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We perform an analysis of a graphical representation for the addition of two angular momenta,
focusing our attention on the angkbetween thexy components of two angular momenta. Then we
propose a new complete set of commuting observables, which differ from the usual sets that are
connected by the Clebsch—Gordan coefficients. This set shows that theaaglbe a well-defined
variable in quantum mechanics. An empirical analysis of the graphical representations of the angular
momenta relations, which may include the angjléollowed by quantum mechanical considerations,
leads to the vanishing of certain quantum angular momentum commutators for specific states.
Therefore, although the commutators are not null in general, the quantum addition of angular
momenta may be represented using classical-like diagrams199® American Association of Physics
Teachers.

[. INTRODUCTION graphical representations of the VM can be derived from the
values of the commutators between angular momentum op-

Nowadays it is a well-established practice in modern€rators. ) ) _
physics courses to introduce the quantum theory of angular We would like to address the following question: How do
momentum as early as possible instead of the vector modéPmmutation relations in quantum mechanics allow some
of the atom(VM). This is possible to some extent becausedraphical representations but exclude many others? To an-

now students become acquainted with the mathematical toofVer this question we will begin the analysis of a statement
used in this theory almost from the beginning of their stud-2Pout the VM made in Gasiorowicz’s bookThis discus-

ies. But to a large extent it is the proven capability of theSion will lead to an extension of the VM into a graphical
quantum theory of angular momentum to describe mattef€Presentation that we name “angular coupled addition

which has caused the VM to decline from the panorama of ACA)- We will start playing empirically with the ACA and
modern physics. then we will analyze it from the point of view of quantum

Nevertheless, quantum mechanics bo@e, for instance, physics. ACA is not truly important in itself, tho_ugh it giyes
Cohen-Tannoudiét al,* Schiff2 and Zaré) usually include  US thé opportunity to apply quantum mechanics to simple

a brief mention of the vector model of the atom when dis-€X@MPples, which show pedagogically the importance of the
cussing angular momentum. Cohen-Tannougljial. (pp. co_r}nmutatlmn rtehlatlggim th'f.s t?eory. d the basi ¢
668—670 discuss briefly why that model has some realistic 0 analyze the we Tirst reproduce the basic aspects

aspects and also describe its limitations. Zépp. 12—17 of quantum mechanics that are useful to explain the VM.
§ ' Then we propose a complete set of commuting observables

discusses the applicability of the VM to systems with large . : .

. (CSCO well adapted to describe the ACA. This set is not
angular momentum. Biedenharn and Lo‘bEIa[so use the discussed in textbooks. It differs from the ordinary set asso-
VM to d'S.Cl.JSS the physical interpretation of Wigner and Ra'ciated with the Clebsch—Gordan coefficients in that the
cah coefficients. square of the total angular momentum of two particles is

Although in some specialized treatise®Brink and :
: 7 : . replaced by the scalar product defined by EJ. The sub-
Satchler? Varshalovichet al.) the VM is scarcely or simply sequent analysis of the transformation matrix between the

not mentioned, some recently written texts include the VMbasis functions of this set and the basis functions of the or-

as in Harter's booR. This author uses the VM to illustrate dinary sets, explains why and when the ACA will give a
o Tcorrect graphical representation of the addition of two angu-
the study of molecular systems with high angular momenta;- momenta. Furthermore we show that some of the correct

As can be seen, the VM is siill presented in many intro-aca geometrical relations in the example discussed in this
ductory and advanced courses. We can understand this if Weticle (j, =1, j ,= 1), are also well-founded in quantum me-

recall that in the evolution of the angular momentum theory’chanics for any couplg;,j, of quantum numbers. Most im-
as in many other theories in physics, empirical knowledg

: : ortant, the discussion demonstrates that the particular com-
came first and later on a general theory organized and ex:

plained the multitude of empirical facts. We think that in theth:tg{r‘;gﬁiggr V;’:;rgggriggas is at the heart of the validity of
frame of this transformation the VM has changed from an '
empirical model to a graphical representation of the 9€0}; VECTOR MODEL

metrical interpretation of well-founded facts in quantum me- "

chanics. In this sense we understand Wigner's assertion: In one of his books, Gasiorowicsee Ref. 10, p. 293
“This ‘vector addition model’ is of very general validity.*  suggests the impossibility of getting a correct answer when

In this article we will demonstrate that the validity of some the VM is used to add quantum angular momentum. He uses
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0 ~ Fig. 2. Vector model for a particle with total angular momentiyn, z
component equal tp,,, and component on they plane equal tgy, .
el LS
z the size of the projection of the angular momentum into the
Xy planej 1y = /] 12t_121z is also a well-defined magnitude, in
this case equal té.
0 In order to add two angular momenta using the vector

model, there is no difficulty in calculating ttecomponent
because that component is the sum of the tvpoojections:
iz=112F ]2z, but the situation is less clear for the two com-
ponentsj,,, and j,,. If their angular positions are not
known, how can they be added?

_ _ _ B L Let us try to answer this question with the following
Fig. 1. N_me pos_5|ble positions forth_e addition gf the angular momentum forproposition: Add these two components maintaining the
two particles with quantum numbejs=1 andj,=1. The magnitude of . . S
each angular momentum &% and the value of the projections aret, 0, angle 6 between the Ixy and J_2><y pro;ectlon.s_ constant, but
and—#. According to the VM the value of the angular momentum addition Still allow them to change their angular position randomly. In
corresponding to @ component equal to/2is 2v24; quantum theory pre-  this way, the resultant and the two projections have a fixed
dicts a value of,/6%. angular position among them, but note that this proposition

does not fix the angle either for the individual projections
or for the resultant one.
N ~ Later on we will show that this angléis well defined in
as an example the addition of two angular momenta wittyuantum mechanics. But before doing this, let us figure out
quantum number$; =1 andj,=1. According to quantum what angle this is.
mechanics each momentum has a valug,(j; +1)=v2%, Quantum mechanics predicts a resultant angular momen-
i=1,2, andmust have & component equal to one of the tumj,=#/j(j+ 1)= /6% when the resultart component is
following values:#, 0, —#; where is Planck’s constant j,=2% and the individual angular momenta have quantum
divided by 2r. In Fig. 1 the argument from Gasiorowicz is numbersj;=1 andj,=1. To fit the VM to this quantum
illustrated: From the nine possible addition arrangements oprediction, angles must be 90°, as shown in Fig. 3. For
the two momenta, there is no way to obtain a vector suns=90° the resultant values for the angular momenta are:
with a z component equal tofi2and with a length equal to iy =V2h, j, =24, andj,=#%j(j+1)= 6%, which corre-
#i\2(2+1)= 6%, which corresponds to the total angular spond to the quantum numbejs=2 andm=2.
momentum with a quantum numbgr=2 andz projection Figure 4 shows another view of the vectors in Fig. 3. The
equalto z. . vector for the angular momentum of the first partitde the
Now, we will show that a small change in the VM makes zy plang is the same as in Fig. 1; but now the vector for the
the ab_ove statement, in the case discussed by Gasiorowicgngular momentum of the second particle can move on the
not quite accurate. surface of the cone generated by its own movement, while it
Figure 2 shows the so-called vector model for the angulamaintains itz component equal té and the sum of the two
momentum of a particle, which we will call particle 1, with z components equal to%2 In Fig. 1 the same vector was
quantum number$; =1 andm;=1. The magnitude of the restricted to lie on they plane.
angular momenturiy;=#+/j1(j1+1)=v2A and itsz projec- As shown in Fig. 4, there is a position on the cone for the
tion j,,=# are perfectly determined and hence the amgle second vector where the addition of the two angular mo-
However, the angle is completely undetermined and some- menta produces a vector sum with a length equal/éd.
times is considered either as a random variable or changinghis unique position on the corfand its symmetrical real-
continuously as if the angular momentum were precessingation on the negative side of tlxeaxis) corresponds in Fig.
around thez axis. From the same figure it is easy to see tha3 to the angles equal to 90°. To leave the angt of all

=24
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Fig. 3. ACA addition of the angular momentum for two particles with
quantum number$; =1, j,=1, m;=1, andm,=1. The resultant angular
momentum isj,= /6% with z componentj,=2% and xy componentj Xy

my=-1, ma=]
=2

j],\y=1

=0

J Jasy =1

(el)

m=-1, my=1

Jl\)=l

. Rk X Jj=1, m=0 j=0, m=0 j=0, m=0
=v2h. The component$,,=v2#, ji,,=%, andj,,=# can have any ar- Z =0, ma=0 el ma=d Z =0, ma=0
bitrary direction but the relative angular position between them must remain  (e2) (f1) | pmiscter
fixed. The angle betweein,, and |y, is 6=90°.

Jz=0 =0l j=0

Jixy=1{

Pay= 1/ 8= 1807
i

X

vectors undetermined, the whole figure can rotate randomly”—*y:/ﬁi
around thez axis. The triangle shown in Fig. 4 is the same as
that obtained by addition with the usual vector model, but
note that allz projections in the figure are fixed since it is not Fig. 5. ACA applied to six of the nine possible combinations for the addi-

permitted that individual angular momentum vectors rotateion of the angular momenta of two particles with quantum numbers

around the resultant.
At this stage, the failure of the VM to pass Gasiorowicz’s

=1 andj,=1. The remaining three would correspondjte2, m=—2; j
=2, m=—1 andj=1, m=—1. All lengths are in units of:.

test can be understood: It is produced by the artificial con-

striction imposed on the two angular momentum vectors to

lie on the same planeS&0). We name our procedure to add
angular momenta “angular coupled addition” becadss a
variable that links the angular momentwy projections.

Now let us see if by using ACA we may draw all the
vectorial diagrams that correspond to the cpsel andj,
=1.

The addition of two angular momenta with quantum num-

bersj;=1 andj,=1 can give a total angular momenta equal
to \/6%, V24, or 0; with z components for the first2 #, 0,
—h, and —2#; for the second#, 0, —#, and 0O for the last,

X

Fig. 4. ACA addition of two angular momenta with quantum numbjgrs
=1 andj,=1.
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respectively(See Gasiorowicz’'s boolRef. 10, or any other
reliable text on modern physics or quantum mechahics.

In Fig. 5, six of the nine cases are shown indicating the
quantum numbersn; andm, that correspond to the com-
ponentsm;A andm,# of the angular momenta of each par-
ticle. The three remaining cases not shaworresponding to
m=—2 andm= —1), are the negative component version
of some of the above. The well-defingd, component for
each particlénamedj;,, andj ) is also shown. The quan-
tum numberg andm for the total angular momentum and the
lengthj =%+j(j+1)=(jZ+]jZ,)*? of the resultant momen-
tum are shown for each case. The value of the to@dm-
ponentj, in terms of the individual components is simply
j1zt1]2z- All lengths of the components are in units faf

In all figures the ACA is applied in order to find the angle
6 that matches the results with the quantum theory. As indi-
cated in the figures, in all cases it was possible to find this
angle, except the case in Fig.d3), which corresponds tp
=2, m=0, m;=1, andm,=—1. Note that Fig. &) corre-
sponds to Gasiorowicz's case already discussed.

lll. THE QUANTUM BASIS OF THE VECTOR
MODEL

The physical variables like angular momentum are repre-
sented as operators in quantum mechanics and their proper-
ties are expressed in terms of relations among them. But
what we wish to represent geometrically are relations among
eigenvalues, not among operators. The eigenvalues are the
quantities which may be measured from a physical system.
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Let us begin our discussion by remembering that the nonand applying the operator E¢b) to one of these eigenfunc-
commutativity of the Cartesian angular momentum compotions, ¢, , the following eigenvalue equation is obtained:

nentsJ,, J,, andJ, (boldface with caret means operator

e, Bytim= (2= 3) ¥,
[jxvjy]:iﬁjz, and hence the ERE
A =0+ 32 (6)
Ly T2l =10y, @) Because it will be useful later, let us generalize the pre-
[jz,jx]:ihjy, ceding result, recalling that any operator expressed as an

addition of commuting operators also commute with them,

implies that no common eigenfunctions can be found for twoang any common eigenfunction of them is also an eigenfunc-
of them. The immediate consequence of this fact is that it i$ion of the former.

not possible to obtain from the operator equatitire arrow Interpreting Eq.(6) as the Pythagorean theorem, its

means vector graphical representation is a triangle. This triangle is that of
5+ a s Fig. 2, sincel? corresponds t3,, J2 to j2,.., J2toj2,, and
\]=|\]x+JJy+sz- (2) g p q)lt Xy Jlxy z le

cosh=J,/J. Note that Eq.(6) is obtained from a quantum
the equation relating eigenvaluéSRE): j:iJX+ij+ kJ,, consideration; therefore it is a quantum equation that has the

. B . a same form as the classical one.
whereJ,, with “_X;y’z would be the eigenvalues df, and To summarize the above discussion we can say that the

J the eigenvalue od; i, j, andk are the unit vectors. Since if possibility of drawing a classical-like geometrical diagram,
it were possible to get a common eigenfunctibs:0 for all ~ as that of the Fig. 2, is derived from the commutativity of its
3, , then Eq.(2) applied to this function would give the associated quantum operators. In other words, the triangle

above ERE. Similarly, it is not possible to obtain from the With angledin Fig. 2 can be considered as a correct quantum
operator equation ' diagram since it was obtained from a quantum equation. In

Sec. IV, we will extend this consideration to the addition of
J.J:32:J§+J§+J§ 3) angular momenta.
the corresponding EREF=JZ+J;+JZ.

The above considerations are a way to understand why th&/. ANGULAR MOMENTA ADDITION WITH THE
eigenvalue of angular momentum cannot be represented asACA
vector in quantum mechanics. i _

In general one can say that it is possible to write the ERE For our study of the ACA we are interested in a system
f(Pg)=0, with B=1,2,..., andP; the corresponding eigen- cpmposed of two independent a}ngular momenta, like .the or-

A . bital angular momentum of particle 1 and that of particle 2,

value ofPg, such that it preserves the form of the operatory; jike the angular momentum of a particle and its spin. For
equation: f(Pg) =0, if the operatorsP; have a common the purposes of this discussion, we use the two particle sys-
eigenfunction. Equation€) and (3) are examples in which tem, it being understood that the conclusions apply to both
there are no corresponding ERE. On the contrary, whegystems.
quantum operators commute, the ERE is not forbidden, since The operator associated with the total angular momentum

a common eigenfunction for them may exist. is
For instance, let us analyze the following operator equa- . . .
tions: J=J;+J,,
Jy =1, +idy, (4  whered; andJ, are the angular momentum operators as-
ap A2 | ap sociated with particle 1 and particle 2, respectively. Express-
Je=JytJz, (5 ing the operators of the previous equation in terms of
where3§y=3§+3§. their Cartesian components, we get for theomponent],

SinceJ, andJ, do not commute, the first operator equa- ~ J1zt Jaz-

tion does not admit the ERE,,=iJ,+]J, and the anglep The four commuting opergtorlf/ andJ,,, wherey=1.2,
:tanfl(\]y/\]x) is undetermined. satisfy the eigenvalue equations

Tg analyze Eq(5) let us remember that the operatci?s jil//jlmlzjl(jl+ 1)ﬁ2‘/’11m1' jlz’/’jlmlzmlﬁ Uiy
andJ, commute, and have the eigenfunctiafjg, that satisfy s o 5 .
the eigenvalue equations Boti,m,= 120l DIy my Jogthj,m,= Mot thy m,;
jzwjm:j(j+1)ﬁ2¢jm, jz‘/’jm:mﬁ‘/’jmv where j,, and m, are integers or half integers ana,

=j,.Jy—1,....~j,. The system of two particles can be rep-
resented by a linear combination of products of the eigen-
J N functions, which arey; , ¥ m . This set of functions forms
. 2 2 ] 1My 7 lomy

Since J* and J; commute, any two operators in EG) 5 pasis set which is called the uncoupled representation.
also commute. It is easy to show that any common eigen- f, instead, one measures the square andztbemponent
function Pf those operators Is also an e|genfunct|0nA of theyf the total angular momentum, and the squared magnitude
operatorJf(y. Indeed, denoting]iy as the eigenvalue offy of each individual angular momentum, one gets the eigenval-

with eigenvalueg(j+1)%2 andm#. j andm are integers or
half integers anan=j,j—1,...—].
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ues of the four commuting operataié= (3, +3,)?, J,, 32, Joxya  migiy= x5 misi (12)
andjg. The eigenvalue equations for the first two operators

are with (J.x,)e=J 52
. o 5 In units of# the eigenvalues for their nine common eigen-
IWimiyi, = 10+ DA jmj functions, when j;=1 and j,=1, are J,~=-1,
N -1,0,0,0,1,15-v2,v2. The eigenfunctions form a basis set
Iztimiyi, = M im0 named “angular coupled representation.” As we will see

later, this basis set is well adapted to discuss the afigl®
make the connection between quantum mechanics and the
ACA simpler, in what follows we will restrict the discussion

to the case whejy=1 andj,=1, as in the previous figures.

wherej=ji1+js,j1+j2—1,...]j1—j2, andm=—j,...,+j.
Their eigenfunctions form a basis set called the coupled re
resentation. It is important to remember tda; andJ,, do

not commute withi?. Note that these two quantum numbers are common to all
J2 can be expressed as three representations.

o As we have three basis sets of eigenfunctions, any func-

P2=32+32+23,-3,. (7 tion taken from one set can be expanded as a linear combi-

nation of the functions taken from another set. We show the

According to discussion in the former section, the operatomatrices that connect the three possible pairs of basis sets in
231_32 has common eigenfunctions with the operatd?s Tables |, II, and lli(see the appendixFrom Tables I to I
a2 a2 o ) ] . ~ we can expand any coupled state in terms of uncoupled and
J1, andJ;. Then, it is possible to write the following ERE: anqylar coupled states, and from Table IV we can calculate
the result of applying the operatcir,xy to any uncoupled
State.
With these tools we proceed to analyze Fig. 5. We adopt
e notation/ny,n,) for the state vectors, whese=u,c,a;
A A =my,j,J.xy; N=my,m,m, for the uncoupled, coupled,
law of the cosines by noting thad{- J,), can be written as and angular coupled representations, respectively. For the
J;J, cosy. next discussion, eigenvalues will be in unitsfof

The graphical representation of E&) is the well-known Let us consider in detail Fig. §-igs. 4 and &) show the
triangle used to add angular momenta, i.e., the vector addsame cask which represents the cage 2, m=2. From the
tion model. Like Eq.(6), Eq. (8) is also obtained from a tables we can see that the expansion of the coupled state
quantum consideration, therefore the geometrical representf,2). in any of the other two bases reduces to only one term,
tion of the involved quantum variables is a correct one.

Now let us focus our attention on Fig. 3. The eigen- 12,2.=]1,1,=]0,2),.
values represented in this figure dfe Jixy, Joxy: Jiz, J2z, e ImHumea
and the angles. Using Eq.(4), and defining the operatdr,,
as

J2=02+25+2(3;-3,)e, 8

where 61»32)e is the eigenvalue of the operator in parenthe-,[h
ses. This equation admits a geometrical interpretation as ﬂ}(?

This state is a common eigenfunction for the three represen-
tations and consequently all quantum numbers for the three
A 3 3 A representations are well defined, allowing us to dijaw
Joxy= Jy  Jaxy= Jndax+ Jayday s ©) Jixys J2z+ Joxy» iz» Ixy, andj, as was done in Figs. 3, 4,

which is related to the anglé of ACA, J2 can be written as @nd 3a). Since there is a common eigenfunction for all the
operators in Eq(10), Eq. (11) is a correct relation. We can

2= (3 k5t T kG2 understand this by noting that although operators in(EQ.
I7= Ony b Kzt Jawy tkd2z) do not commute in general they commute for this particular
=30+ 5+ 23 4+ 35,4 35,4+ 231,35, (10  State. Once again the ERE allows us to find the graphical

. . _ representation, since E@L1) describes the relations between
We note that this operator equation would involve all thethe sides of the triangles in Fig. 3.

mentioned eigenvalues if a common eigenfunction were to When discussing the vector model, textbooks normally
exist for operators in Eq(10). SinceJ? does not commute present a diagram where the vectors of the individual angular
with all the operators to the right, it will not be possible in momenta are precessing around the resultant véster, for

general to write the corresponding ERE, instance, Zare, Ref. 3, p. b2This precession is introduced
~ to have an indeterminacy of the individualcomponents.
=0+ 35T 2(0 ket I3, +35,+231,05,,  (11)  Note that for the particular case just discussed, the diagram

i ) o A in Zare’'s book would be incorrect because thgrojections
of which the graphical representation is Fig. 3, whetg)e  of the angular momentum vectors of each particle are well
is the eigenvalue of the operator in parentheses. Then, appajefined. If it is desired to show graphically the indeterminacy
ently, the ACA as shown in Fig. 3 is not a correct graphicalin the x andy components, it is the whole Fig. ®r Fig. 4
representation. To show that this is not the case, and to exhat may rotate around theaxis.
plain Figs. 3 and 5, we need first to describe the operator What remains is to calculate the angle between xfe
ijy. plane components, which can be obtained using the value

As shown in the Appendix, this operator adg, J2, and  J.xy=0- Indeed, since

3%, form a set of four commuting operators. We write the . . .
eigenvalue equation of the new operator as Jxy12,2=3.1411,1),=1J.5,/0,2,=0[0,2),,
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Table I. Transformation matrix between the uncoupled basis and the coupled basis.

m;m,
i m 11 10 01 1-1 00 -11 -10 0-1 -1-1
2 2 1 0 0 0 0 0 0 0 0
2 1 0 1 1 0 0 0 0 0 0
V2 V2
1 i1 o _+ 1 0 0 0 0 0 0
Y
2 0 0 0 0 1 \/E 1 0 0 0
6 3 V6
1 1
1 0 0 0 0 1 0 1 0 0 0
V2 V2
0 0 0 0 0 1 1 0 0 0
V3 V3 V3
1 1 0 0 0 0 0 0 1 0
2 V2
2 1 0 0 0 0 0 0 1 1 0
V2 V2
2 1 0 0 0 0 0 0 0 0 1
and noting that for the statd,1),, J,,=J,,=1, then using 1 1
Eq. (6) with J3=J5=2 we obtainJy,,= J,,= 1. Writing the |2’1>°:E|1'0>U+ E|0,1>u=|1.1)a- (13

eigenvalue

Joxy= JaxyJaxy €089, Neither thez projections nor thexy projections of the indi-
then Jy,,J,, C0s6=0 and we obtain thab= /2, which is vidual angular momenta are well defined in this case. On the

in agreement with Fig. ®). contrary, the producﬁ_Xy is well defined with eigenvalue
Now let us analyze the case illustrated in Figo)Swhich  equal to one, as can be seen in Table IlI.
corresponds tg=2, m=1. We have Rewriting Eqg.(10) as

Table Il. Transformation matrix between the angular coupled basis and the uncoupled basis.

JxyMm
m m, -1-1 -11 0-2 00 02 1-1 11 20 20
1 1 0 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 1 0 0
V2 V2
0 1 0 1 0 0 0 0 1 0 0
V2 V2
1 -1 0 0 0 1 0 0 1 L
) 2 2
0 0 0 0 0 0 0 0 0 1 1
V2 v
1 1 0 0 0 1 0 0 0 1 1
V2 2 2
1 o _* 0 0 0 0 1 0 0 0
V2 V2
0o -1 1 0 0 0 0 1 0 0 0
V2 V2
1 0 0 1 0 0 0 0 0 0
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Table Ill. Transformation matrix between the angular coupled basis and the coupled basis.

Jxym
j m -1-1  -11 0-2 00 02 1-1 11 -v20 V20
2 2 0 0 0 0 1 0 0 0 0
2 1 0 0 0 0 0 0 1 0 0
1 1 0 1 0 0 0 0 0 0 0
2 0 0 0 0 0o o 0 o _t,t t. 1
V3 6 v3 6
1 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ., 1
Vi V6 v3 6
1 -1 1 0 0 0 0 0 0 0 0
2 -1 0 0 0 0 0 1 0 0 0
2 -2 0 0 1 0 0 0 0 0 0
jzz(jinyrjgxy)Jrsznyrjg' (14) TAr12er(Aa£ore the state glso Ar21as a well-defined product
L J =2 and sum +J = 3. Writing the eigen-
and considering the operators grouped by parentheses as q%bﬁaygzxy)e iyt Jaxy)e g 9
operator, then we note that the state in Bd) is a common
eigenfunction of all the operators in the above equation, __
making it possible to write the ERE Jxy= V(35350 e COSS=1,

2=(32, +35, ) et 2 4+ 32, 15
iyt J2)et 20 2, 19 we can infer thats=45°. This is the value found by ACA

with (35,,+35,,)e the eigenvalue of the operator in paren- which is shown in Fig. f).

theses. Note that the eigenvaluek,,, and J,,, are not well de-
Indeed, remembering that fined. This is expected singg, andJ,, are not well defined,
R oo(P2, Bo—(32-32) (16) as can bg seen from thg state in ER). We may interpret
Ixy = \¥1 Yizy Yaxy T \Y2o Y2z)s this indefiniteness by writing the above eigenvalues in terms
then of ‘2]1” andzJZX%, to get the simultaneous equatiod%Xy
) ) 1 1 +~?2xy: 3, Jl.XyJZXyzz. What we found is that there is no
(J%Xy+ ngy)(_|1,o>u+ _|o,1>u> unique solution, but two of them: for the valdg,,=1, cor-
\Z V2 responds a value ak,,,=v2; the other solution corresponds

to the inverted values. With these numbers it is not difficult

:3(i|1 0yt i|0 1) ) to see that the ERE in E@l5) has its graphical representa-
Y R, R tion in Fig. 5b).
L The analysis for Fig. ®) follows a similar procedure. Fig-
Also note that(it will be useful latey ure Hel) and(e?) corresponds to the cage=1, m=0. This
o 1 1 more complicated case is simplified upon observing in Table
Jinygxy(—|l,O>u+ —|0,1>u) | that the coefficient for the stat®,0), is zero. Then, dis-
V2 V2 carding Fig. %e2), the analysis becomes similar to that of

1 1 Fig. 5b) and(c).
:2(_|1,o>u+_|0,1>u)_ What about Fig. &l1) and (d2) for j=2, m=0? From
V2 Tables | and lll, the expansion of the coupled state gives us

Table IV. Matrix elements oﬁ_xy between uncoupled states.

m;my

|
=
o
o
|
[y
|
=
I
=

1-1 00 -11

3
fi
3
5
[uy
=
=
o
o
[ay

OrPORORR
| |
PFRPOROPRROR
O0Ooooo0ooo
O0ooooOoOr oo
[eNeNeoNeNeNeNol e
O0OoorOO0OO0O
Oo0oororooO
O0ocoorOOOO
el NeNeNeoleoNeNoNe)
OCOroOoOOO0OOO
O0Oooo0ooo

I
-
I

993 Am. J. Phys., Vol. 67, No. 11, November 1999 A. Morales and A. Amaya-Tapia 993



drawing, all are different from zero. All these facts clearly
1 2 1
[2,00.=—=|1,—1),+ \/:|o,o)u+ —|-1,1, show that the possibility of making correct drawings with the
V6 3 V6 ACA depends on the particular commutativity of the opera-
1 1 -1 1 tors.
=| —+—=||V2,0,+| —+—=||-v2,0),. - i i
i 6 | Va i 6 | Da To review some of the results just discussed, let us note

A that one particular commutativity allows an operator equa-
For this case neither the scalar produgg, nor the indi-  tion to change in an ERE. For instance, when the commuta-
vidual zcomponents are well defined. The former magnitudegors in Eq.(1) are applied to the eigenfunction wifh=j,
can have the valuesv?2, and the latter 1, 0, ane-1. This =0, a null result is obtained. Then, the operators in the equa-
explains that we cannot find a picture for tfel) case and tion
shows that Fig. &2) is incorrect. A similar analysis can be sy %3 A2 A2 .42 L %2, A2
made for Fig. 1) and (f2). Jo=Jd9+ Jyy T I, 3o+ J5y + 3,
For these cases, the ACA loses its use and we cannot draw A s A A A A
a picture. Even in the cases when a drawing can be made + 23,000+ 231y 05y + 2012327, (17)
[Fig. 5e2), (d2), (f1), and(f2)], it is meaningless. obtained developing Eq7), commute between them when
applied to that state with;=0=j,. Applying both sides of
V. DISCUSSION Eq. (17) to this state give us the corresponding ERE,

In Sec. IV it was shown that the cases where the ACA  J2=J2 +3% +J3,+ 33, +33 +J3,
gives a correct graphical representation of the addition of
two angular momenta, correspond to the existence of a com- +2J15 okt 231y oy + 2317, (18)
mon eigenfunction of operators that do not commute in gen- of course all the numerical values of the above eigenval-
eral. For instance, the staf2,2).=[1,1),=[0,2), is a com-  yes are zero and the picture associated with the latter equa-
mon eigenfunction for the noncommutative operatdfs tion reduces to one point.
3y, 3oy, andj,xy. Applying the commutators of EqéA4) Following the same reasoning that we have just applied to

and (A5) of the Appendix to that state, we obtain for this the above trivial case, we also realize that the opera?t%)rs

particular case a null result for each offote thatf]lZ and jfxy, jgxy, 3.xy, _jfz, 352, 312 ano! 322 gommute between
3,, always commute Therefore these operators can havethem when applied to the states in which quantum numbers

that common eigenfunction, and also for this case the ACAT andm; are both extremum. If we associate the operators
works especially well since all the magnitudes involved areaddition J3,+33, as 3, 35,+35, as 35, and 2J;,J,

well defined[see Fig. %a)]. Gasiorowicz's example is one of +2j]1yjzy as Z’j.xy in Eq. (18), then all the operators in the
these cases. rearranged equatidrsee Eq.(10)] commute amongst them-

A generalization of the ACA to other angular momentumge|yes when applied to these states. The picture associated
guantum numbers can be made by observing that the COMYith the corresponding EREsee Eq.(11)] for the casej,
mutators were canceled because the sta@).=|1,1), =j,=1 is shown as Fig. ).

=10,2), has extremum values for both quantum numiseys Continuing with this line of reasoning we also demon-

andm; (my=m,=1 are extremgr'n Sincg;=jo=1). BX- st that the operatod$, J3, +33,., J.,, andJ? commute
pression(A2) shows that form,=j, the raising operator Y vy

: - Je . amongst themselves when applied to the sthied)
gives a null value. Similarly fom,=—j, the lowering op- H

erator also gives a null value. With this consideration, it is+|o'1>ﬂ (of course they als_o commute when applied to the
not difficult to verify that all those commutatofin Eqs. above-mentioned states with extremum quantum numbers

(A4)—(A7)], are canceled when numbeng andm, are both If we malfg a nfazw rearrAaztngeArznent N f 11018) tpzl associating
maximum or both minimum. Then those commutators arePeratorsly,,+Js,, andJi,+J3,+2J,J,, asJ;, we get the
canceled when they are applied to any state with those exeperator Eq(14) and its corresponding ERE, E(L5). The

tremum values of, andm,. For those states all eigenval- geometrical interpretation of this equation is shown in Fig.

ues of the operatoﬁ,xy are null, as can be seen from Eq. Flé(ig).é?c)smnar analysis can be made for the case shown in

(A3). Then expressing these eigenvaluedggl,,, COSd we . PO -
obtai 9=90° for any state wth extrernum values, and | BIEN W P08 G0 B SPOIOTE Sy O OO
m,. Hence the ACA drawing is correct, from the point of ya ' 9

view of quantum mechanics, for any angular momentunnent of Eq.(18) by add|ngJ§)_(y+J§Xy and 2.y asJ;, leads
with maximum projection. us to the operator E¢5) and its corresponding ERE, E@),

As an example of the above assertion, the interested readéhose graphical representation is Fig. 2. Similarly, a rear-
can easily verify its validity by adding the angular momentarangement of Eq(18) produces the operator E¢) which
for two spin 1/2 particles, to obtain the stafes+) or|—,—)  has its corresponding ERE E(f), whose graphical repre-
of the triplet. For these cases the ACA works well and pre-sentation is just the vector addition model.
dicts 6=90°.

With respect to the statd®,1)., |1,1)., and|1,0), that VI. SUMMARY AND CONCLUSIONS

2

also admitted a useful drawing, the CQmmUEa[&%j-xy]: In this article we first generate some empirical graphical
[JZ,fongxy], [J,Xy,Jinygxy], [J.xy,Jinyf ngy], and representations of angular momentum reIaEions. These repre-
[jzijixy-i_ j%xy] are null, bu 32,3,,], [32,3,,] are not null.  sentations lead us to define the new operdtgy. Then we

Whereas for|2,0). and |0,0), that did not admit a useful construct a CSCO with this and the operatdgs J2, J3.
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With this set we were able to show that the anglevhich  Note that the commutativity of the operators corresponding
emerged from the empirical analysis is a physical variable ino different particles was taken into account. Finally the
guantum mechanics. Finally we show that particular commucommutator

tativity of the operators allows classical-like graphical repre-

sentations of the addition of quantum angular momenta. [32,3,1=0

In addition, it is shown that the classical-like graphical arsz '
representations, or pictures as they are usually called, of the - PSR
qu%ntum angular mgmentum are d)i/agrams with a limited va. Ve can conclude that the four operatdrgy, J;, Ji. and
lidity. However, in this article we find that they give a cor- J5 commute by pairs and form a CSCO for our system of
rect representation for some specific cases, which are anawo particles. They generate the angular coupled basis of
lyzed in this work. wave functions.

The discussion allows an understanding of the origin of Now we proceed to look at the transformations between
the vector model and, what is more important, leads to a fulthe basis sets used in the main text. The transformation ma-
appreciation of the power of the theory of angular momen+rix between the uncoupled and coupled representations
tum. Besides, we think that with the elements provided(Clebsch—Gordan coefficienfsis calculated in several
through the development of this work, the ambiguousplaces(see, for instance, Zare, Ref. 3, and Schulten and
phrases used in textbooks referring to the inadequacy of th&ordort?) and is reproduced in Table I. This matrix, called
vector model could be substituted by a more precise descripd, satisfies the equation
tion.

Furthermore, the analysis of the ACA made in this work ~Mc=UMy, (A1)
shows vividly the fundamental role played by the commuta- ) i
tion relations in quantum mechanics; it also shows that ngvhereM¢ andMy are column vectors with elemerjism).
vector model can represent all the relations among angul@nd|m;,m,),, respectively.
momentum variables as quantum theory does. Now we will develop some relations that are useful for the

We believe that this analysis gives students some newnain text and for the calculation of the transformation ma-
additional elements to have a better appreciation of the imtrices.
portant role played by the commutation relations in the quan- Defining the operators
tum theory, and also to gain a better insight into the elemen-

tary angular momentum theory. jlxy:ijlx+jjly! ijy:ijZX+jj2yv
and using the raising and lowering operat@lso known as
ACKNOWLEDGMENT spherical componentsf J,, which can be written as
This work was supported by Conacyt, kMeo, Project No. Jar=dax* 134y,
1095P-E. N
with

APPENDIX ‘]ai“ ama> = \/J Q(J a+ l) - ma(mai 1)|J amai l>’
(A2)
In this Appendix we calculate the commutation relation- . o .
ships among the set of operators that generate the angul@Pdli«M.) the individual angular momentum with the usual
coupled basis as well as the transformation matrices betwedf/antum numbers, andm, ; we can show that the scalar

different bases foj; =1 andj,= 1. All results are expressed Product

in units of#. PN . o
As the operatord,, can be written equivalently as Iy Jaxy= Joxy= Jndaxt Jayday

J1xdoxtJ1yd2y and the cpmmuta}tion relations between the =31, +31 )35, +350)
Cartesian components df, and Ji (see Cohen-Tannoud;ji A A - A
et al, Ref. 1), —(J1+—312) (I —J320)]

[32,3,51=0, =331,:3,-+3135.). (A3)
wherea=1,2 andB=x,y,z; then the commutators With 3=31+32, jixyz j§x+j§y, j%xyz j§X+j§y and pre-

[ 5y, 321=[30dout J1yday  32] vious definitions, and after some algebra, we can obtain the

s apa A apa following commutators:
:[[‘]le‘]a]J2x+[‘]ly1‘Ja]‘J2y]:0; IR o . .
[sz‘]lz]:_[Jzy\]Zz]:z[J-xyy\]lz]

and
[3 .4y, 321 =[31d 0+ 31y 32y 1+ 32, =—2[J.4y. 322
=31 3ox 322 + [ I1x, 3120324 =3 350 =313, (A4)
+ jly[ij Jog]+ [jly ajlz]ij [jz,j_xy] =(3,,—3,)[ 323,01+ Zj,xy
= —J1,d5y— 31,30+ 31, 3ok + 31,5, =0. =(31- 1)[32.3,,1+23 (A5)
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[7.30351= 203 5y 35, 355, ]
=538,3,.35.0,, 433,313,235, 3, 43113, 30,35 3, + 305,35, 3,
=338, 350 05 4313023105, 35+ 3] 31005405350 - 30031000 3,0 35
—31-31.35- 35403 =300 3 3505 =30 38 35035020 = 31000 003,35, (A6)

[jzajixy‘F jgxy] =2y vj%xy+ jgxy] =231,35,05- = 231,313, + 31,3135 = 31235, 35, (AT)

~ By using the matrix elements of the spherical components/ . is a column matrix with elementg,m).. The explicit
in the uncoupled basis which can be calculated from Edform of matrix A is written in Table Ill.

(A2), we can directly obtain the matrix elements | . _ . o
A . . . C. Cohen-Tannoudji, B. Dieu, and F. LaJd@uantum MechanicéWiley,

(momy|J. lmim,). The result forj;=1 andj,=1, which New York, 1977,

we call matrixC, is shown in Table V. Also we defing! [, , 2. 1. Schiff, Quantum MechanicéMcGraw—Hill, New York, 1968.

. . . 3 i
as a row vector with elemen($n2m1|. We can dlagonallze tF:].elr\le.ifare,Angular MomentuntWiley, New York, 1988, and references

matrix C by multiplying the operatod. ,, both to the leftand  “s. L. C. Biedenham and J. D. LoucRngular Momentum in Quantum
to the right by the unit matri>BB‘1, so that Physics: Theory and Applicationgncyclopedia of Mathematics, Vol. 8,
edited by G. C. RotédAddison—Wesley, Reading, MA, 1981and refer-
14 ences therein.
B J.B=Jyl, 5S. L. C. Biedenharn and J. D. Louckhe Racah Wigner Algebra in Quan-
. . . . . . . tum Theory Encyclopedia of Mathematics, Vol. 9, edited by G. C. Rota
Wherel IS the Unlt matI’IX The SO|UtI0n Of thlS equatlon gIVES (Ad(:“son_WegeyY Readmg’ MA, ]_gﬁjand references therein.
rise to the eigenvalues ,, [written below Eq.(12)] and the ~ °D. M. Brink and G. R. SatchlerAngular MomentuniClarendon, Oxford,

eigenvectors which we may call ,. The matrixB, shown 1993, 3rd ed., and references therein.
/D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskuantum

in Tab_le Il, connects the uncoupled and the angular CoupledTheory of Angular MomenturfWorld Scientific, Singapore, 1988and
bases: references therein.
8W. G. Harter, Principles of Symmetry, Dynamics, and Spectroscopy
My=BMa,. (Wiley, New York, 1993, Chaps. 5 and 7, and references therein.
°E. P. Wigner,Group Theory(Academic, New York, 1959 p. 187.
Introducing this expression into EGAL), the transformation  °S. Gasiorowicz,The Structure of Matter: A Survey of Modern Physics
matrix A relating the coupled and the angular coupled bases, (Addison—Wesley, Reading, MA, 19%.9

is obtained as K. Schulten and R. G. Gordon, “Exact recursive evaluation pf &nd
6j-coefficients for quantum-mechanical coupling of angular momenta,” J.
Mc=U(BMp)=AM,. Math. Phys.16, 1961-1970(1975.

REAL SCIENCE IS HARD

The work of real science is hard and often for long intervals frustrating. You have to be|a bit
compulsive to be a productive scientist. Keep in mind that new ideas are commonplace, and
almost always wrong. Most flashes of insight lead nowhere; statistically, they have a half-l|ffe of
hours or maybe days. Most experiments to follow up the surviving insights are tedious and
consume large amounts of time, only to yield negativévasrse) ambiguous results.

Edward O. Wilson, “Scientists, Scholars, Knaves and Fools,” Am. ScieB6dtl), 6—7(1998.
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