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We perform an analysis of a graphical representation for the addition of two angular momenta,
focusing our attention on the angled between thexy components of two angular momenta. Then we
propose a new complete set of commuting observables, which differ from the usual sets that are
connected by the Clebsch–Gordan coefficients. This set shows that the angled can be a well-defined
variable in quantum mechanics. An empirical analysis of the graphical representations of the angular
momenta relations, which may include the angled, followed by quantum mechanical considerations,
leads to the vanishing of certain quantum angular momentum commutators for specific states.
Therefore, although the commutators are not null in general, the quantum addition of angular
momenta may be represented using classical-like diagrams. ©1999 American Association of Physics
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I. INTRODUCTION

Nowadays it is a well-established practice in mode
physics courses to introduce the quantum theory of ang
momentum as early as possible instead of the vector m
of the atom~VM !. This is possible to some extent becau
now students become acquainted with the mathematical t
used in this theory almost from the beginning of their stu
ies. But to a large extent it is the proven capability of t
quantum theory of angular momentum to describe ma
which has caused the VM to decline from the panorama
modern physics.

Nevertheless, quantum mechanics books~see, for instance
Cohen-Tannoudjiet al.,1 Schiff,2 and Zare3! usually include
a brief mention of the vector model of the atom when d
cussing angular momentum. Cohen-Tannoudjiet al. ~pp.
668–670! discuss briefly why that model has some realis
aspects and also describe its limitations. Zare~pp. 12–17!
discusses the applicability of the VM to systems with lar
angular momentum. Biedenharn and Louck4,5 also use the
VM to discuss the physical interpretation of Wigner and R
cah coefficients.

Although in some specialized treatises~Brink and
Satchler,6 Varshalovichet al.7! the VM is scarcely or simply
not mentioned, some recently written texts include the V
as in Harter’s book.8 This author uses the VM to illustrat
modern quantitative applications of angular momentum
the study of molecular systems with high angular momen

As can be seen, the VM is still presented in many int
ductory and advanced courses. We can understand this
recall that in the evolution of the angular momentum theo
as in many other theories in physics, empirical knowled
came first and later on a general theory organized and
plained the multitude of empirical facts. We think that in t
frame of this transformation the VM has changed from
empirical model to a graphical representation of the g
metrical interpretation of well-founded facts in quantum m
chanics. In this sense we understand Wigner’s asser
‘‘This ‘vector addition model’ is of very general validity.’’9

In this article we will demonstrate that the validity of som
987 Am. J. Phys.67 ~11!, November 1999
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graphical representations of the VM can be derived from
values of the commutators between angular momentum
erators.

We would like to address the following question: How d
commutation relations in quantum mechanics allow so
graphical representations but exclude many others? To
swer this question we will begin the analysis of a statem
about the VM made in Gasiorowicz’s book.10 This discus-
sion will lead to an extension of the VM into a graphic
representation that we name ‘‘angular coupled additio
~ACA!. We will start playing empirically with the ACA and
then we will analyze it from the point of view of quantum
physics. ACA is not truly important in itself, though it give
us the opportunity to apply quantum mechanics to sim
examples, which show pedagogically the importance of
commutation relations in this theory.

To analyze the ACA we first reproduce the basic aspe
of quantum mechanics that are useful to explain the V
Then we propose a complete set of commuting observa
~CSCO! well adapted to describe the ACA. This set is n
discussed in textbooks. It differs from the ordinary set as
ciated with the Clebsch–Gordan coefficients in that
square of the total angular momentum of two particles
replaced by the scalar product defined by Eq.~9!. The sub-
sequent analysis of the transformation matrix between
basis functions of this set and the basis functions of the
dinary sets, explains why and when the ACA will give
correct graphical representation of the addition of two an
lar momenta. Furthermore we show that some of the cor
ACA geometrical relations in the example discussed in t
article ~j 151, j 251!, are also well-founded in quantum me
chanics for any couplej 1 , j 2 of quantum numbers. Most im
portant, the discussion demonstrates that the particular c
mutativity between operators is at the heart of the validity
the graphical representation.

II. VECTOR MODEL

In one of his books, Gasiorowicz~see Ref. 10, p. 293!,
suggests the impossibility of getting a correct answer wh
the VM is used to add quantum angular momentum. He u
987© 1999 American Association of Physics Teachers
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as an example the addition of two angular momenta w
quantum numbersj 151 and j 251. According to quantum
mechanics each momentum has a value\Aj i( j i11)5&\,
i 51,2, andmust have az component equal to one of th
following values:\, 0, 2\; where \ is Planck’s constan
divided by 2p. In Fig. 1 the argument from Gasiorowicz
illustrated: From the nine possible addition arrangement
the two momenta, there is no way to obtain a vector s
with a z component equal to 2\ and with a length equal to
\A2(211)5A6\, which corresponds to the total angul
momentum with a quantum numberj 52 and z projection
equal to 2\.

Now, we will show that a small change in the VM mak
the above statement, in the case discussed by Gasioro
not quite accurate.

Figure 2 shows the so-called vector model for the angu
momentum of a particle, which we will call particle 1, wit
quantum numbersj 151 andm151. The magnitude of the
angular momentumj 1t5\Aj 1( j 111)5&\ and itsz projec-
tion j 1z5\ are perfectly determined and hence the angleu.
However, the anglef is completely undetermined and som
times is considered either as a random variable or chan
continuously as if the angular momentum were precess
around thez axis. From the same figure it is easy to see t

Fig. 1. Nine possible positions for the addition of the angular momentum
two particles with quantum numbersj 151 and j 251. The magnitude of
each angular momentum is&\ and the value of thez projections are:\, 0,
and2\. According to the VM the value of the angular momentum additi
corresponding to az component equal to 2\ is 2&\; quantum theory pre-
dicts a value ofA6\.
988 Am. J. Phys., Vol. 67, No. 11, November 1999
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the size of the projection of the angular momentum into
xy planej 1xy5Aj 1t

2 2 j 1z
2 is also a well-defined magnitude, i

this case equal to\.
In order to add two angular momenta using the vec

model, there is no difficulty in calculating thez component
because that component is the sum of the twoz projections:
j z5 j 1z1 j 2z ; but the situation is less clear for the two com
ponents j 1xy and j 2xy . If their angular positions are no
known, how can they be added?

Let us try to answer this question with the followin
proposition: Add these two components maintaining
angled between thej 1xy and j 2xy projections constant, bu
still allow them to change their angular position randomly.
this way, the resultant and the two projections have a fix
angular position among them, but note that this proposit
does not fix the anglef either for the individual projections
or for the resultant one.

Later on we will show that this angled is well defined in
quantum mechanics. But before doing this, let us figure
what angle this is.

Quantum mechanics predicts a resultant angular mom
tum j t5\Aj ( j 11)5A6\ when the resultantz component is
j z52\ and the individual angular momenta have quant
numbersj 151 and j 251. To fit the VM to this quantum
prediction, angled must be 90°, as shown in Fig. 3. Fo
d590° the resultant values for the angular momenta a
j xy5&\, j z52\, and j t5\Aj ( j 11)5A6\, which corre-
spond to the quantum numbers:j 52 andm52.

Figure 4 shows another view of the vectors in Fig. 3. T
vector for the angular momentum of the first particle~on the
zyplane! is the same as in Fig. 1; but now the vector for t
angular momentum of the second particle can move on
surface of the cone generated by its own movement, whi
maintains itsz component equal to\ and the sum of the two
z components equal to 2\. In Fig. 1 the same vector wa
restricted to lie on thezy plane.

As shown in Fig. 4, there is a position on the cone for t
second vector where the addition of the two angular m
menta produces a vector sum with a length equal toA6\.
This unique position on the cone~and its symmetrical real-
ization on the negative side of thex axis! corresponds in Fig.
3 to the angled equal to 90°. To leave the anglef of all

r

Fig. 2. Vector model for a particle with total angular momentumj 1t , z
component equal toj 1z , and component on thexy plane equal toj 1xy .
988A. Morales and A. Amaya-Tapia
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vectors undetermined, the whole figure can rotate rando
around thez axis. The triangle shown in Fig. 4 is the same
that obtained by addition with the usual vector model, b
note that allz projections in the figure are fixed since it is n
permitted that individual angular momentum vectors rot
around the resultant.

At this stage, the failure of the VM to pass Gasiorowicz
test can be understood: It is produced by the artificial c
striction imposed on the two angular momentum vectors
lie on the same plane (d50). We name our procedure to ad
angular momenta ‘‘angular coupled addition’’ becaused is a
variable that links the angular momentumxy projections.

Now let us see if by using ACA we may draw all th
vectorial diagrams that correspond to the casej 151 and j 2

51.
The addition of two angular momenta with quantum nu

bersj 151 andj 251 can give a total angular momenta equ
to A6\, &\, or 0; with z components for the first: 2\, \, 0,
2\, and22\; for the second:\, 0, 2\, and 0 for the last,

Fig. 3. ACA addition of the angular momentum for two particles w
quantum numbersj 151, j 251, m151, andm251. The resultant angula
momentum isj t5A6\ with z componentj z52\ and xy componentj xy

5&\. The componentsj xy5&\, j 1xy5\, and j 2xy5\ can have any ar-
bitrary direction but the relative angular position between them must rem
fixed. The angle betweenj 1xy and j 2xy is d590°.

Fig. 4. ACA addition of two angular momenta with quantum numbersj 1

51 and j 251.
989 Am. J. Phys., Vol. 67, No. 11, November 1999
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respectively.~See Gasiorowicz’s book~Ref. 10!, or any other
reliable text on modern physics or quantum mechanics.!

In Fig. 5, six of the nine cases are shown indicating
quantum numbersm1 andm2 that correspond to thez com-
ponentsm1\ andm2\ of the angular momenta of each pa
ticle. The three remaining cases not shown~corresponding to
m522 andm521!, are the negativez component version
of some of the above. The well-definedj xy component for
each particle~namedj 1xy and j 2xy! is also shown. The quan
tum numbersj andm for the total angular momentum and th
length j t5\Aj ( j 11)5( j z

21 j xy
2 )1/2 of the resultant momen

tum are shown for each case. The value of the totalz com-
ponent j z in terms of the individual components is simp
j 1z1 j 2z . All lengths of the components are in units of\.

In all figures the ACA is applied in order to find the ang
d that matches the results with the quantum theory. As in
cated in the figures, in all cases it was possible to find t
angle, except the case in Fig. 5~d1!, which corresponds toj
52, m50, m151, andm2521. Note that Fig. 5~a! corre-
sponds to Gasiorowicz’s case already discussed.

III. THE QUANTUM BASIS OF THE VECTOR
MODEL

The physical variables like angular momentum are rep
sented as operators in quantum mechanics and their pro
ties are expressed in terms of relations among them.
what we wish to represent geometrically are relations am
eigenvalues, not among operators. The eigenvalues are
quantities which may be measured from a physical syste

in

Fig. 5. ACA applied to six of the nine possible combinations for the ad
tion of the angular momenta of two particles with quantum numbersj 1

51 and j 251. The remaining three would correspond toj 52, m522; j
52, m521 and j 51, m521. All lengths are in units of\.
989A. Morales and A. Amaya-Tapia
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Let us begin our discussion by remembering that the n
commutativity of the Cartesian angular momentum com
nentsĴx , Ĵy , and Ĵz ~boldface with caret means operato!,
i.e.,

@ Ĵx ,Ĵy#5 i\ Ĵz ,

@ Ĵy ,Ĵz#5 i\ Ĵx , ~1!

@ Ĵz ,Ĵx#5 i\ Ĵy ,

implies that no common eigenfunctions can be found for t
of them. The immediate consequence of this fact is that
not possible to obtain from the operator equation~the arrow
means vector!

J¢̂5 iĴx1 jĴ y1kĴz , ~2!

the equation relating eigenvalues~ERE!: JW5 iJx1 jJy1kJz ,

whereJa with a5x,y,z would be the eigenvalues ofĴa and

JW the eigenvalue ofJ¢̂; i, j , andk are the unit vectors. Since i
it were possible to get a common eigenfunctionFÞ0 for all

Ĵa , then Eq. ~2! applied to this function would give the
above ERE. Similarly, it is not possible to obtain from t
operator equation

J¢̂•J¢̂5 Ĵ25 Ĵx
21 Ĵy

21 Ĵz
2 ~3!

the corresponding ERE:J25Jx
21Jy

21Jz
2.

The above considerations are a way to understand why
eigenvalue of angular momentum cannot be represented
vector in quantum mechanics.

In general one can say that it is possible to write the E
f (Pb)50, with b51,2,..., andPb the corresponding eigen

value of P̂b , such that it preserves the form of the opera

equation: f (P̂b)50, if the operatorsP̂b have a common
eigenfunction. Equations~2! and ~3! are examples in which
there are no corresponding ERE. On the contrary, w
quantum operators commute, the ERE is not forbidden, s
a common eigenfunction for them may exist.

For instance, let us analyze the following operator eq
tions:

J¢̂xy5 iĴx1 jĴ y , ~4!

Ĵ25 Ĵxy
2 1 Ĵz

2, ~5!

whereĴxy
2 5 Ĵx

21 Ĵy
2.

Since Ĵx and Ĵy do not commute, the first operator equ

tion does not admit the EREJW xy5 iJx1 jJy and the anglef
5tan21(Jy /Jx) is undetermined.

To analyze Eq.~5! let us remember that the operatorsĴ2

andĴz commute, and have the eigenfunctionsc jm that satisfy
the eigenvalue equations

Ĵ2c jm5 j ~ j 11!\2c jm , Ĵzc jm5m\c jm ,

with eigenvaluesj ( j 11)\2 andm\. j andm are integers or
half integers andm5 j , j 21,...,2 j .

Since Ĵ2 and Ĵz
2 commute, any two operators in Eq.~5!

also commute. It is easy to show that any common eig
function of those operators is also an eigenfunction of
operatorĴxy

2 . Indeed, denotingĴxy
2 as the eigenvalue ofĴxy

2

990 Am. J. Phys., Vol. 67, No. 11, November 1999
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and applying the operator Eq.~5! to one of these eigenfunc
tions,c jm , the following eigenvalue equation is obtained:

Ĵxy
2 c jm5~J22Jz

2!c jm ,

and hence the ERE

J25Jxy
2 1Jz

2. ~6!

Because it will be useful later, let us generalize the p
ceding result, recalling that any operator expressed as
addition of commuting operators also commute with the
and any common eigenfunction of them is also an eigenfu
tion of the former.

Interpreting Eq. ~6! as the Pythagorean theorem, i
graphical representation is a triangle. This triangle is tha
Fig. 2, sinceJ2 corresponds toj 1t

2 , Jxy
2 to j 1xy

2 , Jz
2 to j 1z

2 , and
cosu5Jz/J. Note that Eq.~6! is obtained from a quantum
consideration; therefore it is a quantum equation that has
same form as the classical one.

To summarize the above discussion we can say that
possibility of drawing a classical-like geometrical diagra
as that of the Fig. 2, is derived from the commutativity of
associated quantum operators. In other words, the tria
with angleu in Fig. 2 can be considered as a correct quant
diagram since it was obtained from a quantum equation
Sec. IV, we will extend this consideration to the addition
angular momenta.

IV. ANGULAR MOMENTA ADDITION WITH THE
ACA

For our study of the ACA we are interested in a syste
composed of two independent angular momenta, like the
bital angular momentum of particle 1 and that of particle
or like the angular momentum of a particle and its spin. F
the purposes of this discussion, we use the two particle
tem, it being understood that the conclusions apply to b
systems.

The operator associated with the total angular momen
is

J¢̂5J¢̂11J¢̂2 ,

where J¢̂1 and J¢̂2 are the angular momentum operators a
sociated with particle 1 and particle 2, respectively. Expre
ing the operators of the previous equation in terms
their Cartesian components, we get for thez componentĴz

5 Ĵ1z1 Ĵ2z .

The four commuting operatorsĴg
2 and Ĵgz , whereg51,2,

satisfy the eigenvalue equations

Ĵ1
2c j 1m1

5 j 1~ j 111!\2c j 1m1
, Ĵ1zc j 1m1

5m1\c j 1m1
,

Ĵ2
2c j 2m2

5 j 2~ j 211!\2c j 2m2
, Ĵ2zc j 2m2

5m2\c j 2m2
;

where j g and mg are integers or half integers andmg

5 j g , j g21,...,2 j g . The system of two particles can be re
resented by a linear combination of products of the eig
functions, which are,c j 1m1

c j 2m2
. This set of functions forms

a basis set which is called the uncoupled representation
If, instead, one measures the square and thez component

of the total angular momentum, and the squared magnit
of each individual angular momentum, one gets the eigen
990A. Morales and A. Amaya-Tapia
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ues of the four commuting operatorsĴ25(J¢̂11J¢̂2)2, Ĵz , Ĵ1
2,

and Ĵ2
2. The eigenvalue equations for the first two operat

are

Ĵ2c jm j1 j 2
5 j ~ j 11!\2c jm j1 j 2

,

Ĵzc jm j1 j 2
5m\c jm j1 j 2

,

where j 5 j 11 j 2 , j 11 j 221,...,u j 12 j 2u, and m52 j ,...,1 j .
Their eigenfunctions form a basis set called the coupled
resentation. It is important to remember thatĴ1z and Ĵ2z do

not commute withĴ2.

Ĵ2 can be expressed as

Ĵ25 Ĵ1
21 Ĵ2

212J¢̂1•J¢̂2 . ~7!

According to discussion in the former section, the opera

2J¢̂1•J¢̂2 has common eigenfunctions with the operatorsĴ2,

Ĵ1
2, and Ĵ2

2. Then, it is possible to write the following ERE

J25J1
21J2

212~J¢̂1•J¢̂2!e , ~8!

where (J¢̂1•J¢̂2)e is the eigenvalue of the operator in parenth
ses. This equation admits a geometrical interpretation as

law of the cosines by noting that (J¢̂1•J¢̂2)e can be written as
J1J2 cosg.

The graphical representation of Eq.~8! is the well-known
triangle used to add angular momenta, i.e., the vector a
tion model. Like Eq.~6!, Eq. ~8! is also obtained from a
quantum consideration, therefore the geometrical represe
tion of the involved quantum variables is a correct one.

Now let us focus our attention on Fig. 3. The eige
values represented in this figure areJ2, J1xy , J2xy , J1z , J2z ,
and the angled. Using Eq.~4!, and defining the operatorĴ

•xy
as

Ĵ
•xy5J¢̂1xy•J¢̂2xy5 Ĵ1xĴ2x1 Ĵ1yĴ2y , ~9!

which is related to the angled of ACA, Ĵ2 can be written as

Ĵ25~J¢̂1xy1kĴ1z1J¢̂2xy1kĴ2z!
2

5 Ĵ1xy
2 1 Ĵ2xy

2 12Ĵ
•xy1 Ĵ1z

2 1 Ĵ2z
2 12Ĵ1zĴ2z . ~10!

We note that this operator equation would involve all t
mentioned eigenvalues if a common eigenfunction were
exist for operators in Eq.~10!. SinceĴ2 does not commute
with all the operators to the right, it will not be possible
general to write the corresponding ERE,

J25J1xy
2 1J2xy

2 12~ Ĵ
•xy!e1J1z

2 1J2z
2 12J1zJ2z , ~11!

of which the graphical representation is Fig. 3, where (Ĵ
•xy)e

is the eigenvalue of the operator in parentheses. Then, ap
ently, the ACA as shown in Fig. 3 is not a correct graphi
representation. To show that this is not the case, and to
plain Figs. 3 and 5, we need first to describe the oper
Ĵ
•xy .

As shown in the Appendix, this operator andĴz , Ĵ1
2, and

Ĵ2
2, form a set of four commuting operators. We write t

eigenvalue equation of the new operator as
991 Am. J. Phys., Vol. 67, No. 11, November 1999
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Ĵ
•xycJ

•xym j1 j 2
5J

•xy\
2cJ

•xym j1 j 2
, ~12!

with ( Ĵ
•xy)e5J

•xy\
2.

In units of\ the eigenvalues for their nine common eige
functions, when j 151 and j 251, are J

•xy521,
21,0,0,0,1,1,2&,&. The eigenfunctions form a basis s
named ‘‘angular coupled representation.’’ As we will s
later, this basis set is well adapted to discuss the angled. To
make the connection between quantum mechanics and
ACA simpler, in what follows we will restrict the discussio
to the case whenj 151 and j 251, as in the previous figures
Note that these two quantum numbers are common to
three representations.

As we have three basis sets of eigenfunctions, any fu
tion taken from one set can be expanded as a linear com
nation of the functions taken from another set. We show
matrices that connect the three possible pairs of basis se
Tables I, II, and III~see the appendix!. From Tables I to III
we can expand any coupled state in terms of uncoupled
angular coupled states, and from Table IV we can calcu
the result of applying the operatorĴ

•xy to any uncoupled
state.

With these tools we proceed to analyze Fig. 5. We ad
the notationun1 ,n2&s for the state vectors, wheres5u,c,a;
n15m1 , j ,J

•xy ; n25m2 ,m,m, for the uncoupled, coupled
and angular coupled representations, respectively. For
next discussion, eigenvalues will be in units of\.

Let us consider in detail Fig. 3@Figs. 4 and 5~a! show the
same case#, which represents the casej 52, m52. From the
tables we can see that the expansion of the coupled s
u2,2&c in any of the other two bases reduces to only one te

u2,2&c5u1,1&u5u0,2&a .

This state is a common eigenfunction for the three repres
tations and consequently all quantum numbers for the th
representations are well defined, allowing us to drawj 1z ,
j 1xy , j 2z , j 2xy , j z , j xy , and j t , as was done in Figs. 3, 4
and 5~a!. Since there is a common eigenfunction for all t
operators in Eq.~10!, Eq. ~11! is a correct relation. We can
understand this by noting that although operators in Eq.~10!
do not commute in general they commute for this particu
state. Once again the ERE allows us to find the graph
representation, since Eq.~11! describes the relations betwee
the sides of the triangles in Fig. 3.

When discussing the vector model, textbooks norma
present a diagram where the vectors of the individual ang
momenta are precessing around the resultant vector~see, for
instance, Zare, Ref. 3, p. 52!. This precession is introduce
to have an indeterminacy of the individualz components.
Note that for the particular case just discussed, the diag
in Zare’s book would be incorrect because thez projections
of the angular momentum vectors of each particle are w
defined. If it is desired to show graphically the indetermina
in the x andy components, it is the whole Fig. 3~or Fig. 4!
that may rotate around thez axis.

What remains is to calculate the angle between thexy
plane components, which can be obtained using the va
J
•xy50. Indeed, since

Ĵ
•xyu2,2&c5 Ĵ

•xyu1,1&u5 Ĵ
•xyu0,2&a50u0,2&a ,
991A. Morales and A. Amaya-Tapia
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Table I. Transformation matrix between the uncoupled basis and the coupled basis.

j m

m1m2

1 1 1 0 0 1 121 0 0 21 1 21 0 0 21 21 21

2 2 1 0 0 0 0 0 0 0 0

2 1 0
1

&

1

&
0 0 0 0 0 0

1 1 0 2
1

&

1

&
0 0 0 0 0 0

2 0 0 0 0
1

A6
A2

3

1

A6
0 0 0

1 0 0 0 0
1
&

0 2
1

&
0 0 0

0 0 0 0 0
1

)
2

1

)

1

)
0 0 0

1 21 0 0 0 0 0 0 2
1

&

1

&
0

2 21 0 0 0 0 0 0
1

&

1

&
0

2 21 0 0 0 0 0 0 0 0 1
the
and noting that for the stateu1,1&u , J1z5J2z51, then using
Eq. ~6! with J1

25J2
252 we obtainJ1xy5J2xy51. Writing the

eigenvalue

J
•xy5J1xyJ2xy cosd,

then J1xyJ2xy cosd50 and we obtain thatd5p/2, which is
in agreement with Fig. 5~a!.

Now let us analyze the case illustrated in Fig. 5~b!, which
corresponds toj 52, m51. We have
hys., Vol. 67, No. 11, November 1999
u2,1&c5
1

&
u1,0&u1

1

&
u0,1&u5u1,1&a . ~13!

Neither thez projections nor thexy projections of the indi-
vidual angular momenta are well defined in this case. On
contrary, the productĴ

•xy is well defined with eigenvalue
equal to one, as can be seen in Table III.

Rewriting Eq.~10! as
Table II. Transformation matrix between the angular coupled basis and the uncoupled basis.

m1 m2

J
•xym

21 21 21 1 0 22 0 0 0 2 121 1 1 2& 0 & 0

1 1 0 0 0 0 1 0 0 0 0

1 0 0 2
1

&
0 0 0 0

1

&
0 0

0 1 0
1

&
0 0 0 0

1

&
0 0

1 21 0 0 0 2
1

&
0 0 0

1

2

1

2

0 0 0 0 0 0 0 0 0 2
1

&

1

&

21 1 0 0 0
1

&
0 0 0

1

2

1

2

21 0 2
1

&
0 0 0 0

1

&
0 0 0

0 21
1

&
0 0 0 0

1

&
0 0 0

21 21 0 0 1 0 0 0 0 0 0
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Table III. Transformation matrix between the angular coupled basis and the coupled basis.

j m

J
•xym

21 21 21 1 0 22 0 0 0 2 121 1 1 2& 0 & 0

2 2 0 0 0 0 1 0 0 0 0
2 1 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 2
1

)
1

1

A6

1

)
1

1

A6

1 0 0 0 0 21 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1

)
1

1

A6

1

)
2

1

A6

1 21 1 0 0 0 0 0 0 0 0
2 21 0 0 0 0 0 1 0 0 0
2 22 0 0 1 0 0 0 0 0 0
s

on

n-

uct

ms

o

s
ult
-

ble

of

us
Ĵ25~ Ĵ1xy
2 1 Ĵ2xy

2 !12Ĵ
•xy1 Ĵz

2, ~14!

and considering the operators grouped by parentheses a
operator, then we note that the state in Eq.~13! is a common
eigenfunction of all the operators in the above equati
making it possible to write the ERE

J25~ Ĵ1xy
2 1 Ĵ2xy

2 !e12J
•xy1Jz

2, ~15!

with ( Ĵ1xy
2 1 Ĵ2xy

2 )e the eigenvalue of the operator in pare
theses.

Indeed, remembering that

Ĵ1xy
2 5~ Ĵ1

22 Ĵ1z
2 !, Ĵ2xy

2 5~ Ĵ2
22 Ĵ2z

2 !, ~16!

then

~ Ĵ1xy
2 1 Ĵ2xy

2 !S 1

&
u1,0&u1

1

&
u0,1&uD

53S 1

&
u1,0&u1

1

&
u0,1&uD .

Also note that~it will be useful later!

Ĵ1xy
2 Ĵ2xy

2 S 1

&
u1,0&u1

1

&
u0,1&uD

52S 1

&
u1,0&u1

1

&
u0,1&uD .
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one

,

Therefore the state also has a well-defined prod
( Ĵ1xy

2 Ĵ2xy
2 )e52 and sum (Ĵ1xy

2 1 Ĵ2xy
2 )e53. Writing the eigen-

value

J
•xy5A~ Ĵ1xy

2 Ĵ2xy
2 !e cosd51,

we can infer thatd545°. This is the value found by ACA
which is shown in Fig. 5~b!.

Note that the eigenvaluesJ1xy and J2xy are not well de-
fined. This is expected sinceJ1z andJ2z are not well defined,
as can be seen from the state in Eq.~13!. We may interpret
this indefiniteness by writing the above eigenvalues in ter
of J1xy and J2xy to get the simultaneous equationsJ1xy

2

1J2xy
2 53, J1xy

2 J2xy
2 52. What we found is that there is n

unique solution, but two of them: for the valueJ1xy51, cor-
responds a value ofJ2xy5&; the other solution correspond
to the inverted values. With these numbers it is not diffic
to see that the ERE in Eq.~15! has its graphical representa
tion in Fig. 5~b!.

The analysis for Fig. 5~c! follows a similar procedure. Fig-
ure 5~e1! and ~e2! corresponds to the casej 51, m50. This
more complicated case is simplified upon observing in Ta
I that the coefficient for the stateu0,0&u is zero. Then, dis-
carding Fig. 5~e2!, the analysis becomes similar to that
Fig. 5~b! and ~c!.

What about Fig. 5~d1! and ~d2! for j 52, m50? From
Tables I and III, the expansion of the coupled state gives
Table IV. Matrix elements ofĴ
•xy between uncoupled states.

m1 m2

m1m2

1 1 1 0 0 1 121 0 0 21 1 21 0 0 21 21 21

1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
1 21 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0

21 1 0 0 0 0 1 0 0 0 0
21 0 0 0 0 0 0 0 0 1 0

0 21 0 0 0 0 0 0 1 0 0
21 21 0 0 0 0 0 0 0 0 0
993A. Morales and A. Amaya-Tapia
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u2,0&c5
1

A6
u1,21&u1A2

3
u0,0&u1

1

A6
u21,1&u

5S 1

)
1

1

A6
D u&,0&a1S 21

)
1

1

A6
D u2&,0&a .

For this case neither the scalar productĴ
•xy nor the indi-

vidual z components are well defined. The former magnitu
can have the values6&, and the latter 1, 0, and21. This
explains that we cannot find a picture for the~d1! case and
shows that Fig. 5~d2! is incorrect. A similar analysis can b
made for Fig. 5~f1! and ~f2!.

For these cases, the ACA loses its use and we cannot d
a picture. Even in the cases when a drawing can be m
@Fig. 5~e2!, ~d2!, ~f1!, and~f2!#, it is meaningless.

V. DISCUSSION

In Sec. IV it was shown that the cases where the AC
gives a correct graphical representation of the addition
two angular momenta, correspond to the existence of a c
mon eigenfunction of operators that do not commute in g
eral. For instance, the stateu2,2&c5u1,1&u5u0,2&a is a com-

mon eigenfunction for the noncommutative operatorsĴ2,

Ĵ1z , Ĵ2z , and Ĵ
•xy . Applying the commutators of Eqs.~A4!

and ~A5! of the Appendix to that state, we obtain for th
particular case a null result for each one~note thatĴ1z and

Ĵ2z always commute!. Therefore these operators can ha
that common eigenfunction, and also for this case the A
works especially well since all the magnitudes involved
well defined@see Fig. 5~a!#. Gasiorowicz’s example is one o
these cases.

A generalization of the ACA to other angular momentu
quantum numbers can be made by observing that the c
mutators were canceled because the stateu2,2&c5u1,1&u

5u0,2&a has extremum values for both quantum numbersm1

and m2 ~m15m251 are extremum sincej 15 j 251!. Ex-
pression~A2! shows that forma5 j a the raising operator
gives a null value. Similarly forma52 j a the lowering op-
erator also gives a null value. With this consideration, it
not difficult to verify that all those commutators@in Eqs.
~A4!–~A7!#, are canceled when numbersm1 andm2 are both
maximum or both minimum. Then those commutators
canceled when they are applied to any state with those
tremum values ofm1 andm2 . For those states all eigenva

ues of the operatorĴ
•xy are null, as can be seen from E

~A3!. Then expressing these eigenvalues asJ1xyJ2xy cosd we
obtain d590° for any state with extremum valuesm1 and
m2 . Hence the ACA drawing is correct, from the point
view of quantum mechanics, for any angular moment
with maximum projection.

As an example of the above assertion, the interested re
can easily verify its validity by adding the angular momen
for two spin 1/2 particles, to obtain the statesu1,1& or u2,2&
of the triplet. For these cases the ACA works well and p
dicts d590°.

With respect to the statesu2,1&c , u1,1&c , and u1,0&c that

also admitted a useful drawing, the commutators@ Ĵ2,Ĵ
•xy#,

@ Ĵ2,Ĵ1xy
2 Ĵ2xy

2 #, @ Ĵ
•xy ,Ĵ1xy

2 Ĵ2xy
2 #, @ Ĵ

•xy ,Ĵ1xy
2 1 Ĵ2xy

2 #, and

@ Ĵ2,Ĵ1xy
2 1 Ĵ2xy

2 # are null, but@ Ĵ2,Ĵ1z#, @ Ĵ2,Ĵ2z# are not null.
Whereas foru2,0&c and u0,0&c that did not admit a usefu
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drawing, all are different from zero. All these facts clear
show that the possibility of making correct drawings with t
ACA depends on the particular commutativity of the ope
tors.

To review some of the results just discussed, let us n
that one particular commutativity allows an operator eq
tion to change in an ERE. For instance, when the comm
tors in Eq.~1! are applied to the eigenfunction withj 15 j 2

50, a null result is obtained. Then, the operators in the eq
tion

Ĵ25 Ĵ1x
2 1 Ĵ1y

2 1 Ĵ1z
2 1 Ĵ2x

2 1 Ĵ2y
2 1 Ĵ2z

2

12Ĵ1xĴ2x12Ĵ1yĴ2y12Ĵ1zĴ2z , ~17!

obtained developing Eq.~7!, commute between them whe
applied to that state withj 1505 j 2 . Applying both sides of
Eq. ~17! to this state give us the corresponding ERE,

J25J1x
2 1J1y

2 1J1z
2 1J2x

2 1J2y
2 1J2z

2

12J1xJ2x12J1yJ2y12J1zJ2z . ~18!

Of course all the numerical values of the above eigenv
ues are zero and the picture associated with the latter e
tion reduces to one point.

Following the same reasoning that we have just applied
the above trivial case, we also realize that the operatorsĴ2,

Ĵ1xy
2 , Ĵ2xy

2 , Ĵ
•xy , Ĵ1z

2 , Ĵ2z
2 , Ĵ1z and Ĵ2z commute between

them when applied to the states in which quantum numb
m1 andm2 are both extremum. If we associate the operat

addition Ĵ1x
2 1 Ĵ1y

2 as Ĵ1xy
2 , Ĵ2x

2 1 Ĵ2y
2 as Ĵ2xy

2 and 2Ĵ1xĴ2x

12Ĵ1yĴ2y as 2Ĵ
•xy in Eq. ~18!, then all the operators in the

rearranged equation@see Eq.~10!# commute amongst them
selves when applied to these states. The picture assoc
with the corresponding ERE@see Eq.~11!# for the casej 1

5 j 251 is shown as Fig. 5~a!.
Continuing with this line of reasoning we also demo

strate that the operatorsĴ2, Ĵ1xy
2 1 Ĵ2xy

2 , Ĵ
•xy andĴz

2 commute
amongst themselves when applied to the stateu1,0&m

1u0,1&m ~of course they also commute when applied to t
above-mentioned states with extremum quantum numbe!.
If we make a new rearrangement of Eq.~18! by associating
operatorsĴ1xy

2 1 Ĵ2xy
2 andĴ1z

2 1 Ĵ2z
2 12Ĵ1zĴ2z asĴz

2, we get the
operator Eq.~14! and its corresponding ERE, Eq.~15!. The
geometrical interpretation of this equation is shown in F
5~b!. A similar analysis can be made for the case shown
Fig. 5~c!.

Finally we recall that the operatorsĴ2, Ĵxy
2 , and Ĵz

2 com-
mute for states with any quantum numbers. A new rearran
ment of Eq.~18! by addingĴ1xy

2 1 Ĵ2xy
2 and 2Ĵ

•xy asĴxy
2 leads

us to the operator Eq.~5! and its corresponding ERE, Eq.~6!,
whose graphical representation is Fig. 2. Similarly, a re
rangement of Eq.~18! produces the operator Eq.~7! which
has its corresponding ERE Eq.~8!, whose graphical repre
sentation is just the vector addition model.

VI. SUMMARY AND CONCLUSIONS

In this article we first generate some empirical graphi
representations of angular momentum relations. These re
sentations lead us to define the new operatorĴ

•xy. Then we

construct a CSCO with this and the operatorsĴz , Ĵ1
2, Ĵ2

2.
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With this set we were able to show that the angled which
emerged from the empirical analysis is a physical variable
quantum mechanics. Finally we show that particular comm
tativity of the operators allows classical-like graphical rep
sentations of the addition of quantum angular momenta.

In addition, it is shown that the classical-like graphic
representations, or pictures as they are usually called, o
quantum angular momentum are diagrams with a limited
lidity. However, in this article we find that they give a co
rect representation for some specific cases, which are
lyzed in this work.

The discussion allows an understanding of the origin
the vector model and, what is more important, leads to a
appreciation of the power of the theory of angular mom
tum. Besides, we think that with the elements provid
through the development of this work, the ambiguo
phrases used in textbooks referring to the inadequacy of
vector model could be substituted by a more precise desc
tion.

Furthermore, the analysis of the ACA made in this wo
shows vividly the fundamental role played by the commu
tion relations in quantum mechanics; it also shows that
vector model can represent all the relations among ang
momentum variables as quantum theory does.

We believe that this analysis gives students some n
additional elements to have a better appreciation of the
portant role played by the commutation relations in the qu
tum theory, and also to gain a better insight into the elem
tary angular momentum theory.

ACKNOWLEDGMENT

This work was supported by Conacyt, Me´xico, Project No.
1095P-E.

APPENDIX

In this Appendix we calculate the commutation relatio
ships among the set of operators that generate the an
coupled basis as well as the transformation matrices betw
different bases forj 151 andj 251. All results are expresse
in units of \.

As the operatorĴ
•xy can be written equivalently a

Ĵ1xĴ2x1 Ĵ1yĴ2y and the commutation relations between t

Cartesian components ofĴa and Ĵa
2 ~see Cohen-Tannoud

et al., Ref. 1!,

@ Ĵa
2,Ĵab#50,

wherea51,2 andb5x,y,z; then the commutators

@ Ĵ
•xy ,Ĵa

2 #5@ Ĵ1xĴ2x1 Ĵ1yĴ2y ,Ĵa
2 #

5@@ Ĵ1x ,Ĵa
2 # Ĵ2x1@ Ĵ1y ,Ĵa

2 # Ĵ2y#50;

and

@ Ĵ
•xy ,Ĵz#5@ Ĵ1xĴ2x1 Ĵ1yĴ2y ,Ĵ1z1 Ĵ2z#

5 Ĵ1x@ Ĵ2x ,Ĵ2z#1@ Ĵ1x ,Ĵ1z# Ĵ2x

1 Ĵ1y@ Ĵ2y ,Ĵ2z#1@ Ĵ1y ,Ĵ1z# Ĵ2y

52 Ĵ1xĴ2y2 Ĵ1yĴ2x1 Ĵ1yĴ2x1 Ĵ1xĴ2y50.
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Note that the commutativity of the operators correspond
to different particles was taken into account. Finally t
commutator

@ Ĵa
2,Ĵz#50.

We can conclude that the four operatorsĴ
•xy , Ĵz , Ĵ1

2, and

Ĵ2
2 commute by pairs and form a CSCO for our system

two particles. They generate the angular coupled basis
wave functions.

Now we proceed to look at the transformations betwe
the basis sets used in the main text. The transformation
trix between the uncoupled and coupled representat
~Clebsch–Gordan coefficients!, is calculated in severa
places ~see, for instance, Zare, Ref. 3, and Schulten a
Gordon11! and is reproduced in Table I. This matrix, calle
U, satisfies the equation

MC5UMU , ~A1!

whereMC andMU are column vectors with elementsu j ,m&c

and um1 ,m2&u , respectively.
Now we will develop some relations that are useful for t

main text and for the calculation of the transformation m
trices.

Defining the operators

J¢̂1xy5 iĴ1x1 jĴ1y , J¢̂2xy5 iĴ2x1 jĴ2y ,

and using the raising and lowering operators~also known as
spherical components! of Ĵa , which can be written as

Ĵa65 Ĵax6 i Ĵay ,

with

Ĵa6u j ama&5Aj a~ j a11!2ma~ma61!u j ama61&,
~A2!

andu j ama& the individual angular momentum with the usu
quantum numbersj a and ma ; we can show that the scala
product

J¢̂1xy•J¢̂2xy5 Ĵ
•xy5 Ĵ1xĴ2x1 Ĵ1yĴ2y

5 1
4@~ Ĵ111 Ĵ12!~ Ĵ211 Ĵ22!

2~ Ĵ112 Ĵ12!~ Ĵ212 Ĵ22!#

5 1
2~ Ĵ11Ĵ221 Ĵ12Ĵ21!. ~A3!

With J¢̂5J¢̂11J¢̂2 , Ĵ1xy
2 5 Ĵ1x

2 1 Ĵ1y
2 , Ĵ2xy

2 5 Ĵ2x
2 1 Ĵ2y

2 and pre-
vious definitions, and after some algebra, we can obtain
following commutators:

@ Ĵ2,Ĵ1z#52@ Ĵ2,Ĵ2z#52@ Ĵ
•xy ,Ĵ1z#

522@ Ĵ
•xy ,Ĵ2z#

5 Ĵ12Ĵ212 Ĵ11Ĵ22 , ~A4!

@ Ĵ2,Ĵ
•xy#5~ Ĵ2z2 Ĵ1z!@ Ĵ2,Ĵ1z#12Ĵ

•xy

5~ Ĵ1z2 Ĵ2z!@ Ĵ2,Ĵ2z#12Ĵ
•xy , ~A5!
995A. Morales and A. Amaya-Tapia



@ Ĵ2,Ĵ1xy
2 Ĵ2xy

2 #52@ Ĵ
•xy ,Ĵ1xy

2 Ĵ2xy
2 #

5 1
4~ Ĵ11

2 Ĵ12Ĵ22
2 Ĵ211 Ĵ11

2 Ĵ12Ĵ22Ĵ21Ĵ221 Ĵ11Ĵ12Ĵ11Ĵ22
2 Ĵ211 Ĵ12

2 Ĵ11Ĵ21
2 Ĵ22

2 Ĵ12Ĵ11
2 Ĵ21Ĵ22

2 1 Ĵ12Ĵ11Ĵ12Ĵ21
2 Ĵ221 Ĵ12

2 Ĵ11Ĵ21Ĵ22Ĵ212 Ĵ11Ĵ12Ĵ11Ĵ21Ĵ22
2

2 Ĵ12Ĵ11
2 Ĵ22Ĵ21Ĵ222 Ĵ11Ĵ12

2 Ĵ22Ĵ21
2 2 Ĵ11Ĵ12

2 Ĵ21Ĵ22Ĵ212 Ĵ12Ĵ11Ĵ12Ĵ22Ĵ21
2 !, ~A6!

@ Ĵ2,Ĵ1xy
2 1 Ĵ2xy

2 #52@ Ĵ
•xy ,Ĵ1xy

2 1 Ĵ2xy
2 #52Ĵ11Ĵ2zĴ2222Ĵ11Ĵ1zĴ221 Ĵ1zĴ12Ĵ212 Ĵ12Ĵ21Ĵ2z . ~A7!
n
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-
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cs

’’ J.
By using the matrix elements of the spherical compone
in the uncoupled basis which can be calculated from
~A2!, we can directly obtain the matrix elemen

^m28m18uĴ•xyum1m2&. The result forj 151 and j 251, which
we call matrixC, is shown in Table IV. Also we defineMU

† ,
as a row vector with elements^m2m1u. We can diagonalize

matrix C by multiplying the operatorĴ
•xy both to the left and

to the right by the unit matrixBB21, so that

B21Ĵ
•xyB5J

•xyI ,

whereI is the unit matrix. The solution of this equation give
rise to the eigenvaluesJ

•xy @written below Eq.~12!# and the
eigenvectors which we may callMA . The matrixB, shown
in Table II, connects the uncoupled and the angular coup
bases:

MU5BMA .

Introducing this expression into Eq.~A1!, the transformation
matrix A relating the coupled and the angular coupled bas
is obtained as

MC5U~BMA![AM A .
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MC is a column matrix with elementsu j ,m&c . The explicit
form of matrix A is written in Table III.
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REAL SCIENCE IS HARD

The work of real science is hard and often for long intervals frustrating. You have to be a bit
compulsive to be a productive scientist. Keep in mind that new ideas are commonplace, and
almost always wrong. Most flashes of insight lead nowhere; statistically, they have a half-life of
hours or maybe days. Most experiments to follow up the surviving insights are tedious and
consume large amounts of time, only to yield negative or~worse!! ambiguous results.

Edward O. Wilson, ‘‘Scientists, Scholars, Knaves and Fools,’’ Am. Scientist86 ~1!, 6–7 ~1998!.
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