
Physics 171 Problem Set #4 Fall 2014

DUE: TUESDAY DECEMBER 2, 2014

1. In class, I proved that for any covariant vector Vµ,

(∇β∇α −∇α∇β)Vµ = Rρ
µαβVρ . (1)

(a) Show that for a contravariant vector W µ,

(∇β∇α −∇α∇β)W
µ = −Rµ

ναβW
ν . (2)

(b) Given a contravariant second rank tensor T µν and a covariant vector V µ, the con-
travariant vector defined by W µ ≡ T µνVν satisfies eq. (2). Using eqs. (1)–(2) and Leibnitz’s
rule, show that

(∇β∇α −∇α∇β)T
µν = −Rµ

ραβT
ρν − Rν

ραβT
µρ . (3)

(c) Noting the forms of eqs. (2) and (3), deduce without further computation a formula
for (∇β∇α −∇α∇β)Tµν , where Tµν is a covariant second rank tensor, based on the form of
eq. (1). Do the same for (∇β∇α −∇α∇β)T

µ
ν , where T µ

ν is a mixed second rank tensor.

(d) Using the properties of the Riemann curvature tensor, prove that the Ricci tensor
is symmetric, i.e., Rµν = Rνµ, where Rµν ≡ gαβRαµνβ . Show that if any other index pair is
summed using the inverse metric, the result is either zero or a multiple of the Ricci tensor.

2. Dust is a fluid without internal stress or pressure. Its energy-momentum tensor is
T µν = ρuµuν , where ρ is a scalar quantity (which may depend on xµ) and uµ ≡ dxµ/dτ
is the velocity four-vector. Show that ∇νT

µν = 0 implies that the dust particles follow
geodesics.

HINT: You will need to invoke the identity gαβu
αuβ = c2. Taking the covariant derivative

of this relation will also yield a useful identity.

3. In class, we derived the Schwarzschild metric as a static spherically symmetric solution
to the vacuum Einstein equations, Rµν = 0.

(a) Assume that there is a non-zero cosmological constant. By solving the modified Ein-
stein equations, Rµν = Λgµν , determine the appropriate modification to the Schwarzschild
metric.

(b) Using the metric obtained in part (a) for the case of Λ 6= 0, determine the orbit
equation for a test particle in orbit around a spherically symmetric star of mass M .



(c) Using the new orbit equation derived in part (b), compute the perihelion advance of
Mercury, assuming that the orbit is nearly circular, i.e., the eccentricity |e| ≪ 1. Mercury
makes 415 revolutions per century, has an eccentricity e = 0.2056 and a semi-major axis
a = 5.791× 1010 m. Using the observed data, set an upper bound on the value of Λ.

4. The Schwarzschild metric is given by:

ds2 ≡ c2dτ 2 =

(

1−
2GM

c2r

)

c2dt2 −

(

1−
2GM

c2r

)

−1

dr2 − r2dθ2 − r2 sin2 θ dφ2 .

(a) Derive the geodesic equation for
.
θ (where

.
θ ≡ dθ/dτ).

(b) Using the result of part (a), show that all orbits in the Schwarzschild geometry are
planar.

HINT: Show that it is always possible to choose coordinates so that at τ = 0, we have
θ = π/2 and

.
θ = 0.

5. Consider a photon in orbit in a Schwarzschild geometry. For simplicity, assume that the
orbit lies in the equatorial plane (i.e. θ = π/2 is constant).

(a) Show that the geodesic equations imply that:

Ē2 =
1

c2

(

dr

dλ

)2

+
J̄2

c2r2

(

1−
2GM

rc2

)

,

where Ē and J̄ are constants of the motion and λ is an affine parameter.

(b) Define the effective potential:

Veff =
J̄2

c2r2

(

1−
2GM

rc2

)

.

In class, we discussed how the effective potential yields information about the orbits of
massive particles. Employing similar considerations, show that for photons there exists an
unstable circular orbit of radius 3

2
rs, where rs ≡ 2GM/c2 is the Schwarzschild radius.

[HINT: Make sure that you check for minima and maxima of Veff .]

(c) Compute the proper time for the photon to complete one revolution of the circular
orbit as measured by an observer stationed at r = 3

2
rs.

(d) What orbital period does a very distant observer assign to the photon?

(e) The instability of the orbit can be exhibited directly. Show, by perturbing the
geodesic in the equatorial plane, that the circular orbit of the photon at r = 3

2
rs is unstable.

HINT: In the orbit equation for the photon, put r = 3

2
rs + η, and deduce an equation for η.

Keep only first order terms in η, and solve the resulting equation.


