
Physics 171 Problem Set #5 Fall 2015

DUE: FRIDAY DECEMBER 4, 2015

FINAL EXAM ALERT: The final exam will be an in-class exam, and will take place in
Nat. Sci. Annex 102 from 8–11 am on Tuesday December 8, 2015. The exam will cover the
entire course material. While working on the exam, you are permitted to consult with your
class notes, all class handouts and materials linked to the class website (including problem
set solutions) and the course textbook by Ta-Pei Cheng. You may also consult with a second
textbook of your choosing. Please bring a calculator to the exam. You may not collaborate
with anyone or any other source material not listed above during the exam.

1. Consider a photon in orbit around a Schwarzschild black hole of mass M . For simplicity,
assume that the orbit lies in the equatorial plane (i.e. θ = π/2 is constant).

(a) Following the derivation given in class for the geodesic of a particle moving in the
equatorial plane of a Schwarzschild geometry, show that
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are constants of motion, where rs ≡ 2GNM/c2 is the Schwarzschild radius of the black hole,
.
t ≡ dt/dλ and

.
φ ≡ dφ/dλ, and λ is a suitable affine parameter.

(b) Photons travel along paths that satisfy ds2 = gµνdx
µdxν = 0, which yields gµν

.
xµ .xν = 0.

Applying this latter equation to the motion of the photon in the equatorial plane of the
Schwarzschild geometry, show that the constants of motion defined in part (a) satisfy
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(c) Derive the orbit equation of the photon. From this equation, deduce the radius r0 of a
circular orbit.

(d) Consider a stationary observer located at the Schwarzschild coordinates (r0, θ = 1
2
π, φ).

Compute the proper time interval (as measured by the stationary observer) for the photon to
complete one revolution of the circular orbit of radius r0. What orbital period does a very
distant observer assign to the photon?

(e) Show that the circular orbit obtained in part (c) is unstable.

HINT: Our textbook provides a derivation that makes use of the so-called effective potential.
But you can actually prove this result directly as follows. An orbit is unstable if, when
perturbed slightly, the perturbation grows as a function of time. In the orbit equation for the
photon, put r = r0 + η, and deduce an equation for η. Keep only first order terms in η, and
solve the resulting equation.



2. Suppose that a galaxy is observed to have a redshift z = 1. Assuming a matter-dominated
FLRW cosmology, at what fraction t/t0 of the present age of the universe did light leave this
galaxy?

3. Consider FLRW cosmological models with curvature parameter k = 0.

(a) Suppose that ΩM,0 = 1 and ΩΛ,0 = ΩR,0 = 0, corresponding to a matter-dominated
cosmology. Show that the cosmic scale factor is given by

a(t) = (3
2
H0t)

2/3 .

(b) Consider a model more closely resembling our universe with ΩM,0 + ΩΛ,0 = 1 and
ΩR,0 = 0. Assume that 0 < ΩΛ,0 < 1. Find a closed-form expression for a(t) in terms of ΩM,0,
ΩΛ,0 and H0, and show that it reduces to the result of part (a) in the limit of ΩΛ,0 → 0.

(c) In the model considered in part (b), how large would the ratio ΩΛ,0/ΩM,0 have to be for
the universe to be accelerating (i.e., d2a/dt2 > 0) at the present time?

(d) Using the results of part (b), find an explicit expression for the age of the universe
t0 as a function of H0 and ΩΛ,0. Evaluate t0 numerically for H−1

0 = 14.53 × 109 years and
ΩΛ,0 = 0.685.

4. Assume that the universe begins with a big bang at t = 0 with a cosmic scale factor of
a(t = 0) = 0. Subsequently, the universe expands so that a(t) grows with t. Distances are
measured by employing the Robertson-Walker metric.

(a) Consider a light source located at a comoving distance ξ = ξH at cosmic time t = 0.
Assume that the light source emits a photon that travels in a radial direction and is detected
on Earth at ξ = 0 today (t = t0). The proper distance dH that the photon has traveled is
called the particle horizon. Obtain an expression for dH as a function of ξH and the curvature
parameter k.

(b) Show that the particle horizon today is given by

dH = c
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where
.
a ≡ da/dt. Using this result, express the present distance to the particle horizon in

terms of the cosmological parameters by an integral formula analogous to eq. (11.42) on p. 260
of our textbook for the current age of the universe.

(c) Evaluate the formula for the present distance to the particle horizon obtained in part (b)
for cosmological parameters Ω0 = 1, ΩΛ,0 = 0.685, ΩR,0 = 9 × 10−5, ΩM,0 = 0.315, and

H0 = 67.3 km s−1 Mpc−1 (taken from the latest compilation of the Particle Data Group).
Express your answer in Gpc.

HINT: Use your favorite software package to numerically evaluate the integral obtained in
part (b).



5. The values of the cosmological parameters today, Ωx,0 ≡ ρx(t0)/ρc(t0), where x = Λ, R,
and M refer to the vacuum, radiation and matter, respectively, were given in part (c) of
problem 4. The radiation is made up of two components: photons with Ωγ,0 = 5.46 × 10−5

and neutrinos. The energy density of photons today, ργ(t0), is determined by the very well
measured cosmic microwave background radiation temperature, T0 = 2.7255◦K. The current
value of the inverse Hubble parameter is H−1

0 = 14.53× 109 years.

(a) Using the values of the cosmological parameters today, find the value of the cosmic
scale factor a(t) when ρM = ργ.

(b) What was the temperature of the universe (corresponding to the temperature of the
blackbody cosmic photons) when ρM = ργ?

(c) In class, we showed that the Hubble parameter at time t is given by:
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where Ω0 ≡ ΩM,0 + ΩR,0 + ΩΛ,0. Note that this is a differential equation that can be used to
solve for t as a function of a (or vice versa). Integrate this equation from t = 0 (the time of
the big bang) to teq, the time at which ρM = ργ . Explain why you may safely ignore the terms
in eq. (1) proportional to ΩΛ,0 and 1 − Ω0 when 0 ≤ t ≤ teq. Then, evaluate the integral and
obtain an expression for teq, under the assumption that ΩR,0 = Ωγ,0. Evaluate teq numerically
(in years).

HINT: The upper limit of the a integration is obtained from the result of part (a). [What is
the lower limit of the a integration, corresponding to t = 0?] The integral you need to evaluate
is of the form:

∫
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(d) More accurately, ΩR,0 = Ωγ,0 + Ων,0, where Ων,0 is the energy density of cosmic back-
ground neutrinos relative to the critical density. In particular, as shown by eq. (10.76) on
p. 229 of our textbook, Ων,0 ≃ 0.68Ωγ,0. Thus, replace Ωγ,0 in part (c) with Ωr,0 = 1.68Ωγ,0

and obtain an improved numerical result for the value of teq (which now corresponds to the
cosmic time elapsed after the big bang at which ρm = ργ + ρν). That is, teq corresponds to
the age of the universe at “matter–radiation equality.” Hence, for t < teq the universe was
radiation-dominated, while for t > teq the universe is matter-dominated.


