
Physics 195a
Course Notes

Path Integrals: An Example
021024 F. Porter

1 Introduction

This note illustrates the use of path integral arguments in quantum mechanics
via a famous example, the “Aharonov-Bohm” effect. Along the way, we get a
glimpse of the more fundamental role which electromagnetic potentials take
on in quantum mechanics, compared with classical electrodynamics.

2 Electromagnetism in Quantum Mechanics

Consider the motion of a charge q in an electromagnetic field (φ,A), where
φ is the scalar potential and A is the vector potential. Classically, the force
on the charge is the “Lorentz force”:

F = q(E+ v × B), (1)

where E = −∇φ− ∂tA is the electric field, B = ∇×A is the magnetic field,
and v is the velocity of the charge. The classical Hamiltonian is

H =
1

2m
(p − qA)2 + qφ, (2)

where m is the mass of the charge and p = ∂L
∂ẋ

is the generalized momentum
conjugate to x (L is the Lagrangian). Since H = 1

2
mv2+V , v = (p−qA)/m.

Thus, p− qA is the ordinary kinematic momentum. In quantum mechanics
we presume a form:

H =
1

2m
[p − qA(x, t)]2 + qφ(x, t) (3)

=
1

2m
[−i∇− qA(x, t)]2 + qφ(x, t). (4)

3 Is the Vector Potential Real?

In classical electrodynamics, we invented the electromagnetic potentials as a
mathematical aid. The real “physics” (i.e., forces affecting motion) is in the
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fields. Interestingly, when we pursue the correspondence in quantum physics,
we find a new phenomenon. In this section, we look at a specific example,
and use path integral arguments as a tool to investigate this.

Let us consider the following problem: We are given a very long, thin
“solenoid” (Fig. 1). Assume that the current is static, and that the net
charge density is everywhere zero. Thus, we can take φ(x, t) = 0, and hence
E = 0 everywhere.

z

y

x

Figure 1: A section of the long solenoid, with coordinate system indicated.

Let us further assume that we have made the pitch of the winding very
fine, so that we may assume that the current is perpendicular to the z di-
rection, to whatever approximation we wish (perhaps we could do this by
setting up a persistent current in a cylindrical superconductor). Then, to
whatever approximation we desire, we have Boutside = 0, where “outside”
refers to the region outside the solenoid windings. Inside the solenoid, we
have a non-zero magnetic flux:

Φ =
∫
solenoid cross section

B · dS. (5)
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That is, we have a magnetic field given by:

B =
{
0 outside solenoid
B0ez inside solenoid,

(6)

where B0 is a constant. This may be demonstrated with Maxwell’s equations
and symmetry arguments.

Thus, we have a situation where the electromagnetic field is zero every-
where outside of a thin cylindrical region, to whatever approximation we
need. What is the vector potential outside this solenoid? Starting with
B = ∇×A, and using Stoke’s theorem we find:

Aoutside(x, t) = Aeφ =
Φ

2πr
eφ. (7)

We have made a particular choice of gauge here, in which Ar = Az = 0.
Since Jr = Jz = 0, these two components of the vector potential must be
constants.

Notice now that the line integral of A along a closed curve outside and
around the solenoid (see Fig. 2) is equal to the enclosed flux, which is non-
zero. Thus, it is impossible to find a gauge transformation such that A = 0
everywhere outside the solenoid. Let’s check this more explicitly, by seeing

A

Figure 2: Cross section view of the solenoid, with a path around it in a region
with vector potential A.

how we fail: A is ambiguous up to a gauge transformation:

A → A′ = A +∇χ, (8)

where χ is an arbitrary differentiable function of position. We already have a
solution in the form of Eqn. 7. If we attempt to find a gauge transformation
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so that A′ = 0, we must have

∇χ = − Φ

2πr
eφ. (9)

In cylindrical coordinates,

∇χ = er
∂χ

∂r
+ eφ

1

r

∂χ

∂φ
+ ez

∂χ

∂z
. (10)

Only the eφ component contributes, hence

χ = −Φ
φ

2π
(plus any constant). (11)

Following a brief moment of elation that we have succeeded, we realize
that there is a problem. This solution is not a single-valued function of
spatial position. Any attempt to patch this, e.g., by introducing a point of
discontinuity in χ(φ), results in a vector potential which is non-zero outside
the soelnoid for some value(s) of φ.

We have constructed a physical situation, to a good approximation, in
which the magnetic field vanishes in a region, but the vector potential does
not. Since there is something which we cannot get rid of by a gauge trans-
formation, we might wonder whether there really is “something” outside the
solenoid that “knows” about the field inside, even if the field outside is zero.
Is there an experimentally observable consequence, or is this merely a math-
ematical oddity?

Classically, it appears that we in fact see nothing outside the solenoid:
If we probe the outside region with charged particles, their trajectories are
unaltered, because

F =
dp

dt
= q(E+ v × B) = 0. (12)

What about quantum mechanics? We expect that the only hope is that
something observable happens in the phase of the amplitude, since there are
no classical effects. Let us imagine an experiment in which phase effects
could appear.

We consider a wave packet (particle) suitably localized, and split, away
from the solenoid (see Fig. 3). To begin the analysis of what happens to this
wave packet, suppose first that the magnet is off, Φ = 0. Let

ψ0(x, t) = ψ�(x, t) + ψr(x, t), (13)
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where ψ� is the wave passing to the left, and ψr is the wave passing to the
right. That is, ψ� is a solution to the (A = 0) Schrödinger equation with the
property that it vanishes, for all times, on the half plane to the right of the
solenoid. Switching right and left, ψr has the corresponding interpretation.
We assume that at some early time, ti, the wave packet is in front of the
solenoid, and that at a later time, tf , the wave packet is predominantly
behind the solenoid. We look for interference patterns behind the solenoid
at tf .

Wave
Packet

Φ

Figure 3: Schematic of the experimental arrangement.

With this general setup, and magnet-off solutions, let us now consider
what happens when there is a flux Φ in the solenoid. We’ll assume that this
flux is time-independent. Let

s�(x) ≡
∫ x

xi

left path

A(x′) · dx′, (14)

sr(x) ≡
∫ x

xi

right path

A(x′) · dx′, (15)

where “left path” (“right path”) is a path which does not intersect the
right(left) half-plane at the solenoid (or perhaps intersects it an even number
of times).
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Figure 4: A section of the long solenoid, with sample left and right paths
from x0 to x.

We know that, independent of the details of the paths taken (Fig. 4),
∮

−left path
+right path

A(x′) · dx′ =
{
0 x in front of solenoid,
Φ x behind solenoid.

(16)

Actually, we could worry about less-probable scenarios, such as paths which
circulate the solenoid multiple times, which would require modification to
the above statement. We thus have that s�(x) and sr(x) are independent of
their particular paths, as long as we maintain the left, right constraints.

So, what is the solution to the Scrödinger equation in the presence of Φ?
It will be left to the reader to verify that the solution is:

ψΦ(x, t) = ψ�(x, t)e
iqs�(x) + ψr(x, t)e

iqsr(x). (17)

Verification may be accomplished by direct substitution into the Schrödinger
equation; the left and right pieces independently satisfy the equation.
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If x is in front of the solenoid, then s�(x) = sr(x), since Φenclosed = 0.
Then

ψΦ(x, t) = [ψ�(x, t) + ψr(x, t)] e
iqs�(x)

= ψ0(x, t)e
iqs�(x) (early times, ti). (18)

Thus, at early times, ψΦ and ψ0 represent the same state, because they differ
only in phase.

At later times we consider the region “behind” the solenoid. In this case,

sr(x) = Φ + s�(x), (19)

and thus,

ψΦ(x, t) =
[
ψ�(x, t) + eiqΦψr(x, t)

]
eiqs�(x) (late times, tf). (20)

Thus, the flux manifests itself in a phase shift by qΦ of the wave passing to the
right relative to the wave passing to the left. The interference pattern behind
the solenoid will then be affected, unless qΦ = 2πn, where n is an integer. The
flux inside the solenoid may be “observed” with a probe outside the solenoid
in a purely quantum mechanical way. This has been experimentally verified.
An early theoretical paper, for which this effect is named, is Aharonov and
Bohm, Physical Review 115 (1959) 485. An early experimental paper is
Chambers, Physical Review Letters 5 (1960) 3.

4 Exercises

1. Show that the B field is as given in Eqn. 6, and that the vector potential
is as given in Eqn. 7, up to gauge transformations.

2. Verify that the wave function in Eqn. 17 satisfies the Schrödinger equa-
tion.

3. A number of assumptions have been made, possibly implicitly in the
discussion of this effect.

(a) Critique the discussion, pointing out areas where the argument
may break down.

(b) Resolve the problematic areas in your critique, or else demonstrate
that the argument really does break down.
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4. We have discussed the interesting Aharonov-Bohm effect. Let us con-
tinue a bit further the thinking in this example.

(a) Consider again the path integral in the vicinity of the long thin
solenoid. In particular, consider a path which starts at xxx, loops
around the solenoid, and returns to xxx. Since the BBB and EEE fields
are zero everywhere in the region of the path, the only effect on
the particle’s wave function in traversing this path is a phase shift,
and the amount of phase shift depends on the magnetic flux in the
solenoid, as we discussed in class. Suppose we are interested in a
particle with charge of magnitude e (e.g., an electron). Show that
the magnetic flux Φ in the solenoid must be quantized, and give
the possible values that Φ can have.

(b) Wait a minute!!! Did you just show that there is no Aharonov-
Bohm effect? We know from experiment that the effect is real.
So, if you did what I expected you to do in part (a), there is a
problem. Discuss!

(c) The BCS theory for superconductivity assumes that the basic
“charge carrier” in a superconductor is a pair of electrons (a
“Cooper pair”). The Meissner effect for a (Type I) supercon-
ductor is that when such a material is placed in a magnetic field,
and then cooled below a critical temperature, the magnetic field
is excluded from the superconductor. Suppose that there is a
small non-superconducting region traversing the superconductor,
in which magnetic flux may be “trapped” as the material is cooled
below the critical temperature. Ignoring part (b) above, what val-
ues do you expect to be possible for the trapped flux? [This effect
has been experimentally observed.] What is the value (in Tesla-
m2) of the smallest non-zero flux value. You may find the following
conversion constant handy:

1 = 0.3 Tesla-m/GeV, (21)

where the “0.3” is more precisely the speed of light in nanome-
ters/second.

(d) How can we reconcile the answer to part (c), which turns out to be
a correct result (even if the derivation might be flawed), with your
discussion in part (b)? Let’s examine the superconducting case
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more carefully. Let us suppose we have a ring of superconducting
material. We assume a model for superconductivity in which the
superconducting electrons are paired, and the resulting pairs are
in a “Bose-condensate”. Well, this precedes our discussion on
identical particles, but we essentially mean that the pairs are all
in the same quantum state. We may write our wave function for
the superconducting pairs in the form:

ψ(x) =

√
ρs

2
eiθ(x), (22)

where ρs is the number density of superconducting electrons, and
θ is a position-dependent phase. Note that we have normalized
our wave function so that its absolute square gives the density of
Cooper pairs. Find an expression for ρs

2
v, the Cooper pair number

current density. Use this with the expression for the canonical mo-
mentum of a Cooper pair in a magnetic field (vector potential A)
to arrive at an expression for the electromagnetic current density
of the superconducting electrons.

Now consider the following scenario: We apply an external mag-
netic field with the superconductor above its critical temperature
(that is, not in a superconducting state). We then cool this sys-
tem down below the critical temperature. We want to know what
we can say about any magnetic flux which is trapped in the hole
in the superconductor. Consider a contour in the interior of the
superconductor, much further from the surfaces than any pene-
tration depths. By considering an integral around this contour,
see what you can say about the allowed values of flux through the
hole.

(e) So far, no one has observed (at least not convincingly) a magnetic
“charge”, analogous to the electric charge. But there is nothing
fundamental that seems to prevent us from modifying Maxwell’s
equations to accommodate the existence of such a “magnetic mono-
pole”. In particular, we may alter the divergence equation to:

∇ ·BBB = 4πρM ,

where ρM is the magnetic charge density.
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Consider a magnetic monopole of strength eM located at the ori-
gin. The BBB-field due to this charge is simply:

BBB =
eM

r
r̂̂r̂r,

where r̂̂r̂r is a unit vector in the radial direction. The r̂̂r̂r-component
of the curl of the vector potential is:

1

r sin θ

∂

∂θ
(Aφ sin θ)− ∂Aθ

∂φ
.

A solution, as you should quickly convince yourself, is a vector
potential in the φ direction:

Aφ = eM
1− cos θ

r sin θ
.

Unfortunately(?), this is singular at θ = π, i.e., on the negative
z-axis. We can fix this by using this form everywhere except in
a cone about θ = π, i.e., for θ ≤ π − ε, and use the alternate
solution:

A′
φ = eM

−1− cos θ

r sin θ

in the (overlapping) region θ ≥ ε, thus covering the entire space.
In the overlap region (ε ≤ θ ≤ π− ε), either AAA or A′A′A′ may be used,
and must give the same result, i.e., the two solutions are related
by a gauge transformation – that is, they differ by the gradient of
a scalar function.

Consider the effect of the vector potential on the wave function
of an electron (charge −e). Invoke single-valuedness of the wave
function, and determine the possible values of eM that a magnetic
charge can have. [This is sometimes called a “Dirac monopole”.]
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