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Uniqueness of solutions to the Laplace and Poisson equations

1. Introduction

In these notes, I shall address the uniqueness of the solution to the Poisson equation,

~∇
2u(~x) = f(~x) , (1)

subject to certain boundary conditions. That is, suppose that there is a region of space of
volume V and the boundary of that surface is denoted by S. Then, assuming that f(~x)
is a known function of ~x, is there a unique solution to eq. (1) for all points ~x inside the
volume V given certain “data” on S (for example, the data could consist of the values of
u(~x) for all points ~x ∈ S)?1 The question of uniqueness also applies to solutions of the

Laplace equation, ~∇2u(~x) = 0, which corresponds to choosing f(~x) = 0 in eq. (1).
Another question one could ask is whether a nontrivial solution2 to eq. (1) subject to

certain boundary conditions is guaranteed to exist. The question of existence is usually
more difficult to address as compared with the question of uniqueness. But, in these
notes, we imagine that we have discovered a solution to eq. (1) subject to certain boundary
conditions on S by following some procedure (such as the separation of variables technique
or by the time honored method of the educated guess). Having found one solution, we
would like to know whether this solution is unique. If yes, then the problem is completely
solved.

In some cases, it is sufficient to prove that a given solution is unique up to an arbitrary
additive constant. In certain physical applications, this is equivalent to finding a unique
solution to the problem of interest. For example, in electrostatics, the electric potential
Φ(~x), in the absence of charge, is a solution to Laplace’s equation, ~∇2Φ = 0. The actual

physical quantity of interest is the electric field, ~E = −~∇Φ. Clearly, it is sufficient to
determine Φ(~x) up to an arbitrary additive constant, which has no impact on the value

of the electric field ~E(~x) at the point ~x.
In the theory of linear partial differential equations, a well-posed problem consists of

a linear partial differential equation subject to certain boundary conditions such that the
solution is unique.3 Before imposing the boundary condition, the general solution to the
linear partial differential equation typically is expressed in terms of some unknown func-
tion of a certain form. By imposing the boundary conditions, these unknown functions are

1The considerations of these notes also apply to solving for u(~x) for all points ~x that lie outside the
volume V given the values of u(~x) for all points ~x ∈ S.

2The trivial solution, u(~x) = 0, is always a solution to Laplace’s equation, but such a solution is of no
interest when solving practical problems.

3For convenience, we shall also regard the problem as well-posed if the solution is unique up to an
overall additive constant.
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then determined precisely with no attendant free parameters (except perhaps an overall
additive constant). The corresponding problem is considered ill-posed if the boundary
conditions imposed are either (i) not sufficient to yield a unique solution to the problem,
or (ii) over-constrained so that no nontrivial solution to the problem exists.

2. A taxonomy of boundary conditions

We shall consider four classes of possible boundary conditions that could be applied
to the solution of Poisson’s equation. As before, we assume that a closed surface S is the
boundary of some volume V . The volume V may be infinite, in which case the closed
surface would include the point of infinity.

1. Dirichlet boundary conditions. The values of u(~x) are specified for all points
~x ∈ S.

2. Neumann boundary conditions. The values of the normal derivative of u(~x),

∂u(~x)

∂n
≡ n̂·~∇u(~x)

are specified for all points ~x ∈ S. The normal vector n̂ (which depends on ~x) is
the unit vector that is perpendicular to the surface S and points outwards from S
at the point ~x.

3. Mixed boundary conditions. Suppose that the closed surface S is comprised
of two sub-surfaces S1 and S2. Mixed boundary conditions consist of Dirichlet
boundary conditions on S1 and Neumann boundary conditions on S2 (or vice versa).

4. Cauchy boundary conditions. The values of u(~x) and ∂u(~x)/∂n are simultane-
ously specified for all points ~x ∈ S.

Then, one can prove that the Poisson equation subject to certain boundary conditions
is ill-posed if Cauchy boundary conditions are imposed. In the Cauchy case, the boundary
conditions are too constraining and in general there is no solution (or in the case of
Laplace’s equation only the trivial solution exists). For the case of Dirichlet boundary
conditions or mixed boundary conditions, the solution to Poisson’s equation always exists
and is unique. Finally, for the case of the Neumann boundary condition, a solution may
or may not exist (depending on whether a certain condition [cf. eq. (4)] is satisfied). If a
solution exists, then it is unique up to an overall additive constant.

3. The uniqueness of solutions to the Poisson equation with Dirichlet bound-
ary conditions

As remarked at the beginning of these notes, we are primarily interested in determining
the uniqueness of the solution assuming that a solution has been exhibited. The proof
of uniqueness is straightforward. Consider the closed surface S and the enclosed volume
V where ~∇

2u(~x) = f(~x). If u1(~x) and u2(~x) are two solutions of the Poisson equation,
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both of which satisfy the same Dirichlet boundary conditions, then u1(~x) = u2(~x) for all
points ~x ∈ S. It follows that the quantity Φ(~x) ≡ u1(~x) − u2(~x) satisfies the Laplace

equation, ~∇2Φ(~x) = 0, subject to the condition that Φ(~x) = 0 for all ~x ∈ S.
Consider the volume integral,

J ≡

∫
V

(~∇Φ)2 dV > 0 , assuming that Φ(~x) 6= c inside V , for some constant c . (2)

Note that if Φ(~x) = c for some constant c, then ~∇Φ = 0 for all points ~x ∈ V , which
yields J = 0. Otherwise J is positive, since it picks up positive contributions from
volume elements where ~∇Φ 6= 0. Using the vector identity (which is a consequence of the
derivative of the product rule),

~∇ · (Φ~∇Φ) = (~∇Φ)2 + Φ(~∇2Φ) ,

it follows that when Φ satisfies Laplace’s equation, ~∇2Φ = 0, then

(~∇Φ)2 = ~∇ · (Φ~∇Φ) .

Inserting this result into eq. (2) yields,

J =

∫
V

~∇ · (Φ~∇Φ) =

∮
S

Φ n̂· ~∇Φ dS ,

where we have used the divergence theorem [cf. eq. (10.17) on p. 318 of Boas] to convert
the volume integral over V into a surface integral over the closed surface S. That is, we
can write

J =

∮
S

Φ
∂Φ

∂n
dS . (3)

Applying this result to Φ(~x) ≡ u1(~x)−u2(~x), we note that Φ(~x) = 0 for all ~x ∈ S. Hence,
it immediately follows that J = 0. But J = 0 is possible only if Φ(~x) is a constant inside
V [cf. eq. (2) above]. This means that in the limit where ~x approaches the surface S, Φ(~x)
is a constant. Consequently, this constant must be zero since Φ(~x) = 0 for all ~x ∈ S.
Thus, we have proven that Φ(~x) = 0 inside V , which is equivalent to the statement that
u1(~x) = u2(~x) for all points ~x ∈ V . Therefore, we have demonstrated that if u1(~x) and
u2(~x) are two solutions, both of which satisfy the same Dirichlet boundary conditions,
then u1(~x) = u2(~x) for all points ~x ∈ V . In other words, the solution to eq. (1) subject
to Dirichlet boundary conditions is unique, assuming that the solution exists in the first
place. The proof just presented does not address the question of the existence of a solution.
To prove existence requires techniques beyond the scope of these notes (see e.g., Ref. 1).

4. The uniqueness of solutions to the Poisson equation (up to an additive
constant) subject to Neumann boundary conditions

Alternatively, consider the case where u1(~x) and u2(~x) are two solutions, both of which
satisfy the same Neumann boundary conditions. In this case,

∂u1

∂n
=

∂u2

∂n
, for all points ~x ∈ S .

3



Then, the quantity Φ(~x) ≡ u1(~x) − u2(~x) satisfies Laplace’s equation, ~∇2Φ(~x) = 0,
subject to the condition that ∂Φ/∂n = 0 for all ~x ∈ S. We can again define the volume
integral J as in eq. (2) and show that eq. (3) is satisfied. Applying eq. (3) to the quantity
Φ(~x) ≡ u1(~x)− u2(~x), it immediately follows that J = 0, since ∂Φ/∂n = 0 for all ~x ∈ S.
By the same argument as before, we conclude that Φ(~x) is a constant inside V , which is
equivalent to the statement that u1(~x) − u2(~x) is a constant for all points ~x ∈ V . But
the condition that ∂Φ/∂n = 0 for all ~x ∈ S does not determine the value of Φ(~x) for
~x ∈ S, so we cannot conclude in this case that the constant is zero. Therefore, we have
demonstrated that if u1(~x) and u2(~x) are two solutions, both of which satisfy the same
Neumann boundary conditions, then u1(~x) − u2(~x) = c for all points ~x ∈ V , where c is
an undetermined constant. In other words, the solution to eq. (1) subject to Neumann
boundary conditions is unique up to an overall undetermined additive constant, assuming
that the solution exists in the first place. The existence of the undetermined overall
constant is not a surprise, since one can always add a constant to the solution to the
Neumann problem and still have a solution that satisfies the original Poisson equation
subject to the Neumann boundary conditions.

Once again, the proof just presented does not address the question of existence of a
solution. However, there is an important consistency condition that must be satisfied
in order that a solution to the Neumann problem exist. Staring with eq. (1), we shall
integrate both sides of the equation over the volume V . Since,∫

V

~∇
2u =

∫
V

~∇ · ~∇u =

∮
S

n̂·~∇u ,

due to the divergence theorem, eq. (1) yields the consistency condition,∮
∂u

∂n
dS =

∫
V

f(~x) dV . (4)

The right hand side of eq. (4) is known a priori, since the function f(~x) is known. The
left hand side of eq. (4) is determined solely by the Neumann boundary conditions. Thus,
these boundary conditions must respect eq. (4) in order for there to be a nontrivial solution
to eq. (1) subject to Neumann boundary conditions. If eq. (4) is satisfied, then one can
show that a solution must exist (and using the arguments above, this solution is unique up
to an overall additive constant). However to prove existence requires techniques beyond
the scope of these notes (see e.g., Ref. 1).

As an example, given the Laplace equation subject to homogeneous Neumann bound-
ary conditions, i.e. ∂u/∂n = 0 for all ~x ∈ S, it follows that a solution always exists and
is unique up to an overall additive constant. Such a problem arises in electrostatics when
one is asked to compute the electric potential in a charge free volume, given the normal
component of the electric field at all points on the surface.

5. The uniqueness of solutions to the Poisson equation with mixed boundary
conditions

In the case of mixed boundary conditions (Dirichlet on part of S and Neumann on the
rest of S), we can again use eq. (3) to conclude that if u1(x) and u2(x) are solutions to
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eq. (1) subject to the same mixed boundary conditions, then u1(~x)− u2(~x) is a constant
for all points ~x ∈ V . Since the constant is zero on that part of S where Dirichlet boundary
conditions apply, we conclude that u1(x) = u2(x) for all points ~x ∈ V . Thus, if a solution
exists it must be unique. Once again, uniqueness can be proved using techniques beyond
the scope of these notes.

6. Why is the Poisson equation with Cauchy boundary conditions ill-posed?

In the case of Cauchy boundary conditions (where both u and ∂u/∂n are simultane-
ously specified on S), the same arguments employed above can again be used to prove that
if a solution exists it must be unique. Unfortunately, in almost all cases no solution exists.
This is why the Poisson equation subject to Cauchy boundary conditions is ill-posed. The
proof of this assertion is simple. Consider the problem of solving the Poisson equation
subject to Cauchy boundary conditions. Let us first neglect the data corresponding to
∂u/∂n on S. In this case, we solve the corresponding Poisson equation subject to Dirichlet
boundary conditions. The resulting solution exists and is unique according to the results
quoted in Section 3 above. From this unique solution, one can evaluate ∂u/∂n everywhere
in V . Now take the limit as ~x approaches the surface S. This yields ∂u/∂n for all ~x ∈ S,
which in principle could coincide with the data of the Poisson equation with the original
Cauchy boundary conditions. In such an exceptional case, the solution to the Dirichlet
problem is also the solution to the Cauchy problem, and the solution is unique. However,
in general there is no reason to expect the resulting ∂u/∂n for all ~x ∈ S to be consistent
with the original Cauchy boundary conditions. In this latter case, one must conclude that
no solution to the original Cauchy problem exists. This is the reason why no nontrivial
solutions exist for the Poisson equation with generic Cauchy boundary conditions. That
is, the Poisson equation with Cauchy boundary conditions ill-posed.

7. Generalizations to the diffusion equations and the wave equation

Finally, we note that the uniqueness theorems of the Laplace and Poisson equations can
be extended to the time-dependent diffusion and wave equations. The diffusion equation,

~∇
2u =

1

α2

∂u

∂t
,

is first order in time. Thus, the diffusion equation is well-posed if one specifies an initial
condition, u(~x, t0) at some initial time t0 (usually chosen to be t0 = 0) for all ~x ∈ V , and
either Dirichlet, Neumann or mixed boundary conditions on the closed surface S for all
times t ≥ t0. Likewise, the wave equation,

~∇
2u =

1

v2
∂2u

∂t2
,

is second order in time. Thus, the wave equation is well-posed if one specifies two initial
conditions, u(~x, t0) and (∂u(~x, t)/∂t)t=t0 at some initial time t0 for all ~x ∈ V , and either
Dirichlet, Neumann or mixed boundary conditions on the closed surface S for all times
t ≥ t0. For further details, see Ref. 1.
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