9 5



 ,

BA =





1 1 0
0 2 1
3 −1 0









1 0 2
3 −1 0
0 5 1



 =





4 −1 2
6 3 1
0 1 6



 .

Next, we evaluate the determinants,

detA =

∣

∣

∣

∣

∣

∣

1 0 2
3 −1 0
0 5 1

∣

∣

∣

∣

∣

∣

= −1 + 2(15) = 29 ,
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detB =

∣

∣

∣

∣

∣

∣

1 1 0
0 2 1
3 −1 0

∣

∣

∣

∣

∣

∣

= 1 + 3 = 4 ,

detAB =

∣

∣

∣

∣

∣

∣

7 −1 0
3 1 −1
3 9 5

∣

∣

∣

∣

∣

∣

= 7(5 + 9) + 1(15 + 3) = 98 + 18 = 116 ,

detBA =

∣

∣

∣

∣

∣

∣

4 −1 2
6 3 1
0 1 6

∣

∣

∣

∣

∣

∣

= 4(18− 1)− 6(−6− 2) = 68 + 48 = 116 .

Note that even though AB 6= BA, one finds:

det(AB) = det(BA) = (det A)(det B) ,

i.e. 116 = (29)(4), as expected.

17. Let A be a 3× 3 matrix. The determinant of A is denoted by det A.

(a) Is the equation det(3A) = 3 det A true or false? Explain.

The determinant is multiplied by k if you multiply one of the rows by k. Here, 3A
is a matrix obtained from A by multiplying each of the three rows of A by a factor
of 3. Hence, det(3A) = 27 det A. In general, for an n×n matrix, det(kA) = kn det A.

(b) Suppose that det A = 1. Let B be a matrix obtained from A by permuting
the order of the rows so that the first row of A is the second row of B, the second
row of A is the third row of B and the third row of A is the first row of B. (This is
called a cyclic permutation.) What is the value of det A?

Each time you interchange a pair of rows, the determinant changes by an overall
sign. In this case, one can obtain B from A by two pairwise interchanges. Thus,
det B = 1.

(c) Suppose that the 3× 3 matrix A 6= 0 but det A = 0. What can you say about
the rank of A?

If det A = 0, then the rank of A must be less than three. Since A 6= 0, the rank
must be greater than zero. Thus, either the rank of A is one or two. No further
deduction can be drawn without additional information.
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18. Consider the system of equations:

5x+ 2y + z = 2

x+ y + 2z = 1

3x− 3z = 0 .

(a) What is the augmented matrix for this system of equations?

The augmented matrix consists of adding a fourth column to the coefficient matrix.
The fourth column consists of the numbers appearing on the right hand side of the
above set of equations,





5 2 1 2
1 1 2 1
3 0 −3 0



 .

(b) Solve this system of equations using Gaussian elimination. That is, reduce
the augmented matrix to reduced row echelon form with a series of elementary row
operations.

The augmented matrix can be reduced to reduced row echelon form with the follow
series of elementary row operations.





5 2 1 2
1 1 2 1
3 0 −3 0



 −−−−→
R1↔R3





3 0 −3 0
1 1 2 1
5 2 1 2





−−−−−→
R1→R1/3





1 0 −1 0
1 1 2 1
5 2 1 2





−−−−−−−→
R2→R2−R1





1 0 −1 0
0 1 3 1
5 2 1 2





−−−−−−−→
R3→R3−5R1





1 0 −1 0
0 1 3 1
0 2 6 2





−−−−−−−→
R3→R3−2R2





1 0 −1 0
0 1 3 1
0 0 0 0



 .
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Thus, our original set of equations is equivalent to:




1 0 −1
0 1 3
0 0 0









x
y
z



 =





0
1
0



 ,

or equivalently,
x− z = 0 , and y + 3z = 1 . (10)

Setting z = t, where t is any number, then the infinite set of solutions to the original
system of equations consists of the set

(x , y , z) = (t , 1− 3t , t) . (11)

(c) What is the rank of the augmented matrix of part (b)?

The rank is equal to the number of non-zero rows in the reduced row echelon form.
Hence, the rank is equal to two.

(d) Remove the third equation above, and solve the new system of two equations
and three unknowns using Gaussian elimination. What is the rank of the correspond-
ing augmented matrix?

The augmented matrix for the revised problem is:
(

5 2 1 2
1 1 2 1

)

.

Again, we reduce the augmented matrix to reduced row echelon form by a series of
elementary row operations:

(

5 2 1 2
1 1 2 1

)

−−−−→
R1↔R2

(

1 1 2 1
5 2 1 2

)

−−−−−−−→
R2→5R1−R2

(

1 1 2 1
0 3 9 3

)

−−−−−→
R2→R2/3

(

1 1 2 1
0 1 3 1

)

−−−−−−−→
R1→R1−R2

(

1 0 −1 0
0 1 3 1

)

.

Thus, the solutions obtained in eqs. (10) and (11) still hold. The rank of the aug-
mented matrix is two as before.
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19. Evaluate the following determinant by hand:
∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

∣

∣

∣

∣

∣

∣

∣

∣

.

The simplest method is to apply a set of elementary row operations of the form
Rj → Rj + kRi (where k is some non-zero constant), which do not change the value
of the determinant, such that the final resulting matrix is in upper triangular form.

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

∣

∣

∣

∣

∣

∣

∣

∣

−−−−−−−→
R2→R2−R1

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 1 2 3
1 3 6 10
1 4 10 20

∣

∣

∣

∣

∣

∣

∣

∣

−−−−−−−→
R3→R3−R1

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 1 2 3
0 2 5 9
1 4 10 20

∣

∣

∣

∣

∣

∣

∣

∣

−−−−−−−→
R4→R4−R1

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 1 2 3
0 2 5 9
0 3 9 19

∣

∣

∣

∣

∣

∣

∣

∣

.

The first column below the main diagonal is now filled with zeros. We proceed
similarly until all elements below the main diagonal consist of zeros:

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 1 2 3
0 2 5 9
0 3 9 19

∣

∣

∣

∣

∣

∣

∣

∣

−−−−−−−→
R4→R4−R1

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 1 2 3
0 2 5 9
0 3 9 19

∣

∣

∣

∣

∣

∣

∣

∣

−−−−−−−→
R3→R3−2R2

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 1 2 3
0 0 1 3
0 3 9 19

∣

∣

∣

∣

∣

∣

∣

∣

−−−−−−−→
R4→R4−3R2

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 3 10

∣

∣

∣

∣

∣

∣

∣

∣

−−−−−−−→
R4→R4−3R3

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

= 1 ,

where in the last step, we used the fact that the determinant of an upper triangular
matrix is equal to the product of the diagonal elements. Hence, we conclude that

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

∣

∣

∣

∣

∣

∣

∣

∣

= 1 .

20. Find z by Cramer’s rule (NOTE: you are not being asked to find x and y),










(a− b)x − (a− b)y + 3b2z = 3ab ,

(a+ 2b)x − (a− 2b)y − (3ab2 + 3b2)z = 3b2 ,

bx + ay − (2b2 + a2)z = 0 ,

(12)

where a and b are arbitrary real numbers.
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Given a set of equations,

C











x1

x2
...
xn











=











y1
y2
...
yn











, (13)

where C is an n× n coefficient matrix, Cramer’s rule states that the solution to this
set of equations is given by

xi =
det C(i)

det C
, n = 1, 2, 3 . . . , n ,

where C(i) is obtained by replacing the ith column of C with the right hand side of
eq. (13).

Applying Cramer’s rule to solve the set of equations given by eq. (12), one obtains
the following expression for z:

z =

∣

∣

∣

∣

∣

∣

a− b −(a− b) 3ab
a+ 2b −(a + 2b) 3b2

b a 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a− b −(a− b) 3b2

a + 2b −(a+ 2b) −(3ab+ 3b2)
b a −(2b2 + a2)

∣

∣

∣

∣

∣

∣

.

Performing the elementary column operation C1 → C1 + C2 on both determinants
above (which does not modify the value of either determinant), one obtains:

z =

∣

∣

∣

∣

∣

∣

0 −(a− b) 3ab
0 −(a + 2b) 3b2

a + b a 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 −(a− b) 3b2

0 −(a + 2b) −(3ab+ 3b2)
a+ b a −(2b2 + a2)

∣

∣

∣

∣

∣

∣

=

(a+ b)

∣

∣

∣

∣

−(a− b) 3ab
−(a + 2b) 3b2

∣

∣

∣

∣

(a+ b)

∣

∣

∣

∣

−(a− b) 3b2

−(a+ 2b) −(3ab+ 3b2)

∣

∣

∣

∣

=
−3b2(a− b) + 3ab(a + 2b)

3b(b+ a)(a− b) + 3b2(a+ 2b)
=

a(a + 2b)− b(a− b)

a2 − b2 + b(a+ 2b)
=

a2 + ab+ b2

a2 + ab+ b2
= 1 ,

where we have expanded both determinants using the cofactor expansion. Thus, we
conclude that z = 1.
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21. A complex number x+ iy can be represented by the 2× 2 matrix

Z =

(

x −y
y x

)

, (14)

where x and y are real numbers. Verify that this is a sensible representation by
answering the following questions.

(a) Show that the matrix representation of (x+ iy)(a+ ib) is equal to

(

x −y
y x

)(

a −b
b a

)

. (15)

To show this, you should express the product (x+ iy)(a+ ib) in the form of X + iY
and show that the matrix product above, when evaluated, is consistent with the form
given by eq. (14).

First we note that:

(x+ iy)(a+ ib) = (xa− yb) + i(xb+ ya) .

The matrix product in eq. (15) is given by

(

x −y
y x

)(

a −b
b b

)

=

(

xa− yb −(xb + ya)
xb+ ya xa− yb

)

.

Indeed, this is the matrix representation of (xa− yb) + i(xb+ ya).

(b) Show that the matrix representation of the complex number (x + iy)−1 is
correctly given by the inverse of eq. (14). Here, the inverse of Z (denoted by Z−1)
satisfies the matrix equation, ZZ−1 = ( 1 0

0 1 ).

First, we write:
1

x+ iy
=

1

x+ iy
·x− iy

x− iy
=

x− iy

x2 + y2
. (16)

Recall that the inverse of a 2× 2 matrix,

M =

(

a b
c d

)

.

is given by:

M−1 =
1

ad− bc

(

d −b
−c a

)

, ad − bc 6= 0 . (17)
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Hence, the inverse of the matrix exhibited in eq. (14) is given by:

Z−1 =
1

x2 + y2

(

x y
−y x

)

=









x

x2 + y2
y

x2 + y2

− y

x2 + y2
x

x2 + y2









,

which is the matrix representation of

(x+ iy)−1 =
x

x2 + y2
− i

y

x2 + y2
,

in light of eq. (16).

(c) How is the determinant of the matrix given in eq. (14) related to the corre-
sponding complex number, x+ iy?

The determinant,
∣

∣

∣

∣

x −y
y x

∣

∣

∣

∣

= x2 + y2 ,

is equal to the modulus of the corresponding complex number,

|x+ iy|2 = (x+ iy)(x− iy) = x2 + y2 .

REMARK: The representation of complex numbers by 2 × 2 matrices is especially
useful in a number of mathematical applications. One can extend these results and
show that any n×n complex matrix, M , can be represented by a 2n×2n real matrix,
MR, where every complex element is replaced by its corresponding 2 × 2 matrix
representative. One can then prove that det MR = | det M |2.
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