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Regular points and singular points of

second-order linear differential equations

Consider the most general homogeneous second-order linear differential equation,1

y′′ + a(x)y′ + b(x)y = 0 , (1)

where y′ ≡ dy/dx and y′′ ≡ d2y/dx2. The point x = x0 is called an ordinary point of the
differential equation if a(x) and b(x) possess Taylor series when expanded about x0 with
a nonzero radius of convergence. In this case, a(x) and b(x) are analytic functions of x
in a neighborhood of x = x0. If these conditions are not fulfilled, then a(x) or b(x) [or
both] are singular x = x0, in which case the point x = x0 is called a singular point of the
differential equation.

The concepts of ordinary and singular points are easily extended to the case of homoge-
neous nth order linear differential equations.2 However, the theory of regular and singular
points discussed in these notes is not applicable to nonlinear differential equations.

1. A power series solution about an ordinary point

It is especially useful to consider the nature of the origin (corresponding to the point
x0 = 0). Suppose that the origin is an ordinary point of eq. (1). Then for values of x
very close to the origin, we can approximate a(x) ≃ a and b(x) ≃ b by the leading terms
of their Taylor series about the origin. In this case, a good approximation to eq. (1) in a
small neighborhood about the origin is given by

y′′ + ay′ + b = 0 . (2)

The general solution of eq. (2) is well known—it is a linear combination of exponentials
(or in a special case the product of a linear function and an exponential). These solutions
are also analytic in the neighborhood of the origin and can be approximated by the first
term of their Taylor series.

Consequently, it should not be surprising that if the origin is an ordinary point then
the solution to eq. (1) can be expressed in general by a power series expanded about the
origin,

y(x) =

∞∑

n=0

c
n
xn .

1Note that one can in principle have a more general form in which an arbitrary function c(x) multiplies
the y′′ term in eq. (1). However, since eq. (1) is homogeneous [i.e. the right-hand side of eq. (1) is zero],
one can simply divide the more general equation by c(x) to obtain the form given in eq. (1). Here there
is a subtlety, since the function c(x) may be zero for specific values of x. Thus, the general solution y(x)
may only be strictly valid when x does not coincide with one of the zeros of c(x).

2See, e.g., Chapter 3 of Ref. 1.
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The technique for computing the coefficients c
n
is developed on pp. 562–564 of Boas. The

relevant theorem is given below.3

Theorem 1: For the differential equation, y′′ + a(x)y′ + b(x)y = 0, if a(x) and b(x)
have power series expansions for |x| < r where r > 0, then there is a pair of solutions,
y1(x) and y2(x), such that both y1(x) and y2(x) have power series expansions around the
origin, each with a radius of convergence that is at least as large as r.

This theorem is the basis of the series solution technique for solving a homogeneous
second-order linear differential equation in the case where the origin is an ordinary point
of eq. (1).

2. A Frobenius series solution about a regular singular point

Consider the homogeneous second-order linear differential equation,

x2y′′ + xA(x)y′ +B(x) = 0 . (3)

We can convert this into the form of eq. (1) by dividing by x2 and identifying

a(x) ≡ A(x)/x , b(x) ≡ B(x)/x2 . (4)

Suppose that A(x) and B(x) possess Taylor series when expanded about the origin x = 0
with a nonzero radius of convergence. In this case, A(x) and B(x) are analytic functions
of x in a neighborhood of the origin. However, according to eq. (4), the functions a(x)
and b(x) are in general singular at x = 0. Nevertheless, this singular behavior is not
particularly disturbing. After all, in the neighborhood of the origin we can approximate
A(x) ≃ A and B(x) ≃ B, where A ≡ A(0) and B ≡ B(0). Consequently, a good
approximation to eq. (3) in a small neighborhood about the origin is given by

x2y′′ + Axy′ +B = 0 . (5)

We recognize eq. (5) as an Euler equation [cf. eq. (7.17) on p. 434 of Boas]. The general
solution of eq. (5) is well known—it is a linear combination of powers (or in a special case
the product of a power and a logarithm). Indeed, if one inserts y = xs into eq. (5), it
follows that

s(s− 1) + As+B = 0 , (6)

which is a quadratic equation for s that is called the indicial equation.
As a result, it should not be surprising that the general solution to eq. (3) can be

expressed as a Frobenius series,

y(x) = xs

∞∑

n=0

c
n
xn , where c0 6= 0 , (7)

3This theorem is proven on pp. 282–284 of Ref. 3.
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and s is a root of the indicial equation given in eq. (6). This is the basis for the method of
Frobenius discussed on pp. 585–586 of Boas, which applies to eq. (1) under the assumption
that A(x) ≡ xa(x) and B(x) ≡ x2b(x) possess Taylor series when expanded about the
origin with a nonzero radius of convergence. For this reason, we say that if the origin
is a singular point of eq. (1) such that xa(x) and x2b(x) are analytic functions in the
neighborhood of the origin, then the origin is called a regular singular point.4 If these latter
conditions are not fulfilled, then the origin is called an irregular singular point.5 Indeed,
in the case of an irregular singular point at the origin, eq. (3) cannot be approximated
by an Euler equation in the neighborhood of the origin since A(x) or B(x) [or both] are
singular at this point.

Thus, the method of Frobenius applies in the case that the origin is a regular singular
point. In this case, the analog of Theorem 1 is more complicated. Here we quote one of
several relevant theorems.6

Theorem 2: For the differential equation, x2y′′ + xA(x)y′ + B(x)y = 0, if A(x) and
B(x) have power series expansions for |x| < r where r > 0, and if s1 and s2 are roots
of the indicial equation, so labeled such that s1 ≥ s2 when both roots are real, then one
of the two linearly independent solutions y1(x) can be expressed as a Frobenius series
[cf. eq. (7)] with s = s1. If s1 − s2 is not an integer, then there is a second solution y2(x)
that can be expressed as a Frobenius series with s = s2. In each case, the series converges
with a radius of convergence that is at least as large as r, and the solutions y1(x) and
y2(x) satisfy the differential equation at least in the range 0 < x < r.7

If s1 − s2 is a nonzero integer, then in some cases Theorem 2 applies to the second
solution y2(x), while in other cases the second solution involves a Frobenius series multi-
plied by ln x. The second solution always involves a logarithm if s1 = s2. We shall not
provide the details of the extension of Theorem 2 to the logarithmic cases here. Suffice
it to say that each of the relevant summations that appear in the logarithmic cases also
possesses a radius of convergence that is at least as large as r.

In the case of a regular singular point at the origin, one can work out a systematic
method for obtaining the corresponding Frobenius series solutions for y1(x) and if appli-
cable for y2(x). Moreover, the corresponding solution for y2(x) in the logarithmic case
can also be determined. Details of this analysis for all the possible cases are presented in
the class handout entitled: Series solutions to a second order linear differential equation

with regular singular points.
The case of an irregular singular point is much more difficult to address, although

some techniques do exist for obtaining the solution to a homogeneous second-order linear

4On pp. 605–606, Boas indicates that the method of Frobenius is applicable to a series solution at
a regular singular point as a consequence of a general theorem known as Fuchs’s theorem. Indeed, it
is common to define a Fuchsian differential equation as a linear differential equation for which every

singular point (possibly including the point of infinity) is a regular singular point.
5More generally, if x = x0 is a singular point of eq. (1), then a(x) and/or b(x) [or both] are singular at

x = x0. Then, the point x = x0 is a regular singular point if (x− x0)a(x) and (x− x0)
2b(x) are analytic

at x = x0. If these latter conditions are not fulfilled, then the point x = x0 is an irregular singular point.
6This theorem is stated on pp. 291–292 of Ref. 3.
7These solutions can be extended to the region of −r < x < 0 by replacing xs by |x|s in eq. (7).
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differential equation in the vicinity of an irregular singular point. This topic lies beyond
the scope of Physics 116C. However, if you would like to explore some of these techniques,
a good starting point would be Chapter 3 of Ref. 1.

3. Ordinary and singular points of Legendre’s differential equation

One can consider any point x0 and ask whether it is an ordinary point or a singular
point of eq. (1). For example, consider Legendre’s differential equation,

(1− x2)y′′ − 2xy′ + ℓ(ℓ+ 1)y = 0 . (8)

It is convenient to divide this equation by 1− x2 to obtain the form of eq. (1). It follows
immediately that x = 1 and x = −1 are regular singular points and all other finite values
of x (including the origin) are ordinary points of Legendre’s differential equation. The
point of infinity is also a regular singular point of eq. (8). For further details on the
analysis of the point of infinity see, e.g., Section 2.5 of Ref. 6.

Applications of these concepts to other second order linear differential equations en-
countered in Chapter 12 of Boas are left as exercises for the reader.
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