
Physics 171 MIDTERM EXAM Fall 2015

INSTRUCTIONS: This is a take-home exam. The point value of each problem is indicated
in brackets. Please return the completed exam to me or my ISB mailbox no later than 12
noon on Monday November 9.

While working on the exam, you are permitted to consult with your class notes, Ta-
Pei Cheng’s textbook and one other relativity textbook and/or mathematics book of your
choosing. Please indicate on the exam any additional references that you consulted. You
may also make use of any material available on the class website. However, you should
not collaborate with any other persons or consult other source materials during the exam.

1. [10] The Ricci tensor in curved spacetime is denoted by Rµν . The Levi-Civita tensor
is denoted by ǫµναβ . One may be tempted to introduce the dual Ricci tensor density
(analogous to the dual electromagnetic field strength tensor introduced in eq. (12.36) of
our textbook) as follows:

R̃µν ≡ 1

2
ǫµναβRαβ .

Evaluate R̃µν .

2. [30] The line element of special relativity, ds2 = −c2dτ 2 = −c2dt2 + d~x 2, can be used
to prove that dτ = dt/γ, where γ = (1 − v2/c2)−1/2. Consider the modification of the
Minkowski line element due to the presence of a weak gravitational potential Φ(~x) in the
non-relativistic approximation, i.e. v ≪ c and |Φ/c2| ≪ 1. This modification incorporates
gravitational time dilation as a consequence of the equivalence principle.

(a) Show that to order 1/c2,

dτ ≃

[
1−

1

c2
(
1

2
~v

2 − Φ
)]

dt . (1)

(b) Consider a satellite in a circular orbit of radius r = R+h around the Earth, where R
is the radius of the earth and h is the height of the orbit above the Earth’s surface. Using
Newtonian mechanics, compute the velocity of the satellite as a function of r.

HINT: Your result should also depend on the gravitational constant GN and the mass of
the earth M .

(c) A standard clock on the satellite is compared with an identical clock on Earth.
Using the results of parts (a) and (b) and neglecting the rotation of the Earth, compute
the ratio of the rate of the orbiting clock to that of the clock on Earth, employing the
same approximations used in part (a). Which clock runs faster?

HINT: The answer to which clock runs faster depends on the value of r. Do not assume
that h ≪ R.
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3. [20] Consider a time-like geodesic in a curved spacetime, xµ(τ), that is parameterized
by the proper time τ . The tangent vector at any proper time τ along the geodesic is the
velocity four-vector,

uµ(τ) =
dxµ

dτ
.

(a) Prove that uµ(τ) is parallel-transported along the geodesic. That is, for any two
proper times, τ1 and τ2, the four-vector u

µ(τ1) when parallel-transported along the geodesic
from τ1 to τ2, yields the four-vector uµ(τ2).

HINT: Write down the equation that describes a vector parallel-transported along a curve
xµ(τ) and compare it with the geodesic equation.

(b) Following the above hint, consider the equation satisfied by uµ(τ). Evaluate this
equation in the local inertial frame (LIF). What is the nature of the motion in the LIF?

4. [40] Consider a three-dimensional spacetime with a metric that is given by1

ds2 = −

(
1−

2GM

c2r

)
c2dt2 +

(
1−

2GM

c2r

)
−1

dr2 + r2dθ2 .

(a) The velocity vector is defined by

uβ =
dxβ

dτ
, (2)

where xβ = (ct ; r , θ) labels the spacetime coordinates and τ is the proper time. Evaluate
the components of the velocity vector of a stationary observer who remains at a fixed value
of (r, θ) in a spacetime whose metric is given in eq. (2).

(b) In a curved spacetime, the acceleration vector is defined by

aβ = uαDαu
β , (3)

where Dα is the covariant derivative operator. Prove that in a local inertial frame, eq. (3)
reduces to the definition of the acceleration vector in special relativity.

(c) Consider a stationary observer who remains at a fixed value of (r, θ) in a spacetime
whose metric is given in eq. (2). Using eq. (3) and the results of part (a), evaluate the
components of the acceleration vector of the stationary observer. In what direction does
the acceleration point?

(d) The length of the acceleration vector obtained in part (c) is a scalar with respect
to general coordinate transformations. Evaluate this scalar as a function of the spacetime
coordinates. Explain the behavior of this scalar in the limits of r → ∞ and r → 2GM/c2.

(e) [EXTRA CREDIT ] Repeat parts (c) and (d) for a four-dimensional spacetime
governed by the Schwarzschild metric, assuming that the stationary observer remains at a
fixed value of (r, θ, φ). How are the results of parts (c) and (d) modified?

1This metric was treated in problem 3 of Problem Set 3.
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