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The standard deviation of the mean

These notes provide some clarification on the distinction between the standard devi-
ation and the standard deviation of the mean.

1. The sample mean and variance

Consider a random variable x and the corresponding probability distribution p(x).
For convenience, we consider the case of a discrete random variable, although the gener-
alization to continuous random variables is straightforward. Given p(x), one can easily
compute the expectation value and the variance,

E(x) ≡ µ =
∑

x

xp(x) , (1)

Var(x) ≡ σ2 =
∑

x

(x− µ)2p(x) = E(x2)− [E(x)]2 . (2)

The standard deviation of x is denoted by σ ≡

√

Var(x).
In the real world, p(x) is usually unknown, in which case µ and σ are unknown.

However, one can perform experiments to “measure” x. Suppose n measurements are
made, and the values x1, x2, . . . xn are obtained. Ideally, we would like to reconstruct the
probability distribution p(x) from the data, but here we are interested in determining
the expectation value µ and the standard deviation σ from the experimental results.

We can regard x1, x2, . . . xn as independent and identically distributed random vari-
ables (often abbreviated as iid or IID random variables). These are independent, since
separate measurements of x are independent of each other. These are identically dis-
tributed, since the experiment is measuring the same random variable x each time (al-
though, of course, the outcome of each measurement will not be the same). This means
that

E(xi) = µ and Var(xi) = σ2 , for i = 1, 2, 3, . . . , n .

Of course, the above information is not very practical, since a priori we do not know the
values of µ and σ.

Having made n independent measurements, we would like to ascertain the best pos-
sible estimates for µ and σ. In class, we defined the sample average x and the sample
variance Σ2 by

x ≡
1

n

n
∑

i=1

xi , (3)

Σ2
≡

1

n− 1

n
∑

i=1

(xi − x)2 . (4)
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These quantities are easily computed from the data. We now assert that the sample
average x provides a best estimate for the actual mean µ and the sample variance Σ2

provides a best estimate for the actual variance σ2. In the mathematical statistics litera-
ture, there is some debate as to the meaning of the word “best.” In the present context,
the word “best” simply means that the estimates are unbiased, that is

E(x) = µ and E(Σ2) = σ2 , (5)

where the expectation values are computed assuming for a moment that we do know the
underlying probability distribution p(x). Let us verify eq. (5) explicitly. First, recalling
that E(cx) = cE(x) and E(x+ y) = E(x) + E(y), we have

E(x) =
1

n

n
∑

i=1

E(xi) =
1

n

n
∑

i=1

µ =
1

n
· nµ = µ .

In the Appendix, we demonstrate that E(Σ2) = σ2.
To reiterate, x provides a best estimate of the unknown µ, which is the expectation

value of the random variable x. Similarly, Σ2 provides a “best” estimate of the unknown
σ2, which is the expectation value of (x− µ)2.

2. The standard deviation of the mean

Although x provides a best estimate of the unknown µ, its determination does not tell
us how likely it is that the measured value x is close to µ. After all, if I perform additional
measurements of x, I would expect the value of the average x to change (although the
change is expected to be small once n is large enough). Thus, what we would really like
to know is the probability distribution of the random variable x. Of course, since we
do not know in general the expectation value and variance of x, we also do not know
in general the expectation value and variance of x. Indeed, we have already seen that
E(x) = µ, which we do not know. Likewise, we can compute Var(x) as follows:

Var(x) = Var

(

1

n

n
∑

i=1

xi

)

=
1

n2

n
∑

i=1

Var(xi) =
1

n2

n
∑

i=1

σ2 =
1

n2
nσ2 =

σ2

n
, (6)

which depends on the unknown σ2.
However, we do have a “best” estimate for σ2 based on our data, namely Σ2 defined

in eq. (4). Hence, we shall define the standard deviation of the mean (also called the
standard error) to be σm, where

σ2

m ≡
Σ2

n
=

1

n(n− 1)

n
∑

i=1

(xi − x)2 . (7)

The experimentalist now concludes after taking data and obtaining the values x1, x2, . . . , xn

after n measurements, that the best estimate of the mean is

x± σm .
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If there is a theoretical value of µ to compare this to, the experimentalist can now make
statements involving confidence intervals (e.g., the probability that the data is consistent
with the theoretical expectation), as discussed in Boas.

It is very important to distinguish σm, which is obtained from data and σ which is
the unknown standard deviation of the random variable x. We have σ2 = Var(x), which
is determined by the probability distribution p(x) and does not depend on the number
of measurements performed by the experimentalist. The experimentalist can make an
estimate for σ2, namely Σ2 given by eq. (4). It may look like Σ2 depends on n, but the
dependence is pretty weak (if n is large). After all, x also depends weakly on n (if n is
large), which provides the best estimate for µ. However, σ2

m = Σ2/n depends strongly
on n. The more measurements that are made, the smaller σ2

m is. This is not surprising,
since one expects that the larger n is, the better x is as an estimate for µ. As emphasized
above, σ2

m is an estimate of the variance of x, which is obviously not the same as the
variance of x [they differ by a factor of n as shown in eq. (6)]. Equivalently, Σ is an
estimate of the uncertainty in a single measurement of the random variable x, whereas
σm is an estimate on the uncertainty of the mean value of the random variable x as
determined by n measurements.

A simple example illustrates the above discussion. Suppose that p(x) is the binomial
distribution with probability p that a tossed coin will land on heads. Define the random
variable,

x =

{

1 , the coin lands on heads ,

0 , the coin lands on tails .

Given this coin, the experimentalist is asked to determine the mean µ = p and the
variance σ2 = p(1 − p) by flipping the coin n times. After n flips, the experimentalist
obtains a data set, x1, x2, . . . , xn, which is a series of 1s and 0s. From this data, the
experimentalist computes x which is equal to the number of heads divided by n. The
experimentalist also computes Σ using eq. (4) and σm using eq. (7). The experimentalist
concludes that the probability p of the coin (i.e, the true mean µ) is x ± σm, where the
error bars represent a 68% confidence interval, corresponding to a one standard deviation
of the mean uncertainty. Clearly, the large n is (i.e. more coin flips), the smaller the
corresponding standard error σm, and consequently the more reliable x is as an estimate
of the probability p of the coin. Likewise, the best estimate for σ2 is given by Σ2. By the
way, the latter determination also has an error associated with it, which I briefly discuss
in Section 3 of these notes.

References 1 and 2 provide a cogent discussion of the differences between standard
deviation and the standard deviation of the mean. In particular, reference 1 is a superb
treatment of error analysis written specifically for physicists at an elementary level.
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3. The standard deviation of the variance

Although Σ2 provides a “best” estimate of the unknown σ2, this does not tell us how
likely it is that the measured value Σ2 is close to σ2. After all, if I perform additional
measurements of x, I would expect the value of the average Σ2 to change (although the
change is expected to be small once n is large enough). Thus, what we would really like
to know is the probability distribution of the random variable Σ2. Of course, since we
do not know in general the expectation value and variance of x, we also do not know
in general the expectation value and variance of Σ2. Indeed, we have already seen that
E(Σ2) = σ2, which we do not know. Likewise, one can compute Var(Σ2), which depends
in general on σ2 and on E(x4). However, it may be of some interest to consider the
case of a normal distribution, since the central limit theorem can be applied if n is large
enough. In this case, it is a straightforward exercise to show that E(x4) = 3σ4, in which
case Var(Σ2) depends only on σ. The result (obtained in Appendix E of reference 1 and
Appendix C of reference 3) is:

Var(Σ2) =
σ2

2(n− 1)
,

which again depends on the unknown σ2. However, we can again employ the “best” esti-
mate for σ2 based on our data, namely Σ2. Thus, we conclude that under the assumption
that p(x) is the normal distribution of unknown mean and variance, then the “best” es-
timate of the standard deviation of the variance of the random variable x obtained from
our data is given by σv, where

σ2

v =
Σ2

2(n− 1)
=

1

2(n− 1)2

n
∑

i=1

(xi − x)2 .

As in the case of σm, we see that σv also can be reduced in size by performing more
measurements (i.e. by taking n larger). However, in practice σv (sometimes called the
“error of the error”) is not often employed in experimental analyses.
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APPENDIX: Proof that E(Σ2) = σ
2

Starting with eq. (4), we shall compute

E(Σ2) =
1

n− 1

n
∑

i=1

E[(xi − x)2] . (8)

It is convenient to rewrite the above equation by noting that

Var(xi − x) = E[(xi − x)2]− [E(xi − x)]2 = E[(xi − x)2] ,

after using
E(xi − x) = E(xi)− E(x) = µ− µ = 0 .

Thus, eq. (8) can be rewritten as

E(Σ2) =
1

n− 1

n
∑

i=1

Var(xi − x) .

To evaluate the above expression, we shall use 1

Var(cx) = c2Var(x) , Var(x+ y) = Var(x) + Var(y) , (9)

where the latter holds under the assumption that x and y are independent random
variables. Since xi and x are not independent random variables (since x contains xi in
its definition), we must perform the following manipulation,

xi − x = xi −
1

n

n
∑

i=1

xi =

(

n− 1

n

)

xi −
1

n

∑

j 6=i

xj .

Consequently, using eq. (9) [cf. footnote 1 below] we compute:

E(Σ2) =
1

n− 1

n
∑

i=1

Var

[

(

n− 1

n

)

xi −
1

n

∑

j 6=i

xj

]

=
1

n− 1

n
∑

i=1

[

(

n− 1

n

)

2

Var(xi) +
1

n2

∑

j 6=i

Var(xj)

]

=
1

n− 1

n
∑

i=1

[

(

n− 1

n

)

2

σ2 +
1

n2

∑

j 6=i

σ2

]

=
1

n− 1

n
∑

i=1

[

(

n− 1

n

)

2

σ2 +

(

n− 1

n2

)

σ2

]

=
n

n− 1

[

(

n− 1

n

)2

σ2 +

(

n− 1

n2

)

σ2

]

=

(

n− 1

n
+

1

n

)

σ2 = σ2 ,

which completes the proof. Note that this computation justifies the presence of the
denominator factor n− 1 rather than n in eq. (4).

1Note that eq. (9) implies that Var(−x) = Var(x). Hence, if x and y are independent random variables
then it follows that Var(x− y) = Var(x) + Var(y) .
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