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Quantum Mechanics of a Charged Particle in an Electromagnetic Field

These notes present the motivation for the Schrodinger equation for a charged
particle in an external electromagnetic field. In order to obtain the relevant equa-
tion, we must first examine the classical Hamiltonian of a charged particle in an
electromagnetic field. We then use this result to obtain the Schrodinger equation
using the principle of minimal substitution. We examine a special case of a uni-
form magnetic field. Finally, we demonstrate the origin of the coupling of the spin
operator to the external magnetic field in the case of a charged spin-1/2 particle.

I. Classical Hamiltonian of a charged particle in an electromagnetic
field

We begin by examining the classical theory of a charged spinless particle in
and external electric field ~E and magnetic field ~B. We will employ cgs units for
electromagnetic quantities. It is convenient to introduce the vector potential ~A

and the scalar potential φ:1

~B = ~∇ × ~A , ~E = −~∇φ−
1

c

∂ ~A

∂t
. (1)

These equations encode two of the four Maxwell equations,

~∇· ~B = 0 , ~∇ × ~E = −
1

c

∂ ~B

∂t
, (2)

due to the vector identities

~∇·(~∇ × ~A) = 0 , ~∇ × (~∇φ) = 0 ,

which are valid for any non-singular vector field ~A(~r, t) and scalar field φ(~r, t).

However, the fields ~A and φ are not unique. Namely, the following transfor-
mations:

~A −→ ~A + ~∇χ(~r, t) , φ −→ φ−
1

c

∂χ(~r, t)

∂t
, (3)

called gauge transformations leave the physical electromagnetic fields, ~E and ~B,
unchanged.

We wish to write down a classical Hamiltonian H that describes the motion
of a charged particle q in an external electromagnetic field. Given H , we can use

1In SI units, the factor of c should be removed in eqs. (1)–(4).
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Hamilton’s equations to derive the equations of motion for the charged particle.
The correct Hamiltonian will yield the Lorentz force law:

~F =
d

dt
(m~v) = q

(

~E +
~v

c
× ~B

)

. (4)

The Hamiltonian for a charged particle in an electromagnetic field is given by:

H =
1

2m

(

~p −
q ~A

c

)

·

(

~p −
q ~A

c

)

+ qφ . (5)

We shall verify this result by using Hamilton’s equations to compute the equations
of motion and demonstrate that these coincide with eq. (4). For a Hamiltonian of
the form H = H(pi, xi), Hamilton’s equations are given by:

∂H

∂pi

=
dxi

dt
, −

∂H

∂xi

=
dpi

dt
,

where i runs over the three directions of space. In particular, the partial derivative
with respect to pi is computed at fixed xi and the partial derivative with respect
to xi is computed at fixed pi. Inserting eq. (5) into Hamilton’s equations yields:

vi ≡
dxi

dt
=
pi

m
−

q

mc
Ai , (6)

Fi ≡
dpi

dt
=

q

mc

(

~p −
q ~A

c

)

·
∂ ~A

∂xi

− q
∂φ

∂xi

. (7)

Eq. (6) is equivalent to:

~p = m~v +
q

c
~A .

The quantity m~v is called the mechanical momentum, which is not equal to ~p,
which is called the canonical momentum. The reason for this nomenclature will
be addressed later. If we now substitute the equation for ~p in eq. (7), we obtain:

d

dt

(

mvi +
q

c
Ai

)

=
q

c
~v·
∂ ~A

∂xi

− q
∂φ

∂xi

. (8)

As noted above, the partial derivative with respect to xi is computed while holding
pi (or equivalently holding vi) fixed. Hence,

~v·
∂ ~A

∂xi

=
∂

∂xi

(~v· ~A) .

Thus, we can rewrite eq. (8) as:

d

dt
(mvi) =

q

c

[

∂

∂xi

(~v· ~A) −
dAi

dt

]

− q
∂φ

∂xi

,
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or equivalently in vector form as,

d

dt
(m~v) =

q

c

[

~∇(~v· ~A) −
d ~A

dt

]

− q~∇φ . (9)

To make further progress, note that d ~A/dt is a full time-derivative of ~A. By
the chain rule,

d ~A

dt
=
∂ ~A

∂t
+

3
∑

i=1

∂ ~A

∂xi

dxi

dt
.

The chain rule reflects the physical fact that the full time-derivative of ~A has two
sources: (i) explicit time-dependence of ~A(~r, t), and (ii) implicit time-dependence
by virtue of the fact that the charged particle moves on a trajectory ~r = ~r(t).
Noting that vi ≡ dxi/dt [where ~r ≡ (x1 , x2 , x3)], we can rewrite the chain rule
above as:

d ~A

dt
=
∂A

∂t
+ (~v· ~∇) ~A .

Inserting this result in eq. (9) yields:

d

dt
(m~v) =

q

c

[

~∇(~v· ~A) − (~v· ~∇) ~A −
∂ ~A

∂t

]

− q~∇φ . (10)

Finally, we make use of the vector identity:

~v × (~∇ × ~A) = ~∇(~v· ~A) − (~v· ~∇) ~A .

This should remind you of the famous BAC-CAB rule for computing the triple
cross-product: ~A × ( ~B × ~C) = ~B( ~A· ~C) − ~C( ~A· ~B). In the case of the identity
above, you have to be a little careful since one of the vectors is a differential
operator. So, the more correct version is ~A × ( ~B × ~C) = ~B( ~A· ~C) − ( ~A· ~B) ~C.
The easiest way to prove the identity above is to write both sides in component
form and simplify the left hand side until it takes the form of the right hand side.
I leave this as an exercise for the reader. Applying the above identity to eq. (10)
yields:

d

dt
(m~v) =

q

c
~v × (~∇ × ~A) − q

(

~∇φ+
1

c

∂ ~A

∂t

)

.

Finally, using eq. (1), we end up with

d

dt
(m~v) = q ~E +

q

c
~v × ~B ,

which coincides with eq. (4), as required.
So far, we have described the motion of a charged particle in an external

electromagnetic field. If the particle also feels an external potential V (~r, t) that
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is unrelated to the external electromagnetic field, then we should use the more
general Hamiltonian,

H =
1

2m

(

~p −
q ~A

c

)

·

(

~p −
q ~A

c

)

+ qφ+ V (~r, t) . (11)

If we compare this with the Hamiltonian of an uncharged particle, H = ~p2/(2m)+
V (~r, t), then we can establish the principle of minimal substitution, which states
that the Hamiltonian for a charged particle (of charge q) in an external electromag-
netic field can be obtained from the corresponding Hamiltonian for an uncharged
particle by making the following substitutions:

~p −→ ~p −
a

c
~A(~r, t) , V (~r, t) −→ V (~r, t) + qφ(~r, t) .

II. Schrodinger equation for a charged particle in an external electro-
magnetic field

We first write down the time-dependent Schrodinger equation,

H |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 ,

where

H =
1

2m

(

~p −
q ~A

c

)

·

(

~p −
q ~A

c

)

+ qφ+ V (~r, t) .

For simplicity, we will set the external potential V (~r, t) to zero, and assume that
the electromagnetic potentials are time-independent. Then, the time-independent
Schrodinger equation for stationary state solutions |ψ〉 is given by:

1

2m

(

~p −
q ~A

c

)

2

|ψ〉 = (E − qφ) |ψ〉 .

Comparing this with the time-independent Schrodinger equation for a free parti-
cle, one can introduce the principle of minimal substitution at this point by noting
that the time-independent Schrodinger equation for a charged particle of charge
q is obtained by the substitution:

~p −→ ~p −
a

c
~A(~r, t) , E −→ E − qφ(~r, t) .

In the coordinate representation, we identify ~p with the differential operator
−i~~∇. Hence, the time-independent Schrodinger equation is given by:

1

2m

[

i~~∇ +
q

c
~A(~r)

]2

ψ(~r) + qφ(~r)ψ(~r) = Eψ(~r) .
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In obtaining the above result, we implicitly assumed that we should identify
the canonical momentum ~p [and not the mechanical momentum m~v] with the

operator −i~~∇. The momentum operator ~p is called the canonical momentum
because it satisfies the canonical commutation relations,

[xi , pj ] = i~δij .

This is one of the essential postulates of quantum mechanics. Had we tried to
identify m~v with −i~~∇, we would have found that the resulting theory does not
reduce to the classical limit as ~ → 0.

The Schrodinger equation written above can be expanded out:

−~
2

2m
~∇2ψ +

iq~

mc
~A· ~∇ψ +

iq~

mc
ψ(~∇· ~A) +

q2

2mc2
~A 2ψ + qφψ = Eψ ,

where we have suppressed the coordinate arguments of the electromagnetic vector
and scalar potentials and the wave function ψ. At this point, the equation can be
simplified by choosing a gauge. I claim that given any ~A and φ, I can perform a
gauge transformation [cf. eq. (3)] such that the resulting ~A and φ satisfy:

~∇· ~A = 0 , φ = 0 , Coulomb gauge conditions

Suppose ( ~A , φ) are the initial vector and scalar potential. Making a gauge trans-
formation,

~A ′ = ~A + ~∇χ(~r, t) , φ′ = φ−
1

c

∂χ(~r, t)

∂t
.

To ensure that the Coulomb gauge conditions are satisfied, we require that:

~∇2χ(~r, t) = −~∇· ~A(~r, t) ,
∂χ(~r, t)

∂t
= cφ(~r, t) .

One can always find a χ(~r, t) such that the above conditions are satisfied! By

choosing such a χ(~r, t), it then follows that ~∇· ~A ′ = φ′ = 0 as desired. Thus, the
Schrodinger equation in the Coulomb gauge is given by:

−~
2

2m
~∇2ψ +

iq~

mc
~A· ~∇ψ +

q2

2mc2
~A 2ψ + qφψ = Eψ .
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III. Schrodinger equation for a charged particle in a uniform electro-
magnetic field

We can use the results obtained in the previous section to examine two cases.

1. A uniform electric field

In this case, it is not convenient to use the Coulomb gauge. Instead, we choose
~A = 0 and ~E = −~∇φ. The Schrodinger equation becomes:

−~
2

2m
~∇2ψ + qφψ = Eψ ,

which has the same form as the usual Schrodinger equation for a particle in a
potential.

2. A uniform magnetic field

In this case, we will choose the Coulomb gauge. If ~B is uniform in space and
time-independent, then, one may choose:

~A = −1

2
~r × ~B , φ = 0 .

To check that this is correct, we use eq. (1) to compute ~E and ~B. Since ~A is time-

independent and φ = 0, it follows that ~E = 0. Next, we compute ~B = ~∇ × ~A.
Noting that:

Ax = −1

2
(yBz − zBy) , Ay = −1

2
(zBx − xBz) , Az = −1

2
(xBy − yBx) ,

one easily evaluates:

~∇ × ~A = x̂

(

∂Az

∂y
−
∂Ay

∂z

)

+ ŷ

(

∂Ax

∂z
−
∂Az

∂x

)

+ ẑ

(

∂Ay

∂x
−
∂Ax

∂y

)

= x̂Bx + ŷBy + ẑBz = ~B .

Furthermore, note that

~∇· ~A = −1

2

~∇·(~r × ~B) = 0 ,

which confirms that we have indeed chosen the Coulomb gauge. Thus, the time-
independent Schrodinger equation reads:

−~
2

2m
~∇2ψ −

iq~

2mc
(~r × ~B)· ~∇ψ +

q2

8mc2
(~r × ~B)2ψ = Eψ .

This equation can be simplified by noting the vector identity:

(~r × ~B)·~∇ψ = − ~B ·(~r × ~∇ψ) .
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Hence,

−
iq~

2mc
(~r × ~B)·~∇ψ = −

q

2mc
~B ·

(

~r ×
~

i
~∇ψ

)

.

We identify the canonical angular momentum operator,

~L ≡ ~r ×
~

i
~∇ . (12)

This is to be distinguished from the mechanical angular momentum ~r × (m~v).
You can check that the canonical angular momentum operators of eq. (12) satisfy
the usual angular momentum commutation relations,

[Li , Lj ] = i~
3
∑

k=1

ǫijkLk .

Hence, we can write:

−
iq~

2mc
(~r × ~B)· ~∇ψ = −

q

2mc
~B ·~Lψ .

Finally, if we use the vector identity,

(~r × ~B)2 = r2 ~B2 − (~r· ~B)2 ,

then the time-independent Schrodinger equation for a charged particle of charge
q in an external uniform magnetic field ~B is given by:

−~
2

2m
~∇2ψ −

q

2mc
~B ·~Lψ +

q2

8mc2

[

r2 ~B2 − (~r· ~B)2

]

ψ = eψ . (13)

IV. Schrodinger equation for a charged spin-1/2 particle in an electro-
magnetic field

So far, we have neglected spin. For a spin-1/2 particle, the wave function is a
spinor of the form

ψ =

(

ψ1

ψ2

)

.

Likewise, the Hamiltonian operator must be a 2 × 2 matrix.
To determine the correct Hamiltonian for a charged spin-1/2 particle in an

electromagnetic field, we choose the Hamiltonian for a free uncharged spin-1/2
particle to be:

H =
(~σ ·~p)2

2m
. (14)

Noting that (~σ ·~p)2 = ~p 2I, where I is the 2 × 2 identity matrix, we recover
the expected free particle Hamiltonian. In order to obtain the Hamiltonian for
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a charged spin-1/2 particle, we apply the principle of minimal substitution to
eq. (14).2 Thus, we choose

H =
1

2m
~σ ·

(

~p −
q ~A

c

)

~σ ·

(

~p −
q ~A

c

)

+ qφI .

We can simplify the first term above by writing:

~σ ·

(

~p −
q ~A

c

)

~σ ·

(

~p −
q ~A

c

)

=
∑

ij

σiσj

(

pi −
qAi

c

)(

pj −
qAj

c

)

=
∑

ijk

(δijI + iǫijkσk)

(

pi −
qAi

c

)(

pj −
qAj

c

)

=

(

~p −
q ~A

c

)2

I −
iq

c

∑

ijk

ǫijk(piAj + Aipj)σk ,

where we have used the sigma matrix identities from problem 3 of homework set
1. To evaluate the second term above, note that:

∑

ijk

ǫijk(piAj + Aipj)σk =
∑

ijk

ǫijk(piAj −Ajpi)σk ,

where we have used the fact that ǫijk = −ǫjik followed by a relabeling of i → j
and j → i in the second term. We now can use the fact that:

piAj − Ajpi = [pi, Aj] = −i~
∂Aj

∂xi

.

Thus,

∑

ij

ǫijk(piAj + Aipj) =
∑

ij

ǫijk[pi, Aj] = −i~
∑

ij

ǫijk
∂Aj

∂xi

= −i~Bk ,

after recognizing that ~B = ~∇ × ~A implies that:

Bk =
∑

ij

ǫijk
∂Aj

∂xi

.

It follows that:

~σ ·

(

~p −
q ~A

c

)

~σ ·

(

~p −
q ~A

c

)

=

(

~p −
q ~A

c

)

2

I −
~q

c
~σ · ~B .

2If one applies the principle of minimal substitution to H = (~p2/(2m))I, one obtains a
spin-independent Hamiltonian which is in conflict with experiment. Remarkably, applying the
principle of minimal substitution to eq. (14) yields a spin-dependent Hamiltonian, which is in
very good agreement with experiment.
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Thus, the Hamiltonian for a charged spin-1/2 particle in an external electromag-
netic field is:

H =
1

2m

(

~p −
q ~A

c

)

2

I −
~q

2mc
~σ · ~B + qφI .

That is, if H0 is the spin-independent part of the Hamiltonian, then

H = H0 −
q

mc
~S · ~B , (15)

where we have identified the spin-1/2 operator, ~S = 1

2
~~σ.

Let us apply this result to obtain the time-independent Schrodinger equation
for a charged spin-1/2 particle in a uniform magnetic field. Using eqs. (13) and
(15), it follows that:

−~
2

2m
~∇2ψ −

q

2mc
~B ·(~L + 2~S)ψ +

q2

8mc2

[

r2 ~B2 − (~r· ~B)2

]

ψ = eψ .

Note especially the relative factor of 2 in ~L+2~S above. This means that we have
predicted that an elementary charged spin-1/2 particle has a g-factor equal to 2.

In more general circumstances, we will replace ~L+2~S in the above equation with
~L + g~S, where g is determined from experiment.
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