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Series solutions to a second order linear
differential equation with regular singular points

Consider the second-order linear differential equation,

d2y

dx2
+
p(x)

x

dy

dx
+
q(x)

x2
y = 0 , (1)

where the functions p(x) and q(x) are real analytic functions in the neighborhood of x = 0.
The two linearly independent solutions of eq. (1) will be denoted by y1(x) and y2(x),
respectively. We assume that

p0 ≡ p(0) 6= 0 , q0 ≡ q(0) 6= 0 .

In this case, the point x = 0 is a regular singular point of the differential equation. Every
second order linear differential equation of this type possesses at least one solution of the
form of the Frobenius series,

y(x) = xr
∞
∑

n=0

anx
n , where a0 6= 0 , (2)

for values of x > 0. For values of x < 0, if r is an integer then one can employ the solution
given by eq. (2) without modification. If r is not an integer, then one can obtain the solution
from eq. (2) by analytic continuation in the complex plane. In particular, for non-integer r
there is a branch point at x = 0 and it is convenient to choose the branch cut to lie along
the negative real axis. In particular, for x > 0 we have y(−x) = limǫ→0 y(−x+ iǫ), where
ǫ is a positive infinitesimal quantity. In this way, one is able to obtain a series solution to
eq. (1) that is valid in the entire complex plane excluding the branch cut that runs from
x = 0 to x = −∞.

If one is only interested in solutions to eq. (1) along the real axis, then one cannot
analytically continue from the positive real axis to the negative real axis through the origin
when r is a non-integer. In this case, the solutions for x > 0 and x < 0 are distinct and
uncorrelated. If r is a non-integer, one possible choice is to replace xr by |x|r in eq. (2),1

since for x < 0
xr = er lnx = er[ln |x|+iπ] = |x|reiπr ,

and the phase factor eiπr can be absorbed into an overall arbitrary constant. Likewise, as
shown later in these notes, when one solution, y(x), is given by eq. (2), then in some cases
a second linearly independent solution exists of the form y(x) lnx+ w(x), where w(x) is a

1For integer r, there is no branch point at x = 0, and eq. (2) is a valid solution for any real value of x.
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second Frobenius series. For values of x < 0, it is permissible to replace ln x with ln |x|,
since for real x < 0 we have

ln(x) = ln |x|+ iπ ,

in which case y(x) lnx+w(x) = y(x) ln |x|+iπy(x)+w(x). Since y(x) is the first solution to
the differential equation, it follows that if y(x) and y(x) lnx+w(x) are linearly independent
then y(x) and y(x) ln |x| + w(x) are also linearly independent. The advantage of these
conventions is that the resulting series solutions of eq. (1) are manifestly real for any value
of x. In these notes, we shall always provide the solutions to eq. (1) relevant for x > 0. We
leave it to the reader to replace xr by |x|r and ln x by ln |x| in the appropriate places in
order that the solutions obtained are valid for x < 0.

As noted below eq. (1), we assume that p(x) and q(x) are real analytic functions in the
neighborhood of x = 0. Thus, they possess Taylor series expansions about x = 0,

p(x) =
∞
∑

n=0

pnx
n and q(x) =

∞
∑

n=0

qnx
n . (3)

In many practical problems, p(x) and q(x) are polynomials of finite degree. In these notes
we shall be more general by employing eq. (3) as the analysis is not that more complicated.

Inserting eqs. (2) and (3) into eq. (1), we get

∞
∑

n=0

(n + r)(n+ r − 1)anx
n+r−2 +

(

∞
∑

n=0

pnx
n

)(

∞
∑

n=0

(n + r)anx
n+r−2

)

+

(

∞
∑

n=0

qnx
n

)(

∞
∑

n=0

anx
n+r−2

)

= 0 . (4)

Since eq. (4) is an identity, all the coefficients of xn+r−2 (for n = 0, 1, 2, 3, . . .) must be zero.
The coefficient of xr−2 is a0F (r), where

F (r) = r(r − 1) + p0r + q0 = (r − r1)(r − r2) = 0 (5)

This quadratic equation is called the indicial equation; the roots of this equation are denoted
by r1 and r2. The coefficients of xn+r−2 for n = 1, 2, 3, . . . yield recurrence relations for the
an. After some algebraic manipulation and simplification, the resulting recurrence relation
is:

(n + r)(n+ r − 1)an +

n
∑

k=0

[(k + r)pn−k + qn−k] ak = 0 , for n = 1, 2, 3, . . . . (6)

Note that this relation can be rewritten in the following form:

F (r + n)an(r) = −

n−1
∑

k=0

[(k + r)pn−k + qn−k] ak(r) , for n = 1, 2, 3, . . . (7)

after using the definition of F (r) = r(r−1)+p0r+q0 [cf. eq. (5)]. In eq. (7), we have written
an(r) in place of an to emphasize that the solution to the recurrence relation depends on
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the parameter r. Normally, we will be interested only in the values of an(r) for r = r1 or
r = r2. However, we will see in the subsequent analysis that the r dependence of an(r) is
also a useful quantity.

In particular, it is convenient for later use to consider the following function of two
variables,

y(x, r) = xr
∞
∑

n=0

an(r)x
n , where a0(r) ≡ a0 6= 0 , (8)

where a0 is some nonzero constant that is independent of r.2 If we insert eqs. (3) and (8)
into eq. (1) and make use of eq. (7), only the term proportional to xr−2 survives,

∂2y

∂x2
+
p(x)

x

∂y

∂x
+
q(x)

x2
y(x, r) = a0F (r)x

r−2 = a0(r − r1)(r − r2)x
r−2 . (9)

Of course, y(x, r1) and y(x, r2) are solutions to eq. (1) as expected.

There are three separate cases depending on the values of the roots r1 and r2.

Case 1: r1 6= r2 and r1 − r2 is not an integer. In this case, the two linearly
independent solutions of eq. (1) are given by:

y1(x) = xr1
∞
∑

n=0

an(r1)x
n , where a0(r1) 6= 0 , (10)

y2(x) = xr2
∞
∑

n=0

an(r2)x
n , where a0(r2) 6= 0 . (11)

The coefficients an(r1) and an(r2) for n = 1, 2, 3, . . . are determined from the recurrence
relation and the indicial equation. That is, one first determines the general solution, an(r),
of eq. (7), and then one separately sets r = r1 and r = r2 to obtain an(r1) and an(r2),
respectively. Note that a0(r1) and a0(r2) are arbitrary nonzero constants since the most
general solution to eq. (1) is an arbitrary linear combination of y1(x) and y2(x).

Case 2: r1 = r2. In this case, there is only one independent Frobenius series,

y1(x) = xr1
∞
∑

n=0

an(r1)x
n , where a0(r1) 6= 0 . (12)

Moreover, since the indicial equation has a double root, it follows that F (r) = (r− r1)
2, in

which case

F (r1) =

(

∂F

∂r

)

r=r1

= 0 . (13)

To find the second solution, we first set r1 = r2 in eq. (9) to obtain:

∂2y

∂x2
+
p(x)

x

∂y

∂x
+
q(x)

x2
y(x, r) = a0F (r)x

r−2 = a0(r − r1)
2xr−2 , (14)

2Taking a0 to be independent of r is a matter of convenience. With this choice, the an(r) that are
determined from eq. (7) are well-defined functions of r for n = 1, 2, 3, . . ..
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where a0 is an arbitrary nonzero constant that is independent of r. We now differentiate
this equation with respect to r,3

∂2

∂x2

(

∂y(x, r)

∂r

)

+
p(x)

x

∂

∂x

(

∂y(x, r)

∂r

)

+
q(x)

x2

(

∂y(x, r)

∂r

)

= a0x
r−2

[

∂F (r)

∂r
+ F (r) lnx

]

.

Evaluating this equation at r = r1 with the help of eq. (13) yields:

d2

dx2

(

∂y(x, r)

∂r

)

r=r1

+
p(x)

x

d

dx

(

∂y(x, r)

∂r

)

r=r1

+
q(x)

x2

(

∂y(x, r)

∂r

)

r=r1

= 0 .

This means that:
(

∂y(x, r)

∂r

)

r=r1

is a solution to eq. (1) and can serve as the second linearly independent solution in the case
under consideration. Using eq. (8),

∂y(x, r)

∂r
= xr ln x

∞
∑

n=0

an(r)x
n + xr

∞
∑

n=0

∂an
∂r

xn ,

for x > 0. It follows that

y2(x) = y1(x) lnx+ xr1
∞
∑

n=1

bnx
n , where bn ≡

(

∂an
∂r

)

r=r1

for n = 1, 2, 3, . . . . (15)

Note that the sum starts at n = 1, since a0(r) ≡ a0 6= 0 so that its partial derivative with
respect to r vanishes. An arbitrary linear combination of eqs. (12) and (15) yields the most
general solution of eq. (1).

Case 3: r1 6= r2 and r1 − r2 is an integer. This case is subtle and requires a careful
treatment. In some cases, the analysis of Case 1 can be implemented with no difficulty,
and the two linearly independent solutions are given by eqs. (10) and (11). In other cases,
only one Frobenius series can be derived, and the second linearly independent solutions
resembles eq. (15) of Case 2. If you wish to explore the details of the Case 3 analysis,
continue reading below. Otherwise, check out the examples at the end of these notes.

Without loss of generality, we assume that r1 > r2 so that r1 − r2 ≡ m is a positive
integer.4 In this case, we again find that

y1(x) = xr1
∞
∑

n=0

an(r1)x
n , where a0(r1) 6= 0 , (16)

is a solution to eq. (1), where an(r1) is determined from eqs. (5) and (7). However, in
contrast to Case 1 a second linearly independent Frobenius series solution to eq. (1) may not

3Recall that xr−2 = e(r−2) ln x. Thus, taking a partial derivative with respect to r brings down a factor
of lnx.

4This case can only arise if r1 and r2 are real. Since the indicial equation is a real quadratic equation,
if r1 and r2 are not real then they must be complex conjugates of each other, which corresponds to Case 1.
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exist when r1 − r2 = m is an integer. Indeed, there is a potential roadblock to determining
am(r2) from eq. (7) in Case 3 due to the relation F (r2 + m) = F (r1) = 0. A consistent
solution for the coefficients an(r) requires that the right-hand side of eq. (7) vanish for
n = m. However there is no guarantee that this requirement can be satisfied, considering
that we have assumed that a0(r2) 6= 0 in eq. (11). The only consistent alternative is to take
a0(r2) = 0. In this latter case, eq. (7) immediately implies that:

a0(r2) = a1(r2) = · · · = am−1(r2) = 0 . (17)

Note that am(r2) can be nonzero since F (r2+m) = F (r1) = 0. In particular, eq. (7) yields

F (r2 +m+ n)an+m(r2) = −

m+n−1
∑

k=m

[(k + r2)pn+m−k + qn+m−k] ak(r2)

= −

n−1
∑

k=0

[(k +m+ r2)pn−k + qn−k] ak+m(r2) .

Using r1 = r2 +m, we end up with

F (r1 + n)an+m(r2) = −
n−1
∑

k=0

[(k + r1)pn−k + qn−k] ak+m(r2) , for n = 1, 2, 3, . . .

Comparing with eq. (7), we conclude that

an+m(r2) = an(r1) , for n = 1, 2, 3, . . . , (18)

in a normalization convention where am(r2) = a0(r1). Inserting eqs. (17) and (18) into
eq. (11) yields

y2(x) = xr2
∞
∑

n=m

an(r2)x
n = xr2

∞
∑

n=0

an+m(r2)x
n+m = xr1

∞
∑

n=0

an(r1)x
n = y1(x) . (19)

That is, in this latter case we must seek a second linearly independent solution of eq. (1).
One can find the second linearly independent solution by the following trick. First,

multiply eq. (9) by r − r2 and define:

z(x, r) ≡ (r − r2)y(x, r) , G(r) ≡ (r − r2)F (r) = (r − r1)(r − r2)
2 . (20)

Then, eq. (9) becomes:

∂2z

∂x2
+
p(x)

x

∂z

∂x
+
q(x)

x2
z(x, r) = a0G(r)x

r−2 = a0(r − r1)(r − r2)
2xr−2 . (21)

Inspired by the analysis of Case 2, one differentiates this equation with respect to r,

∂2

∂x2

(

∂z(x, r)

∂r

)

+
p(x)

x

∂

∂x

(

∂z(x, r)

∂r

)

+
q(x)

x2

(

∂z(x, r)

∂r

)

= a0x
r−2

[

∂G(r)

∂r
+G(r) lnx

]

.

5



Evaluating this equation at r = r2 with the help of

G(r2) =

(

∂G

∂r

)

r=r2

= 0 ,

it follows that

d2

dx2

(

∂z(x, r)

∂r

)

r=r2

+
p(x)

x

d

dx

(

∂z(x, r)

∂r

)

r=r2

+
q(x)

x2

(

∂z(x, r)

∂r

)

r=r2

= 0 .

This means that:
(

∂z(x, r)

∂r

)

r=r2

is a solution to eq. (1) and can serve as the second linearly independent solution in the case
under consideration. It is convenient to define

bn(r) ≡ (r − r2)an(r) . (22)

Then, eqs. (8) and (20) imply that

z(x, r) = xr
∞
∑

n=0

bn(r)x
n , where b0(r) ≡ (r − r2)a0 , (23)

Following the steps of Case 2,

∂z(x, r)

∂r
= xr ln x

∞
∑

n=0

bn(r)x
n + xr

[

a0 +

∞
∑

n=1

∂bn
∂r

xn

]

.

In obtaining this result, we noted that ∂b0(r)/∂r = a0. It follows that

(

∂z(x, r)

∂r

)

r=r2

= xr2

{

ln x

∞
∑

n=0

bnx
n + a0 +

∞
∑

n=1

cnx
n

}

, (24)

where

bn ≡ lim
r→r2

bn(r) , cn ≡

(

∂bn
∂r

)

r=r2

for n = 0, 1, 2, 3, . . . . (25)

We have been careful to define bn by a limiting process. In particular, eqs. (7) and (22)
yield

bn(r) =
−1

F (r + n)

n−1
∑

k=0

[(k + r)pn−k + qn−k] bk(r) , for n = 1, 2, 3, . . . , (26)

where b0(r) = (r − r2)a0. Taking the limit of r → r2, it follows that b0(r2) = 0. Hence,

bn(r2) = 0 , for n = 0, 1, 2, 3, . . . , m− 1 . (27)

6



But when n = m we have F (r2 + m) = F (r1) = 0, and we can no longer conclude that
bm(r2) = 0. In fact, one must use L’Hospital’s rule to evaluate bm(r2). Let us denote the
result by:

bm(r2) = lim
r→r2

bm(r) ≡ ba0 , (28)

which defines the constant b. One can now use eq. (26) to compute bm+n(r2) in terms of b
for n = 1, 2, 3, . . .,

bm+n(r2) =
−1

F (r2 +m+ n)

m+n−1
∑

ℓ=m

[(ℓ+ r2)pm+n−ℓ + qm+n−ℓ] bℓ(r2) .

If we relabel the summation index by ℓ = k+m, then the sum runs from k = 0 to k = n−1.
Using r1 = r2 +m, it follows that

F (r1 + n)bm+n(r2) = −
n−1
∑

k=0

[(k + r1)pn−k + qn−k] bm+k(r2) . (29)

Comparing this equation with eq. (7), it follows that

bm+n(r2) = ban(r1) , for n = 0, 1, 2, 3, . . . , (30)

where b is the constant defined in eq. (28). Indeed for n = 0 we get bm(r2) = ba0. Substi-
tuting eq. (30) into eq. (29), b cancels out and one reproduces eq. (7) as claimed.

Using eqs. (27) and (30) and r1 = r2 +m,

xr2
∞
∑

n=0

bn(r2)x
n = xr2

∞
∑

n=m

bn(r2)x
n = xr2

∞
∑

n=0

bm+n(r2)x
m+n

= b xr2+m
∞
∑

n=0

an(r1)x
n = b xr2

∞
∑

n=0

an(r1)x
n

= by1(x) , (31)

after identifying the first solution given by eq. (16). Hence, eqs. (24) and (25) yields the
second linearly independent solution of eq. (1),

y2(x) = b y1(x) ln x+ xr2

[

a0 +
∞
∑

n=1

cnx
n

]

, where cn ≡

(

∂bn
∂r

)

r=r2

for n = 0, 1, 2, 3, . . .

(32)

For further details, the following references are useful:

1. Ravi P. Agarwal and Donal O’Regan, Ordinary and Partial Differential Equations

(Springer Science, New York, 2009).

2. Earl D. Rainville, Phillip E. Bedient and Richard E. Bedien, Elementary Differential

Equations, 8th edition (Pearson Education, Upper Saddle River, NJ, 1997).
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Appendix A: Examples of logarithmic series solutions

Example 1. Obtain the two linearly independent solutions valid for x > 0 of

x2y′′ − x(1 + x)y + y = 0 . (33)

Comparing with eq. (1), we identify p(x) = −1−x and q(x) = 1. Thus, p0 ≡ p(0) = −1
and q0 ≡ q(0) = 1. The indicial equation given in eq. (5) is

F (r) = r(r − 1)− r + 1 = (r − 1)2 = 0 .

That is, there is a double root, with r = 1. Since p1 = −1 and pn+1 = qn = 0 for
n = 1, 2, 3, . . ., the recursion relation given by eq. (7) simplifies to

an(r) =
an−1(r)

n− 1 + r
, for n = 1, 2, 3, . . . . (34)

Inserting r = 1 in eq. (34), one easily deduces that

an =
a0
n!
, where an ≡ an(1) .

Thus, using eq. (12), we obtain one of the solutions to eq. (33),

y1(x) = a0x
∞
∑

n=0

xn

n!
= a0xe

x .

To obtain the second linearly independent solution, we employ eq. (15). Using eq. (34),
it is a simple matter to obtain5

a′n(r) =
a′0

r(r + 1) · · · (r + n− 1)
,

where a′0 ≡ a′0(r) is independent of r by convention [cf. eq. (8)]. Hence,

b′n =

(

∂a′n
∂r

)

r=1

= −
a′0
n!

(

1 +
1

2
+

1

3
+ · · ·+

1

n

)

.

Thus eq. (15) yields the second linearly independent solution of eq. (33),

y2(x) = a′0x

{

ex ln x−

∞
∑

n=1

Hnx
n

n!

}

,

where the harmonic numbers

Hn ≡ 1 +
1

2
+

1

3
+ · · ·+

1

n
, (35)

are defined to be the sum of the first n terms of the harmonic series.6

5In obtaining the second solution, we write a′
n
in place of an to avoid confusion.

6It is convenient to define H0 ≡ 0, in which case it follows that the harmonic numbers satisfy the
recursion relation,

Hn = Hn−1 +
1

n
, (36)

for all positive integers n.
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Example 2. Obtain the two linearly independent solutions valid for x > 0 of

xy′′ + y = 0 . (37)

Comparing with eq. (1), we identify p(x) = 0 and q(x) = x. Thus, p0 ≡ p(0) = 0 and
q0 ≡ q(0) = 0. The indicial equation given in eq. (5) is

F (r) = r(r − 1) = 0 ,

and the corresponding roots are r1 = 1 and r2 = 0. Hence, m ≡ r1 − r2 = 1. Since q1 = 1
and pn = qn+1 = 0 for n = 1, 2, 3, . . ., the recursion relation given by eq. (7) yields

(r + n)(r + n− 1)an(r) = −an−1(r) , for n = 1, 2, 3, . . . . (38)

Inserting r = 1 in eq. (38), one easily deduces that

an =
(−1)na0
n!(n+ 1)!

, where an ≡ an(1) .

Thus, using eq. (16), we obtain one of the solutions to eq. (37),

y1(x) = a0x

∞
∑

n=0

(−1)nxn

n!(n+ 1)!
.

For the case of r = 0, eq. (38) is incompatible with a0(0) 6= 0. Hence, we do not obtain a
second linearly independent Forbenius series solution. Instead, following eq. (22) we define
bn(r) = ra′n(r) [cf. footnote 5]. Hence, eq. (38) yields

bn(r) =
−ra′n−1(r)

(r + n)(r + n− 1)
, for n = 1, 2, 3, . . . . (39)

In particular, b0(0) = 0 and b1(0) = −a′0, which implies that b ≡ −1 [cf. eq. (28)]. Hence,

bn(r) =
(−1)na′0

(r + 1)(r + 2) · · · (r + n)(r + 1)(r + 2) · · · (r + n− 1)
.

Therefore, eq. (25) yields an expression involving the harmonic numbers Hn [cf. eqs. (35)
and (36)],

cn =

(

∂bn
∂r

)

r=0

= −
(−1)n(Hn +Hn−1)a

′
0

n!(n− 1)!
, for n = 1, 2, 3, . . . .

Plugging into eq. (32), we obtain the second linearly independent solution of eq. (37),

y2(x) = a′0

{

−x ln x
∞
∑

n=0

(−1)nxn

n!(n + 1)!
+ 1−

∞
∑

n=1

(−1)n(Hn +Hn−1)x
n

n!(n− 1)!

}

.

or equivalently,

y2(x) = a′0

{

1−
∞
∑

n=1

(−1)n(Hn +Hn−1 − ln x)xn

n!(n− 1)!

}

.
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Appendix B: Applications to Bessel functions

Bessel’s differential equation is given by:

d2y

dx2
+

1

x

dy

dx
+

(

1−
ν2

x2

)

y(x) = 0 .

In the notation of eq. (1), p(x) = 1 and q(x) = x2 − ν2. From eq. (3), we get p0 = 1,
q0 = −ν2 and q2 = 1 (and all other pn and qn vanish). The indicial equation is

F (r) = r2 − ν2 , (40)

and the recurrence relations [cf. eq. (7)] are given by

F (1 + r)a1 = 0 , (41)

F (n+ r)an = −an−2 , for n = 2, 3, 4, . . . . (42)

If F (1 + r) 6= 0, the the solution to the recurrence relations are:

a2n(r) =
(−1)na0

F (2n+ r)F (2n− 2 + r) · · ·F (2 + r)
, a1 = a2n+1 = 0 , (43)

for n = 1, 2, 3, . . . and a0 6= 0. If F (1+r) = 0, the a1 6= 0 and we must replace a1 = a2n+1 = 0
with

a2n+1(r) =
(−1)na1

F (2n+ 1 + r)F (2n− 1 + r) · · ·F (3 + r)
,

for n = 1, 2, 3, . . . and a1 6= 0.

Example 1: 2ν is not an integer. In this case, the results of Case 1 of these notes
apply. We set r = ±ν and note that F (1± ν) 6= 0. Hence,

a2n(ν) =
(−1)na0

22nn!(ν + n)(ν + n− 1) · · · (ν + 1)
, a1 = a2n+1 = 0 ,

for n = 1, 2, 3, . . . and a0 6= 0. It is conventional to define

a0 ≡
1

2νΓ(ν + 1)
, (44)

in which case the series solution to Bessel’s equation is given by

Jν(x) =
∞
∑

n=0

(−1)n

Γ(ν + n+ 1)

1

n!

(x

2

)2n+ν

. (45)

The analysis for r = −ν is almost identical and results in a second linearly independent
solution,

J−ν(x) =
∞
∑

n=0

(−1)n

Γ(−ν + n+ 1)

1

n!

(x

2

)2n−ν

.
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Example 2: ν = 0. In this case, the results of Case 2 of these notes apply. One of
the solutions follows immediately by setting ν = 0 in eq. (45),

J0(x) =
∞
∑

n=0

(−1)n

[n!]2

(x

2

)2n

, (46)

after using Γ(n + 1) = n!. To obtain the second linearly independent solution, we employ
eq. (15). Thus, we must compute the quantity (∂a2n/∂r)r=0 with ν = 0. Eqs. (40) and
(43) yield

a2n(r) =
(−1)na0

(2n+ r)2(2n+ r − 2)2 · · · (2 + r)2
, for n = 1, 2, 3, . . . . (47)

Then
∂a2n
∂r

= −2a2n(0)

[

1

2n+ r
+

1

2n+ r − 2
+ · · ·+

1

2 + r

]

.

Using eqs. (44) and (47), it follows that
(

∂a2n
∂r

)

r=0

= −Hna2n(0) , (48)

where the Hn are the harmonic numbers defined in eq. (35) and

a2n(0) =
(−1)n

22n[n!]2
.

Note that eq. (48) also holds for n = 0 since H0 = 0 (cf. footnote 6), which is to be expected
as a0 is independent of r. Hence, eq. (15) yields:7

y2(x) = J0(x) lnx−

∞
∑

n=0

(−1)nHn

[n!]2

(x

2

)2n

. (49)

Indeed, this is a second linearly independent solution to Bessel’s equation for ν = 0.
However, it is more traditional to employ a particular linear combination of J0(x) and
y2(x) for the second solution to Besse’s equation, which we denoted in class by N0(x).
The series expansion of N0(x) involves the logarithmic derivative of the Gamma function
evaluated at the positive integer n+ 1, which is given by:8

ψ(n+ 1) ≡
Γ′(n+ 1)

Γ(n+ 1)
= −γ +Hn , (50)

where γ is Euler’s constant. Using the series expansions given in eqs. (46) and (49), the
corresponding series expansion for N0(x) is given by:

N0(x) =
2

π

{

[y2(x) + (γ − ln 2)J0(x)]

}

=
2

π

{

J0(x) ln
x

2
−

∞
∑

n=0

(−1)nψ(n + 1)

[n!]2

(x

2

)2n
}

.

7One can extend the summation index to n = 0 in eq. (49) since the summand vanishes when n = 0.
8Further details on the logarithmic derivative of the Gamma function can be found in Appendix C.

11



One can check that the series expansion for N0(x) given above matches the one obtained
from employing L’Hospital’s rule on the definition of N0(x),

N0(x) = lim
ν→0

Jν(x) cosπν − J−ν(x)

sin πν
= lim

ν→0

2

π

∂Jν(x)

∂ν
,

and evaluating the last quantity using the series for Jν(x) given in eq. (45).

Example 3a: ν = ±1

2
. In this case, the results of Case 3 of these notes apply, since

r1 − r2 = 1 which is an integer. However, in this example no problems arise in computing
the coefficients of the expansion from the recurrence relation, in which case we recover the
results of Case 1. In more detail, for r = 1

2
, eqs. (40) and (43) yield

a2n(
1
2
) =

(−1)na0
(2n+ 1)!

, a2n+1(
1
2
) = 0 , for n = 0, 1, 2, 3, . . . .

For r = −1
2
, we have F (1+ r) = F (1

2
) = 0 so that a1 6= 0. Thus, in this case, eqs. (40) and

(43) yield

a2n(−
1
2
) =

(−1)na0
(2n)!

, a2n+1(−
1
2
) =

(−1)na1
(2n + 1)!

, for n = 0, 1, 2, 3, . . . .

It therefore follows that,

y1(x) = a0x
1/2

∞
∑

n=0

(−1)nx2n

(2n+ 1)!
= a0x

−1/2 sin x ,

y2(x) = x−1/2

{

a0

∞
∑

n=0

(−1)nx2n

(2n)!
+ a1

∞
∑

n=0

(−1)nx2n+1

(2n+ 1)!

}

= x−1/2 [a0 cos x+ a1 sin x] .

Clearly, y1(x) and y2(x) are linearly independent, although it is more traditional to define
a different linearly independent y2(x) which only has the cosine term. If we choose a0 =
(2/π)1/2 according to eq. (44), then

y1(x) = J1/2(x) =

√

2

πx
sin x ,

and the corresponding spherical Bessel function,

j0(x) ≡

√

π

2x
J1/2(x) =

sin x

x
,

whereas (π/2x)1/2y2(x) is a linear combination of j0(x) and n0(x) ≡ − cosx/x.

Example 3b: ν = ±1. In this case, the results of Case 3 of these notes apply, since
r1 − r2 = 2 which is an integer. However, only one Frobenius series can be obtained,

J1(x) =
∞
∑

n=0

(−1)n

n!(n+ 1)!

(x

2

)2n+1

. (51)
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When r = −1, we have F (n− 1) = 0 for n = 2. In this case, eq. (42) implies that a0 = 0
and a2 is arbitrary. Moreover, starting from a2, one can use eq. (42) to derive a2n for
n = 2, 3, 4, . . .. It is easy to check that the resulting Frobenius series is proportional to
J1(x), as expected from eqs. (18) and (19). (You are strongly encouraged to verify this
statement, since the math in this example is simpler than in the general case!)

To obtain the second linearly independent solution, we employ eq. (32). First, we
construct bn(r) = (r + 1)an(r) following eq. (22). Then using eq. (42),

b2n(r) =
(−1)n(r + 1)a0

[(2n+ r)2 − 1][(2n+ r − 2)2 − 1] · · · [(2 + r)2 − 1]

=
(−1)na0

(r + 3)[(2n+ r)2 − 1][(2n+ r − 2)2 − 1] · · · [(4 + r)2 − 1]
, for n = 1, 2, 3, . . . ,

after writing (2 + r)2 − 1 = r2 + 4r + 3 = (r + 1)(r + 3) and canceling out the common
factor r + 1 from numerator and denominator. It is critical to take this step before com-
puting (∂b2n/∂r)r=−1; otherwise you will be stymied by factors of zero appearing in the
denominator. One can further simplify b2n(r) by factoring

(2k + r)2 − 1 = (2k + r + 1)(2k + r − 1) , for k = 2, 3, 4, . . . , n .

Hence,

b2n(r) =
(−1)na0

(2n+ r + 1)(2n+ r − 1)2(2n+ r − 3)2(2n+ r − 5)2 · · · (5 + r)2(3 + r)2
, (52)

where all denominator factors are squared except for (2n + r + 1). Taking the derivative
with respect to r yields

∂b2n
∂r

= −b2n(r)

[

1

2n+ r + 1
+

2

2n+ r − 1
+

2

2n+ r − 3
+

2

2n + r − 5
+ · · ·+

2

5 + r
+

2

3 + r

]

.

Setting r = −1, we make use of eqs. (44) and (52) to obtain

b2n(−1) =
(−1)na0

22n−1n!(n− 1)!
, a0 =

1
2
.

Hence, we end up with:
(

∂b2n
∂r

)

r=−1

= −b2n(−1)

[

1 +
1

2
+

1

3
+ · · ·+

1

n− 2
+

1

n− 1
+

1

2n

]

,

=
(−1)n+1

22nn!(n− 1)!

[

Hn−1 +
1

2n

]

,

=
(−1)n+1(Hn +Hn−1)

22n+1n!(n− 1)!
. (53)

In obtaining eq. (53), we have used eq. (36) to eliminate the factor of 1/(2n) above. Note
that we can now use eq. (28) to determine the constant b. In this example m = r1−r2 = 2,
in which case

b = b2(−1)/a0 = −1
2
.
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Therefore, eq. (32) yields the following second linearly independent solution to Bessel’s
equation for |ν| = 1,

y2(x) = −1
2
J1(x) lnx+

1

x

{

1

2
+

∞
∑

n=1

(−1)n+1(Hn +Hn−1)

22n+1n!(n− 1)!
x2n

}

.

If we relabel the last sum by taking n→ n+ 1, we end up with:

y2(x) = −1
2
J1(x) ln x+

1

2x

{

1 +

∞
∑

n=0

(−1)n(Hn+1 +Hn)

(n+ 1)!n!

(x

2

)2n+2
}

.

Indeed, this is a second linearly independent solution to Bessel’s equation for |ν| = 1.
However, it is more traditional to employ a particular linear combination of J1(x) and
y2(x), which in class we denoted by N1(x),

N1(x) = −
4

π

[

y2(x) +
1
2
(ln 2− γ)J1(x)

]

=
2

π

{

J1(x) ln
x

2
−

1

x
−

1

2

∞
∑

n=0

(−1)n

(n+ 1)!n!
[ψ(n+ 2) + ψ(n + 1)]

(x

2

)2n+1
}

,

where we have used eqs. (50) and (51). One can check that this series expansion matches
the one obtained from employing L’Hospital’s rule on the definition of N1(x),

N1(x) = lim
ν→1

Jν(x) cos πν − J−ν(x)

sin πν
=

1

π

[

lim
ν→1

∂Jν(x)

∂ν
− lim

ν→−1

∂Jν(x)

∂ν

]

,

and evaluating the last two quantities using the series for Jν(x) given in eq. (45).
The general case of ν = ±k for k = 2, 3, 4, . . . can be similarly analyzed. However, for

the second linearly independent solution to Bessel’s equation, it is simpler to employ

Nk(x) = lim
ν→k

Jν(x) cosπν − J−ν(x)

sin πν
=

1

π

[

lim
ν→k

∂Jν(x)

∂ν
+ (−1)k lim

ν→−k

∂Jν(x)

∂ν

]

,

and evaluate the last two quantities using the series for Jν(x) given in eq. (45). For the
record, the resulting series expansion is quoted below:

Nk(x) =
1

π

{

2Jk(x) ln
x

2
−

k−1
∑

n=0

(k − n− 1)!

n!

(x

2

)2n−k

−

∞
∑

n=0

(−1)n

(n+ k)!n!
[ψ(n+ k + 1) + ψ(n+ 1)]

(x

2

)2n+k
}

. (54)

This formula holds for all non-negative integers k (but if k = 0, the first sum above is
absent).
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Appendix C: The logarithmic derivative of the Gamma function

In this Appendix, I will sketch some of the main properties of the logarithmic derivative9

of the Gamma function. The formal definition is given by:

ψ(x) ≡
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
,

where Γ′(x) is the ordinary derivative of Γ(x) with respect to x. We also define:

lim
x→1

Γ′(x) = −γ ,

where γ ≃ 0.5772156649 · · · is known as Euler’s constant. It is not known whether γ
is a rational or irrational number (although there is strong suspicion for the latter). By
definition of ψ(x), we see [since Γ(1) = 1] that:

Ψ(1) = −γ .

Using Γ(x + 1) = xΓ(x), we can differentiate this equation to derive a fundamental
property of ψ(x).

Γ′(x+ 1) = Γ(x) + xΓ′(x) ,

Γ′(x+ 1)

Γ(x)
= 1 + x

Γ′(x)

Γ(x)
.

Finally, writing Γ(x) = Γ(x+ 1)/x on the left hand side above, and then dividing through
by x, we find:

ψ(x+ 1) =
1

x
+ ψ(x) . (55)

Consider the case of x = n = 0, 1, 2, . . .. Then, using eq. (55)

ψ(n+ 1) =
1

n
+ ψ(n) =

1

n
+

1

n− 1
+ ψ(n− 1) = · · · ,

until we reach ψ(1) = −γ. The end result is:

ψ(n+ 1) = −γ +
n
∑

k=1

1

k
.

It is convenient to rewrite this result in terms of the harmonic numbers defined in eq. (35),

ψ(n+ 1) = −γ +Hn , n = 0, 1, 2, 3, . . . . (56)

By employing the convention that H0 = 0 [cf. footnote 6], we see that eq. (56) holds for
n = 0. Thus, we have confirmed eq. (50).

9The logarithmic derivative of a function is defined as the derivative of the logarithm of the function.
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We next examine the asymptotic behavior of ψ(x) as x → ∞. This is easily accom-
plished by making use of Stirling’s formula:

ln Γ(x+ 1) = (x+ 1
2
) lnx− x+ 1

2
ln 2π +O(x−1) , as x → ∞ .

Differentiating this formula yields the large x asymptotic behavior of ψ(x+ 1):

ψ(x+ 1) = ln x+
1

2x
+O(x−2) , as x→ ∞ . (57)

In particular, it follows that for an integer n,

lim
n→∞

ψ(n+ 1)− lnn = 0 .

If we use result for ψ(n + 1) given in eq. (56), we conclude that:

γ = lim
n→∞

[

n
∑

k=1

1

k
− lnn

]

.

This is a remarkable formula, which often serves as the definition of Euler’s constant.
(Textbooks that adopt this definition must spend some time proving that this limit exists
and is finite.) The above results also imply that:

n
∑

k=1

1

k
= lnn+ γ +

1

2n
+O

(

1

n2

)

.

This result provides the start of an asymptotic expansion for the finite harmonic sum as
n → ∞. Moreover, it tells us that the infinite harmonic sum diverges logarithmically
(which explains the slow growth of the corresponding finite sums).

So far, we only have an explicit formula for ψ(x) when x is a positive integer [eq. (56)].
We can derive a more general result as follows. In the same way that we derived eq. (56),
we may use eq. (55) to obtain:

ψ(x+ n) =
1

x+ n− 1
+

1

x+ n− 2
+ · · ·+

1

x
+ ψ(x)

=
n−1
∑

k=0

1

x+ k
+ ψ(x) , (58)

where n is a positive integer and x is arbitrary. Subtracting eq. (56) from eq. (58) yields:

ψ(x+ n)− ψ(n + 1) =

n−1
∑

k=0

(

1

x+ k
−

1

k + 1

)

+ γ + ψ(x) . (59)

Consider the n→ ∞ limit of eq. (59). Using eq. (57), it follows that

lim
n→∞

ψ(x+ n)− ψ(n+ 1) = O(n−1) → 0 .

Hence, we conclude that:

ψ(x) = −γ −

∞
∑

k=0

(

1

x+ k
−

1

k + 1

)

. (60)

You should check that if x is a positive integer, then eq. (60) reduces to eq. (56).
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