
Physics 139B Final Exam Solutions Fall 2009

1. An electron is placed in a potential

V (~r) =
−e2
r

+ β(r2 − 3z2) ,

where β is a small parameter. Neglect the spin of the electron.

(a) Compute the shifts of the n = 2 energy levels (you may neglect fine-structure
effects) using first order perturbation theory. Indicate the relative positions of the energy
levels, assuming that β > 0.

The unperturbed n = 2 state of hydrogen are degenerate states with energy:

E
(0)
2 ℓ mℓ

= −1
4

Ry,

where 1 Ry = me4/(2~
2) = 13.6 eV. The corresponding unperturbed energy eigenfunc-

tions are:

ψ200(~r) =
1√
π

(

1

2a0

)3/2(

1 − r

2a0

)

e−r/(2a0) ,

ψ210(~r) =
1√
2π

(

1

2a0

)3/2
r

a0
e−r/(2a0) cos θ ,

ψ21±1(~r) = ∓ 1√
8π

(

1

a0

)3/2
r

a0
e−r/(2a0) sin θ e∓iφ ,

where a0 = ~
2/(me2).

The perturbing Hamiltonian is:

H ′ = β(r2 − 3z2) = βr2(1 − 3 cos2 θ) .

To compute the first-order energy shifts of degenerate states, we must construct the matrix
elements of the matrix W , which is defined as:

Wℓ ′m′

ℓ
; ℓmℓ

≡ 〈2 ℓ ′m′
ℓ|H ′ |2 ℓmℓ〉 . (1)

However, it is easy to show that the matrix W is diagonal. First, note that H ′ commutes
with Lz, since Lz = −i~ ∂

∂φ
and H ′ is independent of φ. It follows that:

0 = 〈2 ℓ ′m′
ℓ| [H ′ , Lz] |2 ℓmℓ〉 = 〈2 ℓ ′m′

ℓ| (H ′Lz−LzH
′) |2 ℓmℓ〉 = (mℓ−m′

ℓ) 〈2 ℓ ′m′
ℓ|H ′ |2 ℓmℓ〉 ,

which implies that
〈2 ℓ ′m′

ℓ|H ′ |2 ℓmℓ〉 = 0 if mℓ 6= m′
ℓ .
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The only other non-diagonal elements to examine are 〈2 0 0|H ′ |2 1 0〉 and 〈2 1 0|H ′ |2 0 0〉.
When we evaluate both matrix elements, we find that the angular integral vanishes, since

∫

dΩ (1 − 3 cos2 θ) = 2π

∫ 1

−1

d cos θ (1 − 3 cos2 θ) = (cos θ − cos3 θ)
∣

∣

∣

+1

−1
= 0 . (2)

It therefore follows that the first-order energy shifts of the n = 2 states are given by:

E
(1)
2ℓmℓ

= 〈2 ℓmℓ|H ′ |2 ℓmℓ〉 .

First we compute the first-order energy shift of the state |2 0 0〉:

E
(1)
200 = β 〈2 0 0| r2(1 − 3 cos2 θ) |2 0 0〉 =

β

8πa3
0

∫

d3r

(

1 − r

2a0

)2

r2 e−r/a0(1 − 3 cos2 θ) .

Using eq. (2), it follows that:

E
(1)
200 = 0

Turning to the n = 2, ℓ = 1 states,

E
(1)
210 =

β

32πa5
0

∫

d3r r4e−r/a0 cos2 θ(1 − 3 cos2 θ) , (3)

E
(1)
21±1 =

β

64πa5
0

∫

d3r r4e−r/a0 sin2 θ(1 − 3 cos2 θ) , (4)

After writing d3r = r2drdΩ, the radial integrals are all of the form:

∫ ∞

0

rne−r/a0 dr = an+1
0 n! ,

for non-negative integer n, and the angular integrals are:

∫

dΩ cos2 θ(1 − 3 cos2 θ) = 2π

∫ 1

−1

d cos θ cos2 θ(1 − 3 cos2 θ) = 4π

(

1

3
− 3

5

)

= −16π

15
,

∫

dΩ sin2 θ(1 − 3 cos2 θ) = 2π

∫ 1

−1

d cos θ (1 − cos2 θ)(1 − 3 cos2 θ) = 4π

(

1 − 4

3
+

3

5

)

=
16π

15
.

Applying the above results to eqs. (3) and (4) yields:

E
(1)
210 = −24βa2

0 , E
(1)
21±1 = 12βa2

0

We conclude that if β > 0,
E210 < E200 < E21±1 ,

where |2 1 − 1〉 and |2 1, 1〉 remain degenerate at first order.
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(b) Suppose that a weak uniform magnetic field B is applied in the z-direction. De-
termine its effect on the levels obtained in part (a) to first order in B.

In the presence of a weak uniform magnetic field B, new terms appear in the Hamil-
tonian of the electron (with charge −e),1

e

2mc
~B ·

~L +
e2

8mc2

[

r2 ~B
2 − (~r·

~B)2
]

.

To first order in B, we can neglect the second term above. Thus, the magnetic field adds
another term to the perturbation,

H ′ = βr2(1 − 3 cos2 θ) +
eB

2mc
Lz . (5)

However, since H ′ still commutes with Lz , the W matrix is still diagonal. Thus, the
energy shift due to the last term in eq. (5) is given by:

∆E =
eB

2mc
〈2 ℓm|Lz |2 ℓm〉 =

e~Bmℓ

2mc

Thus, the n = 2 energy levels at first order in perturbation theory are given by:

E2ℓmℓ
= −1

4
Ry + E

(1)
2ℓmℓ

+
e~Bmℓ

2mc
,

where E
(1)
2ℓmℓ

are the first-order energy shifts in the absence of the magnetic field, which
were obtained in part (a).

(c) Repeat part (b) assuming that the weak uniform magnetic field is applied in the
x-direction.

If the uniform magnetic field points in the x direction, then the perturbed Hamiltonian
is given by:

H ′ = βr2(1 − 3 cos2 θ) +
eB

2mc
Lx .

However, this time, H ′ does not commute with Lz. Hence the W matrix [see eq. (1)] is
no longer diagonal. We shall solve this problem by redefining

H(0) =
~p 2

2m
− e2

r
+ β(r2 − 3z2) , H ′ =

eB

2mc
Lx ,

1See eq. (13) of the class handout on the quantum mechanics of a charged particle in an electromagnetic
field.
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with the “unperturbed” energies given by the energy levels obtained in part (a). In this
case, only the states |2 1 ± 1〉 are degenerate. Thus, we must evaluate a new W matrix:

W =
eB

2mc

(

〈2 1 1|Lx |2 1 1〉 〈2 1 1|Lx |2 1 − 1〉
〈2 1 − 1|Lx |2 1 1〉 〈2 1 − 1|Lx |2 1 − 1〉

)

.

Using eqs. (11.59) and (11.61) on p. 506 of Liboff, it follows that:

〈ℓ′m′
ℓ|Lx |ℓmℓ〉 = 1

2
~δℓℓ′

{

[(ℓ−mℓ)(ℓ+mℓ+1)]1/2δm′

ℓ
, mℓ+1+[(ℓ+mℓ)(ℓ−mℓ+1)]1/2δm′

ℓ
, mℓ−1

}

.

We immediately observe that all the matrix elements of W vanish. Thus, the energies of
|2 1 ± 1〉 are unshifted. Likewise, the non-degenerate states |2 0 0〉 and |2 1 0〉 are unshifted
at first order, since

〈2 0 0|Lx |2 0 0〉 = 〈2 1 0|Lx |2 1 0〉 = 0 ,

and we conclude that H ′ ≡ (eB/2mc)Lx causes no energy shift to first order in B.

2. [25] Calculate the wavelength, in centimeters, of a photon emitted under a hyperfine
transition in the ground state of deuterium. Deuterium is “heavy” hydrogen, with an
extra neutron in the nucleus. The proton and neutron bind together to form a deuteron,
with spin 1 and magnetic moment

~µd =
gde

2Md

~I ,

where ~I is the spin-vector of the deuteron, gd = 1.71 is the deuteron g-factor and Md is
the mass of the deuteron.

In class, we computed the first-order energy shifts to the ground state energy of hy-
drogen due to the hyperfine interaction. The latter is given by:

HHF =
e2gN

2mMN

[

~I ·
~L

r3
+

3(~I ·~r)(~S ·~r)

r5
−

~I ·
~S

r3
+

8π

3
~I ·

~S δ3(~r)

]

,

where ~I is the spin-vector of the nucleus, gN is the g-factor of the nucleus, MN is the mass
of the nucleus and m is the mass of the electron. In the case of ℓ = 0, we demonstrated
in class that:

〈

~I ·
~L

r3

〉

=

〈

3(~I ·r̂)(~S ·r̂) − ~I ·
~S

r3

〉

= 0 .

Hence, in the ground state, which corresponds to n = 1 and ℓ = 0, only the term in
the hyperfine Hamiltonian proportional to ~I ·

~S δ3(~r) contributes to the first-order energy
shift. In particular, after evaluating the expectation value of HHF in the ground state,

E(1) =
4πe2gN

3mMN
|ψ100(0)|2

〈

~I ·
~S
〉

,
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where

|ψ100(0)|2 =
1

πa3
0

,

is the square of the ground-state unperturbed wave function evaluated at the origin.
Recalling that:

a0 =
~

mcα
, α =

e2

~c
,

one can rewrite the shifted energy as:

E(1) = 4
3
gNα

4m
2c2

MN~

〈

~I ·
~S
〉

.

We now introduce the total angular momentum, ~F ≡ ~L + ~S + ~I. In the ground state
(where ℓ = 0), we have ~F = ~S + ~I. Hence, we can write:

~I ·
~S = 1

2

[

(~S + ~I)2 − ~S
2 − ~I

2
]

= 1
2

[

~F
2 − ~S

2 − ~I
2
]

.

The electron has spin-1
2

and the deuteron has spin-1. Hence,

〈

~S
2〉

= 3
4
~

2 ,
〈

~I
2〉

= 2~
2 .

In general,
〈

~F
2〉

= f(f + 1)~2 ,

with respect to the total angular momentum basis. Since ℓ = 0, adding spin-1
2

to spin-1
yields a total angular momentum equal to either 1

2
or 3

2
. That is, in the total angular

momentum basis,

〈

~I ·
~S
〉

= ~
2
[

f(f + 1) − 11
4

]

=

{

1 , for f = 3
2
,

−2 , for f = 1
2
.

Hence,

E(1) = 2
3
gdα

4m
2c2

Md
×
{

1 , for f = 3
2
,

−2 , for f = 1
2
,

and so

∆Ed ≡ E(1)(f = 3
2
) − E(1)(f = 1

2
) =

2gdα
4m2c2

Md
.

The wavelength of the emitted photon in a transition from the f = 3
2

to the f = 1
2

state is λd = 2π~c/∆Ed, or

λd =
π~c

α4gdmc2

(

Md

m

)

=
π(1.973 × 10−5)(137)4

(1.71)(5.11 × 105)
(2)(1836) cm ≃ 92 cm

REMARK: It is instructive to normalize the result obtained above for deuterium to the
corresponding result for hydrogen, which was obtained in class. In class, we found that

∆Ep ≡ E(1)(f = 1) − E(1)(f = 0) =
4gpα

4m2c2

3Mp
,
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where the subscript p refers to the proton, which makes up the nucleus of the hydrogen
atom. Thus,

λd

λp

=
∆Ep

∆Ed

=
2gpMd

3gdMp

.

The deuteron mass is approximately given by twice the proton mass. Using gp = 5.59,
gd = 1.71 and λp = 21 cm, we find:

λd =
4

3

(

5.59

1.71

)

(21 cm) = 92 cm ,

as before.

3. Consider a positively-charged spin-1/2 particle in an external magnetic field, governed
by the Hamiltonian:

H = H0 I− γ ~B ·
~S ,

where I is the identity operator in spin space, ~S is the vector of spin-1/2 spin matrices,
and γ is a constant (for a positively-charged particle, γ > 0). H0 is spin-independent and

is independent of the magnetic field ~B. For simplicity, assume that H0 possesses exactly
one eigenvalue, which is denoted by E.

(a) If the magnetic field is given by ~B = Bẑ (where B > 0), determine the energy
eigenstates and eigenvalues of H .

Since H0 is spin-independent, it follows that the both H0 and H commute with ~S
2

and Sz. Consequently, the eigenstates of H can be chosen to be simultaneous eigenstates
of ~S

2
and Sz. Under the assumptions of this problem,

H0

∣

∣

1
2
ms

〉

= E
∣

∣

1
2
ms

〉

, ms = −1
2
, +1

2
.

Using Sz

∣

∣

1
2
ms

〉

= ~ms

∣

∣

1
2
ms

〉

, it follows that:

H
∣

∣

1
2
ms

〉

= [H0I − γBSz]
∣

∣

1
2
ms

〉

= (E − ~msγB)
∣

∣

1
2
ms

〉

In what follows, we shall denote the two possible energy eigenvalues by:

E± = E − ~msγB , ms = ±1
2
.

In particular, the energy difference of the two states is given by:

E− − E+ = ~γB , (6)

which implies that E− > E+ if γ > 0.
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(b) Assume that the magnetic field is given by ~B = Bẑ for time t < 0. The system
is initially observed to be in a spin-up state. At t = 0, a time-dependent perturbation is
added by modifying the magnetic field. The new magnetic field for t > 0 is given by:

~B = b (x̂ cosωt− ŷ sinωt) +Bẑ ,

where b > 0. Using first-order time-dependent perturbation theory, derive an expression
for the probability that the system will be found in a spin-down state at some later time
t = T .

We shall denote cms
(t) as the probability amplitude for the spin-1

2
to be in an eigenstate

of Sz with eigenvalue ~ms at time t. Using first-order time-dependent perturbation theory
[cf. eq. (13.51) on p. 711 of Liboff],

c−1/2(t) = c−1/2(0) − i

~

∫ t

0

〈

1
2
− 1

2

∣

∣H ′(t)
∣

∣

1
2

1
2

〉

ei(E−−E+)t′/~ dt′ , (7)

The time-dependent perturbing Hamiltonian is given by:

H ′(t) = −γb(Sx cosωt−Sy sinωt) = −1
2
~γb(σx cosωy−σy sinωt) = −1

2
~γb

(

0 eiωt

e−iωt 0

)

.

Thus,

〈

1
2
− 1

2

∣

∣H ′(t)
∣

∣

1
2

1
2

〉

= −1
2
γb
(

0 1
)

(

0 eiωt

e−iωt 0

)(

1

0

)

= −1
2
γbe−iωt .

By assumption, the system is observed in a spin-up state at t = 0, so that c−1/2(0) = 0.
Eqs. (6) and (7) then yield:

c−1/2(t) = 1
2
iγb

∫ t

0

ei(γB−ω)t′dt′ =
γb

2(γB − ω)

[

ei(γB−ω)t − 1
]

.

The state is observed at time t = T . The probability that the state will be observed
as spin-down is P1

2
→−

1
2

= |c−1/2(T )|2. Explicitly,

P1
2
→−

1
2

= |c−1/2(T )|2 =
γ2b2

4(γB − ω)2

[

ei(γB−ω)T − 1
] [

e−i(γB−ω)T − 1
]

=
γ2b2

2(γB − ω)2
(1 − cos(γB − ω)T ]

Using the identity sin2
(

1
2
θ
)

≡ 1
2
(1 − cos θ), it follows that:

P1
2
→−

1
2

= |c−1/2(T )|2 =
γ2b2

(γB − ω)2
sin2

[

1
2
(γB − ω)T

]

(8)
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(c) For what range of values of ω are the results of part (b) unreliable?

First-order perturbation theory is valid if P1
2
→−

1
2
≪ 1. Since the sine function in

eq. (8) can be as large as 1, it follows that the coefficient of the sine must be small.
Hence,

∣

∣

∣

∣

γb

γB − ω

∣

∣

∣

∣

≪ 1 . (9)

That is, ω cannot be too close in value to γB.
In class, we studied the phenomena of magnetic resonance, in which we solved the

Schrodinger equation exactly for this problem. In the notation of this problem, the result
obtained in class was:

P1
2
→−

1
2

=
γ2b2

(γB − ω)2 + γ2b2
sin2

[

1
2
T
√

(γB − ω)2 + γ2b2
]

.

Comparing this result with eq. (8), we confirm that the first-order perturbation theory
result is accurate if eq. (9) is satisfied. However, if ω is close to the resonance condition
of ω = γB, then the first-order perturbation theory computation is unreliable, and one
must use the exact result given above.

REMARK: Normally, one might have guessed that the reliability of the first-order per-
turbation theory depends on the magnitude of b, since the perturbing Hamiltonian is
proportional to b. This is true as long as one is far from the resonance condition. If
|γB − ω| ∼ O(γB), then it is clear that the first-order perturbation theory result is reli-
able if b≪ B. However, if the resonance condition is exactly satisfied, then eq. (9) cannot
be satisfied no matter how small b is, in which case the first-order perturbation theory
result can never be reliable.

4. In class, we computed the phase shifts for the scattering by a hard sphere of radius a.
In the low energy limit (i.e., for ka≪ 1), the ℓth partial wave phase shift is given by:

δℓ ≃ cℓ(ka)
2ℓ+1 , (10)

where cℓ = −1/ {(2ℓ+ 1)[(2ℓ− 1)!!]2}. We concluded that at low energies, only the lowest
partial waves are important. One can prove a more general result: at low energies, δℓ is
of the form given by eq. (10) for any short-ranged spherically symmetric potential, where
the parameters cℓ depend on the form of the potential.
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(a) Using the results stated above, show that at low energies, the differential cross sec-
tion for scattering off any short-ranged spherically symmetric potential is approximately
isotropic (i.e., independent of scattering angle). Compute the corresponding total cross-
section and show that it is determined by one unknown parameter (which depends on the
form of the potential).

Eq. (10) implies that at low energies where ka ≪ 1, we have δℓ ≪ 1 and δℓ+1 ≪ δℓ.
The partial wave expansion of the scattering amplitude is given by:

f(θ) =
1

k

∞
∑

ℓ=0

(2ℓ+ 1)eiδℓ sin δℓ Pℓ(cos θ) , (11)

and the differential and total cross-sections are given by:

dσ

dΩ
= |f(θ)|2 , σ =

∫

dσ

dΩ
dΩ = 2π

∫ 1

−1

|f(θ)|2 d cos θ . (12)

Since δℓ ≪ 1, one can approximate

eiδℓ sin δℓ ≃ δℓ , for ka≪ 1 . (13)

At low energies in first approximation, we can neglect all partial waves beyond ℓ = 0.
In this case, eqs. (11) and (13) yields

f(θ) ≃ δ0
k
, for ka≪ 1 .

Using eq. (10), it follows that δ0 ≃ c0ka at low energies, in which case,

f(θ) ≃ c0a ,

which is independent of angle. Hence the scattering amplitude is approximately isotropic.
Eq. (12) then yields:

dσ

dΩ
= c20a

2 , σ = 4πc20a
2 , for ka≪ 1

(b) Now, raise the energy of scattering slightly so that only the lowest-order correc-

tions that yield a non-trivial angular distribution are required for a good approximation.
Assume that the energy is still sufficiently low such that the form for δℓ given in eq. (10) is
valid. In this case, find the most general form for the angular dependence of the differential
cross-section, and show that it is determined in terms of two unknown parameters.

If the energy is raised slightly, then we must include both the ℓ = 0 and the ℓ = 1
partial waves. Higher partial waves can still be neglected. Then, eq. (11) yields:

f(θ) ≃ 1

k

[

eiδ0 sin δ0 + 3eiδ1 sin δ1P1(cos θ)
]

.
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Using P1(cos θ) = cos θ and again employing eq. (13) for both the ℓ = 0 and ℓ = 1 partial
wave amplitudes, we obtain:

f(θ) =
1

k
[δ0 + 3δ1 cos θ] .

Using eq. (10), we can write δ0 ≃ c0ka and δ1 ≃ c1(ka)
3. The scattering amplitude f(θ)

can then be written as:

f(θ) = c0a

[

1 +
3c1
c0

(ka)2 cos θ

]

.

The cross-section is obtained by squaring the scattering amplitude. Since ka ≪ 1 by
assumption, and the problem instructs us to keep only the leading term that contributes
to a non-trivial angular distribution, we shall neglect the term proportional to (ka)4 cos2 θ
in the differential cross-section. Thus,

dσ

dΩ
≃ c20a

2

[

1 +
6c1
c0

(ka)2 cos θ

]

(14)

That is, the differential cross-section at low-energies is determined by two unknown pa-
rameters and has the general form

dσ

dΩ
= A+B cos θ ,

where B/A ∼ O(k2a2).

(c) [EXTRA CREDIT] Consider the case of a weakly attractive spherical potential
well of depth V0 and radius a. For this problem, “weakly attractive” means that the
potential energy is given by V (r) = −|V0| for r < a and 2m|V0|a2/~2 ≪ 1. Using the
results of part (b), compute the leading contribution at low energies to the so-called
forward-backward asymmetry, AFB, which is defined by

AFB ≡ σF − σB

σF + σB

,

where (after integrating over the azimuthal angle φ),

σF ≡ 2π

∫ 1

0

dσ

dΩ
d cos θ , σB ≡ 2π

∫ 0

−1

dσ

dΩ
d cos θ .

Because the condition 2m|V0|a2/~2 ≪ 1 is satisfied, the Born approximation is a
reliable approximation in the low energy limit. In class, the following result was given for
the Born approximation to the phase shifts:

eiδℓ sin δℓ ≃ δℓ = −2mk

~2

∫ ∞

0

V (r)[jℓ(kr)]
2r2 dr .
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For the spherical attractive square well potential,

V (r) =

{

−|V0| , for r < a ,

0 , for r > a .

Moreover, in the low-energy limit (ka≪ 1), we can approximate

jℓ(kr) ≃
(kr)ℓ

(2ℓ+ 1)!!
, for r < a .

Hence,

δℓ ≃
2m|V0|k

~2

∫ a

0

[

(kr)ℓ

(2ℓ+ 1)!!

]2

r2 dr =
2m|V0|k2ℓ+1

[(2ℓ+ 1)!!]2~2

∫ a

0

r2ℓ+2dr .

Evaluating the integral yields

δℓ =

(

2m|V0|a2

~2

)

(ka)2ℓ+1

(2ℓ+ 3)[(2ℓ+ 1)!!]2
.

Comparing with eq. (10), we identify:

cℓ =
2m|V0|a2

~2(2ℓ+ 3)[(2ℓ+ 1)!!]2
. (15)

If only the ℓ = 0 and ℓ = 1 partial waves are significant, then the results of part (b)
indicate that the differential scattering cross-section is of the form:

dσ

dΩ
= A+B cos θ ,

where eq. (14) implies that
B

A
=

6c1(ka)
2

c0
.

Using eq. (15), it follows that c1/c0 = 1/15. Thus, we conclude that

B

A
=

2

5
(ka)2 . (16)

To compute the forward-backward asymmetry, AFB, we compute:

∫ 1

0

(A +B cos θ) d cos θ = A+ 1
2
B ,

∫ 0

−1

(A+B cos θ) d cos θ = A− 1
2
B .

Hence,

AFB =
(A+ 1

2
B) − (A− 1

2
B)

(A+ 1
2
B) + (A− 1

2
B)

=
B

2A
.

Using the result for B/A obtained in eq. (16), the leading contribution to AFB at low-
energies (ka≪ 1) is given by:

AFB ≃ 1

5
(ka)2
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REMARK: One can also solve this problem by explicitly computing the s-wave and p-
wave phase shifts and then taking the low-energy limit. Liboff solves the relevant s-wave
scattering problem on p. 770–771. On problem 2(d) of Homework set #5, we studied the
low-energy behavior of the s-wave phase shift. One consequence of those results was that
c0 = 2mV0a

2/(3~
2), in agreement with eq. (15). One can solve for the p-wave phase shift

in a similar manner, although the algebra is somewhat tedious. Still, this is an exercise
worth pursuing. You should check the corresponding low-energy limit and verify that the
resulting value for c1 also agrees with eq. (15).
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