
Chapter 4

Conditional Probability

4.1 Discrete Conditional Probability

Conditional Probability

In this section we ask and answer the following question. Suppose we assign a
distribution function to a sample space and then learn that an event E has occurred.
How should we change the probabilities of the remaining events? We shall call the
new probability for an event F the conditional probability of F given E and denote
it by P (F |E).

Example 4.1 An experiment consists of rolling a die once. Let X be the outcome.
Let F be the event {X = 6}, and let E be the event {X > 4}. We assign the
distribution function m(ω) = 1/6 for ω = 1, 2, . . . , 6. Thus, P (F ) = 1/6. Now
suppose that the die is rolled and we are told that the event E has occurred. This
leaves only two possible outcomes: 5 and 6. In the absence of any other information,
we would still regard these outcomes to be equally likely, so the probability of F

becomes 1/2, making P (F |E) = 1/2. 2

Example 4.2 In the Life Table (see Appendix C), one finds that in a population
of 100,000 females, 89.835% can expect to live to age 60, while 57.062% can expect
to live to age 80. Given that a woman is 60, what is the probability that she lives
to age 80?

This is an example of a conditional probability. In this case, the original sample
space can be thought of as a set of 100,000 females. The events E and F are the
subsets of the sample space consisting of all women who live at least 60 years, and
at least 80 years, respectively. We consider E to be the new sample space, and note
that F is a subset of E. Thus, the size of E is 89,835, and the size of F is 57,062.
So, the probability in question equals 57,062/89,835 = .6352. Thus, a woman who
is 60 has a 63.52% chance of living to age 80. 2
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Example 4.3 Consider our voting example from Section 1.2: three candidates A,
B, and C are running for office. We decided that A and B have an equal chance of
winning and C is only 1/2 as likely to win as A. Let A be the event “A wins,” B

that “B wins,” and C that “C wins.” Hence, we assigned probabilities P (A) = 2/5,
P (B) = 2/5, and P (C) = 1/5.

Suppose that before the election is held, A drops out of the race. As in Exam-
ple 4.1, it would be natural to assign new probabilities to the events B and C which
are proportional to the original probabilities. Thus, we would have P (B| A) = 2/3,
and P (C| A) = 1/3. It is important to note that any time we assign probabilities
to real-life events, the resulting distribution is only useful if we take into account
all relevant information. In this example, we may have knowledge that most voters
who favor A will vote for C if A is no longer in the race. This will clearly make the
probability that C wins greater than the value of 1/3 that was assigned above. 2

In these examples we assigned a distribution function and then were given new
information that determined a new sample space, consisting of the outcomes that
are still possible, and caused us to assign a new distribution function to this space.

We want to make formal the procedure carried out in these examples. Let
Ω = {ω1, ω2, . . . , ωr} be the original sample space with distribution function m(ωj)
assigned. Suppose we learn that the event E has occurred. We want to assign a new
distribution function m(ωj |E) to Ω to reflect this fact. Clearly, if a sample point ωj

is not in E, we want m(ωj |E) = 0. Moreover, in the absence of information to the
contrary, it is reasonable to assume that the probabilities for ωk in E should have
the same relative magnitudes that they had before we learned that E had occurred.
For this we require that

m(ωk|E) = cm(ωk)

for all ωk in E, with c some positive constant. But we must also have∑
E

m(ωk|E) = c
∑
E

m(ωk) = 1 .

Thus,

c =
1∑

E m(ωk)
=

1
P (E)

.

(Note that this requires us to assume that P (E) > 0.) Thus, we will define

m(ωk|E) =
m(ωk)
P (E)

for ωk in E. We will call this new distribution the conditional distribution given E.
For a general event F , this gives

P (F |E) =
∑
F∩E

m(ωk|E) =
∑
F∩E

m(ωk)
P (E)

=
P (F ∩ E)

P (E)
.

We call P (F |E) the conditional probability of F occurring given that E occurs,
and compute it using the formula

P (F |E) =
P (F ∩ E)

P (E)
.



4.1. DISCRETE CONDITIONAL PROBABILITY 135

(start)



p (ω)ω

ω 

ω 

ω 

ω 

1/2

1/2

l

ll

2/5

3/5

1/2

1/2 b

w

w

b 1/5

3/10

1/4

1/4

Urn Color of ball

1

2

3

4

Figure 4.1: Tree diagram.

Example 4.4 (Example 4.1 continued) Let us return to the example of rolling a
die. Recall that F is the event X = 6, and E is the event X > 4. Note that E ∩ F

is the event F . So, the above formula gives

P (F |E) =
P (F ∩ E)

P (E)

=
1/6
1/3

=
1
2

,

in agreement with the calculations performed earlier. 2

Example 4.5 We have two urns, I and II. Urn I contains 2 black balls and 3 white
balls. Urn II contains 1 black ball and 1 white ball. An urn is drawn at random
and a ball is chosen at random from it. We can represent the sample space of this
experiment as the paths through a tree as shown in Figure 4.1. The probabilities
assigned to the paths are also shown.

Let B be the event “a black ball is drawn,” and I the event “urn I is chosen.”
Then the branch weight 2/5, which is shown on one branch in the figure, can now
be interpreted as the conditional probability P (B|I).

Suppose we wish to calculate P (I|B). Using the formula, we obtain

P (I|B) =
P (I ∩B)

P (B)

=
P (I ∩B)

P (B ∩ I) + P (B ∩ II)

=
1/5

1/5 + 1/4
=

4
9

.

2
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Figure 4.2: Reverse tree diagram.

Bayes Probabilities

Our original tree measure gave us the probabilities for drawing a ball of a given
color, given the urn chosen. We have just calculated the inverse probability that a
particular urn was chosen, given the color of the ball. Such an inverse probability is
called a Bayes probability and may be obtained by a formula that we shall develop
later. Bayes probabilities can also be obtained by simply constructing the tree
measure for the two-stage experiment carried out in reverse order. We show this
tree in Figure 4.2.

The paths through the reverse tree are in one-to-one correspondence with those
in the forward tree, since they correspond to individual outcomes of the experiment,
and so they are assigned the same probabilities. From the forward tree, we find that
the probability of a black ball is

1
2
· 2
5

+
1
2
· 1
2

=
9
20

.

The probabilities for the branches at the second level are found by simple divi-
sion. For example, if x is the probability to be assigned to the top branch at the
second level, we must have

9
20

· x =
1
5

or x = 4/9. Thus, P (I|B) = 4/9, in agreement with our previous calculations. The
reverse tree then displays all of the inverse, or Bayes, probabilities.

Example 4.6 We consider now a problem called the Monty Hall problem. This
has long been a favorite problem but was revived by a letter from Craig Whitaker
to Marilyn vos Savant for consideration in her column in Parade Magazine.1 Craig
wrote:

1Marilyn vos Savant, Ask Marilyn, Parade Magazine, 9 September; 2 December; 17 February
1990, reprinted in Marilyn vos Savant, Ask Marilyn, St. Martins, New York, 1992.
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Suppose you’re on Monty Hall’s Let’s Make a Deal! You are given the
choice of three doors, behind one door is a car, the others, goats. You
pick a door, say 1, Monty opens another door, say 3, which has a goat.
Monty says to you “Do you want to pick door 2?” Is it to your advantage
to switch your choice of doors?

Marilyn gave a solution concluding that you should switch, and if you do, your
probability of winning is 2/3. Several irate readers, some of whom identified them-
selves as having a PhD in mathematics, said that this is absurd since after Monty
has ruled out one door there are only two possible doors and they should still each
have the same probability 1/2 so there is no advantage to switching. Marilyn stuck
to her solution and encouraged her readers to simulate the game and draw their own
conclusions from this. We also encourage the reader to do this (see Exercise 11).

Other readers complained that Marilyn had not described the problem com-
pletely. In particular, the way in which certain decisions were made during a play
of the game were not specified. This aspect of the problem will be discussed in Sec-
tion 4.3. We will assume that the car was put behind a door by rolling a three-sided
die which made all three choices equally likely. Monty knows where the car is, and
always opens a door with a goat behind it. Finally, we assume that if Monty has
a choice of doors (i.e., the contestant has picked the door with the car behind it),
he chooses each door with probability 1/2. Marilyn clearly expected her readers to
assume that the game was played in this manner.

As is the case with most apparent paradoxes, this one can be resolved through
careful analysis. We begin by describing a simpler, related question. We say that
a contestant is using the “stay” strategy if he picks a door, and, if offered a chance
to switch to another door, declines to do so (i.e., he stays with his original choice).
Similarly, we say that the contestant is using the “switch” strategy if he picks a door,
and, if offered a chance to switch to another door, takes the offer. Now suppose
that a contestant decides in advance to play the “stay” strategy. His only action
in this case is to pick a door (and decline an invitation to switch, if one is offered).
What is the probability that he wins a car? The same question can be asked about
the “switch” strategy.

Using the “stay” strategy, a contestant will win the car with probability 1/3,
since 1/3 of the time the door he picks will have the car behind it. On the other
hand, if a contestant plays the “switch” strategy, then he will win whenever the
door he originally picked does not have the car behind it, which happens 2/3 of the
time.

This very simple analysis, though correct, does not quite solve the problem
that Craig posed. Craig asked for the conditional probability that you win if you
switch, given that you have chosen door 1 and that Monty has chosen door 3. To
solve this problem, we set up the problem before getting this information and then
compute the conditional probability given this information. This is a process that
takes place in several stages; the car is put behind a door, the contestant picks a
door, and finally Monty opens a door. Thus it is natural to analyze this using a
tree measure. Here we make an additional assumption that if Monty has a choice
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Figure 4.3: The Monty Hall problem.

of doors (i.e., the contestant has picked the door with the car behind it) then he
picks each door with probability 1/2. The assumptions we have made determine the
branch probabilities and these in turn determine the tree measure. The resulting
tree and tree measure are shown in Figure 4.3. It is tempting to reduce the tree’s
size by making certain assumptions such as: “Without loss of generality, we will
assume that the contestant always picks door 1.” We have chosen not to make any
such assumptions, in the interest of clarity.

Now the given information, namely that the contestant chose door 1 and Monty
chose door 3, means only two paths through the tree are possible (see Figure 4.4).
For one of these paths, the car is behind door 1 and for the other it is behind door
2. The path with the car behind door 2 is twice as likely as the one with the car
behind door 1. Thus the conditional probability is 2/3 that the car is behind door 2
and 1/3 that it is behind door 1, so if you switch you have a 2/3 chance of winning
the car, as Marilyn claimed.

At this point, the reader may think that the two problems above are the same,
since they have the same answers. Recall that we assumed in the original problem
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if the contestant chooses the door with the car, so that Monty has a choice of two
doors, he chooses each of them with probability 1/2. Now suppose instead that
in the case that he has a choice, he chooses the door with the larger number with
probability 3/4. In the “switch” vs. “stay” problem, the probability of winning
with the “switch” strategy is still 2/3. However, in the original problem, if the
contestant switches, he wins with probability 4/7. The reader can check this by
noting that the same two paths as before are the only two possible paths in the
tree. The path leading to a win, if the contestant switches, has probability 1/3,
while the path which leads to a loss, if the contestant switches, has probability 1/4.
2

Independent Events

It often happens that the knowledge that a certain event E has occurred has no effect
on the probability that some other event F has occurred, that is, that P (F |E) =
P (F ). One would expect that in this case, the equation P (E|F ) = P (E) would
also be true. In fact (see Exercise 1), each equation implies the other. If these
equations are true, we might say the F is independent of E. For example, you
would not expect the knowledge of the outcome of the first toss of a coin to change
the probability that you would assign to the possible outcomes of the second toss,
that is, you would not expect that the second toss depends on the first. This idea
is formalized in the following definition of independent events.

Definition 4.1 Let E and F be two events. We say that they are independent if
either 1) both events have positive probability and

P (E|F ) = P (E) and P (F |E) = P (F ) ,

or 2) at least one of the events has probability 0. 2
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As noted above, if both P (E) and P (F ) are positive, then each of the above
equations imply the other, so that to see whether two events are independent, only
one of these equations must be checked (see Exercise 1).

The following theorem provides another way to check for independence.

Theorem 4.1 Two events E and F are independent if and only if

P (E ∩ F ) = P (E)P (F ) .

Proof. If either event has probability 0, then the two events are independent and
the above equation is true, so the theorem is true in this case. Thus, we may assume
that both events have positive probability in what follows. Assume that E and F

are independent. Then P (E|F ) = P (E), and so

P (E ∩ F ) = P (E|F )P (F )

= P (E)P (F ) .

Assume next that P (E ∩ F ) = P (E)P (F ). Then

P (E|F ) =
P (E ∩ F )

P (F )
= P (E) .

Also,

P (F |E) =
P (F ∩ E)

P (E)
= P (F ) .

Therefore, E and F are independent. 2

Example 4.7 Suppose that we have a coin which comes up heads with probability
p, and tails with probability q. Now suppose that this coin is tossed twice. Using
a frequency interpretation of probability, it is reasonable to assign to the outcome
(H,H) the probability p2, to the outcome (H,T ) the probability pq, and so on. Let
E be the event that heads turns up on the first toss and F the event that tails
turns up on the second toss. We will now check that with the above probability
assignments, these two events are independent, as expected. We have P (E) =
p2 + pq = p, P (F ) = pq + q2 = q. Finally P (E ∩ F ) = pq, so P (E ∩ F ) =
P (E)P (F ). 2

Example 4.8 It is often, but not always, intuitively clear when two events are
independent. In Example 4.7, let A be the event “the first toss is a head” and B

the event “the two outcomes are the same.” Then

P (B|A) =
P (B ∩A)

P (A)
=

P{HH}
P{HH,HT}

=
1/4
1/2

=
1
2

= P (B).

Therefore, A and B are independent, but the result was not so obvious. 2
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Example 4.9 Finally, let us give an example of two events that are not indepen-
dent. In Example 4.7, let I be the event “heads on the first toss” and J the event
“two heads turn up.” Then P (I) = 1/2 and P (J) = 1/4. The event I∩J is the event
“heads on both tosses” and has probability 1/4. Thus, I and J are not independent
since P (I)P (J) = 1/8 6= P (I ∩ J). 2

We can extend the concept of independence to any finite set of events A1, A2,
. . . , An.

Definition 4.2 A set of events {A1, A2, . . . , An} is said to be mutually indepen-
dent if for any subset {Ai, Aj , . . . , Am} of these events we have

P (Ai ∩Aj ∩ · · · ∩Am) = P (Ai)P (Aj) · · ·P (Am),

or equivalently, if for any sequence Ā1, Ā2, . . . , Ān with Āj = Aj or Ãj ,

P (Ā1 ∩ Ā2 ∩ · · · ∩ Ān) = P (Ā1)P (Ā2) · · ·P (Ān).

(For a proof of the equivalence in the case n = 3, see Exercise 33.) 2

Using this terminology, it is a fact that any sequence (S,S,F,F,S, . . . ,S) of possible
outcomes of a Bernoulli trials process forms a sequence of mutually independent
events.

It is natural to ask: If all pairs of a set of events are independent, is the whole
set mutually independent? The answer is not necessarily, and an example is given
in Exercise 7.

It is important to note that the statement

P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2) · · ·P (An)

does not imply that the events A1, A2, . . . , An are mutually independent (see
Exercise 8).

Joint Distribution Functions and Independence of Random
Variables

It is frequently the case that when an experiment is performed, several different
quantities concerning the outcomes are investigated.

Example 4.10 Suppose we toss a coin three times. The basic random variable
X̄ corresponding to this experiment has eight possible outcomes, which are the
ordered triples consisting of H’s and T’s. We can also define the random variable
Xi, for i = 1, 2, 3, to be the outcome of the ith toss. If the coin is fair, then we
should assign the probability 1/8 to each of the eight possible outcomes. Thus, the
distribution functions of X1, X2, and X3 are identical; in each case they are defined
by m(H) = m(T ) = 1/2. 2
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If we have several random variables X1, X2, . . . , Xn which correspond to a given
experiment, then we can consider the joint random variable X̄ = (X1, X2, . . . , Xn)
defined by taking an outcome ω of the experiment, and writing, as an n-tuple, the
corresponding n outcomes for the random variables X1, X2, . . . , Xn. Thus, if the
random variable Xi has, as its set of possible outcomes the set Ri, then the set of
possible outcomes of the joint random variable X̄ is the Cartesian product of the
Ri’s, i.e., the set of all n-tuples of possible outcomes of the Xi’s.

Example 4.11 (Example 4.10 continued) In the coin-tossing example above, let
Xi denote the outcome of the ith toss. Then the joint random variable X̄ =
(X1, X2, X3) has eight possible outcomes.

Suppose that we now define Yi, for i = 1, 2, 3, as the number of heads which
occur in the first i tosses. Then Yi has {0, 1, . . . , i} as possible outcomes, so at first
glance, the set of possible outcomes of the joint random variable Ȳ = (Y1, Y2, Y3)
should be the set

{(a1, a2, a3) : 0 ≤ a1 ≤ 1, 0 ≤ a2 ≤ 2, 0 ≤ a3 ≤ 3} .

However, the outcome (1, 0, 1) cannot occur, since we must have a1 ≤ a2 ≤ a3. The
solution to this problem is to define the probability of the outcome (1, 0, 1) to be 0.
In addition, we must have ai+1 − ai ≤ 1 for i = 1, 2.

We now illustrate the assignment of probabilities to the various outcomes for
the joint random variables X̄ and Ȳ . In the first case, each of the eight outcomes
should be assigned the probability 1/8, since we are assuming that we have a fair
coin. In the second case, since Yi has i + 1 possible outcomes, the set of possible
outcomes has size 24. Only eight of these 24 outcomes can actually occur, namely
the ones satisfying a1 ≤ a2 ≤ a3. Each of these outcomes corresponds to exactly
one of the outcomes of the random variable X̄, so it is natural to assign probability
1/8 to each of these. We assign probability 0 to the other 16 outcomes. In each
case, the probability function is called a joint distribution function. 2

We collect the above ideas in a definition.

Definition 4.3 Let X1, X2, . . . , Xn be random variables associated with an exper-
iment. Suppose that the sample space (i.e., the set of possible outcomes) of Xi is
the set Ri. Then the joint random variable X̄ = (X1, X2, . . . , Xn) is defined to be
the random variable whose outcomes consist of ordered n-tuples of outcomes, with
the ith coordinate lying in the set Ri. The sample space Ω of X̄ is the Cartesian
product of the Ri’s:

Ω = R1 ×R2 × · · · ×Rn .

The joint distribution function of X̄ is the function which gives the probability of
each of the outcomes of X̄. 2

Example 4.12 (Example 4.10 continued) We now consider the assignment of prob-
abilities in the above example. In the case of the random variable X̄, the probabil-
ity of any outcome (a1, a2, a3) is just the product of the probabilities P (Xi = ai),
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Not smoke Smoke Total
Not cancer 40 10 50
Cancer 7 3 10
Totals 47 13 60

Table 4.1: Smoking and cancer.

S
0 1

0 40/60 10/60
C

1 7/60 3/60

Table 4.2: Joint distribution.

for i = 1, 2, 3. However, in the case of Ȳ , the probability assigned to the outcome
(1, 1, 0) is not the product of the probabilities P (Y1 = 1), P (Y2 = 1), and P (Y3 = 0).
The difference between these two situations is that the value of Xi does not affect
the value of Xj , if i 6= j, while the values of Yi and Yj affect one another. For
example, if Y1 = 1, then Y2 cannot equal 0. This prompts the next definition. 2

Definition 4.4 The random variables X1, X2, . . . , Xn are mutually independent
if

P (X1 = r1, X2 = r2, . . . , Xn = rn)

= P (X1 = r1)P (X2 = r2) · · ·P (Xn = rn)

for any choice of r1, r2, . . . , rn. Thus, if X1, X2, . . . , Xn are mutually independent,
then the joint distribution function of the random variable

X̄ = (X1, X2, . . . , Xn)

is just the product of the individual distribution functions. When two random
variables are mutually independent, we shall say more briefly that they are indepen-
dent. 2

Example 4.13 In a group of 60 people, the numbers who do or do not smoke and
do or do not have cancer are reported as shown in Table 4.1. Let Ω be the sample
space consisting of these 60 people. A person is chosen at random from the group.
Let C(ω) = 1 if this person has cancer and 0 if not, and S(ω) = 1 if this person
smokes and 0 if not. Then the joint distribution of {C,S} is given in Table 4.2. For
example P (C = 0, S = 0) = 40/60, P (C = 0, S = 1) = 10/60, and so forth. The
distributions of the individual random variables are called marginal distributions.
The marginal distributions of C and S are:

pC =
(

0 1
50/60 10/60

)
,
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pS =
(

0 1
47/60 13/60

)
.

The random variables S and C are not independent, since

P (C = 1, S = 1) =
3
60

= .05 ,

P (C = 1)P (S = 1) =
10
60

· 13
60

= .036 .

Note that we would also see this from the fact that

P (C = 1|S = 1) =
3
13

= .23 ,

P (C = 1) =
1
6

= .167 .

2

Independent Trials Processes

The study of random variables proceeds by considering special classes of random
variables. One such class that we shall study is the class of independent trials.

Definition 4.5 A sequence of random variables X1, X2, . . . , Xn that are mutually
independent and that have the same distribution is called a sequence of independent
trials or an independent trials process.

Independent trials processes arise naturally in the following way. We have a
single experiment with sample space R = {r1, r2, . . . , rs} and a distribution function

mX =
(

r1 r2 · · · rs

p1 p2 · · · ps

)
.

We repeat this experiment n times. To describe this total experiment, we choose
as sample space the space

Ω = R×R× · · · ×R,

consisting of all possible sequences ω = (ω1, ω2, . . . , ωn) where the value of each ωj

is chosen from R. We assign a distribution function to be the product distribution

m(ω) = m(ω1) · . . . ·m(ωn) ,

with m(ωj) = pk when ωj = rk. Then we let Xj denote the jth coordinate of the
outcome (r1, r2, . . . , rn). The random variables X1, . . . , Xn form an independent
trials process. 2

Example 4.14 An experiment consists of rolling a die three times. Let Xi repre-
sent the outcome of the ith roll, for i = 1, 2, 3. The common distribution function
is

mi =
(

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

)
.
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The sample space is R3 = R ×R ×R with R = {1, 2, 3, 4, 5, 6}. If ω = (1, 3, 6),
then X1(ω) = 1, X2(ω) = 3, and X3(ω) = 6 indicating that the first roll was a 1,
the second was a 3, and the third was a 6. The probability assigned to any sample
point is

m(ω) =
1
6
· 1
6
· 1
6

=
1

216
.

2

Example 4.15 Consider next a Bernoulli trials process with probability p for suc-
cess on each experiment. Let Xj(ω) = 1 if the jth outcome is success and Xj(ω) = 0
if it is a failure. Then X1, X2, . . . , Xn is an independent trials process. Each Xj

has the same distribution function

mj =
(

0 1
q p

)
,

where q = 1− p.
If Sn = X1 + X2 + · · ·+ Xn, then

P (Sn = j) =
(

n

j

)
pjqn−j ,

and Sn has, as distribution, the binomial distribution b(n, p, j). 2

Bayes’ Formula

In our examples, we have considered conditional probabilities of the following form:
Given the outcome of the second stage of a two-stage experiment, find the proba-
bility for an outcome at the first stage. We have remarked that these probabilities
are called Bayes probabilities.

We return now to the calculation of more general Bayes probabilities. Suppose
we have a set of events H1, H2, . . . , Hm that are pairwise disjoint and such that
the sample space Ω satisfies the equation

Ω = H1 ∪H2 ∪ · · · ∪Hm .

We call these events hypotheses. We also have an event E that gives us some
information about which hypothesis is correct. We call this event evidence.

Before we receive the evidence, then, we have a set of prior probabilities P (H1),
P (H2), . . . , P (Hm) for the hypotheses. If we know the correct hypothesis, we know
the probability for the evidence. That is, we know P (E|Hi) for all i. We want to
find the probabilities for the hypotheses given the evidence. That is, we want to find
the conditional probabilities P (Hi|E). These probabilities are called the posterior
probabilities.

To find these probabilities, we write them in the form

P (Hi|E) =
P (Hi ∩ E)

P (E)
. (4.1)



146 CHAPTER 4. CONDITIONAL PROBABILITY

Number having The results
Disease this disease + + + – – + – –

d1 3215 2110 301 704 100
d2 2125 396 132 1187 410
d3 4660 510 3568 73 509

Total 10000

Table 4.3: Diseases data.

We can calculate the numerator from our given information by

P (Hi ∩ E) = P (Hi)P (E|Hi) . (4.2)

Since one and only one of the events H1, H2, . . . , Hm can occur, we can write the
probability of E as

P (E) = P (H1 ∩ E) + P (H2 ∩ E) + · · ·+ P (Hm ∩ E) .

Using Equation 4.2, the above expression can be seen to equal

P (H1)P (E|H1) + P (H2)P (E|H2) + · · ·+ P (Hm)P (E|Hm) . (4.3)

Using (4.1), (4.2), and (4.3) yields Bayes’ formula:

P (Hi|E) =
P (Hi)P (E|Hi)∑m

k=1 P (Hk)P (E|Hk)
.

Although this is a very famous formula, we will rarely use it. If the number of
hypotheses is small, a simple tree measure calculation is easily carried out, as we
have done in our examples. If the number of hypotheses is large, then we should
use a computer.

Bayes probabilities are particularly appropriate for medical diagnosis. A doctor
is anxious to know which of several diseases a patient might have. She collects
evidence in the form of the outcomes of certain tests. From statistical studies the
doctor can find the prior probabilities of the various diseases before the tests, and
the probabilities for specific test outcomes, given a particular disease. What the
doctor wants to know is the posterior probability for the particular disease, given
the outcomes of the tests.

Example 4.16 A doctor is trying to decide if a patient has one of three diseases
d1, d2, or d3. Two tests are to be carried out, each of which results in a positive
(+) or a negative (−) outcome. There are four possible test patterns ++, +−,
−+, and −−. National records have indicated that, for 10,000 people having one of
these three diseases, the distribution of diseases and test results are as in Table 4.3.

From this data, we can estimate the prior probabilities for each of the diseases
and, given a particular disease, the probability of a particular test outcome. For
example, the prior probability of disease d1 may be estimated to be 3215/10,000 =
.3215. The probability of the test result +−, given disease d1, may be estimated to
be 301/3215 = .094.



4.1. DISCRETE CONDITIONAL PROBABILITY 147

d1 d2 d3

+ + .700 .131 .169
+ – .075 .033 .892
– + .358 .604 .038
– – .098 .403 .499

Table 4.4: Posterior probabilities.

We can now use Bayes’ formula to compute various posterior probabilities. The
computer program Bayes computes these posterior probabilities. The results for
this example are shown in Table 4.4.

We note from the outcomes that, when the test result is ++, the disease d1 has
a significantly higher probability than the other two. When the outcome is +−,
this is true for disease d3. When the outcome is −+, this is true for disease d2.
Note that these statements might have been guessed by looking at the data. If the
outcome is −−, the most probable cause is d3, but the probability that a patient
has d2 is only slightly smaller. If one looks at the data in this case, one can see that
it might be hard to guess which of the two diseases d2 and d3 is more likely. 2

Our final example shows that one has to be careful when the prior probabilities
are small.

Example 4.17 A doctor gives a patient a test for a particular cancer. Before the
results of the test, the only evidence the doctor has to go on is that 1 woman
in 1000 has this cancer. Experience has shown that, in 99 percent of the cases in
which cancer is present, the test is positive; and in 95 percent of the cases in which
it is not present, it is negative. If the test turns out to be positive, what probability
should the doctor assign to the event that cancer is present? An alternative form
of this question is to ask for the relative frequencies of false positives and cancers.

We are given that prior(cancer) = .001 and prior(not cancer) = .999. We
know also that P (+|cancer) = .99, P (−|cancer) = .01, P (+|not cancer) = .05,
and P (−|not cancer) = .95. Using this data gives the result shown in Figure 4.5.

We see now that the probability of cancer given a positive test has only increased
from .001 to .019. While this is nearly a twenty-fold increase, the probability that
the patient has the cancer is still small. Stated in another way, among the positive
results, 98.1 percent are false positives, and 1.9 percent are cancers. When a group
of second-year medical students was asked this question, over half of the students
incorrectly guessed the probability to be greater than .5. 2

Historical Remarks

Conditional probability was used long before it was formally defined. Pascal and
Fermat considered the problem of points: given that team A has won m games and
team B has won n games, what is the probability that A will win the series? (See
Exercises 40–42.) This is clearly a conditional probability problem.

In his book, Huygens gave a number of problems, one of which was:



148 CHAPTER 4. CONDITIONAL PROBABILITY

.001
can

not

.01

.95

.05
+

-

.001

0

.05

.949

+

-

.051

.949

+

-

.981

1

0
can

not

.001

.05

0

.949

can

not

.019

Original Tree Reverse Tree

.99

.999

Figure 4.5: Forward and reverse tree diagrams.

Three gamblers, A, B and C, take 12 balls of which 4 are white and 8
black. They play with the rules that the drawer is blindfolded, A is to
draw first, then B and then C, the winner to be the one who first draws
a white ball. What is the ratio of their chances?2

From his answer it is clear that Huygens meant that each ball is replaced after
drawing. However, John Hudde, the mayor of Amsterdam, assumed that he meant
to sample without replacement and corresponded with Huygens about the difference
in their answers. Hacking remarks that “Neither party can understand what the
other is doing.”3

By the time of de Moivre’s book, The Doctrine of Chances, these distinctions
were well understood. De Moivre defined independence and dependence as follows:

Two Events are independent, when they have no connexion one with
the other, and that the happening of one neither forwards nor obstructs
the happening of the other.

Two Events are dependent, when they are so connected together as that
the Probability of either’s happening is altered by the happening of the
other.4

De Moivre used sampling with and without replacement to illustrate that the
probability that two independent events both happen is the product of their prob-
abilities, and for dependent events that:

2Quoted in F. N. David, Games, Gods and Gambling (London: Griffin, 1962), p. 119.
3I. Hacking, The Emergence of Probability (Cambridge: Cambridge University Press, 1975),

p. 99.
4A. de Moivre, The Doctrine of Chances, 3rd ed. (New York: Chelsea, 1967), p. 6.
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The Probability of the happening of two Events dependent, is the prod-
uct of the Probability of the happening of one of them, by the Probability
which the other will have of happening, when the first is considered as
having happened; and the same Rule will extend to the happening of as
many Events as may be assigned.5

The formula that we call Bayes’ formula, and the idea of computing the proba-
bility of a hypothesis given evidence, originated in a famous essay of Thomas Bayes.
Bayes was an ordained minister in Tunbridge Wells near London. His mathemat-
ical interests led him to be elected to the Royal Society in 1742, but none of his
results were published within his lifetime. The work upon which his fame rests,
“An Essay Toward Solving a Problem in the Doctrine of Chances,” was published
in 1763, three years after his death.6 Bayes reviewed some of the basic concepts of
probability and then considered a new kind of inverse probability problem requiring
the use of conditional probability.

Bernoulli, in his study of processes that we now call Bernoulli trials, had proven
his famous law of large numbers which we will study in Chapter 8. This theorem
assured the experimenter that if he knew the probability p for success, he could
predict that the proportion of successes would approach this value as he increased
the number of experiments. Bernoulli himself realized that in most interesting cases
you do not know the value of p and saw his theorem as an important step in showing
that you could determine p by experimentation.

To study this problem further, Bayes started by assuming that the probability p

for success is itself determined by a random experiment. He assumed in fact that this
experiment was such that this value for p is equally likely to be any value between
0 and 1. Without knowing this value we carry out n experiments and observe m

successes. Bayes proposed the problem of finding the conditional probability that
the unknown probability p lies between a and b. He obtained the answer:

P (a ≤ p < b|m successes in n trials) =

∫ b

a
xm(1− x)n−m dx∫ 1

0
xm(1− x)n−m dx

.

We shall see in the next section how this result is obtained. Bayes clearly wanted
to show that the conditional distribution function, given the outcomes of more and
more experiments, becomes concentrated around the true value of p. Thus, Bayes
was trying to solve an inverse problem. The computation of the integrals was too
difficult for exact solution except for small values of j and n, and so Bayes tried
approximate methods. His methods were not very satisfactory and it has been
suggested that this discouraged him from publishing his results.

However, his paper was the first in a series of important studies carried out by
Laplace, Gauss, and other great mathematicians to solve inverse problems. They
studied this problem in terms of errors in measurements in astronomy. If an as-
tronomer were to know the true value of a distance and the nature of the random

5ibid, p. 7.
6T. Bayes, “An Essay Toward Solving a Problem in the Doctrine of Chances,” Phil. Trans.

Royal Soc. London, vol. 53 (1763), pp. 370–418.
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errors caused by his measuring device he could predict the probabilistic nature of
his measurements. In fact, however, he is presented with the inverse problem of
knowing the nature of the random errors, and the values of the measurements, and
wanting to make inferences about the unknown true value.

As Maistrov remarks, the formula that we have called Bayes’ formula does not
appear in his essay. Laplace gave it this name when he studied these inverse prob-
lems.7 The computation of inverse probabilities is fundamental to statistics and
has led to an important branch of statistics called Bayesian analysis, assuring Bayes
eternal fame for his brief essay.

Exercises

1 Assume that E and F are two events with positive probabilities. Show that
if P (E|F ) = P (E), then P (F |E) = P (F ).

2 A coin is tossed three times. What is the probability that exactly two heads
occur, given that

(a) the first outcome was a head?

(b) the first outcome was a tail?

(c) the first two outcomes were heads?

(d) the first two outcomes were tails?

(e) the first outcome was a head and the third outcome was a head?

3 A die is rolled twice. What is the probability that the sum of the faces is
greater than 7, given that

(a) the first outcome was a 4?

(b) the first outcome was greater than 3?

(c) the first outcome was a 1?

(d) the first outcome was less than 5?

4 A card is drawn at random from a deck of cards. What is the probability that

(a) it is a heart, given that it is red?

(b) it is higher than a 10, given that it is a heart? (Interpret J, Q, K, A as
11, 12, 13, 14.)

(c) it is a jack, given that it is red?

5 A coin is tossed three times. Consider the following events
A: Heads on the first toss.
B: Tails on the second.
C: Heads on the third toss.
D: All three outcomes the same (HHH or TTT).
E: Exactly one head turns up.

7L. E. Maistrov, Probability Theory: A Historical Sketch, trans. and ed. Samual Kotz (New
York: Academic Press, 1974), p. 100.
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(a) Which of the following pairs of these events are independent?
(1) A, B

(2) A, D

(3) A, E

(4) D, E

(b) Which of the following triples of these events are independent?
(1) A, B, C

(2) A, B, D

(3) C, D, E

6 From a deck of five cards numbered 2, 4, 6, 8, and 10, respectively, a card
is drawn at random and replaced. This is done three times. What is the
probability that the card numbered 2 was drawn exactly two times, given
that the sum of the numbers on the three draws is 12?

7 A coin is tossed twice. Consider the following events.
A: Heads on the first toss.
B: Heads on the second toss.
C: The two tosses come out the same.

(a) Show that A, B, C are pairwise independent but not independent.

(b) Show that C is independent of A and B but not of A ∩B.

8 Let Ω = {a, b, c, d, e, f}. Assume that m(a) = m(b) = 1/8 and m(c) =
m(d) = m(e) = m(f) = 3/16. Let A, B, and C be the events A = {d, e, a},
B = {c, e, a}, C = {c, d, a}. Show that P (A ∩ B ∩ C) = P (A)P (B)P (C) but
no two of these events are independent.

9 What is the probability that a family of two children has

(a) two boys given that it has at least one boy?

(b) two boys given that the first child is a boy?

10 In Example 4.2, we used the Life Table (see Appendix C) to compute a con-
ditional probability. The number 93,753 in the table, corresponding to 40-
year-old males, means that of all the males born in the United States in 1950,
93.753% were alive in 1990. Is it reasonable to use this as an estimate for the
probability of a male, born this year, surviving to age 40?

11 Simulate the Monty Hall problem. Carefully state any assumptions that you
have made when writing the program. Which version of the problem do you
think that you are simulating?

12 In Example 4.17, how large must the prior probability of cancer be to give a
posterior probability of .5 for cancer given a positive test?

13 Two cards are drawn from a bridge deck. What is the probability that the
second card drawn is red?
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14 If P (B̃) = 1/4 and P (A|B) = 1/2, what is P (A ∩B)?

15 (a) What is the probability that your bridge partner has exactly two aces,
given that she has at least one ace?

(b) What is the probability that your bridge partner has exactly two aces,
given that she has the ace of spades?

16 Prove that for any three events A, B, C, each having positive probability, and
with the property that P (A ∩B) > 0,

P (A ∩B ∩ C) = P (A)P (B|A)P (C|A ∩B) .

17 Prove that if A and B are independent so are

(a) A and B̃.

(b) Ã and B̃.

18 A doctor assumes that a patient has one of three diseases d1, d2, or d3. Before
any test, he assumes an equal probability for each disease. He carries out a
test that will be positive with probability .8 if the patient has d1, .6 if he has
disease d2, and .4 if he has disease d3. Given that the outcome of the test was
positive, what probabilities should the doctor now assign to the three possible
diseases?

19 In a poker hand, John has a very strong hand and bets 5 dollars. The prob-
ability that Mary has a better hand is .04. If Mary had a better hand she
would raise with probability .9, but with a poorer hand she would only raise
with probability .1. If Mary raises, what is the probability that she has a
better hand than John does?

20 The Polya urn model for contagion is as follows: We start with an urn which
contains one white ball and one black ball. At each second we choose a ball
at random from the urn and replace this ball and add one more of the color
chosen. Write a program to simulate this model, and see if you can make
any predictions about the proportion of white balls in the urn after a large
number of draws. Is there a tendency to have a large fraction of balls of the
same color in the long run?

21 It is desired to find the probability that in a bridge deal each player receives an
ace. A student argues as follows. It does not matter where the first ace goes.
The second ace must go to one of the other three players and this occurs with
probability 3/4. Then the next must go to one of two, an event of probability
1/2, and finally the last ace must go to the player who does not have an ace.
This occurs with probability 1/4. The probability that all these events occur
is the product (3/4)(1/2)(1/4) = 3/32. Is this argument correct?

22 One coin in a collection of 65 has two heads. The rest are fair. If a coin,
chosen at random from the lot and then tossed, turns up heads 6 times in a
row, what is the probability that it is the two-headed coin?
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23 You are given two urns and fifty balls. Half of the balls are white and half
are black. You are asked to distribute the balls in the urns with no restriction
placed on the number of either type in an urn. How should you distribute
the balls in the urns to maximize the probability of obtaining a white ball if
an urn is chosen at random and a ball drawn out at random? Justify your
answer.

24 A fair coin is thrown n times. Show that the conditional probability of a head
on any specified trial, given a total of k heads over the n trials, is k/n (k > 0).

25 (Johnsonbough8) A coin with probability p for heads is tossed n times. Let E

be the event “a head is obtained on the first toss’ and Fk the event ‘exactly k

heads are obtained.” For which pairs (n, k) are E and Fk independent?

26 Suppose that A and B are events such that P (A|B) = P (B|A) and P (A∪B) =
1 and P (A ∩B) > 0. Prove that P (A) > 1/2.

27 (Chung9) In London, half of the days have some rain. The weather forecaster
is correct 2/3 of the time, i.e., the probability that it rains, given that she has
predicted rain, and the probability that it does not rain, given that she has
predicted that it won’t rain, are both equal to 2/3. When rain is forecast,
Mr. Pickwick takes his umbrella. When rain is not forecast, he takes it with
probability 1/3. Find

(a) the probability that Pickwick has no umbrella, given that it rains.

(b) the probability that he brings his umbrella, given that it doesn’t rain.

28 Probability theory was used in a famous court case: People v. Collins.10 In
this case a purse was snatched from an elderly person in a Los Angeles suburb.
A couple seen running from the scene were described as a black man with a
beard and a mustache and a blond girl with hair in a ponytail. Witnesses said
they drove off in a partly yellow car. Malcolm and Janet Collins were arrested.
He was black and though clean shaven when arrested had evidence of recently
having had a beard and a mustache. She was blond and usually wore her hair
in a ponytail. They drove a partly yellow Lincoln. The prosecution called a
professor of mathematics as a witness who suggested that a conservative set of
probabilities for the characteristics noted by the witnesses would be as shown
in Table 4.5.

The prosecution then argued that the probability that all of these character-
istics are met by a randomly chosen couple is the product of the probabilities
or 1/12,000,000, which is very small. He claimed this was proof beyond a rea-
sonable doubt that the defendants were guilty. The jury agreed and handed
down a verdict of guilty of second-degree robbery.

8R. Johnsonbough, “Problem #103,” Two Year College Math Journal, vol. 8 (1977), p. 292.
9K. L. Chung, Elementary Probability Theory With Stochastic Processes, 3rd ed. (New York:

Springer-Verlag, 1979), p. 152.
10M. W. Gray, “Statistics and the Law,” Mathematics Magazine, vol. 56 (1983), pp. 67–81.
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man with mustache 1/4
girl with blond hair 1/3
girl with ponytail 1/10
black man with beard 1/10
interracial couple in a car 1/1000
partly yellow car 1/10

Table 4.5: Collins case probabilities.

If you were the lawyer for the Collins couple how would you have countered
the above argument? (The appeal of this case is discussed in Exercise 5.1.34.)

29 A student is applying to Harvard and Dartmouth. He estimates that he has
a probability of .5 of being accepted at Dartmouth and .3 of being accepted
at Harvard. He further estimates the probability that he will be accepted by
both is .2. What is the probability that he is accepted by Dartmouth if he is
accepted by Harvard? Is the event “accepted at Harvard” independent of the
event “accepted at Dartmouth”?

30 Luxco, a wholesale lightbulb manufacturer, has two factories. Factory A sells
bulbs in lots that consists of 1000 regular and 2000 softglow bulbs each. Ran-
dom sampling has shown that on the average there tend to be about 2 bad
regular bulbs and 11 bad softglow bulbs per lot. At factory B the lot size is
reversed—there are 2000 regular and 1000 softglow per lot—and there tend
to be 5 bad regular and 6 bad softglow bulbs per lot.

The manager of factory A asserts, “We’re obviously the better producer; our
bad bulb rates are .2 percent and .55 percent compared to B’s .25 percent and
.6 percent. We’re better at both regular and softglow bulbs by half of a tenth
of a percent each.”

“Au contraire,” counters the manager of B, “each of our 3000 bulb lots con-
tains only 11 bad bulbs, while A’s 3000 bulb lots contain 13. So our .37
percent bad bulb rate beats their .43 percent.”

Who is right?

31 Using the Life Table for 1981 given in Appendix C, find the probability that a
male of age 60 in 1981 lives to age 80. Find the same probability for a female.

32 (a) There has been a blizzard and Helen is trying to drive from Woodstock
to Tunbridge, which are connected like the top graph in Figure 4.6. Here
p and q are the probabilities that the two roads are passable. What is
the probability that Helen can get from Woodstock to Tunbridge?

(b) Now suppose that Woodstock and Tunbridge are connected like the mid-
dle graph in Figure 4.6. What now is the probability that she can get
from W to T? Note that if we think of the roads as being components
of a system, then in (a) and (b) we have computed the reliability of a
system whose components are (a) in series and (b) in parallel.
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Figure 4.6: From Woodstock to Tunbridge.

(c) Now suppose W and T are connected like the bottom graph in Figure 4.6.
Find the probability of Helen’s getting from W to T . Hint : If the road
from C to D is impassable, it might as well not be there at all; if it is
passable, then figure out how to use part (b) twice.

33 Let A1, A2, and A3 be events, and let Bi represent either Ai or its complement
Ãi. Then there are eight possible choices for the triple (B1, B2, B3). Prove
that the events A1, A2, A3 are independent if and only if

P (B1 ∩B2 ∩B3) = P (B1)P (B2)P (B3) ,

for all eight of the possible choices for the triple (B1, B2, B3).

34 Four women, A, B, C, and D, check their hats, and the hats are returned in a
random manner. Let Ω be the set of all possible permutations of A, B, C, D.
Let Xj = 1 if the jth woman gets her own hat back and 0 otherwise. What
is the distribution of Xj? Are the Xi’s mutually independent?

35 A box has numbers from 1 to 10. A number is drawn at random. Let X1 be
the number drawn. This number is replaced, and the ten numbers mixed. A
second number X2 is drawn. Find the distributions of X1 and X2. Are X1

and X2 independent? Answer the same questions if the first number is not
replaced before the second is drawn.
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Y
-1 0 1 2

X -1 0 1/36 1/6 1/12
0 1/18 0 1/18 0
1 0 1/36 1/6 1/12
2 1/12 0 1/12 1/6

Table 4.6: Joint distribution.

36 A die is thrown twice. Let X1 and X2 denote the outcomes. Define X =
min(X1, X2). Find the distribution of X.

*37 Given that P (X = a) = r, P (max(X, Y ) = a) = s, and P (min(X, Y ) = a) =
t, show that you can determine u = P (Y = a) in terms of r, s, and t.

38 A fair coin is tossed three times. Let X be the number of heads that turn up
on the first two tosses and Y the number of heads that turn up on the third
toss. Give the distribution of

(a) the random variables X and Y .

(b) the random variable Z = X + Y .

(c) the random variable W = X − Y .

39 Assume that the random variables X and Y have the joint distribution given
in Table 4.6.

(a) What is P (X ≥ 1 and Y ≤ 0)?

(b) What is the conditional probability that Y ≤ 0 given that X = 2?

(c) Are X and Y independent?

(d) What is the distribution of Z = XY ?

40 In the problem of points, discussed in the historical remarks in Section 3.2, two
players, A and B, play a series of points in a game with player A winning each
point with probability p and player B winning each point with probability
q = 1 − p. The first player to win N points wins the game. Assume that
N = 3. Let X be a random variable that has the value 1 if player A wins the
series and 0 otherwise. Let Y be a random variable with value the number
of points played in a game. Find the distribution of X and Y when p = 1/2.
Are X and Y independent in this case? Answer the same questions for the
case p = 2/3.

41 The letters between Pascal and Fermat, which are often credited with having
started probability theory, dealt mostly with the problem of points described
in Exercise 40. Pascal and Fermat considered the problem of finding a fair
division of stakes if the game must be called off when the first player has won
r games and the second player has won s games, with r < N and s < N . Let
P (r, s) be the probability that player A wins the game if he has already won
r points and player B has won s points. Then
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(a) P (r, N) = 0 if r < N ,

(b) P (N, s) = 1 if s < N ,

(c) P (r, s) = pP (r + 1, s) + qP (r, s + 1) if r < N and s < N ;

and (1), (2), and (3) determine P (r, s) for r ≤ N and s ≤ N . Pascal used
these facts to find P (r, s) by working backward: He first obtained P (N −1, j)
for j = N − 1, N − 2, . . . , 0; then, from these values, he obtained P (N − 2, j)
for j = N − 1, N − 2, . . . , 0 and, continuing backward, obtained all the
values P (r, s). Write a program to compute P (r, s) for given N , a, b, and p.
Warning : Follow Pascal and you will be able to run N = 100; use recursion
and you will not be able to run N = 20.

42 Fermat solved the problem of points (see Exercise 40) as follows: He realized
that the problem was difficult because the possible ways the play might go are
not equally likely. For example, when the first player needs two more games
and the second needs three to win, two possible ways the series might go for
the first player are WLW and LWLW. These sequences are not equally likely.
To avoid this difficulty, Fermat extended the play, adding fictitious plays so
that the series went the maximum number of games needed (four in this case).
He obtained equally likely outcomes and used, in effect, the Pascal triangle to
calculate P (r, s). Show that this leads to a formula for P (r, s) even for the
case p 6= 1/2.

43 The Yankees are playing the Dodgers in a world series. The Yankees win each
game with probability .6. What is the probability that the Yankees win the
series? (The series is won by the first team to win four games.)

44 C. L. Anderson11 has used Fermat’s argument for the problem of points to
prove the following result due to J. G. Kingston. You are playing the game
of points (see Exercise 40) but, at each point, when you serve you win with
probability p, and when your opponent serves you win with probability p̄.
You will serve first, but you can choose one of the following two conventions
for serving: for the first convention you alternate service (tennis), and for the
second the person serving continues to serve until he loses a point and then
the other player serves (racquetball). The first player to win N points wins
the game. The problem is to show that the probability of winning the game
is the same under either convention.

(a) Show that, under either convention, you will serve at most N points and
your opponent at most N − 1 points.

(b) Extend the number of points to 2N − 1 so that you serve N points and
your opponent serves N − 1. For example, you serve any additional
points necessary to make N serves and then your opponent serves any
additional points necessary to make him serve N − 1 points. The winner

11C. L. Anderson, “Note on the Advantage of First Serve,” Journal of Combinatorial Theory,
Series A, vol. 23 (1977), p. 363.
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is now the person, in the extended game, who wins the most points.
Show that playing these additional points has not changed the winner.

(c) Show that (a) and (b) prove that you have the same probability of win-
ning the game under either convention.

45 In the previous problem, assume that p = 1− p̄.

(a) Show that under either service convention, the first player will win more
often than the second player if and only if p > .5.

(b) In volleyball, a team can only win a point while it is serving. Thus, any
individual “play” either ends with a point being awarded to the serving
team or with the service changing to the other team. The first team to
win N points wins the game. (We ignore here the additional restriction
that the winning team must be ahead by at least two points at the end of
the game.) Assume that each team has the same probability of winning
the play when it is serving, i.e., that p = 1 − p̄. Show that in this case,
the team that serves first will win more than half the time, as long as
p > 0. (If p = 0, then the game never ends.) Hint : Define p′ to be the
probability that a team wins the next point, given that it is serving. If
we write q = 1− p, then one can show that

p′ =
p

1− q2
.

If one now considers this game in a slightly different way, one can see
that the second service convention in the preceding problem can be used,
with p replaced by p′.

46 A poker hand consists of 5 cards dealt from a deck of 52 cards. Let X and
Y be, respectively, the number of aces and kings in a poker hand. Find the
joint distribution of X and Y .

47 Let X1 and X2 be independent random variables and let Y1 = φ1(X1) and
Y2 = φ2(X2).

(a) Show that

P (Y1 = r, Y2 = s) =
∑

φ1(a)=r

φ2(b)=s

P (X1 = a,X2 = b) .

(b) Using (a), show that P (Y1 = r, Y2 = s) = P (Y1 = r)P (Y2 = s) so that
Y1 and Y2 are independent.

48 Let Ω be the sample space of an experiment. Let E be an event with P (E) > 0
and define mE(ω) by mE(ω) = m(ω|E). Prove that mE(ω) is a distribution
function on E, that is, that mE(ω) ≥ 0 and that

∑
ω∈Ω mE(ω) = 1. The

function mE is called the conditional distribution given E.
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49 You are given two urns each containing two biased coins. The coins in urn I
come up heads with probability p1, and the coins in urn II come up heads
with probability p2 6= p1. You are given a choice of (a) choosing an urn at
random and tossing the two coins in this urn or (b) choosing one coin from
each urn and tossing these two coins. You win a prize if both coins turn up
heads. Show that you are better off selecting choice (a).

50 Prove that, if A1, A2, . . . , An are independent events defined on a sample
space Ω and if 0 < P (Aj) < 1 for all j, then Ω must have at least 2n points.

51 Prove that if

P (A|C) ≥ P (B|C) and P (A|C̃) ≥ P (B|C̃) ,

then P (A) ≥ P (B).

52 A coin is in one of n boxes. The probability that it is in the ith box is pi.
If you search in the ith box and it is there, you find it with probability ai.
Show that the probability p that the coin is in the jth box, given that you
have looked in the ith box and not found it, is

p =
{

pj/(1− aipi), if j 6= i,

(1− ai)pi/(1− aipi), if j = i.

53 George Wolford has suggested the following variation on the Linda problem
(see Exercise 1.2.25). The registrar is carrying John and Mary’s registration
cards and drops them in a puddle. When he pickes them up he cannot read the
names but on the first card he picked up he can make out Mathematics 23 and
Government 35, and on the second card he can make out only Mathematics
23. He asks you if you can help him decide which card belongs to Mary. You
know that Mary likes government but does not like mathematics. You know
nothing about John and assume that he is just a typical Dartmouth student.
From this you estimate:

P (Mary takes Government 35) = .5 ,
P (Mary takes Mathematics 23) = .1 ,
P (John takes Government 35) = .3 ,
P (John takes Mathematics 23) = .2 .

Assume that their choices for courses are independent events. Show that
the card with Mathematics 23 and Government 35 showing is more likely
to be Mary’s than John’s. The conjunction fallacy referred to in the Linda
problem would be to assume that the event “Mary takes Mathematics 23 and
Government 35” is more likely than the event “Mary takes Mathematics 23.”
Why are we not making this fallacy here?
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54 (Suggested by Eisenberg and Ghosh12) A deck of playing cards can be de-
scribed as a Cartesian product

Deck = Suit× Rank ,

where Suit = {♣,♦,♥,♠} and Rank = {2, 3, . . . , 10, J,Q,K,A}. This just
means that every card may be thought of as an ordered pair like (♦, 2). By
a suit event we mean any event A contained in Deck which is described in
terms of Suit alone. For instance, if A is “the suit is red,” then

A = {♦,♥} × Rank ,

so that A consists of all cards of the form (♦, r) or (♥, r) where r is any rank.
Similarly, a rank event is any event described in terms of rank alone.

(a) Show that if A is any suit event and B any rank event, then A and B are
independent. (We can express this briefly by saying that suit and rank
are independent.)

(b) Throw away the ace of spades. Show that now no nontrivial (i.e., neither
empty nor the whole space) suit event A is independent of any nontrivial
rank event B. Hint : Here independence comes down to

c/51 = (a/51) · (b/51) ,

where a, b, c are the respective sizes of A, B and A ∩B. It follows that
51 must divide ab, hence that 3 must divide one of a and b, and 17 the
other. But the possible sizes for suit and rank events preclude this.

(c) Show that the deck in (b) nevertheless does have pairs A, B of nontrivial
independent events. Hint : Find 2 events A and B of sizes 3 and 17,
respectively, which intersect in a single point.

(d) Add a joker to a full deck. Show that now there is no pair A, B of
nontrivial independent events. Hint : See the hint in (b); 53 is prime.

The following problems are suggested by Stanley Gudder in his article “Do
Good Hands Attract?”13 He says that event A attracts event B if P (B|A) >

P (B) and repels B if P (B|A) < P (B).

55 Let Ri be the event that the ith player in a poker game has a royal flush.
Show that a royal flush (A,K,Q,J,10 of one suit) attracts another royal flush,
that is P (R2|R1) > P (R2). Show that a royal flush repels full houses.

56 Prove that A attracts B if and only if B attracts A. Hence we can say that
A and B are mutually attractive if A attracts B.

12B. Eisenberg and B. K. Ghosh, “Independent Events in a Discrete Uniform Probability Space,”
The American Statistician, vol. 41, no. 1 (1987), pp. 52–56.

13S. Gudder, “Do Good Hands Attract?” Mathematics Magazine, vol. 54, no. 1 (1981), pp. 13–
16.



4.1. DISCRETE CONDITIONAL PROBABILITY 161

57 Prove that A neither attracts nor repels B if and only if A and B are inde-
pendent.

58 Prove that A and B are mutually attractive if and only if P (B|A) > P (B|Ã).

59 Prove that if A attracts B, then A repels B̃.

60 Prove that if A attracts both B and C, and A repels B ∩ C, then A attracts
B ∪ C. Is there any example in which A attracts both B and C and repels
B ∪ C?

61 Prove that if B1, B2, . . . , Bn are mutually disjoint and collectively exhaustive,
and if A attracts some Bi, then A must repel some Bj .

62 (a) Suppose that you are looking in your desk for a letter from some time
ago. Your desk has eight drawers, and you assess the probability that it
is in any particular drawer is 10% (so there is a 20% chance that it is not
in the desk at all). Suppose now that you start searching systematically
through your desk, one drawer at a time. In addition, suppose that
you have not found the letter in the first i drawers, where 0 ≤ i ≤ 7.
Let pi denote the probability that the letter will be found in the next
drawer, and let qi denote the probability that the letter will be found
in some subsequent drawer (both pi and qi are conditional probabilities,
since they are based upon the assumption that the letter is not in the
first i drawers). Show that the pi’s increase and the qi’s decrease. (This
problem is from Falk et al.14)

(b) The following data appeared in an article in the Wall Street Journal.15

For the ages 20, 30, 40, 50, and 60, the probability of a woman in the
U.S. developing cancer in the next ten years is 0.5%, 1.2%, 3.2%, 6.4%,
and 10.8%, respectively. At the same set of ages, the probability of a
woman in the U.S. eventually developing cancer is 39.6%, 39.5%, 39.1%,
37.5%, and 34.2%, respectively. Do you think that the problem in part
(a) gives an explanation for these data?

63 Here are two variations of the Monty Hall problem that are discussed by
Granberg.16

(a) Suppose that everything is the same except that Monty forgot to find
out in advance which door has the car behind it. In the spirit of “the
show must go on,” he makes a guess at which of the two doors to open
and gets lucky, opening a door behind which stands a goat. Now should
the contestant switch?

14R. Falk, A. Lipson, and C. Konold, “The ups and downs of the hope function in a fruitless
search,” in Subjective Probability, G. Wright and P. Ayton, (eds.) (Chichester: Wiley, 1994), pgs.
353-377.

15C. Crossen, “Fright by the numbers: Alarming disease data are frequently flawed,” Wall Street
Journal, 11 April 1996, p. B1.

16D. Granberg, “To switch or not to switch,” in The power of logical thinking, M. vos Savant,
(New York: St. Martin’s 1996).
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(b) You have observed the show for a long time and found that the car is
put behind door A 45% of the time, behind door B 40% of the time and
behind door C 15% of the time. Assume that everything else about the
show is the same. Again you pick door A. Monty opens a door with a
goat and offers to let you switch. Should you? Suppose you knew in
advance that Monty was going to give you a chance to switch. Should
you have initially chosen door A?

4.2 Continuous Conditional Probability

In situations where the sample space is continuous we will follow the same procedure
as in the previous section. Thus, for example, if X is a continuous random variable
with density function f(x), and if E is an event with positive probability, we define
a conditional density function by the formula

f(x|E) =
{

f(x)/P (E), if x ∈ E,

0, if x 6∈ E.

Then for any event F , we have

P (F |E) =
∫

F

f(x|E) dx .

The expression P (F |E) is called the conditional probability of F given E. As in the
previous section, it is easy to obtain an alternative expression for this probability:

P (F |E) =
∫

F

f(x|E) dx =
∫

E∩F

f(x)
P (E)

dx =
P (E ∩ F )

P (E)
.

We can think of the conditional density function as being 0 except on E, and
normalized to have integral 1 over E. Note that if the original density is a uniform
density corresponding to an experiment in which all events of equal size are equally
likely, then the same will be true for the conditional density.

Example 4.18 In the spinner experiment (cf. Example 2.1), suppose we know that
the spinner has stopped with head in the upper half of the circle, 0 ≤ x ≤ 1/2. What
is the probability that 1/6 ≤ x ≤ 1/3?

Here E = [0, 1/2], F = [1/6, 1/3], and F ∩ E = F . Hence

P (F |E) =
P (F ∩ E)

P (E)

=
1/6
1/2

=
1
3

,

which is reasonable, since F is 1/3 the size of E. The conditional density function
here is given by



4.2. CONTINUOUS CONDITIONAL PROBABILITY 163

f(x|E) =
{

2, if 0 ≤ x < 1/2,

0, if 1/2 ≤ x < 1.

Thus the conditional density function is nonzero only on [0, 1/2], and is uniform
there. 2

Example 4.19 In the dart game (cf. Example 2.8), suppose we know that the dart
lands in the upper half of the target. What is the probability that its distance from
the center is less than 1/2?

Here E = { (x, y) : y ≥ 0 }, and F = { (x, y) : x2 + y2 < (1/2)2 }. Hence,

P (F |E) =
P (F ∩ E)

P (E)
=

(1/π)[(1/2)(π/4)]
(1/π)(π/2)

= 1/4 .

Here again, the size of F ∩E is 1/4 the size of E. The conditional density function
is

f((x, y)|E) =
{

f(x, y)/P (E) = 2/π, if (x, y) ∈ E,

0, if (x, y) 6∈ E.

2

Example 4.20 We return to the exponential density (cf. Example 2.17). We sup-
pose that we are observing a lump of plutonium-239. Our experiment consists of
waiting for an emission, then starting a clock, and recording the length of time X

that passes until the next emission. Experience has shown that X has an expo-
nential density with some parameter λ, which depends upon the size of the lump.
Suppose that when we perform this experiment, we notice that the clock reads r

seconds, and is still running. What is the probability that there is no emission in a
further s seconds?

Let G(t) be the probability that the next particle is emitted after time t. Then

G(t) =
∫ ∞

t

λe−λx dx

= −e−λx
∣∣∞
t

= e−λt .

Let E be the event “the next particle is emitted after time r” and F the event
“the next particle is emitted after time r + s.” Then

P (F |E) =
P (F ∩ E)

P (E)

=
G(r + s)

G(r)

=
e−λ(r+s)

e−λr

= e−λs .
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This tells us the rather surprising fact that the probability that we have to wait
s seconds more for an emission, given that there has been no emission in r seconds,
is independent of the time r. This property (called the memoryless property)
was introduced in Example 2.17. When trying to model various phenomena, this
property is helpful in deciding whether the exponential density is appropriate.

The fact that the exponential density is memoryless means that it is reasonable
to assume if one comes upon a lump of a radioactive isotope at some random time,
then the amount of time until the next emission has an exponential density with
the same parameter as the time between emissions. A well-known example, known
as the “bus paradox,” replaces the emissions by buses. The apparent paradox arises
from the following two facts: 1) If you know that, on the average, the buses come
by every 30 minutes, then if you come to the bus stop at a random time, you should
only have to wait, on the average, for 15 minutes for a bus, and 2) Since the buses
arrival times are being modelled by the exponential density, then no matter when
you arrive, you will have to wait, on the average, for 30 minutes for a bus.

The reader can now see that in Exercises 2.2.9, 2.2.10, and 2.2.11, we were
asking for simulations of conditional probabilities, under various assumptions on
the distribution of the interarrival times. If one makes a reasonable assumption
about this distribution, such as the one in Exercise 2.2.10, then the average waiting
time is more nearly one-half the average interarrival time. 2

Independent Events

If E and F are two events with positive probability in a continuous sample space,
then, as in the case of discrete sample spaces, we define E and F to be independent
if P (E|F ) = P (E) and P (F |E) = P (F ). As before, each of the above equations
imply the other, so that to see whether two events are independent, only one of these
equations must be checked. It is also the case that, if E and F are independent,
then P (E ∩ F ) = P (E)P (F ).

Example 4.21 (Example 4.18 continued) In the dart game (see Example 4.18), let
E be the event that the dart lands in the upper half of the target (y ≥ 0) and F the
event that the dart lands in the right half of the target (x ≥ 0). Then P (E ∩ F ) is
the probability that the dart lies in the first quadrant of the target, and

P (E ∩ F ) =
1
π

∫
E∩F

1 dxdy

= Area (E ∩ F )

= Area (E) Area (F )

=
(

1
π

∫
E

1 dxdy

)(
1
π

∫
F

1 dxdy

)
= P (E)P (F )

so that E and F are independent. What makes this work is that the events E and
F are described by restricting different coordinates. This idea is made more precise
below. 2
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Joint Density and Cumulative Distribution Functions

In a manner analogous with discrete random variables, we can define joint density
functions and cumulative distribution functions for multi-dimensional continuous
random variables.

Definition 4.6 Let X1, X2, . . . , Xn be continuous random variables associated
with an experiment, and let X̄ = (X1, X2, . . . , Xn). Then the joint cumulative
distribution function of X̄ is defined by

F (x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) .

The joint density function of X̄ satisfies the following equation:

F (x1, x2, . . . , xn) =
∫ x1

−∞

∫ x2

−∞
· · ·
∫ xn

−∞
f(t1, t2, . . . tn) dtndtn−1 . . . dt1 .

2

It is straightforward to show that, in the above notation,

f(x1, x2, . . . , xn) =
∂nF (x1, x2, . . . , xn)

∂x1∂x2 · · · ∂xn
. (4.4)

Independent Random Variables

As with discrete random variables, we can define mutual independence of continuous
random variables.

Definition 4.7 Let X1, X2, . . . , Xn be continuous random variables with cumula-
tive distribution functions F1(x), F2(x), . . . , Fn(x). Then these random variables
are mutually independent if

F (x1, x2, . . . , xn) = F1(x1)F2(x2) · · ·Fn(xn)

for any choice of x1, x2, . . . , xn. Thus, if X1, X2, . . . , Xn are mutually inde-
pendent, then the joint cumulative distribution function of the random variable
X̄ = (X1, X2, . . . , Xn) is just the product of the individual cumulative distribution
functions. When two random variables are mutually independent, we shall say more
briefly that they are independent. 2

Using Equation 4.4, the following theorem can easily be shown to hold for mu-
tually independent continuous random variables.

Theorem 4.2 Let X1, X2, . . . , Xn be continuous random variables with density
functions f1(x), f2(x), . . . , fn(x). Then these random variables are mutually in-
dependent if and only if

f(x1, x2, . . . , xn) = f1(x1)f2(x2) · · · fn(xn)

for any choice of x1, x2, . . . , xn. 2
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Figure 4.7: X1 and X2 are independent.

Let’s look at some examples.

Example 4.22 In this example, we define three random variables, X1, X2, and
X3. We will show that X1 and X2 are independent, and that X1 and X3 are not
independent. Choose a point ω = (ω1, ω2) at random from the unit square. Set
X1 = ω2

1 , X2 = ω2
2 , and X3 = ω1 + ω2. Find the joint distributions F12(r1, r2) and

F23(r2, r3).
We have already seen (see Example 2.13) that

F1(r1) = P (−∞ < X1 ≤ r1)

=
√

r1, if 0 ≤ r1 ≤ 1 ,

and similarly,
F2(r2) =

√
r2 ,

if 0 ≤ r2 ≤ 1. Now we have (see Figure 4.7)

F12(r1, r2) = P (X1 ≤ r1 and X2 ≤ r2)

= P (ω1 ≤
√

r1 and ω2 ≤
√

r2)

= Area (E1)

=
√

r1
√

r2

= F1(r1)F2(r2) .

In this case F12(r1, r2) = F1(r1)F2(r2) so that X1 and X2 are independent. On the
other hand, if r1 = 1/4 and r3 = 1, then (see Figure 4.8)

F13(1/4, 1) = P (X1 ≤ 1/4, X3 ≤ 1)
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Figure 4.8: X1 and X3 are not independent.

= P (ω1 ≤ 1/2, ω1 + ω2 ≤ 1)

= Area (E2)

=
1
2
− 1

8
=

3
8

.

Now recalling that

F3(r3) =


0, if r3 < 0,

(1/2)r2
3, if 0 ≤ r3 ≤ 1,

1− (1/2)(2− r3)2, if 1 ≤ r3 ≤ 2,

1, if 2 < r3,

(see Example 2.14), we have F1(1/4)F3(1) = (1/2)(1/2) = 1/4. Hence, X1 and X3

are not independent random variables. A similar calculation shows that X2 and X3

are not independent either. 2

Although we shall not prove it here, the following theorem is a useful one. The
statement also holds for mutually independent discrete random variables. A proof
may be found in Rényi.17

Theorem 4.3 Let X1, X2, . . . , Xn be mutually independent continuous random
variables and let φ1(x), φ2(x), . . . , φn(x) be continuous functions. Then φ1(X1),
φ2(X2), . . . , φn(Xn) are mutually independent. 2

Independent Trials

Using the notion of independence, we can now formulate for continuous sample
spaces the notion of independent trials (see Definition 4.5).

17A. Rényi, Probability Theory (Budapest: Akadémiai Kiadó, 1970), p. 183.
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Figure 4.9: Beta density for α = β = .5, 1, 2.

Definition 4.8 A sequence X1, X2, . . . , Xn of random variables Xi that are
mutually independent and have the same density is called an independent trials
process. 2

As in the case of discrete random variables, these independent trials processes
arise naturally in situations where an experiment described by a single random
variable is repeated n times.

Beta Density

We consider next an example which involves a sample space with both discrete
and continuous coordinates. For this example we shall need a new density function
called the beta density. This density has two parameters α, β and is defined by

B(α, β, x) =
{

(1/B(α, β))xα−1(1− x)β−1, if 0 ≤ x ≤ 1,

0, otherwise.

Here α and β are any positive numbers, and the beta function B(α, β) is given by
the area under the graph of xα−1(1− x)β−1 between 0 and 1:

B(α, β) =
∫ 1

0

xα−1(1− x)β−1 dx .

Note that when α = β = 1 the beta density if the uniform density. When α and
β are greater than 1 the density is bell-shaped, but when they are less than 1 it is
U-shaped as suggested by the examples in Figure 4.9.

We shall need the values of the beta function only for integer values of α and β,
and in this case

B(α, β) =
(α− 1)! (β − 1)!

(α + β − 1)!
.

Example 4.23 In medical problems it is often assumed that a drug is effective with
a probability x each time it is used and the various trials are independent, so that
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one is, in effect, tossing a biased coin with probability x for heads. Before further
experimentation, you do not know the value x but past experience might give some
information about its possible values. It is natural to represent this information
by sketching a density function to determine a distribution for x. Thus, we are
considering x to be a continuous random variable, which takes on values between
0 and 1. If you have no knowledge at all, you would sketch the uniform density.
If past experience suggests that x is very likely to be near 2/3 you would sketch
a density with maximum at 2/3 and a spread reflecting your uncertainly in the
estimate of 2/3. You would then want to find a density function that reasonably
fits your sketch. The beta densities provide a class of densities that can be fit to
most sketches you might make. For example, for α > 1 and β > 1 it is bell-shaped
with the parameters α and β determining its peak and its spread.

Assume that the experimenter has chosen a beta density to describe the state of
his knowledge about x before the experiment. Then he gives the drug to n subjects
and records the number i of successes. The number i is a discrete random variable,
so we may conveniently describe the set of possible outcomes of this experiment by
referring to the ordered pair (x, i).

We let m(i|x) denote the probability that we observe i successes given the value
of x. By our assumptions, m(i|x) is the binomial distribution with probability x

for success:

m(i|x) = b(n, x, i) =
(

n

i

)
xi(1− x)j ,

where j = n− i.
If x is chosen at random from [0, 1] with a beta density B(α, β, x), then the

density function for the outcome of the pair (x, i) is

f(x, i) = m(i|x)B(α, β, x)

=
(

n

i

)
xi(1− x)j 1

B(α, β)
xα−1(1− x)β−1

=
(

n

i

)
1

B(α, β)
xα+i−1(1− x)β+j−1 .

Now let m(i) be the probability that we observe i successes not knowing the value
of x. Then

m(i) =
∫ 1

0

m(i|x)B(α, β, x) dx

=
(

n

i

)
1

B(α, β)

∫ 1

0

xα+i−1(1− x)β+j−1 dx

=
(

n

i

)
B(α + i, β + j)

B(α, β)
.

Hence, the probability density f(x|i) for x, given that i successes were observed, is

f(x|i) =
f(x, i)
m(i)



170 CHAPTER 4. CONDITIONAL PROBABILITY

=
xα+i−1(1− x)β+j−1

B(α + i, β + j)
, (4.5)

that is, f(x|i) is another beta density. This says that if we observe i successes and
j failures in n subjects, then the new density for the probability that the drug is
effective is again a beta density but with parameters α + i, β + j.

Now we assume that before the experiment we choose a beta density with pa-
rameters α and β, and that in the experiment we obtain i successes in n trials.
We have just seen that in this case, the new density for x is a beta density with
parameters α + i and β + j.

Now we wish to calculate the probability that the drug is effective on the next
subject. For any particular real number t between 0 and 1, the probability that x

has the value t is given by the expression in Equation 4.5. Given that x has the
value t, the probability that the drug is effective on the next subject is just t. Thus,
to obtain the probability that the drug is effective on the next subject, we integrate
the product of the expression in Equation 4.5 and t over all possible values of t. We
obtain:

1
B(α + i, β + j)

∫ 1

0

t · tα+i−1(1− t)β+j−1 dt

=
B(α + i + 1, β + j)

B(α + i, β + j)

=
(α + i)! (β + j − 1)!

(α + β + i + j)!
· (α + β + i + j − 1)!
(α + i− 1)! (β + j − 1)!

=
α + i

α + β + n
.

If n is large, then our estimate for the probability of success after the experiment
is approximately the proportion of successes observed in the experiment, which is
certainly a reasonable conclusion. 2

The next example is another in which the true probabilities are unknown and
must be estimated based upon experimental data.

Example 4.24 (Two-armed bandit problem) You are in a casino and confronted by
two slot machines. Each machine pays off either 1 dollar or nothing. The probability
that the first machine pays off a dollar is x and that the second machine pays off
a dollar is y. We assume that x and y are random numbers chosen independently
from the interval [0, 1] and unknown to you. You are permitted to make a series of
ten plays, each time choosing one machine or the other. How should you choose to
maximize the number of times that you win?

One strategy that sounds reasonable is to calculate, at every stage, the prob-
ability that each machine will pay off and choose the machine with the higher
probability. Let win(i), for i = 1 or 2, be the number of times that you have won
on the ith machine. Similarly, let lose(i) be the number of times you have lost on
the ith machine. Then, from Example 4.23, the probability p(i) that you win if you
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Figure 4.10: Play the best machine.

choose the ith machine is

p(i) =
win(i) + 1

win(i) + lose(i) + 2
.

Thus, if p(1) > p(2) you would play machine 1 and otherwise you would play
machine 2. We have written a program TwoArm to simulate this experiment. In
the program, the user specifies the initial values for x and y (but these are unknown
to the experimenter). The program calculates at each stage the two conditional
densities for x and y, given the outcomes of the previous trials, and then computes
p(i), for i = 1, 2. It then chooses the machine with the highest value for the
probability of winning for the next play. The program prints the machine chosen
on each play and the outcome of this play. It also plots the new densities for x

(solid line) and y (dotted line), showing only the current densities. We have run
the program for ten plays for the case x = .6 and y = .7. The result is shown in
Figure 4.10.

The run of the program shows the weakness of this strategy. Our initial proba-
bility for winning on the better of the two machines is .7. We start with the poorer
machine and our outcomes are such that we always have a probability greater than
.6 of winning and so we just keep playing this machine even though the other ma-
chine is better. If we had lost on the first play we would have switched machines.
Our final density for y is the same as our initial density, namely, the uniform den-
sity. Our final density for x is different and reflects a much more accurate knowledge
about x. The computer did pretty well with this strategy, winning seven out of the
ten trials, but ten trials are not enough to judge whether this is a good strategy in
the long run.

Another popular strategy is the play-the-winner strategy. As the name suggests,
for this strategy we choose the same machine when we win and switch machines
when we lose. The program TwoArm will simulate this strategy as well. In
Figure 4.11, we show the results of running this program with the play-the-winner
strategy and the same true probabilities of .6 and .7 for the two machines. After
ten plays our densities for the unknown probabilities of winning suggest to us that
the second machine is indeed the better of the two. We again won seven out of the
ten trials.
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Figure 4.11: Play the winner.

Neither of the strategies that we simulated is the best one in terms of maximizing
our average winnings. This best strategy is very complicated but is reasonably ap-
proximated by the play-the-winner strategy. Variations on this example have played
an important role in the problem of clinical tests of drugs where experimenters face
a similar situation. 2

Exercises

1 Pick a point x at random (with uniform density) in the interval [0, 1]. Find
the probability that x > 1/2, given that

(a) x > 1/4.

(b) x < 3/4.

(c) |x− 1/2| < 1/4.

(d) x2 − x + 2/9 < 0.

2 A radioactive material emits α-particles at a rate described by the density
function

f(t) = .1e−.1t .

Find the probability that a particle is emitted in the first 10 seconds, given
that

(a) no particle is emitted in the first second.

(b) no particle is emitted in the first 5 seconds.

(c) a particle is emitted in the first 3 seconds.

(d) a particle is emitted in the first 20 seconds.

3 The Acme Super light bulb is known to have a useful life described by the
density function

f(t) = .01e−.01t ,

where time t is measured in hours.
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(a) Find the failure rate of this bulb (see Exercise 2.2.6).

(b) Find the reliability of this bulb after 20 hours.

(c) Given that it lasts 20 hours, find the probability that the bulb lasts
another 20 hours.

(d) Find the probability that the bulb burns out in the forty-first hour, given
that it lasts 40 hours.

4 Suppose you toss a dart at a circular target of radius 10 inches. Given that
the dart lands in the upper half of the target, find the probability that

(a) it lands in the right half of the target.

(b) its distance from the center is less than 5 inches.

(c) its distance from the center is greater than 5 inches.

(d) it lands within 5 inches of the point (0, 5).

5 Suppose you choose two numbers x and y, independently at random from
the interval [0, 1]. Given that their sum lies in the interval [0, 1], find the
probability that

(a) |x− y| < 1.

(b) xy < 1/2.

(c) max{x, y} < 1/2.

(d) x2 + y2 < 1/4.

(e) x > y.

6 Find the conditional density functions for the following experiments.

(a) A number x is chosen at random in the interval [0, 1], given that x > 1/4.

(b) A number t is chosen at random in the interval [0,∞) with exponential
density e−t, given that 1 < t < 10.

(c) A dart is thrown at a circular target of radius 10 inches, given that it
falls in the upper half of the target.

(d) Two numbers x and y are chosen at random in the interval [0, 1], given
that x > y.

7 Let x and y be chosen at random from the interval [0, 1]. Show that the events
x > 1/3 and y > 2/3 are independent events.

8 Let x and y be chosen at random from the interval [0, 1]. Which pairs of the
following events are independent?

(a) x > 1/3.

(b) y > 2/3.

(c) x > y.
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(d) x + y < 1.

9 Suppose that X and Y are continuous random variables with density functions
fX(x) and fY (y), respectively. Let f(x, y) denote the joint density function
of (X, Y ). Show that ∫ ∞

−∞
f(x, y) dy = fX(x) ,

and ∫ ∞

−∞
f(x, y) dx = fY (y) .

*10 In Exercise 2.2.12 you proved the following: If you take a stick of unit length
and break it into three pieces, choosing the breaks at random (i.e., choosing
two real numbers independently and uniformly from [0, 1]), then the prob-
ability that the three pieces form a triangle is 1/4. Consider now a similar
experiment: First break the stick at random, then break the longer piece
at random. Show that the two experiments are actually quite different, as
follows:

(a) Write a program which simulates both cases for a run of 1000 trials, prints
out the proportion of successes for each run, and repeats this process ten
times. (Call a trial a success if the three pieces do form a triangle.) Have
your program pick (x, y) at random in the unit square, and in each case
use x and y to find the two breaks. For each experiment, have it plot
(x, y) if (x, y) gives a success.

(b) Show that in the second experiment the theoretical probability of success
is actually 2 log 2− 1.

11 A coin has an unknown bias p that is assumed to be uniformly distributed
between 0 and 1. The coin is tossed n times and heads turns up j times and
tails turns up k times. We have seen that the probability that heads turns up
next time is

j + 1
n + 2

.

Show that this is the same as the probability that the next ball is black for
the Polya urn model of Exercise 4.1.20. Use this result to explain why, in the
Polya urn model, the proportion of black balls does not tend to 0 or 1 as one
might expect but rather to a uniform distribution on the interval [0, 1].

12 Previous experience with a drug suggests that the probability p that the drug
is effective is a random quantity having a beta density with parameters α = 2
and β = 3. The drug is used on ten subjects and found to be successful
in four out of the ten patients. What density should we now assign to the
probability p? What is the probability that the drug will be successful the
next time it is used?
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13 Write a program to allow you to compare the strategies play-the-winner and
play-the-best-machine for the two-armed bandit problem of Example 4.24.
Have your program determine the initial payoff probabilities for each machine
by choosing a pair of random numbers between 0 and 1. Have your program
carry out 20 plays and keep track of the number of wins for each of the two
strategies. Finally, have your program make 1000 repetitions of the 20 plays
and compute the average winning per 20 plays. Which strategy seems to
be the best? Repeat these simulations with 20 replaced by 100. Does your
answer to the above question change?

14 Consider the two-armed bandit problem of Example 4.24. Bruce Barnes pro-
posed the following strategy, which is a variation on the play-the-best-machine
strategy. The machine with the greatest probability of winning is played un-
less the following two conditions hold: (a) the difference in the probabilities
for winning is less than .08, and (b) the ratio of the number of times played
on the more often played machine to the number of times played on the less
often played machine is greater than 1.4. If the above two conditions hold,
then the machine with the smaller probability of winning is played. Write a
program to simulate this strategy. Have your program choose the initial payoff
probabilities at random from the unit interval [0, 1], make 20 plays, and keep
track of the number of wins. Repeat this experiment 1000 times and obtain
the average number of wins per 20 plays. Implement a second strategy—for
example, play-the-best-machine or one of your own choice, and see how this
second strategy compares with Bruce’s on average wins.

4.3 Paradoxes

Much of this section is based on an article by Snell and Vanderbei.18

One must be very careful in dealing with problems involving conditional prob-
ability. The reader will recall that in the Monty Hall problem (Example 4.6), if
the contestant chooses the door with the car behind it, then Monty has a choice of
doors to open. We made an assumption that in this case, he will choose each door
with probability 1/2. We then noted that if this assumption is changed, the answer
to the original question changes. In this section, we will study other examples of
the same phenomenon.

Example 4.25 Consider a family with two children. Given that one of the children
is a boy, what is the probability that both children are boys?

One way to approach this problem is to say that the other child is equally likely
to be a boy or a girl, so the probability that both children are boys is 1/2. The “text-
book” solution would be to draw the tree diagram and then form the conditional
tree by deleting paths to leave only those paths that are consistent with the given

18J. L. Snell and R. Vanderbei, “Three Bewitching Paradoxes,” in Topics in Contemporary
Probability and Its Applications, CRC Press, Boca Raton, 1995.
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Figure 4.12: Tree for Example 4.25.

information. The result is shown in Figure 4.12. We see that the probability of two
boys given a boy in the family is not 1/2 but rather 1/3. 2

This problem and others like it are discussed in Bar-Hillel and Falk.19 These
authors stress that the answer to conditional probabilities of this kind can change
depending upon how the information given was actually obtained. For example,
they show that 1/2 is the correct answer for the following scenario.

Example 4.26 Mr. Smith is the father of two. We meet him walking along the
street with a young boy whom he proudly introduces as his son. What is the
probability that Mr. Smith’s other child is also a boy?

As usual we have to make some additional assumptions. For example, we will
assume that if Mr. Smith has a boy and a girl, he is equally likely to choose either
one to accompany him on his walk. In Figure 4.13 we show the tree analysis of this
problem and we see that 1/2 is, indeed, the correct answer. 2

Example 4.27 It is not so easy to think of reasonable scenarios that would lead to
the classical 1/3 answer. An attempt was made by Stephen Geller in proposing this
problem to Marilyn vos Savant.20 Geller’s problem is as follows: A shopkeeper says
she has two new baby beagles to show you, but she doesn’t know whether they’re
both male, both female, or one of each sex. You tell her that you want only a male,
and she telephones the fellow who’s giving them a bath. “Is at least one a male?”

19M. Bar-Hillel and R. Falk, “Some teasers concerning conditional probabilities,” Cognition,
vol. 11 (1982), pgs. 109-122.

20M. vos Savant, “Ask Marilyn,” Parade Magazine, 9 September; 2 December; 17 February
1990, reprinted in Marilyn vos Savant, Ask Marilyn, St. Martins, New York, 1992.
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she asks. “Yes,” she informs you with a smile. What is the probability that the
other one is male?

The reader is asked to decide whether the model which gives an answer of 1/3
is a reasonable one to use in this case. 2

In the preceding examples, the apparent paradoxes could easily be resolved by
clearly stating the model that is being used and the assumptions that are being
made. We now turn to some examples in which the paradoxes are not so easily
resolved.

Example 4.28 Two envelopes each contain a certain amount of money. One en-
velope is given to Ali and the other to Baba and they are told that one envelope
contains twice as much money as the other. However, neither knows who has the
larger prize. Before anyone has opened their envelope, Ali is asked if she would like
to trade her envelope with Baba. She reasons as follows: Assume that the amount
in my envelope is x. If I switch, I will end up with x/2 with probability 1/2, and
2x with probability 1/2. If I were given the opportunity to play this game many
times, and if I were to switch each time, I would, on average, get

1
2

x

2
+

1
2
2x =

5
4
x .

This is greater than my average winnings if I didn’t switch.
Of course, Baba is presented with the same opportunity and reasons in the same

way to conclude that he too would like to switch. So they switch and each thinks
that his/her net worth just went up by 25%.

Since neither has yet opened any envelope, this process can be repeated and so
again they switch. Now they are back with their original envelopes and yet they
think that their fortune has increased 25% twice. By this reasoning, they could
convince themselves that by repeatedly switching the envelopes, they could become
arbitrarily wealthy. Clearly, something is wrong with the above reasoning, but
where is the mistake?

One of the tricks of making paradoxes is to make them slightly more difficult than
is necessary to further befuddle us. As John Finn has suggested, in this paradox we
could just have well started with a simpler problem. Suppose Ali and Baba know
that I am going to give then either an envelope with $5 or one with $10 and I am
going to toss a coin to decide which to give to Ali, and then give the other to Baba.
Then Ali can argue that Baba has 2x with probability 1/2 and x/2 with probability
1/2. This leads Ali to the same conclusion as before. But now it is clear that this
is nonsense, since if Ali has the envelope containing $5, Baba cannot possibly have
half of this, namely $2.50, since that was not even one of the choices. Similarly, if
Ali has $10, Baba cannot have twice as much, namely $20. In fact, in this simpler
problem the possibly outcomes are given by the tree diagram in Figure 4.14. From
the diagram, it is clear that neither is made better off by switching. 2

In the above example, Ali’s reasoning is incorrect because he infers that if the
amount in his envelope is x, then the probability that his envelope contains the
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Figure 4.14: John Finn’s version of Example 4.28.

smaller amount is 1/2, and the probability that her envelope contains the larger
amount is also 1/2. In fact, these conditional probabilities depend upon the distri-
bution of the amounts that are placed in the envelopes.

For definiteness, let X denote the positive integer-valued random variable which
represents the smaller of the two amounts in the envelopes. Suppose, in addition,
that we are given the distribution of X, i.e., for each positive integer x, we are given
the value of

px = P (X = x) .

(In Finn’s example, p5 = 1, and pn = 0 for all other values of n.) Then it is easy to
calculate the conditional probability that an envelope contains the smaller amount,
given that it contains x dollars. The two possible sample points are (x, x/2) and
(x, 2x). If x is odd, then the first sample point has probability 0, since x/2 is not
an integer, so the desired conditional probability is 1 that x is the smaller amount.
If x is even, then the two sample points have probabilities px/2 and px, respectively,
so the conditional probability that x is the smaller amount is

px

px/2 + px
,

which is not necessarily equal to 1/2.
Steven Brams and D. Marc Kilgour21 study the problem, for different distri-

butions, of whether or not one should switch envelopes, if one’s objective is to
maximize the long-term average winnings. Let x be the amount in your envelope.
They show that for any distribution of X, there is at least one value of x such
that you should switch. They give an example of a distribution for which there is
exactly one value of x such that you should switch (see Exercise 5). Perhaps the
most interesting case is a distribution in which you should always switch. We now
give this example.

Example 4.29 Suppose that we have two envelopes in front of us, and that one
envelope contains twice the amount of money as the other (both amounts are pos-
itive integers). We are given one of the envelopes, and asked if we would like to
switch.

21S. J. Brams and D. M. Kilgour, “The Box Problem: To Switch or Not to Switch,” Mathematics
Magazine, vol. 68, no. 1 (1995), p. 29.
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As above, we let X denote the smaller of the two amounts in the envelopes, and
let

px = P (X = x) .

We are now in a position where we can calculate the long-term average winnings, if
we switch. (This long-term average is an example of a probabilistic concept known
as expectation, and will be discussed in Chapter 6.) Given that one of the two
sample points has occurred, the probability that it is the point (x, x/2) is

px/2

px/2 + px
,

and the probability that it is the point (x, 2x) is

px

px/2 + px
.

Thus, if we switch, our long-term average winnings are

px/2

px/2 + px

x

2
+

px

px/2 + px
2x .

If this is greater than x, then it pays in the long run for us to switch. Some routine
algebra shows that the above expression is greater than x if and only if

px/2

px/2 + px
<

2
3

. (4.6)

It is interesting to consider whether there is a distribution on the positive integers
such that the inequality 4.6 is true for all even values of x. Brams and Kilgour22

give the following example.
We define px as follows:

px =

{
1
3

(
2
3

)k−1

, if x = 2k,

0, otherwise.

It is easy to calculate (see Exercise 4) that for all relevant values of x, we have

px/2

px/2 + px
=

3
5

,

which means that the inequality 4.6 is always true. 2

So far, we have been able to resolve paradoxes by clearly stating the assumptions
being made and by precisely stating the models being used. We end this section by
describing a paradox which we cannot resolve.

Example 4.30 Suppose that we have two envelopes in front of us, and we are
told that the envelopes contain X and Y dollars, respectively, where X and Y are
different positive integers. We randomly choose one of the envelopes, and we open

22ibid.
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it, revealing X, say. Is it possible to determine, with probability greater than 1/2,
whether X is the smaller of the two dollar amounts?

Even if we have no knowledge of the joint distribution of X and Y , the surprising
answer is yes! Here’s how to do it. Toss a fair coin until the first time that heads
turns up. Let Z denote the number of tosses required plus 1/2. If Z > X, then we
say that X is the smaller of the two amounts, and if Z < X, then we say that X is
the larger of the two amounts.

First, if Z lies between X and Y , then we are sure to be correct. Since X and
Y are unequal, Z lies between them with positive probability. Second, if Z is not
between X and Y , then Z is either greater than both X and Y , or is less than both
X and Y . In either case, X is the smaller of the two amounts with probability 1/2,
by symmetry considerations (remember, we chose the envelope at random). Thus,
the probability that we are correct is greater than 1/2. 2

Exercises

1 One of the first conditional probability paradoxes was provided by Bertrand.23

It is called the Box Paradox . A cabinet has three drawers. In the first drawer
there are two gold balls, in the second drawer there are two silver balls, and
in the third drawer there is one silver and one gold ball. A drawer is picked at
random and a ball chosen at random from the two balls in the drawer. Given
that a gold ball was drawn, what is the probability that the drawer with the
two gold balls was chosen?

2 The following problem is called the two aces problem. This problem, dat-
ing back to 1936, has been attributed to the English mathematician J. H.
C. Whitehead (see Gridgeman24). This problem was also submitted to Mar-
ilyn vos Savant by the master of mathematical puzzles Martin Gardner, who
remarks that it is one of his favorites.

A bridge hand has been dealt, i. e. thirteen cards are dealt to each player.
Given that your partner has at least one ace, what is the probability that he
has at least two aces? Given that your partner has the ace of hearts, what
is the probability that he has at least two aces? Answer these questions for
a version of bridge in which there are eight cards, namely four aces and four
kings, and each player is dealt two cards. (The reader may wish to solve the
problem with a 52-card deck.)

3 In the preceding exercise, it is natural to ask “How do we get the information
that the given hand has an ace?” Gridgeman considers two different ways
that we might get this information. (Again, assume the deck consists of eight
cards.)

(a) Assume that the person holding the hand is asked to “Name an ace in
your hand” and answers “The ace of hearts.” What is the probability
that he has a second ace?

23J. Bertrand, Calcul des Probabilités, Gauthier-Uillars, 1888.
24N. T. Gridgeman, Letter, American Statistician, 21 (1967), pgs. 38-39.
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(b) Suppose the person holding the hand is asked the more direct question
“Do you have the ace of hearts?” and the answer is yes. What is the
probability that he has a second ace?

4 Using the notation introduced in Example 4.29, show that in the example of
Brams and Kilgour, if x is a positive power of 2, then

px/2

px/2 + px
=

3
5

.

5 Using the notation introduced in Example 4.29, let

px =

{
2
3

(
1
3

)k

, if x = 2k,

0, otherwise.

Show that there is exactly one value of x such that if your envelope contains
x, then you should switch.

*6 (For bridge players only. From Sutherland.25) Suppose that we are the de-
clarer in a hand of bridge, and we have the king, 9, 8, 7, and 2 of a certain
suit, while the dummy has the ace, 10, 5, and 4 of the same suit. Suppose
that we want to play this suit in such a way as to maximize the probability
of having no losers in the suit. We begin by leading the 2 to the ace, and we
note that the queen drops on our left. We then lead the 10 from the dummy,
and our right-hand opponent plays the six (after playing the three on the first
round). Should we finesse or play for the drop?

25E. Sutherland, “Restricted Choice — Fact or Fiction?”, Canadian Master Point , November
1, 1993.


