DUE: THURSDAY, OCTOBER 8, 2009

- 1. Liboff, problem 11.27 on page 498.
- 2. Liboff, problem 11.39 on page 512.
- 3. Prove the following identities involving the Pauli spin matrices.

(a)
$$\sigma_i \sigma_j = \delta_{ij} I + i \sum_{k=1}^3 \epsilon_{ijk} \sigma_k,$$

(b) $(\vec{\boldsymbol{\sigma}} \cdot \vec{\boldsymbol{a}}) (\vec{\boldsymbol{\sigma}} \cdot \vec{\boldsymbol{b}}) = (\vec{\boldsymbol{a}} \cdot \vec{\boldsymbol{b}}) I + i \vec{\boldsymbol{\sigma}} \cdot (\vec{\boldsymbol{a}} \times \vec{\boldsymbol{b}}),$
(c) $\exp\left(-\frac{i}{2}\theta \hat{\boldsymbol{w}} \cdot \vec{\boldsymbol{\sigma}}\right) = I \cos(\theta/2) - i \hat{\boldsymbol{w}} \cdot \vec{\boldsymbol{\sigma}} \sin(\theta/2),$

where *I* is the 2×2 identity matrix, \vec{a} and \vec{b} are ordinary vectors, and \hat{w} is a unit vector. In part (a), the indices *i* and *j* can take on the values 1,2 and 3, which refer respectively to the *x*, *y* and *z* components of the "vector" $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$. The Levi-Civita tensor ϵ_{ijk} is defined such that:

$$\epsilon_{ijk} = \begin{cases} +1 \,, & \text{if } i, j, k \text{ is an even permutation of } 1,2,3 \,, \\ -1 \,, & \text{if } i, j, k \text{ is an odd permutation of } 1,2,3 \,, \\ 0 \,, & \text{if } i, j, k \text{ are not distinct integers }. \end{cases}$$

HINTS: Part (b) follows easily from part (a) if you express the components of the cross product using the ϵ_{ijk} symbol. To solve part (c), expand the exponential in a Taylor series and use part (b). Then show that the resulting expression can be written as a linear combination of I and $\hat{\boldsymbol{w}} \cdot \boldsymbol{\sigma}$ and identify the corresponding coefficients as series in θ that can be resummed.

4. Consider the spinor $\alpha \equiv |1/2, 1/2\rangle_{\hat{z}}$ [cf. eq.(11.72) of Liboff]. I explicitly exhibit the subscript \hat{z} to emphasize that $|1/2, 1/2\rangle_{\hat{z}}$ is an eigenstate of S_z with eigenvalue $\frac{1}{2}\hbar$.

(a) Show (either geometrically or algebraically) that if the z-axis is rotated by an angle θ about a fixed axis $\hat{\boldsymbol{w}} = (-\sin\phi, \cos\phi, 0)$ [where the right-hand rule defines the direction of the unit vector $\hat{\boldsymbol{w}}$ perpendicular to the rotation plane], then the z-axis will end up pointing along the direction given by

$$\hat{\boldsymbol{n}} = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta).$$

(b) Define $|1/2, 1/2\rangle_{\hat{n}}$ to be an eigenstate of $\vec{S} \cdot \hat{n}$ with eigenvalue $\frac{1}{2}\hbar$. Express $|1/2, 1/2\rangle_{\hat{n}}$ with respect to the basis spanned by $\alpha = |1/2, 1/2\rangle_{\hat{z}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\beta = |1/2, -1/2\rangle_{\hat{z}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

(c) Define $R_{\hat{\boldsymbol{w}}}(\theta)$ to be the rotation operator that corresponds to a rotation of state vectors by an angle θ about the $\hat{\boldsymbol{w}}$ axis [defined in part (a)]. For a spin-1/2 particle, I claim that

$$R_{\hat{\boldsymbol{w}}}(\theta) = \exp\left(-\frac{i}{2}\theta\hat{\boldsymbol{w}}\cdot\vec{\boldsymbol{\sigma}}\right).$$

Let us put this operator to the test. Prove that

$$R_{\hat{\bm{w}}}(heta) \ket{1/2, 1/2}_{\hat{\bm{z}}} = \ket{1/2, 1/2}_{\hat{\bm{n}}}$$

HINT: Evaluate $R_{\hat{\boldsymbol{w}}}(\theta)$ using the result of problem 3(c). Then, verify the above result with respect to the basis $\{\alpha, \beta\}$.

5. Consider a spin-1/2 particle of magnetic moment $\vec{\mu} = \gamma \vec{S}$, where $\gamma \equiv e/mc$. At time t = 0, the state of the system is given by $\alpha \equiv |1/2, 1/2\rangle_{\hat{z}}$ (i.e., spin-up).

(a) If the observable S_x is measured at time t = 0, what results can be found and with what probabilities?

(b) Instead of performing the measurement specified in part (a), we let the system evolve under the influence of a uniform magnetic field *B* parallel to the *y*-axis (i.e., $\vec{B} = B\hat{y}$). Calculate the state of the system at time *t* with respect to the { α , β } basis.

HINT: The time evolution is governed by the time evolution operator $\exp(-iHt/\hbar)$ as noted in problem 1 of this homework set. The Hamiltonian H is given below eq. (11.96) of Liboff. Using problem 3(c), one can explicitly evaluate the time evolution operator for this problem.

(c) At a fixed time t = T, we measure one of the observables S_x , S_y and S_z . For each case, what values can be found and with what probabilities? Is there any value of B (which may depend on T) such that one of the above measurements yields a unique result?