
Physics 139B Solutions to Homework Set 3 Fall 2009

1. Consider a particle of mass m attached to a rigid massless rod of fixed length R
whose other end is fixed at the origin. The rod is free to rotate about the origin.
Classical mechanics teaches us that the Hamiltonian of this system is given by

H =
~L2

2I
,

where I = mR2 is the moment of inertia, and ~L = ~r × ~p is the angular momentum.
In quantum mechanics, ~L is an operator, and the Schrodinger equation for the
energy levels of the rigid rotator is given by H |ψ〉 = E |ψ〉.

(a) What are the possible energy eigenvalues of the system?

Since the eigenvalues of ~L2 are ~
2ℓ(ℓ+ 1), where ℓ = 0, 1, 2, . . ., it follows that

the eigenvalues of H = ~L2/(2I) are ~
2ℓ(ℓ+ 1)/(2I), where ℓ = 0, 1, 2, . . ..

(b) Suppose that the particle of mass m has no internal spin degree of freedom,

but carries an electric charge +e. It is placed in a uniform magnetic field ~B. Using
the principle of minimal substitution, write down the Schrodinger equation for the
charged rigid rotator.

According to the principle of minimal substitution, we replace ~p −→ ~p − e ~A

in the Hamiltonian. Thus,

H =

[

~r × (~p − e ~A)
]

2

2I
. (1)

For a uniform magnetic field, a convenient choice for ~A is given by:

~A = −1
2
~r × ~B , (2)

which is consistent with the Coulomb gauge condition, ~∇· ~A = 0. In the coordi-
nate representation, the momentum operator i given by ~p = −i~~∇. Hence, for
any wave function ψ,

~p· ~Aψ = −i~~∇·( ~Aψ) = −ih
[

~A· ~∇ψ + ψ~∇· ~A
]

= −i~ ~A· ~∇ψ = ~A·~pψ .

That is, in the Coulomb gauge, ~A·~p = ~p· ~A, and we do not have to worry about
the relative ordering of these two operators.

We now proceed to simplify the Hamiltonian given in eq. (1). Consider two

operators, ~C and ~D that do not commute. Using,

( ~C × ~D)i =
∑

j,k

ǫijkCjDk ,
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it follows that:

( ~C × ~D)2 =
∑

j,k,ℓ,m

ǫijkǫiℓmCjDkCℓDm =
∑

j,k,ℓ,m

(δjlδkm − δjmδkℓ)CjDkCℓDm

=
∑

j,k

(CjDkCjDk − CjDkCkDj)

=
∑

j,k

CjDkCjDk −
∑

j

Cj( ~D· ~C)Dj ,

where I have been careful to keep track of the order of the operators. Applying
this result with ~C ≡ ~r and ~D ≡ ~p − e ~A, one obtains:

[

~r × (~p − e ~A)
]

2 =
∑

j,k

rj(p− eA)k rj(p− eA)k −
∑

j

rj

[

(~p − e ~A)·~r
]

(p− eA)j .

If we now make use of the expression for ~A given in eq. (2), the second term
above can be simplified, since

~A·~r = −1
2
(~r × ~B)·~r = 0 ,

since ~r is perpendicular to ~r × ~B. Hence, (~p − e ~A)·~r = ~p·~r. Hence,

[

~r×(~p−e ~A)
]

2 = (~r×~p)2−e
∑

j,k

rj(Akrjpk+pkrjAk)+e
∑

j

rj(~p·~r)Aj+e
2
∑

j,k

rjAkrjAk .

(3)

Since ~A is a function of ~r (and not of ~p), it follows that ~A commutes with ~r.
However, ~p does not commute with ~r. Instead,

[rj , pk] = i~δjk ,

or equivalently,
rjpk = pkrj + i~δjk .

As a result,
∑

j

rj(~p·~r)Aj =
∑

j,k

rjpkrkAj =
∑

j,k

(pkrj + i~δjk)rkAj = (~p·~r+ i~)~r· ~A = 0 , (4)

since [rj , rk] = 0 and ~r· ~A = ~A·~r = 0 as previously noted for a uniform magnetic
field in the Coulomb gauge. Next, we examine:

∑

j,k

rjpkrjAk =
∑

j,k

rj(rjpk − i~δjk)Ak = r2~p· ~A − i~~r· ~A = r2~p· ~A , (5)

where we have again used ~r· ~A = 0. As usual, we denote r2 ≡ ~r·~r. Finally, noting
that [Ak , rj] = 0, it follows that:

∑

j,k

rjAkrjpk = r2 ~A·~p . (6)
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Inserting the results of eqs. (4)–(6) into eq. (3), one obtains:

[

~r × (~p − e ~A)
]

2 = (~r × ~p)2 − er2
(

~p· ~A + ~A·~p
)

+ e2r2 ~A
2

= ~L 2 − 2er2 ~A·~p + e2r2 ~A
2
, (7)

where in the last step, we have used the fact that ~p· ~A = ~A·~p in the Coulomb
gauge. We now substitute ~A = 1

2
~r× ~B (appropriate for a uniform magnetic field),

and note that:

~A·~p = −1
2
(~r × ~B)·~p = 1

2
( ~B × ~r)·~p = 1

2
~B ·(~r × ~p) = 1

2
~B ·~L

~A
2

= 1
4
(~r × ~B)2 = 1

4

[

r2 ~B 2 − (~r· ~B)2
]

.

Inserting these results into eq. (7), we end up with

H =
1

2I

{

~L 2 − er2 ~B ·~L + 1
4
e2r2

[

r2 ~B 2 − (~r· ~B)2
]

}

.

The time-independent Schrodinger equation then reads:

1

2I

{

~L 2 − er2 ~B ·~L + 1
4
e2r2

[

r2 ~B 2 − (~r· ~B)2
]

}

ψ = Eψ ,

where H is given above and ~Lψ ≡ −i~~r × ~∇ψ.

(c) Compute the energy levels of the system described in part (b), assuming
that the magnetic field is weak (i.e., assume that the term in the Hamiltonian

that is quadratic in ~B can be neglected).

If the magnetic field is weak, one can neglect the term in H that is quadratic
in the B-field. Thus, one can use the approximate Hamiltonian,

H =
1

2I

[

~L 2 − er2 ~B ·~L
]

.

One is free to choose the z-axis to lie along ~B, so that ~B = Bẑ. Moreover, the
length of the co-ordinate ~r is fixed, r = R, since by assumption the rigid rotator
has a fixed length. The moment of inertia of the rigid rotator is I = mR2. Hence,

H =
~L 2

2mR2
− eBLz

2m
.

The eigenstates ofH are simultaneous eigenstates of ~L 2 and Lz. Since the possible
eigenvalues of Lz are ~mℓ, where

mℓ = −ℓ , −ℓ+ 1 , . . . , ℓ− 1 , ℓ ,
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it follows that the energy levels of the charged rigid rotator in a weak uniform
magnetic field are given by:

E =
~

2ℓ(ℓ+ 1)

2mR2
− e~B

2m
mℓ

ℓ = 0 , 1 , 2 , . . .
mℓ = −ℓ , −ℓ + 1 , . . . , ℓ− 1 , ℓ

Of course, this is the Zeeman effect.

REMARK: The model of the rigid rotator is a good one for diatomic molecules.
Thus, the above result provides a model for the behavior of the rotational levels
of diatomic molecules in the presence of a weak uniform magnetic field.

2. Positronium is a bound state of two spin 1/2 particles: an electron (e−) and
a positron (e+). Consider the Hamiltonian for the system, where we focus only
on the spin degrees of freedom. In the presence of a uniform external magnetic
field, we may take:

H = A(I − ~σ1 ·~σ2) + µB(~σ1 − ~σ2)· ~B ,

where A is a constant, I is the identity matrix in the direct product space of the
two spin-1

2
Hilbert spaces, µB ≡ e~/(2mc), and m is the electron mass. The labels

1 and 2 refer to the e− and the e+ respectively.

(a) Consider separately the case of zero magnetic field and the case of a uniform
magnetic field pointing in the z-direction. In each case, list the complete set of
simultaneously commuting angular momentum operators that also commute with
the Hamiltonian H given above.

Using ~Si ≡ 1
2
~~σi (i = 1, 2), we can rewrite H as:

H = A

[

I − 4

~2
~S1 ·~S2

]

+
e

m

(

~S1 − ~S2

)

· ~B .

The total spin operator is ~S ≡ ~S1 + ~S2. Squaring this expression and solving for
~S1· ~S2, one obtains:

~S1 ·~S2 = 1
2

[

~S 2 − ~S1

2 − ~S2

2
]

.

First, suppose that ~B = 0. Then H commutes with ~S 2, Sz, ~S1

2 and ~S2

2. Note
that H does not commute with any of the components of ~S1 and ~S2. For example,

[S1i , ~S1 ·~S2] =
∑

j

[S1i , S1j ]S2j = i~
∑

j,k

ǫijkS1kS2j 6= 0 .

Next, if ~B ≡ Bẑ (without loss of generality, we are free to choose the z-axis to

lie in the direction of the B-field), then H still commutes with Sz, ~S1

2 and ~S2

2.
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However, H no longer commutes with ~S 2. For example,

[~S 2 , (S1 − S2)i] = [~S1

2 + ~S2

2 + 2 ~S1·~S2 , (S1 − S2)i] = 2
∑

j

[S1jS2j , (S1 − S2)i]

= 2S2j[S1j , S1i] − 2S1j [S2j , S2i]

= 2i~
∑

j,k

ǫjik (S2jS1k − S1jS2k) = 4i~
∑

j,k

ǫijkS1jS2k 6= 0 .

(b) In zero magnetic field, a transition is observed to occur from the S = 1 state
to the S = 0 state (which is the ground state). The emitted photon is observed
to have a frequency of 2×105 MHz. Compute the energy levels of the system (for
B = 0), and then evaluate the constant A that appears in the Hamiltonian.

If ~B = 0, then the eigenstates of H can be chosen to be simultaneous eigen-
states of ~S 2, Sz, ~S1

2 and ~S2

2. These eigenstates are denoted by |s , ms〉, where
the possible values of s and ms are: s = 1 and ms = +1 , 0 , −1 corresponding
to the triplet spin state, and s = 0 and ms = 0 corresponding to the singlet spin
state. In the case of zero orbital angular momentum (ℓ = 0), the triplet state is
denoted by 3S1 and the singlet state by 1S0. The latter is the ground state of the
system.

Using the results of part (a), the Hamiltonian in the case of zero external
magnetic field can be written as:

H = A

[

I − 2

~2

(

~S 2 − ~S1

2 − ~S2

2
)

]

.

Using

~S 2 |s , ms〉 = ~
2s(s+ 1) |s , ms〉 ,

~S1

2 |s , ms〉 = 3
4
~

2 |s , ms〉 ,

~S2

2 |s , ms〉 = 3
4
~

2 |s , ms〉 ,

where the latter two results above are a consequence of the fact the the electron
and positron are both spin-1

2
particles, it follows that

H |s , ms〉 = A
{

1 − 2
[

s(s+ 1) − 3
2

]}

|s , ms〉 =

{

0 , for s = 1 ,

4A |s , ms〉 , for s = 0 .

That is, the energies of the 3S1 and 1S0 states are given by

E =

{

0 , for the 3S1 state ,

4A , for the 1S0 state .
(8)
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A photon with the a frequency of ν ≡ 2 × 105 MHz is observed in a transition
from the 3S1 state to the 1S0 ground state. Since,

∆E ≡ E(3S1) − E(1S0) = hν = −4A ,

it follows that

A = −1
4
hν = −1

4
(4.136 × 10−15 eV–sec)(2 × 1011 sec−1) = −2.068 × 10−4 eV .

3. Liboff, problem 12.5 on page 584.

Liboff defines the term multiplicity to be the number of possible j values for
a given ℓ and s. As shown on pp. 581–583 of Liboff, the multiplicity is equal to
2s+ 1 if s ≤ ℓ and 2ℓ+ 1 for s ≥ ℓ (the definitions agree in the case of ℓ = s).

(a) 3D2 means ℓ = 2, s = 1 and j = 2. The multiplicity is 2s+ 1 = 3.

(b) 4P5/2 means ℓ = 1, s = 3/2 and j = 5/2. The multiplicity is 2ℓ+ 1 = 3.

(c) 2F7/2 means ℓ = 3, s = 1/2 and j = 7/2. The multiplicity is 2s+ 1 = 2.

(d) 3G3 means ℓ = 4, s = 1 and j = 3. The multiplicity is 2s+ 1 = 3.

4. Liboff, problem 13.4 on page 689.

(a) The unperturbed Hamiltonian is

H(0)(x) =

{

0 , for |x| ≤ L/2 ,

∞ , for |x| ≥ L/2 ,

and the perturbation is

H(1)(x) =

{

V0 , for |x| ≤ a/2 ,

0 , for |x| ≤ a/2 ,

where 0 < a < L. First, we need to solve for the energy eigenvalues and the
corresponding eigenfunctions of H(0). These are given in eq. (6.100) on p. 179 of
Liboff:

E(0)
n =

~
2π2n2

2mL2
,

and

∣

∣n(0)
〉

=



















√

2

L
sin

(nπx

L

)

, for n = 2 , 4 , 6 , . . . ,

√

2

L
cos

(nπx

L

)

, for n = 1 , 3 , 5 , . . . .

(9)
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The first order energy shift for the n = 2 energy level is given by

E
(1)
2 =

〈

2(0)
∣

∣H(1)
∣

∣2(0)
〉

=
2V0

L

∫ a/2

−a/2

sin2

(

2πx

L

)

dx =
V0a

L

[

1 − sin(2πa/L)

(2πa/L)

]

.

That is, the corrected second eigenenergy to first order in the perturbation is given
by:

E2 =
2~

2π2

mL2
+
V0a

L

[

1 − sin(2πa/L)

(2πa/L)

]

.

The corrected eigenfunction to first order in the perturbation,
∣

∣2(0)
〉

+
∣

∣2(1)
〉

,
is obtained using

∣

∣2(1)
〉

=
∑

n 6=2

∣

∣n(0)
〉 〈

n(0)
∣

∣H(1)
∣

∣2(0)
〉

E
(0)
2 −E

(0)
n

.

Thus, we compute

〈

n(0)
∣

∣H(1)
∣

∣2(0)
〉

=























2V0

L

∫ a/2

−a/2

sin

(

2πx

L

)

sin
(nπx

L

)

, for n even ,

2V0

L

∫ a/2

−a/2

sin

(

2πx

L

)

cos
(nπx

L

)

, for n odd ,

where the case of n = 2 is excluded. The above integrals are easily evaluated:

2V0

L

∫ a/2

−a/2

sin

(

2πx

L

)

sin
(nπx

L

)

=
2V0

π









sin

(

(n− 2)πa

2L

)

n− 2
−

sin

(

(n+ 2)πa

2L

)

n + 2









,

∫ a/2

−a/2

sin

(

2πx

L

)

cos
(nπx

L

)

= 0 .

In evaluating the first integral above, we set u = πx/L and employed the trigono-
metric identity:

sin(2u) sin(nu) = 1
2

[

cos[(n− 2)u] − cos[(n + 2)u]

]

.

The second integral above vanishes, since the integrand is an odd function with
respect to x −→ −x. Hence,

∣

∣2(1)
〉

=
2V0

πE
(0)
1

√

2

L

∑

n=4,6,...









sin

(

(n− 2)πa

2L

)

n− 2
−

sin

(

(n+ 2)πa

2L

)

n + 2









sin
(nπx

L

)

4 − n2
,

where E
(0)
1 ≡ ~

2π2/(2mL2), and the sum is taken over all positive even numbers
excluding n = 2. There is no simple closed-form expression for the sum above.
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(b) In order for the approximation to be valid, the energy shift should be
parametrically smaller than the unperturbed energy. Since the ratio a/L need
not be particularly small, we simply require that

V0 ≪
~

2π2

mL2
,

where we have dropped constants such as factors of 2 or factors of a/L. The
condition above also ensures that the correction to the unperturbed eigenfunction
is also small.

(c) The parity of the the nth unperturbed energy level is −(−1)n, correspond-
ing to the behavior

ψn(−x) = −(−1)nψn(x) ,

which follows from eq. (9). Noting that the unperturbed Hamiltonian and the
perturbation H(1) are both even functions under x −→ −x, it follows that both
the unperturbed and the exact Hamiltonians commute with the parity operator.
Hence the exact energy eigenfunctions must have definite parity. In particular,
if the unperturbed energy eigenfunction is odd under parity, then the perturbed
wave function will also be odd under parity. This is indeed the case for the n = 2
energy eigenstate, as the explicit results of part (a) demonstrate.

5. Consider the Hamiltonian for positronium in the presence of a uniform external
magnetic field, given in problem 2 above. Assume that the magnetic field points
in the z-direction.

(a) Treating the magnetic field as a perturbation, compute the energy eigen-
values to second order in B and the energy eigenstates to first order in B. Sketch
the energy levels as a function of B.

We take ~B = Bẑ. The unperturbed Hamiltonian is given by

H(0) = A

[

I − 2

~2

(

~S 2 − ~S1

2 − ~S2

2
)

]

,

and the perturbation is given by

H(1) =
eB

m
(S1z − S2z) .

As shown in problem 2, the unperturbed eigenstates are given by |s , ms〉 with
s = 1 for the 3S1 triplet states and s = 0 for the 1S0 singlet state.

First, consider the first-order energy shifts. For the 1S0 singlet state,

E
(1)
|0,0〉 =

eB

m
〈0 , 0|S1z − S2z |0 , 0〉 .
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To evaluate this, we convert from the total spin basis to the product basis. Recall
that:

|0 , 0〉 =
1√
2

[

|↑ ↓〉 − |↓ ↑〉
]

, (10)

|1 , 0〉 =
1√
2

[

|↑ ↓〉 + |↓ ↑〉
]

. (11)

Then,

H(1) |0 , 0〉 =
eB√
2m

(

S1z

[

|↑ ↓〉 − |↓ ↑〉
]

− S2z

[

|↑ ↓〉 − |↓ ↑〉
]

)

=
e~B√
2m

[

|↑ ↓〉 + |↓ ↑〉
]

=
e~B

m
|1 , 0〉 . (12)

Since |0 , 0〉 and |1 , 0〉 are orthogonal states, it follows that E
(1)
|0,0〉 = 0.

Next, consider the 3S1 triplet states. These are three degenerate states with
respect to H(0), so we must use degenerate perturbation theory. Thus, we shall
evaluate the matrix

Wm′

s
,ms

≡ 〈1 , m′
s|H(1) |1 , ms〉 ,

which is a 3 × 3 matrix. To evaluate these matrix elements, we again rewrite the
unperturbed eigenstates in terms of the product basis, using eq. (11) and

|1 , 1〉 = |↑ ↑〉 , |1 , −1〉 = |↓ ↓〉 .

We compute:

H(1) |1 , 1〉 =
eB

m
(S1z − S2z) |↑ ↑〉 = 0 ,

H(1) |1 , −1〉 =
eB

m
(S1z − S2z) |↓ ↓〉 = 0 ,

and

H(1) |1 , 0〉 =
eB√
2m

(

S1z

[

|↑ ↓〉 + |↓ ↑〉
]

− S2z

[

|↑ ↓〉 + |↓ ↑〉
]

)

=
e~B√
2m

[

|↑ ↓〉 − |↓ ↑〉
]

=
e~B

m
|0 , 0〉 .

Since the |s , ms〉 states are orthonormal, it follows that

Wm′

s
,ms

= 0 , for all ms , ms′ = −1 , 0 , +1 .

Thus, we have proven that all first-order energy shifts vanish.
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Next, we consider the perturbed energy eigenstates at first order in the per-
turbation expansion. In class, we derived:

∣

∣n(1)
〉

=
∣

∣n(0)
〉

+
∑

m6=n

∣

∣m(0)
〉 〈

m(0)
∣

∣H(1)
∣

∣n(0)
〉

E
(0)
n − E

(0)
m

, (13)

where we exclude the degenerate states from the sum. Since H (1) |1 , 1〉 = 0 and
H(1) |1 , −1〉 = 0, it follows that there is no first order shift in the wave functions
for |1 , 1〉 and |1 , −1〉. On the other hand, there are first-order shifts in the wave
functions for |1 , 0〉 and |0 , 0〉. Using eq. (13), it follows that

∣

∣ψ(1)
〉

|1,0〉
= |1 , 0〉 +

|0 , 0〉 〈0 , 0|H (1) |1 , 0〉
0 − 4A

,

∣

∣ψ(1)
〉

|0,0〉
= |0 , 0〉 +

|1 , 0〉 〈1 , 0|H (1) |0 , 0〉
4A− 0

,

where we have used the unperturbed energies obtained in eq. (8). Evaluating
these expressions using results obtained above, one finds:

∣

∣ψ(1)
〉

|1,0〉
= |1 , 0〉 − e~B

4Am
|0 , 0〉 , (14)

∣

∣ψ(1)
〉

|0,0〉
= |0 , 0〉 +

e~B

4Am
|1 , 0〉 . (15)

The second order energy shifts can now be determined using

E(2) =
〈

n(0)
∣

∣H(1)
∣

∣n(1)
〉

. (16)

Due to H(1) |1 , 1〉 = 0 and H(1) |1 , −1〉 = 0, it follows that there are no second-
order energy shifts for |1 , 1〉 and |1 , −1〉. On the other hand, there are second-
order energy shifts for |1 , 0〉 and |0 , 0〉. Using eq. (16), one finds:

E
(2)
|1,0〉 =

〈

1 , 0
∣

∣

∣
H(1)

∣

∣

∣
ψ

(1)
|1,0〉

〉

= − e~B

4Am
〈1 , 0|H(1) |0 , 0〉 = − 1

4A

(

e~B

m

)2

,

E
(2)
|0,0〉 =

〈

0 , 0
∣

∣

∣
H(1)

∣

∣

∣
ψ

(1)
|0,0〉

〉

=
e~B

4Am
〈0 , 0|H(1) |1 , 0〉 =

1

4A

(

e~B

m

)2

.

The results obtained above are summarized in the following table:

state energy

|1 , 1〉 0

|1 , 0〉 − e~B

4Am
|0 , 0〉 − 1

4A

(

e~B

m

)2

|1 , −1〉 0

|0 , 0〉 +
e~B

4Am
|1 , 0〉 4A+

1

4A

(

e~B

m

)2
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where A < 0 as shown in problem 2(b). A sketch of the energy levels as a function
of B is shown below.

REMARK: Since the degeneracy was not resolved at first order, one might worry
that we have not yet identified the correct unperturbed degenerate eigenstates. In
class, I indicated that to resolve the degeneracy at second order, one should solve
the eigenvalue problem for the matrix W (2), which is defined by:

W (2) =
∑

k 6=ni

〈

n
(0)
j

∣

∣

∣
H(1)

∣

∣

∣
n

(0)
k

〉〈

n
(0)
k

∣

∣

∣
H(1)

∣

∣

∣
n

(0)
i

〉

En(0) −Ek(0)

,

where
∣

∣

∣
n

(0)
i

〉

are the degenerate states. Applying this result to the present prob-

lem, the sum over k consists of a sum over one unperturbed state, |0 , 0〉, which
is not degenerate with the set of degenerate states |1, , ms〉, ms = −1 , 0 , +1.
Thus, the 3 × 3 matrix W (2) is given by:

W
(2)
ji =

〈

n
(0)
j

∣

∣

∣
H(1)

∣

∣

∣
0 , 0

〉〈

0 , 0
∣

∣

∣
H(1)

∣

∣

∣
n

(0)
i

〉

0 − 4A
= − 1

4A

(

e~B

m

)2
〈

n
(0)
j

∣

∣

∣
1 , 0

〉〈

1 , 0
∣

∣

∣
n

(0)
i

〉

,

after using H(1) |0 , 0〉 = (e~B/m) |1 , 0〉 obtained in eq. (12). Since the states
|1 , ms〉, ms = −1 , 0 , +1 are orthonormal, it follows that W (2) is a diagonal

11



matrix in the total spin basis. Thus, the triplet states of the total spin basis are the
correct unperturbed degenerate eigenstates. Moreover, the eigenvalues of W (2) are
the correct second-order energy shifts—two zero energy eigenvalues corresponding
to |1 , 1〉 and |1 , −1〉, and a third energy eigenvalue given by −[1/(4A)](e~B/m)2.
The corresponding energy eigenstate is also correctly computed in eq. (14), as we
have employed the correct unperturbed degenerate eigenstates.

(b) Repeat the calculation of part (a), but now solve the problem exactly.
Expand out your solutions in a power series in B, and verify that the results of
part (a) are indeed correct.

This problem can be solved exactly by diagonalizing the full 4 × 4 matrix
Hamiltonian,

〈s′ , m′
s|H(1) |s , ms〉 ,

where
|s , ms〉 =

{

|1 , 1〉 , |1 , −1〉 , |1 , 0〉 , |0 , 0〉
}

(17)

indicates a convenient ordering of the entries in the rows and columns of the
matrix representation of H . In fact, we have already computed all the matrix
elements of H in part (a) of this problem. For example,

H |1 , 1〉 = (H(0) +H(1)) |1 , 1〉 = 0 ,

H |1 , −1〉 = (H(0) +H(1)) |1 , −1〉 = 0 .

Using results already obtained in problem 2 and in part (a) of this problem, the
4 × 4 matrix H with respect to the basis of eq. (17) is given by:

〈s′ , m′
s|H(1) |s , ms〉 =



















0 0 0 0

0 0 0 0

0 0 0
e~B

m

0 0
e~B

m
4A



















.

This matrix is easy to diagonalize. All we have to do is focus on the lower 2 × 2
block, i.e. the subspace spanned by |1 , 0〉 and |0 , 0〉,







0
e~B

m
e~B

m
4A






.

The eigenvalues of this matrix are obtained by solving:

−E(4A− E) −
(

e~B

m

)2

= 0 .

12



The solutions to this quadratic equation are denoted by E±, where

E± = 2A±

√

4A2 +

(

e~B

m

)2

. (18)

To check that this reproduces the perturbative computation of part (a), we expand
eq. (18) in a power series about B = 0. First rewrite:

E± = 2A∓ 2A

[

1 +
1

4A2

(

e~B

m

)2
]

1/2

.

Noting that A < 0, it follows that
√
A2 = −A and so

E± ≃ 2A∓ 2A

[

1 +
1

8A2

(

e~B

m

)2
]

=



















− 1

4A

(

e~B

m

)2

, for the state
∣

∣

∣ψ
(1)
|1,0〉

〉

,

4A+
1

4A

(

e~B

m

)2

, for the state
∣

∣

∣
ψ

(1)
|1,0〉

〉

,

(19)

in agreement with the results obtained in part (a).
To obtain the exact energy eigenfunction corresponding to the first eigenvalue

E+, we solve:






0
e~B

m
e~B

m
4A











cos θ

sin θ



 =



2A+

√

4A2 +

(

e~B

m

)2








cos θ

sin θ



 , (20)

since
(

cos θ

sin θ

)

is the most general eigenvector of a real symmetric matrix that is

normalized to unity. (Without loss of generality, one can take the energy eigen-
functions to be real.) Eq. (20) yields

e~B

m
sin θ =



2A +

√

4A2 +

(

e~B

m

)2


 cos θ .

It is convenient to solve for tan θ = sin θ/ cos θ. One then obtains:

tan θ =
m

e~B



2A+

√

4A2 +

(

e~B

m

)2


 .

Using the identities,

sin2 θ =
tan2 θ

1 + tan2 θ
, cos2 θ =

1

1 + tan2 θ
,

13



one can compute:

sin2 θ =

2A+

√

4A2 +

(

e~B

m

)2

2

√

4A2 +

(

e~B

m

)2
,

cos2 θ =

−2A +

√

4A2 +

(

e~B

m

)2

2

√

4A2 +

(

e~B

m

)2
,

where we have used cos2 θ = 1 − sin2 θ. The above formulae look simpler when
expressed in terms of the energy eigenvalues determined above. Using the results
of eq. (18) and noting that:

E+ − E− = 2

√

4A2 +

(

e~B

m

)2

,

it then follows that:

sin2 θ =
E+

E+ − E−
, cos2 θ =

−E−

E+ − E−
. (21)

Since A < 0, one sees that E+ > 0 and E− < 0, in which case the above results are
consistent with a real angle θ that can be chosen to lie in the range 0 ≤ θ ≤ π/2.

Thus, the eigenstate corresponding to the eigenvalue E+ is given by:

( −E−

E+ − E−

)1/2

|1 , 0〉 +

(

E+

E+ − E−

)1/2

|0 , 0〉 .

The eigenstate corresponding to the eigenvalue E− must be orthogonal to the
eigenstate obtained above, and is thus given by:

−
(

E+

E+ − E−

)1/2

|1 , 0〉 +

( −E−

E+ − E−

)1/2

|0 , 0〉 .

To complete the diagonalization of H , we note that the other two energy eigen-
values and eigenstates are not shifted by the perturbation due to the zeros in the
matrix. That is, the other two eigenstates are |1 , 1〉 and |1 , −1〉 with correspond-
ing zero eigenvalues, to all orders in perturbation theory.
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To summarize, the exact energy eigenstates and eigenvalues are given in the
following table:

state energy

|1 , 1〉 0

(

−E−

E+−E−

)1/2

|1 , 0〉 +
(

E+

E+−E−

)1/2

|0 , 0〉 E+

|1 , −1〉 0

−
(

E+

E+−E−

)1/2

|1 , 0〉 +
(

−E−

E+−E−

)1/2

|0 , 0〉 E−

where

E± ≡ 2A±

√

4A2 +

(

e~B

m

)2

.

As a final check, one can expand these results in a power series about B = 0
and show that one obtains the energy eigenfunctions at first order that match the
results obtained in part(a). Using eqs. (19) and (21), one finds:

sin2 θ =
E+

E+ −E−

≃
− 1

4A

(

e~B

m

)2

−4A− 1

2A

(

e~B

m

)2 =
1

16A2

(

e~B

m

)2

+ O(B4) ,

Since 0 ≤ θ ≤ π/2 by convention (and A < 0), it follows that

sin θ ≃ − 1

4A

(

e~B

m

)

+ O(B3) .

Finally,
cos2 θ = 1 − sin2 θ = 1 −O(B2) ,

and therefore
cos θ = 1 −O(B2) .

That is, we identify:

∣

∣

∣
ψ

(1)
|1,0〉

〉

= cos θ |1 , 0〉 + sin θ |0 , 0〉 ≃ |1 , 0〉 −
(

e~B

4Am

)

|0 , 0〉 ,

∣

∣

∣
ψ

(1)
|0,0〉

〉

= − sin θ |1 , 0〉 + cos θ |0 , 0〉 ≃ |0 , 0〉 +

(

e~B

4Am

)

|1 , 0〉 ,

which reproduces the results obtained in part (a) by the first-order perturbation
theory computation.
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