
Physics 171 FINAL EXAM Fall 2015

You have three hours to complete this exam. The point value of each of the four problems
is indicated in brackets, so use your time wisely. In answering the questions, you may quote
results that have been derived in the textbook and the homework/exam solutions (but if you
do so, please cite explicitly the source of any such quotations).

While working on the exam, you are permitted to consult with your class notes, all class
handouts and materials linked to the class website (including problem set and exam solutions)
and the course textbook by Ta-Pei Cheng. You may also consult with a second textbook of
your choosing. The use of a calculator is encouraged. You may not collaborate with anyone
or any other source material not listed above during the exam.

1. [10] In class, I remarked that in a curved spacetime,

ηµναβ ≡
√
−g ǫµναβ

is a rank-four pseudotensor, where ǫµναβ is the Levi-Civita symbol and g ≡ det(gµν).

Evaluate Dληµναβ , where Dλ is the covariant derivative.

HINT: What is the value of Dληµναβ in the local inertial frame?

2. [40] Consider a spacetime with the (infinitesimal) invariant interval given by

ds2 = −e−2ax/c2 c2dt2 + dx2 + dy2 + dz2 , (1)

where a is a constant.

(a) Find all the nonzero connection coefficients (i.e., the Christoffel symbols). Employ the
Lagrangian method, and extract the relevant connection coefficients from the corresponding
geodesic equations.

(b) Given a particle with zero instantaneous velocity at t = 0 (i.e., dx/dt = dy/dt =
dz/dt = 0 at t = 0), show that the acceleration, d 2x/dτ 2, (where τ is the proper time

parameter) at t = 0 is a constant given by

d 2x

dτ 2
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= a .

Because of this, it may be said that a spacetime with the metric defined via eq. (1) describes
a uniform gravitational field in the x direction.

(c) Find the nonzero components of the Ricci tensor. Show that apart from R00 and R11,
all the other components of the Ricci tensor are zero.

(d) Using the Einstein field equations, evaluate the components T00, T11, T22 and T33 of
the energy-momentum tensor that generates this gravitational field. Check your result by
verifying that DµT

µν = 0.



3. [20] Consider a nonrotating black hole of mass M governed by the Schwarzschild metric.
A doomed rocket ship is on a trajectory that corresponds to a geodesic path headed toward
the black hole singularity at r = 0. Without loss of generality, assume that the geodesic path
lies in the plane corresponding to θ = 1

2
π.

(a) Timelike geodesics in a Schwarzschild geometry are characterized by two constants of
motion,

E = mc2
(

1−
rs
r

) .
t , J ≡ mr2

.
φ ,

where rs ≡ 2GNM/c2 is the Schwarzschild radius of the black hole,
.
t ≡ dt/dτ ,

.
φ ≡ dφ/dτ and

τ is the proper time. Derive an expression for
.
r ≡ dr/dτ for a geodesic path headed toward

r = 0 (with θ = 1

2
π fixed).

HINT: Note that
.
r < 0 since r is decreasing with proper time τ .

(b) Find the geodesic path corresponding to the longest proper time for an observer who
starts at r = rs and ends up at the black hole singularity r = 0. If the mass of the black hole
is equal to the mass of our sun, what is the value of this maximal proper time in seconds?

HINT: Using the result of part (a), express the elapsed proper time in the form of an inte-
gral, and then determine the values of the constants E and J that maximize the integrand.
Employing these values for E and J , integrate the resulting expression, and obtain a formula
for the maximal elapsed proper time in terms of rs. The latter integral will be in the form of
a Beta function,

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
=

∫

1

0

xp−1(1− x)q−1 dx .

Finally, recall that for the sun, rs = 2.96 km.

4. [30] Consider a model FLRW universe with ΩM,0 + Ω
Λ
= 1 and ΩR,0 = 0, which closely

resembles our present day universe. Using H0 = 67.3 km s−1Mpc−1 = (14.53×109 years)−1 for
the value of the Hubble parameter today, the vacuum energy density (due to the cosmological
constant) is given by c2ρΛ, where

ρΛ = 5.83× 10−27 kgm−3 .

(a) Compute the value of the energy density of matter today and show that it is less than
the vacuum energy density. Verify that the expansion of the universe today is accelerating.

(b) During the evolution of the universe, the energy density of matter is equal to the
vacuum energy density at a moment in time that will be called matter–vacuum equality.
Determine the age of the universe at matter-vacuum equality. What is the temperature of
the cosmic microwave background radiation (CMBR) at matter-vacuum equality What is the
cosmological redshift, z, of a photon that is emitted at matter-vacuum equality?

(c) During the evolution of the universe, the expansion of the universe flips from decelera-
tion to acceleration at a point in history. Determine the age of the universe, the temperature
of the CMBR and the cosmological redshift corresponding to this moment in time when the
expansion of the universe is neither decelerating nor accelerating.


