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How do the connection coefficients transform

under a general coordinate transformation?

1. Definition of the connection coefficients and the covariant derivative

The existence of an abstract vector ~V that lives in a curved spacetime does not depend
on the coordinates chosen to describe the location of spacetime points. But, once a coor-
dinate system is chosen, one can also establish a set of linearly independent basis vectors
~eµ, where µ = 0, 1, 2, 3 labels the four basis vectors (the maximally allowed number in a

four-dimensional spacetime). We can then expand any abstract vector ~V in terms of the
four basis vectors,

~V = V µ
~eµ , (1)

where there is an implicit sum over µ following the Einstein summation convention. The
four numbers V µ are the contravariant components of the abstract vector ~V with respect
to the chosen coordinate system.1 Eq. (1) refers to a particular point in the spacetime.
We can just as well examine vector defined at another point in the spacetime. We can
again make use of eq. (1), keeping in mind that the orientation of the basis vectors can be
different. That is, in general ~eµ depends on the location in spacetime. The basis vectors
are orthonormal with respect to the metric tensor, which means that

~eµ · ~eν = gµν . (2)

It follows from eqs. (1) and (2) that the dot product of two vectors ~V and ~W is given by

~V · ~W = V µW ν
~eµ · ~eν = gµνV

µW ν ,

as expected.
We can now define how vectors in the spacetime change as one moves from one spacetime

point to another. A simple computation yields

d~V = d(V µ
~eµ) = dV µ

~eµ + V µd~eµ

=
∂V µ

∂xα
dxα

~eµ + V µd~eµ , (3)

where the chain rule has been employed in the final step. To complete the analysis, we must
determine how ~eµ changes as one moves from one spacetime point to another. Since ~eµ

1In contrast, the subscript µ employed by ~eµ refers to one of the four possible basis vectors. In this

sense, each of the four ~eµ are abstract vectors in the same way that ~V is an abstract vector.
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depends on the location in spacetime (which is specified by the spacetime coordinate xα),
the change in ~eµ as one moves from one spacetime point to another is encoded in the partial
derivatives, ∂~eµ/∂x

α. This latter quantity is also an abstract vector, so we can express it
as a linear combination of basis vectors, in analogy with eq. (1),

∂~eµ

∂xα
= Γβ

αµ~eβ , (4)

where the coefficients Γβ
αµ, called the connection coefficients, determine how the basis

changes as one moves from one spacetime point to another. That is, eq. (4) serves as
the definition of the connection coefficients.2 Using the chain rule, it follows that

d~eµ =
∂~eµ

∂xα
dxα = Γβ

αµdx
α
~eβ . (5)

Inserting eq. (5) into eq. (3) yields

d~V =
∂V µ

∂xα
dxα

~eµ + Γβ
αµV

µdxα
~eβ . (6)

Note that Γβ
αµV

µdxα~eβ = Γµ
αβV

βdxα~eµ, after relabeling the two pairs of dummy indices.
Inserting this result back into eq. (6) yields

d~V =

(

∂V µ

∂xα
+ Γµ

αβV
β

)

dxα
~eµ . (7)

This result motivates the definition of the covariant derivative, DαV
µ, as follows:

DαV
µ
≡

∂V µ

∂xα
+ Γµ

αβV
β . (8)

Inserting eq. (8) back into eq. (7), it follows that

d~V = (DαV
µ)dxα

~eµ . (9)

The importance of eq. (9) is as follows. Given the abstract vector given by eq. (1), we
identify the contravariant components V µ, which transforms under a general coordinate
transformation, x′ = x′(x) as follows,

V ′µ =
∂x′ µ

∂xα
V α . (10)

Likewise, d~V is an abstract vector given by eq. (9). Thus, we identify the contravariant
components of this vector by (DαV

µ)dxα. This means that DαV
µ transforms under a

general coordinate transformation as a second rank mixed tensor.3

2The definition of the connection coefficients employed in eq. (4) follows the conventions established
by our textbook. Other textbooks define ∂~eµ/∂x

α = Γβ
µα~eβ which has the order of the two lower indices

of the connection coefficients switched with respect to eq. (4). Ultimately it will not matter, since in
general relativity, the connection coefficients are symmetric under the interchange of the two lower indices
[cf. eq. (39)].

3This conclusion is implicitly obvious, since it is ensured by the tensor notation and the rules for
manipulating indices. However, it is formally a result of a theorem of tensor algebra known as the quotient
theorem. This theorem is alluded to in problem 12.6 on pp. 296–297 of our textbook. For a more thorough
discussion, see, e.g. p. 532 of Boas.
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2. Transformation properties of the connection coefficients

Under a general coordinate transformation, the contravariant components of ~V and the
basis vectors ~e must transform in such a way that the abstract vector ~V (which exists
independently of the choice of coordinates) is unaffected. That is,

~V = V ′µ
~e

′

µ = V µ
~eµ .

In light of eq. (10), we must have

~e
′

µ =
∂xβ

∂x′ µ
~eβ , (11)

since in this case

~V = V ′µ
~e

′

µ =
∂x′ µ

∂xα

∂xβ

∂x′ µ
V α

~eβ =
∂xβ

∂xα
V α

~eβ = δβαV
α
~eβ = V α

~eα ,

after making use of the chain rule.
To derive the transformation law of the connection coefficients, we employ eq. (4) in

the primed coordinate system,

∂~e ′

µ

∂x′ α
= Γ′ ρ

αµ~e
′

ρ , (12)

Using eq. (11) on both sides of eq. (12),

∂

∂x′α

(

∂xβ

∂x′ µ
~eβ

)

= Γ′ ρ
αµ

∂xβ

∂x′ ρ
~eβ . (13)

Employing the product rule on the left hand side of eq. (13),

∂2xβ

∂x′α∂x′ µ
~eβ +

∂xβ

∂x′ µ

∂~eβ

∂x′α
= Γ′ ρ

αµ

∂xβ

∂x′ ρ
~eβ . (14)

Applying the chain rule to the second term on the left hand side of eq. (14).

∂2xβ

∂x′α∂x′ µ
~eβ +

∂xβ

∂x′ µ

∂xτ

∂x′α

∂~eβ

∂xτ
= Γ′ ρ

αµ

∂xβ

∂x′ ρ
~eβ .

Using the definition of the connection coefficients given in eq. (4),

∂2xβ

∂x′α∂x′ µ
~eβ +

∂xβ

∂x′ µ

∂xτ

∂x′α
Γρ
τβ~eρ = Γ′ ρ

αµ

∂xβ

∂x′ ρ
~eβ .

Relabeling the indices of the second term above, β → ρ and ρ → β,

∂2xβ

∂x′α∂x′ µ
~eβ +

∂xρ

∂x′ µ

∂xτ

∂x′α
Γβ
τρ~eβ = Γ′ ρ

αµ

∂xβ

∂x′ ρ
~eβ .
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We can now factor out a common factor, and we end up with

(

Γ′ ρ
αµ

∂xβ

∂x′ ρ
−

∂xρ

∂x′ µ

∂xτ

∂x′α
Γβ
τρ −

∂2xβ

∂x′ α∂x′ µ

)

~eβ = 0 . (15)

Since the ~eβ are four linearly independent basis vectors, we conclude that the expression
inside the parentheses in eq. (15) must vanish. That is,

Γ ′ ρ
αµ

∂xβ

∂x′ ρ
=

∂xρ

∂x′ µ

∂xτ

∂x′α
Γβ
τρ +

∂2xβ

∂x′α∂x′ µ
. (16)

Finally, we multiply both sides of eq. (16) by ∂x′ σ/∂xβ , and make use of the identity

∂x′ σ

∂xβ

∂xβ

∂x′ ρ
=

∂x′ σ

∂x′ ρ
= δσρ ,

which is a consequence of the chain rule. The end result after summing over the repeated
index ρ,

Γ ′σ
αµ =

∂x′ σ

∂xβ

∂xρ

∂x′ µ

∂xτ

∂x′α
Γβ
τρ +

∂x′ σ

∂xβ

∂2xβ

∂x′α∂x′ µ
. (17)

There is an alternate form of eq. (17) that is sometimes useful. To derive it, we begin
with an identity that is a consequence of the chain rule,

∂x′ β

∂xµ

∂xµ

∂x′ α
=

∂x′ β

∂x′α
= δβα , (18)

Take the partial derivative of this equation with respect to x′ ρ. Since δβα is the Kro-
necker delta (in particular, it does not depend on the location in spacetime), it follows that
∂δβα/∂x

′ ρ = 0. Hence,

∂

∂x′ ρ

(

∂x′ β

∂xµ

∂xµ

∂x′α

)

= 0 . (19)

Using the product rule, eq. (19) yields

[

∂

∂x′ ρ

(

∂x′ β

∂xµ

)]

∂xµ

∂x′α
+

∂x′ β

∂xµ

∂2xµ

∂x′ ρ∂x′α
= 0 . (20)

We now evaluate the term in brackets above by invoking the chain rule,

∂

∂x′ ρ

(

∂x′ β

∂xµ

)

=
∂xτ

∂x′ ρ

∂

∂xτ

(

∂x′ β

∂xµ

)

=
∂xτ

∂x′ ρ

∂2x′β

∂xτ∂xµ
.

Using this result in eq. (20) leads to the following identity,

∂x′ β

∂xµ

∂2xµ

∂x′ ρ∂x′α
= −

∂xτ

∂x′ ρ

∂2x′ β

∂xτ∂xµ

∂xµ

∂x′α
. (21)
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Let us relabel the indices in eq. (21) as follows: β → σ, µ → β, ρ → α and α → µ. The
result of this index gymnastics is

∂x′ σ

∂xβ

∂2xβ

∂x′α∂x′ µ
= −

∂xτ

∂x′α

∂2x′ σ

∂xτ∂xβ

∂xβ

∂x′ µ
. (22)

The left hand side of eq. (22) is precisely the last term that appears in eq. (17). Thus,
an alternate form of the transformation law for the connection coefficients under a general
coordinate transformation is

Γ ′σ
αµ =

∂x′ σ

∂xβ

∂xρ

∂x′ µ

∂xτ

∂x′α
Γβ
τρ −

∂xτ

∂x′α

∂2x′σ

∂xτ∂xβ

∂xβ

∂x′ µ
. (23)

Both forms of the transformation law given in eqs. (17) and (23) imply that Γσ
αµ is not

a tensor. In particular, under a general coordinate transformation, a third rank tensor T σ
αµ

would transform as,

T ′σ
αµ =

∂x′ σ

∂xβ

∂xρ

∂x′ µ

∂xτ

∂x′α
T β
τρ . (24)

Comparing eq. (24) with the transformation law for the connection coefficients, we see
that it is the presence of the inhomogeneous term4 that is the origin of the non-tensorial
property of Γσ

αµ.

3. Proof that the covariant derivative of a vector transforms like a tensor

An inhomogeneous term also appears in the transformation law of the ordinary partial
derivative, ∂V µ/∂xα, with respect to general coordinate transformations. This should
already be obvious in light of eq. (3). But, let us prove this assertion directly by taking
the derivative of eq. (10) with respect to x′α.

∂V ′µ

∂x′ α
=

∂

∂x′ α

(

∂x′ µ

∂xρ
V ρ

)

=
∂xβ

∂x′α

∂

∂xβ

(

∂x′ µ

∂xρ
V ρ

)

, (25)

where we have made use of the chain rule,

∂

∂x′α
=

∂xβ

∂x′α

∂

∂xβ
.

Evaluating the partial derivative with respect to xβ in eq. (25) using the product rule, the
end result is

∂V ′µ

∂x′α
=

∂xβ

∂x′α

∂x′ µ

∂xρ

∂V ρ

∂xβ
+

∂xβ

∂x′α

∂2x′ µ

∂xβ∂xρ
V ρ . (26)

4In this context, the inhomogeneous term refers to the last term in eq. (17) or eq. (23), which is inde-
pendent of the connection coefficients. In contrast, the transformation law given in eq. (24) is homogeneous
since the tensor T appears on both sides of the equation.
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This should be compared with the transformation law for a mixed second rank tensor, T µ
α ,

with respect to a general coordinate transformations,

T ′µ
α =

∂xβ

∂x′ α

∂x′ µ

∂xρ
T ρ
β . (27)

In particular, ∂V µ/∂xµ fails to have the correct tensorial transformation law under a general
coordinate transformation due to the presence of the inhomogeneous term (i.e., the last
term) in eq. (26).

It is remarkable that the covariant derivative of a vector transforms like a tensor since

DαV
µ
≡

∂V µ

∂xα
+ Γµ

αβV
β .

is the sum of two quantities whose separate transformation laws are not tensorial with
respect to general coordinate transformations. Let us see how this is possible. We compute

∂V ′µ

∂x′α
+ Γ ′µ

αβV
′β =

∂xβ

∂x′α

∂x′ µ

∂xρ

∂V ρ

∂xβ
+

∂xβ

∂x′α

∂2x′µ

∂xβ∂xρ
V ρ

+

(

∂x′ µ

∂xβ

∂xρ

∂x′ β

∂xτ

∂x′α
Γβ
τρ −

∂xτ

∂x′α

∂2x′ µ

∂xτ∂xρ

∂xρ

∂x′ β

)

∂x′ β

∂xν
V ν . (28)

We now simplify the second line of eq. (28) with the help of the chain rule,

∂xρ

∂x′ β

∂x′ β

∂xν
=

∂xρ

∂xν
= δρν .

Using the resulting Kronecker delta to sum over ν, we obtain

∂V ′µ

∂x′α
+ Γ ′µ

αβV
′β =

∂xβ

∂x′ α

∂x′ µ

∂xρ

∂V ρ

∂xβ
+

∂xβ

∂x′α

∂2x′µ

∂xβ∂xρ
V ρ +

(

∂x′ µ

∂xβ

∂xτ

∂x′α
Γβ
τρ −

∂xτ

∂x′α

∂2x′µ

∂xτ∂xρ

)

V ρ .

(29)

We now relabel the indices on the second line of eq. (29) as follows: τ → β and β → τ ,
which yields

∂V ′µ

∂x′α
+ Γ ′µ

αβV
′β =

∂xβ

∂x′ α

∂x′ µ

∂xρ

∂V ρ

∂xβ
+

∂xβ

∂x′α

∂2x′µ

∂xβ∂xρ
V ρ +

(

∂x′ µ

∂xτ

∂xβ

∂x′α
Γτ
βρ −

∂xβ

∂x′α

∂2x′µ

∂xβ∂xρ

)

V ρ

=
∂xβ

∂x′ α

∂x′ µ

∂xρ

∂V ρ

∂xβ
+

∂x′ µ

∂xτ

∂xβ

∂x′α
Γτ
βρV

ρ . (30)

Note the cancellation of the two terms which were associated with the inhomogeneous terms
of the transformation laws of ∂V µ/∂xα and Γµ

αβ , respectively! Finally, relabeling ρ → τ in
the first term on the last line of eq. (30) yields

∂V ′µ

∂x′α
+ Γ ′µ

αβV
′β =

∂xβ

∂x′α

∂x′ µ

∂xτ

(

∂V τ

∂xβ
+ Γτ

βρV
ρ

)

. (31)

6



Using the definition of the covariant derivative [cf. eq. (8)], we can rewrite eq. (31) as

D ′

αV
µ =

∂xβ

∂x′ α

∂x′ µ

∂xτ
DβV

τ . (32)

But this is the transformation law for a second rank mixed tensor. As advertised, the
inhomogeneous terms in the transformation laws for ∂V µ/∂xα and Γµ

αβ have canceled out!
Of course, this result was expected in light of the discussion following eq. (10).

4. Two applications of the transformation law for the connection coefficients

1. Define the torsion tensor by

Qµ
αβ ≡ Γµ

αβ − Γµ
βα .

That is, the torsion tensor is the antisymmetric part of the connection coefficients, i.e. it
satisfies Qµ

αβ = −Qµ
βα. To justify calling Qµ

αβ a tensor, we shall now prove that its trans-
formation properties are indeed tensorial. Using eq. (17),

Q ′σ
αµ = Γ ′σ

αµ − Γ ′σ
µα =

∂x′ σ

∂xβ

∂xρ

∂x′ µ

∂xτ

∂x′α
Γβ
τρ −

∂x′ σ

∂xβ

∂xρ

∂x′α

∂xτ

∂x′ µ
Γβ
τρ . (33)

Note that the inhomogeneous term in eq. (17) has dropped out due to5

∂2xβ

∂x′α∂x′ µ
=

∂2xβ

∂x′ µ∂x′α
.

If we now relabel the dummy indices, β → τ and τ → β, in the last term of eq. (33), then
we obtain

Q ′σ
αµ = Γ ′σ

αµ − Γ ′σ
µα =

∂x′ σ

∂xβ

∂xρ

∂x′ µ

∂xτ

∂x′α
(Γβ

τρ − Γβ
ρτ ) =

∂x′ σ

∂xβ

∂xρ

∂x′ µ

∂xτ

∂x′ α
Qβ

τρ .

That is, we have shown that under a general coordinate transformation, the torsion tensor
transforms as

Q ′σ
αµ =

∂x′ σ

∂xβ

∂xρ

∂x′ µ

∂xτ

∂x′α
Qβ

τρ , (34)

which is the correct transformation law for a mixed third rank tensor with two covariant
indices and one contravariant index.

2. Consider the transformation law of the connection coefficients given in eq. (17), which
is rewritten below,

Γ ′σ
αµ =

∂x′ σ

∂xβ

∂xρ

∂x′ µ

∂xτ

∂x′ α
Γβ
τρ +

∂x′ σ

∂xβ

∂2xβ

∂x′α∂x′ µ
. (35)

5By assumption, the general coordinate transformation x′ = x′(x) is assumed to be smooth and non-
singular, which implies that it is permissible to interchange the order of the partial differentiation.

7



We shall evaluate eq. (35) at a point P in the spacetime such that the unprimed coordinates
correspond to the local inertial frame (i.e. the freely falling frame) at point P . In the local
inertial frame, the basis vectors ~eµ can be chosen to be orthonormal with respect to the
Minkowski metric ηµν in a neighborhood of P . In particular, the basis vectors remain
orthonormal to first order in a Taylor series about the point P . These requirements are
equivalent to the following two conditions,

~eµ · ~eν

∣

∣

P
= gµν

∣

∣

P
= ηµν ,

(

∂~eµ

∂xα

)

P

= 0 . (36)

This means that locally in the neighborhood of P , the reference frame is indistinguishable
from an inertial frame. In light of eq. (4), it then follows that

Γµ
αβ

∣

∣

P
= 0 . (37)

Let us now transform the coordinates x in the neighborhood of P from those used in
defining the local inertial frame to an arbitrary coordinate system (non necessarily inertial).
The new coordinates are x′ = x′(x). Then using eq. (35), it follows that in the primed
coordinate system, the connection coefficients in the neighborhood of P are given by

Γ ′σ
αµ

∣

∣

P
=

∂x′ σ

∂xβ

∂2xβ

∂x′α∂x′ µ

∣

∣

∣

∣

P

.

Thus, it follows that

Γ ′σ
αµ

∣

∣

P
= Γ ′σ

µα

∣

∣

P
, (38)

due to the fact that interchanging α and µ does not change the value of ∂2xβ/∂x′α∂x′ µ (as
noted in footnote 5). But, the equivalence principle states that in the neighborhood of any
point P it is possible to transform the coordinates to the local inertial frame (where the
connection coefficients vanish). Thus, the above argument can be repeated for any point
in the spacetime to obtain eq. (38) at any point P . We can therefore conclude that

Γµ
αβ = Γµ

βα , (39)

at all points in the spacetime independently of the choice of coordinates. In particular, this
means that the torsion tensor is identically zero. This is the motivation for choosing the
connection coefficients that are symmetric under the interchange of its lower two indices. As
shown in class, under the latter assumption, we can derive an expression for the connection
coefficients in terms of the metric,

Γµ
αβ = 1

2
gµν

(

∂gνβ
∂xα

+
∂gνα
∂xβ

−

∂gαβ
∂xν

)

.

The discussion above seems to imply that eq. (39) is a consequence of the equivalence
principle. However, it turns out that definition of the local inertial frame via eq. (36) is
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too strong. In most textbooks, the local inertial frame is defined to satisfy the following
conditions,

gµν
∣

∣

P
= ηµν ,

(

∂gµν
∂xα

)

P

= 0 . (40)

Although eq. (36) implies eq. (40), it is possible to satisfy eq. (40) without the connection
coefficients vanishing at the point P [in which case, the second condition of eq. (36) would
be violated]. However, Einstein’s general relativity is based on the assumption that eq. (39)
is satisfied, in which case the local inertial frame does satisfy eqs. (36) and (37).
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