
Physics 171 MIDTERM EXAM Fall 2014

INSTRUCTIONS: This is a take-home exam. The point value of each problem is in-
dicated in brackets. The exam should be completed and returned to me or to my ISB
mailbox at the end of the day on Friday November 14.

While working on the exam, you are permitted to consult with your class notes,
Lambourne’s textbook and one other relativity textbook and/or mathematics book of
your choosing. Please indicate on the exam any additional references that you consult.
You may also make use of any material available on the class website. However, you
should not collaborate with any other source or persons during the exam.

1. [10] The metric tensor in curved spacetime is denoted by gµν . The Levi-Civita tensor
is denoted by ǫµναβ . One may be tempted to define the dual metric tensor (analogous to
the dual electromagnetic field strength tensor introduced in problem set 1) as follows:

g̃µν ≡ 1

2
ǫµναβgαβ .

Evaluate g̃µν .

2. [30] The line element of special relativity is given by ds2 = c2dt2 − dx2 − dy2 − dz2.
Transform this line element from the usual (ct; x, y, z) rectangular coordinates to new
coordinates (ct′; x′, y′, z′) related by

t = t′ ,

x = x′ cosωt′ − y′ sinωt′ ,

y = x′ sinωt′ + y′ cosωt′ ,

z = z′ .

The new coordinates describe a rotating reference frame with angular velocity vector
~ω = (0, 0, ω).

(a) Express ds2 in terms of the new coordinates.

(b) In terms of the new coordinates [i.e., using the invariant line element of part (a)],
write down the geodesic equations.

(c) Using the results of part (b), identify the nonvanishing Christoffel symbols.

(d) Using the results of part (b), show that in the non-relativistic limit,

d2~r

dt2
= −~ω × (~ω × ~r)− 2~ω ×

d~r

dt
,

where ~r ≡ (x′, y′, z′). What is the physical interpretation of the two terms on the right
hand side of the above equation?
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3. [30] Three observers are standing near each other on the surface of the Earth. Each
holds an accurate atomic clock. At time t = 0 all the clocks are synchronized. At t = 0
the first observer throws her clock straight up. It reaches a maximum height of h and then
returns to the first observer at time T as measured by the clock of the second observer,
who holds his clock in his hand for the entire time interval. The third observer carries
his clock up to a height h and then back down again to its original location, moving with
constant speed on each leg of the trip and returning in time T .

(a) Incorporating gravitational time dilation as a consequence of the equivalence prin-
ciple, show that to order 1/c2 the proper time between two spacetime points A and B
(at coordinate times tA and tB, respectively) is given by

τAB ≃
∫ tB

tA

[
1−

1

c2

(
1

2
~v

2 − Φ
)]

dt , (1)

where ~v is the velocity of a particle that moves from point A to point B and Φ is the
gravitational potential experienced by the particle in motion.

(b) Calculate the total elapsed time measured on each clock, assuming that the max-
imum height h is much smaller than the radius of the earth. In your calculation, you
may use eq. (1) to account for gravitational effects. Assume non-relativistic trajectories
and ignore frictional effects in the motion. Which clock registers the longest time?

(c) If the clocks had been carried on the same trajectories (i.e., with the same veloc-
ities) but in a horizontal direction, which clock would have the longest reading?

4. [30] Consider a spacetime described by the Schwarzschild metric:

ds2 =
(
1−

2GM

c2r

)
c2dt2 −

(
1−

2GM

c2r

)−1

dr2 − r2dθ2 − r2 sin2 θ dφ2 .

(a) A clock at fixed (r, θ, φ) measures an (infinitesimal) proper time interval, which
we shall denote by dT , along its world line. Express dT (as a function of r) in terms of
the coordinate time interval dt.

(b) A stationary observer at fixed (t, θ, φ) measures an (infinitesimal) radial distance,
which we shall denote by dR. Express dR (as a function of r) in terms of the coordinate
radial distance dr.

(c) Consider a particle falling radially into the center of the Schwarzschild metric
(i.e., falling in radially towards r = 0). Assume that the particle initially starts from
rest infinitely far away from r = 0. Since this is force-free motion, the particle follows
a geodesic. Show that the geodesic equation for dt/dτ (where s ≡ cτ) implies that the
quantity

E = mc2
(
1−

2GM

c2r

)
dt

dτ
, (2)

is a constant. We can interpret E as the total conserved energy of the particle. Argue
that at r → ∞ (where the initial velocity of the particle is zero), we can set t = τ and
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therefore E = mc2 at all points along the particle trajectory. Using eq. (2), deduce a
unique expression for dt/dτ that is valid at all points along the radial geodesic path.

(d) Recall that ds2 ≡ c2dτ 2 = gµνdx
µdxν , from which it follows that

gµν
dxµ

dτ

dxν

dτ
= c2 .

In this problem gµν is determined from the Schwarzschild line element. Using these results
and the result obtained in part (c) for dt/dτ , compute the particle’s inward coordinate
velocity, v = dr/dt, as a function of the coordinate radial distance r. Invert the equation,
and integrate from r = r0 to r = rs, where r0 is some finite coordinate distance such
that r0 > rs and rs ≡ 2GM/c2 is called the Schwarzschild radius. Show that the elapsed
coordinate time is infinite, independently of the choice of the starting radial coordinate
r0. That is, it takes an infinite coordinate time to reach the Schwarzschild radius.

HINT: For radial motion, θ and φ are constants independent of τ . Note that for inward
radial motion dr/dt is negative.

(e) Compute the velocity dR/dT as measured by a stationary observer at a coordinate
radial distance r. Verify that |dR/dT | → c as r → rs, where rs is the Schwarzschild radius
defined in part (d).

HINT: Use the results for dT and dR obtained in parts (a) and (b).
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