
Physics 171 Problem Set #3 Fall 2014

MIDTERM ALERT: The midterm exam will be a take-home exam. The exam will be
handed out in class on Thursday November 13. Completed exams should be returned
to me by the end of the day on Friday November 14. The exam will be based on the
material listed in the first seven topics of the Physics 171 Course Outline (and on the
material covered on the first three problem sets). While working on the exam, you are
permitted to consult with your class notes, any material provided on the class website,
Lambourne’s textbook and one other relativity textbook of your choosing. However, you
should not collaborate with anyone else during the exam.

DUE: THURSDAY NOVEMBER 13, 2014

1. Consider the connection coefficients Γβ
µν prior to imposing the condition that Γβ

µν

is symmetric under the interchange of its lower two indices. The torsion tensor, T β
µν , is

defined as
T β

µν ≡ Γβ
µν − Γβ

νµ .

(a) In class, I derived the transformation law for the connection coefficients under a
general coordinate transformation. Using this result, derive the corresponding transfor-
mation law for the torsion tensor. Is it correct to call T β

µν a tensor?

(b) Prove that if the torsion tensor vanishes in any local inertial frame, then T β
µν = 0

at all spacetime points.

2. (a) Show that raising and lowering of indices commutes with covariant differentiation;
e.g., ∇αAµ = ∇α(gµνA

ν) = gµν∇αA
ν .

(b) Suppose that Aµ is a covariant vector and Fµν is an antisymmetric tensor. Prove
that:

(i) ∇µAν −∇νAµ = ∂µAν − ∂νAµ ,

(ii) ∇ρFµν +∇νFρµ +∇µFνρ = ∂ρFµν + ∂νFρµ + ∂µFνρ .

(c) Maxwell’s equations in Minkowski space are given in eq. (2.102) and (2.103) on
p. 75 of Lambourne. Using the principle of general covariance and the results of part (b),
find the appropriate generalization of Maxwell’s equations in curved spacetime.

(d) How should the equation for current conservation (∂µJ
µ = 0) be generalized

in curved spacetime? [EXTRA CREDIT: Prove that this result is a consequence of
Maxwell’s equations in curved spacetime.]



3. (a) Suppose that the metric gµν is diagonal. Prove the following result for four-
dimensional spacetime:

Γµ
µν =

1

2g

∂g

∂xν
=

1√
−g

∂
√
−g

∂xν
,

where g ≡ det gµν . Note the implicit sum over the index µ.

(b) The result of part (a) is actually valid for an arbitrary choice of metric. Using
this result, show that if Aµ is a contravariant vector and F µν is an antisymmetric tensor,
then:

(i) ∇νA
ν =

1√
−g

∂ν(
√
−g Aν) ,

(ii) ∇νF
µν =

1√
−g

∂ν(
√
−g F µν) ,

where ∂ν ≡ ∂/∂xν .

(c) EXTRA CREDIT: Prove the result of part (a) without assuming any special form
for the metric.

4. Consider a three-dimensional spacetime with a metric that is given by:

ds2 =
(

1− 2GM

c2r

)

c2dt2 −
(

1− 2GM

c2r

)

−1

dr2 − r2dφ2 .

(a) From the corresponding Lagrangian L = gµνq
µqν , where qµ ≡ dxµ/ds, write down

the Euler-Lagrange equations which (as shown in class) are equivalent to the geodesic
equations

dqµ

ds
+ Γµ

αβ q
αqβ = 0 .

Use this result to work out the non-vanishing connection coefficients.

(b) Check the connection coefficients obtained in part (a) by calculating them directly
from the formula for Γµ

αβ in terms of the derivatives of the metric tensor.

5. The metric for the two-dimensional surface of a sphere of radius 1 is given by

ds2 = dθ2 + sin2 θ dφ2 .

(a) Using the geodesic equations, show that all lines of longitude, corresponding to
constant azimuthal angle φ on the surface of a sphere, are geodesics.

(b) EXTRA CREDIT: Solve the geodesic equations for the most general geodesic on
the surface of a sphere.


