§2.2 DYNAMICS

Dynamics is concerned with studying the motion of particles and rigid bodies. By studying the motion
of a single hypothetical particle, one can discern the motion of a system of particles. This in turn leads to

the study of the motion of individual points in a continuous deformable medium.

Particle Movement

The trajectory of a particle in a generalized coordinate system is described by the parametric equations
ot =2i(t), i=1,...,N (2.2.1)

where t is a time parameter. If the coordinates are changed to a barred system by introducing a coordinate

transformation

7 =7 (2 (t),2%(t),..., 2N (), i=1,...,N. (2.2.2)

The generalized velocity of the particle in the unbarred system is defined by

 dat
= — ,=1,...,N. 2.2.3
U dt, Z b ) ( )

By the chain rule differentiation of the transformation equations (2.2.2) one can verify that the velocity in

the barred system is '

dz" OT" da? az" j 1
_— = ——— = —— r = ..
dt Oxd dt  Oxd ’

Consequently, the generalized velocity v’ is a first order contravariant tensor. The speed of the particle is

—_r _

. N. (2.2.4)

obtained from the magnitude of the velocity and is

U2 = gileUJ .

The generalized acceleration f? of the particle is defined as the intrinsic derivative of the generalized velocity.

The generalized acceleration has the form

Uk Cdx™ dot i d?z? i) dx™ dx™
= oy B o (T —— = = 2.2
P == @ +{mn}v YT e +{mn} it dt (225)

and the magnitude of the acceleration is

f2=guf' 1.

187



188

Osculating
«Plane

Figure 2.2-1 Tangent, normal and binormal to point P on curve.

Frenet-Serret Formulas

The parametric equations (2.2.1) describe a curve in our generalized space. With reference to the figure
2.2-1 we wish to define at each point P of the curve the following orthogonal unit vectors:
T? = unit tangent vector at each point P.
N'? = unit normal vector at each point P,
B' = unit binormal vector at each point P.

These vectors define the osculating, normal and rectifying planes illustrated in the figure 2.2-1.

In the generalized coordinates the arc length squared is
ds? = gijdxidxj.

Define T* = % as the tangent vector to the parametric curve defined by equation (2.2.1). This vector is a
unit tangent vector because if we write the element of arc length squared in the form

dzt dad

1=g¢g;——
9ij ds ds

= g;; 7T, (2.2.6)

we obtain the generalized dot product for 7. This generalized dot product implies that the tangent vector

is a unit vector. Differentiating the equation (2.2.6) intrinsically with respect to arc length s along the curve

produces 5 5
e "
mn—Tn mnTm— = Oa
g ds T ds
which simplifies to
n 0L
gmnT""—— = 0. (2.2.7)
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The equation (2.2.7) is a statement that the vector 5?—: is orthogonal to the vector 7. The unit normal

vector is defined as i
17"

16T,

K or ;=

— 2.2.
Kk s’ (2:2.8)

K ds
where & is a scalar called the curvature and is chosen such that the magnitude of N? is unity. The reciprocal
of the curvature is R = %, which is called the radius of curvature. The curvature of a straight line is zero
while the curvature of a circle is a constant. The curvature measures the rate of change of the tangent vector
as the arc length varies.

The equation (2.2.7) can be expressed in the form
gi;T"N7 = 0. (2.2.9)

Taking the intrinsic derivative of equation (2.2.9) with respect to the arc length s produces

N7 STt
T g S NI =0
Jidt Ty + i ds
o WG ST
N i o
gijTlg = —gijgl\” = —rgijN'N? = —k. (2.2.10)
The generalized dot product can be written
g9i; T'T7 =1,

and consequently we can express equation (2.2.10) in the form

SONJ o ./ S§NI )
gijTlW = —lﬁlgijTlT] or gijTl <—S + /QTJ) =0. (2211)

Consequently, the vector
SNI .
— + k1Y 2.2.12
55 ( )
is orthogonal to T°. In a similar manner, we can use the relation 9i; N iNJ =1 and differentiate intrinsically
with respect to the arc length s to show that

ON7
GNP = 0.
9ii 0s

This in turn can be expressed in the form

(NI ,
gij N (— +/£TJ> =0.
0s

This form of the equation implies that the vector represented in equation (2.2.12) is also orthogonal to the

unit normal N?. We define the unit binormal vector as

=1 (‘W n nTi) or  Bi=1 <‘5Ni + ,{Ti> (2.2.13)

T\ ds T\ 08

where 7 is a scalar called the torsion. The torsion is chosen such that the binormal vector is a unit vector.

The torsion measures the rate of change of the osculating plane and consequently, the torsion 7 is a measure

189



190

of the twisting of the curve out of a plane. The value 7 = 0 corresponds to a plane curve. The vectors
Tt N* B',i=1,2,3 satisfy the cross product relation
B = ¢UFT; Ny

If we differentiate this relation intrinsically with respect to arc length s we find

§B! ” 0N 6T}
R — ijk _k Z=J
5s ¢ (TJ s * s Nk)

= €% [T;(r By, — KT}) + kN; Ni] (2:2.14)
= TeijijBk = —Te““jBij = —7N°.

The relations (2.2.8),(2.2.13) and (2.2.14) are now summarized and written

5T

= kN?
551 m
oN = TBi — /{Ti (2215)
0s
5B! ,
= —7N".
ds T

These equations are known as the Frenet-Serret formulas of differential geometry.

Velocity and Acceleration

Chain rule differentiation of the generalized velocity is expressible in the form

i

de'  dz'ds :
= — =T, 2.2.16
dt ds dt ( )
where v = % is the speed of the particle and is the magnitude of v*. The vector T° is the unit tangent vector
to the trajectory curve at the time ¢t. The equation (2.2.16) is a statement of the fact that the velocity of a
particle is always in the direction of the tangent vector to the curve and has the speed v.

By chain rule differentiation, the generalized acceleration is expressible in the form

ov” dv oT"
r_ — 7T e
F=%r=al tvy
dv 0T ds
_dv, as 2.2.17
il TS @ ( )
dv
=T ZN".
ar + KU

The equation (2.2.17) states that the acceleration lies in the osculating plane. Further, the equation (2.2.17)

indicates that the tangential component of the acceleration is %, while the normal component of the accel-

eration is kv2.



Work and Potential Energy

Define M as the constant mass of the particle as it moves along the curve defined by equation (2.2.1).
Also let Q" denote the components of a force vector (in appropriate units of measurements) which acts upon

the particle. Newton’s second law of motion can then be expressed in the form
QI=Mf" o Qr=Mf. (2.2.18)

The work done W in moving a particle from a point Py to a point P; along a curve " = z"(t),r = 1,2, 3,
with parameter ¢, is represented by a summation of the tangential components of the forces acting along the

path and is defined as the line integral

Py T Py t1 r t1
w= [ Q™ a— [ Qd = / Q.3 gt — / Q,v" dt (2.2.19)
to dt to

Po ds Po

where @, = g,sQ° is the covariant form of the force vector, ¢ is the time parameter and s is arc length along

the curve.

Conservative Systems

If the force vector is conservative it means that the force is derivable from a scalar potential function

ov
Ny suchthat Q,=-V,= o

V=V .. .z r=1,...,N. (2.2.20)

In this case the equation (2.2.19) can be integrated and we find that to within an additive constant we will
have V. = —W. The potential function V is called the potential energy of the particle and the work done
becomes the change in potential energy between the starting and end points and is independent of the path

connecting the points.

Lagrange’s Equations of Motion

The kinetic energy T of the particle is defined as one half the mass times the velocity squared and can

be expressed in any of the forms

1 [/ds\® 1 1 1
T=-M|—) ==Muv?>==Mgu,0"v" = =M gmni™i", 2.2.21
2 (dt) g Y T M gm0 = g A mn (2:2.21)

where the dot notation denotes differentiation with respect to time. It is an easy exercise to calculate the

derivatives or
= Mgppi™
g Irm®
d (0T OGrm ., .
— =M | g™ + =——z"z™ 2.2.22
dt <8¢T) [g Tt x"m . ( )

oT 1. 09mn ., .
— M m.n
oxr 2 Oz" v

and thereby verify the relation

d (8T oT
E((%T)—axrszT:Qr, r=1,...,N. (2.2.23)
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This equation is called the Lagrange’s form of the equations of motion.

EXAMPLE 2.2-1. (Equations of motion in spherical coordinates) Find the Lagrange’s form of
the equations of motion in spherical coordinates.

Solution: Let 2! = p, 22 = 0, 22 = ¢ then the element of arc length squared in spherical coordinates has

the form
ds? = (dp)? + p*(d)? + p*sin® 6(dep)>.
The element of arc length squared can be used to construct the kinetic energy. For example,
1. (ds\> 1 : -
TZEM(£>:3ﬂq@ﬁ+fwf+fﬂﬁwwﬂ~

The Lagrange form of the equations of motion of a particle are found from the relations (2.2.23) and are

calculated to be:

d (0T or I ; ;
Mfi=Qi=— (8_/)) T M _ﬁ—ﬂ(9)2 — psin® 9(¢)2}

d (0T or [ d : :
Mfg = QQ = a (@) — % =M _a (p29) —p2 SineCOSH(¢)2:|

d (0T or [ d . ;
Mfs=Qs =~ (8_¢> ~ %6 =M b (p2sm29¢):| :

In terms of physical components we have

Qu=M [~ pl0)* = psin® 6(6)?]

M |d ; ;
Q9 - ? [E (029) - p2 bln0C050(¢)2:|
M d . :
@o = psind {E (p2 sin® 9¢)] '

Euler-Lagrange Equations of Motion

Starting with the Lagrange’s form of the equations of motion from equation (2.2.23), we assume that
the external force @, is derivable from a potential function V' as specified by the equation (2.2.20). That is,
we assume the system is conservative and express the equations of motion in the form

d (9T oT ov
a(83,3T>—(%T_—(W_Qr, r=1,...,N (2.2.24)

The Lagrangian is defined by the equation
L=T-V="T(',. ...z, . . . &) -V, . .. o) = Lz}, 2"). (2.2.25)

Employing the defining equation (2.2.25), it is readily verified that the equations of motion are expressible

%(3L> oL _ r=1,...,N, (2.2.26)

in the form

oxr ) 9z

which are called the Euler-Lagrange form for the equations of motion.
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Figure 2.2-2 Simply pulley system

EXAMPLE 2.2-2. (Simple pulley system) Find the equation of motion for the simply pulley system
illustrated in the figure 2.2-2.

Solution: The given system has only one degree of freedom, say yi. It is assumed that
y1 + y2 = £ = a constant.

The kinetic energy of the system is
1 .
T = §(m1 +ma)yi.

Let 1 increase by an amount dy; and show the work done by gravity can be expressed as

dW = maygdys + mag dys
dW = myigdy; — mog dys
dW = (m1 — mg)gdyl = Ql dyl.

Here Q1 = (m1 —ma)g is the external force acting on the system where g is the acceleration of gravity. The

d (TN o _
A AR R

Lagrange equation of motion is

or

(m1 +ma)iir = (m1 — ma)g.

Initial conditions must be applied to y; and g; before this equation can be solved.
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EXAMPLE 2.2-3. (Simple pendulum) Find the equation of motion for the pendulum system illus-
trated in the figure 2.2-3.

Solution: Choose the angle # illustrated in the figure 2.2-3 as the generalized coordinate. If the pendulum
is moved from a vertical position through an angle 8, we observe that the mass m moves up a distance

h = /¢ — {cosf. The work done in moving this mass a vertical distance h is
W = —mgh = —mgl(1 — cosf),

since the force is —myg in this coordinate system. In moving the pendulum through an angle 6, the arc length

s swept out by the mass m is s = £6. This implies that the kinetic energy can be expressed

1 (ds\> 1 /2 1 .,
T——m(ﬁ) —§m(€9) = Sme(d)*.

2

Figure 2.2-3 Simple pendulum system

The Lagrangian of the system is

L=T-V= %méQ(é)Q —mgl(1l — cosb)

and from this we find the equation of motion

d (0L oL d 94 .

7 (%> ~ 50 = 0 or 7 (mé 9) —mgl(—sind) = 0.
This in turn simplifies to the equation

é—i—%sinG:O.

This equation together with a set of initial conditions for § and 6 represents the nonlinear differential equation

which describes the motion of a pendulum without damping.



EXAMPLE 2.2-4. (Compound pendulum) Find the equations of motion for the compound pendulum
illustrated in the figure 2.2-4.

Solution: Choose for the generalized coordinates the angles 2! = #; and 22 = 0 illustrated in the figure
2.2-4. To find the potential function V for this system we consider the work done as the masses m; and
msg are moved. Consider independent motions of the angles 6; and 65. Imagine the compound pendulum
initially in the vertical position as illustrated in the figure 2.2-4(a). Now let m; be displaced due to a change

in #; and obtain the figure 2.2-4(b). The work done to achieve this position is
Wy = —(m1 4+ ma2)ghy = —(m1 +ma2)gL1(1 — cos 6y).

Starting from the position in figure 2.2-4(b) we now let 62 undergo a displacement and achieve the configu-
ration in the figure 2.2-4(c).

=

1

o

Lj

C}m_z__

() (b) (¢)

Figure 2.2-4 Compound pendulum

The work done due to the displacement 65 can be represented
Wo = —maghs = —magLa(1 — cos6s).
Since the potential energy V satisfies V.= —W to within an additive constant, we can write
V=-W=-W, —Wy=—(my +ma)gLi cosfy — magLs cos by + constant,

where the constant term in the potential energy has been neglected since it does not contribute anything to
the equations of motion. (i.e. the derivative of a constant is zero.)

The kinetic energy term for this system can be represented

1 dSl 2 1 dSQ 2
o () i (5

(R L
T = Sma(iF +§7) + 5ma(dd + i),
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where
(xl, yl) = (L1 sin (91 y —L1 COS 91)
(2.2.28)
(xg, yg) = (L1 sinfy + Losinfy, —Lq cos 0y — Lo cos 92)

are the coordinates of the masses m; and ms respectively. Substituting the equations (2.2.28) into equation

(2.2.27) and simplifying produces the kinetic energy expression

1 . . 1 .
T = §(m1 + m2)L%0% + moL1L26010> COS(Gl — 92) + §m2L§0§ (2229)

Writing the Lagrangian as L =T — V, the equations describing the motion of the compound pendulum

are obtained from the Lagrangian equations

d (0L 0L d (0L oL
— R —_—_— = O a,nd —_ —_— _— = O
dt \ 96, 001 dt \ 96, 005
Calculating the necessary derivatives, substituting them into the Lagrangian equations of motion and then

simplifying we derive the equations of motion

mo .
—=[»0 01— 62) +
pea— 5 cos(61 — 62)

ma

L1y + Lo (62)%sin(6; — 03) + gsinby =0

mi + mo
L6, cos(bh — 02) + Lofy — L1(9.1)2 sin(6q — 02) + gsinfy = 0.

These equations are a set of coupled, second order nonlinear ordinary differential equations. These equations
are subject to initial conditions being imposed upon the angular displacements (61,62) and the angular

velocities (61, 65).

Alternative Derivation of Lagrange’s Equations of Motion

Let ¢ denote a given curve represented in the parametric form
ot =2a'(t), i=1,...,N, te<t<t

and let Py, P; denote two points on this curve corresponding to the parameter values ¢y and ¢; respectively.
Let ¢ denote another curve which also passes through the two points Py and P; as illustrated in the figure
2.2-5.

The curve ¢ is represented in the parametric form
T =T(t) =2 (t) + eni(t), i=1,...,N, to<t<t,
in terms of a parameter e. In this representation the function n?(#) must satisfy the end conditions
n'(te) =0 and n(t1)=0 i=1,...,N

since the curve € is assumed to pass through the end points Py and P;.

Consider the line integral

I(e) =/ L(t, " +en', 3" + en') dt, (2.2.30)

to



Figure 2.2-5. Motion along curves ¢ and ¢

where
L=T-V =L(t7T,T)

is the Lagrangian evaluated along the curve ¢. We ask the question, “What conditions must be satisfied by
the curve ¢ in order that the integral I(e) have an extremum value when ¢ is zero?”If the integral I(e) has
a minimum value when ¢ is zero it follows that its derivative with respect to € will be zero at this value and

we will have

dI
O _,
de |._,
Employing the definition
1 I(e) —1
d— = lim () © =I'0)=0
de =0 e—0 €

we expand the Lagrangian in equation (2.2.30) in a series about the point ¢ = 0. Substituting the expansion

. D . o oL , OL
L(t. 2 R 0 = L(t. 2t gt 't yes 2 .
(’x +€777x+677) (’x’x)+€|:8x1n+8$1n:|+€ [ ]+
into equation (2.2.30) we calculate the derivative
. I(e)—1(0) .. ["[OL , oL
! — ~Z 7 — 4 4 e —
PO=lm= =, (a7 @ T gp @] dtel T4 =0

where we have neglected higher order powers of € since € is approaching zero. Analysis of this equation

informs us that the integral I has a minimum value at ¢ = 0 provided that the integral

oL oL .,
I = -1n* -7’ = 2.2.31
5 /t {&rln (0)+ 5 (t)] at =0 (2.231)
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is satisfied. Integrating the second term of this integral by parts we find

hoarL oL ., 1" hg oLy

to 0

ol =

to

The end condition on 7'(t) makes the middle term in equation (2.2.32) vanish and we are left with the

b TOL d (0L
51_/t0 7 (8) {&ri -4 (aw‘ﬂ dt = 0, (2.2.33)

which must equal zero for all ' (t). Since 7¢(¢) is arbitrary, the only way the integral in equation (2.2.33) can

integral

be zero for all ni(t) is for the term inside the brackets to vanish. This produces the result that the integral

of the Lagrangian is an extremum when the Euler-Lagrange equations

%<8L> oL _ i=1,...,N (2.2.34)

oxi ) oxt

are satisfied. This is a necessary condition for the integral I(e) to have a minimum value.

In general, any line integral of the form

t1

I= o(t, xt, &%) dt (2.2.35)
to
has an extremum value if the curve ¢ defined by z° = z(t), i = 1,..., N satisfies the Euler-Lagrange
equations
d (0¢ J¢ ,
— - ) — - = =1,...,N. 2.2.
dt (8#) a0 1l (22:36)

The above derivation is a special case of (2.2.36) when ¢ = L. Note that the equations of motion equations

(2.2.34) are just another form of the equations (2.2.24). Note also that

oT 6 (1 o o . ,
_— = — — Ty = PVTLE Y — .t — .t
5t 5t (2mng v ) mgi;v f mfiv mfik

and if we assume that the force Q; is derivable from a potential function V', then mf;, = Q; = o}

— =, S
oV Vs o
95t = g Ot &(T +V)=0o0r T+ V = h = constant called the energy

oT , ,
that E = mflxl = lel —
constant of the system.

Action Integral

The equations of motion (2.2.34) or (2.2.24) are interpreted as describing geodesics in a space whose
line-element is
ds? = 2m(h — V)g;pda? da*

where V' is the potential function for the force system and T'4+ V = h is the energy constant of the motion.

The integral of ds along a curve C' between two points P; and P; is called an action integral and is

P i 1k 1/2
2 dz?) dx
A=+2 h — — —— d
V2m . {( V)i I dr} T



where 7 is a parameter used to describe the curve C. The principle of stationary action states that of all
curves through the points P, and P» the one which makes the action an extremum is the curve specified by

Newton’s second law. The extremum is usually a minimum. To show this let

1/2
qzs:\/%{(h V)g]kcifj CZC}

in equation (2.2.36). Using the notation &% = %= we find that

dp  2m

axl (b (h V)glkx

op 2m 8ng g 2mov oLy
D 2¢(h V)a% I 2¢alg]kxx

The equation (2.2.36) which describe the extremum trajectories are found to be

d [2m . 0gik 2m 8
——h—Vik——thJk— it = 0.
By changing variables from 7 to ¢ where j—i = Ay V(hmj’v) we find that the trajectory for an extremum must

satisfy the equation

i (AR m g ded de oV
T \T* ) T 2 0at dt dt | oxi
which are the same equations as (2.2.24). (i.e. See also the equations (2.2.22).)

Dynamics of Rigid Body Motion

Let us derive the equations of motion of a rigid body which is rotating due to external forces acting
upon it. We neglect any translational motion of the body since this type of motion can be discerned using
our knowledge of particle dynamics. The derivation of the equations of motion is restricted to Cartesian
tensors and rotational motion.

Consider a system of N particles rotating with angular velocity w;, i = 1,2,3, about a line L through
the center of mass of the system. Let V(@) denote the velocity of the ath particle which has mass m,) and

position x( @)

, = 1,2,3 with respect to an origin on the line L. Without loss of generality we can assume
that the origin of the coordinate system is also at the center of mass of the system of particles, as this choice
of an origin simplifies the derivation. The velocity components for each particle is obtained by taking cross
products and we can write

V) =g x 7@ or A €ijkwjx;(€a)- (2.2.37)

3

The kinetic energy of the system of particles is written as the sum of the kinetic energies of each

individual particle and is

N N
1 (@) (o) _ 1 (@) .
T =35> mVi"Vi® =5 > meipw;n” eimnwm. (2.2.38)

a=1 a=1
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Employing the e — § identity the equation (2.2.38) can be simplified to the form

N
= 5 2 e (sl — ).

N)Ir—\

Define the second moments and products of inertia by the equation

L = Z miay (205 — a(al)) (2.2.39)
and write the kinetic energy in the form
1
T = §I¢jwiwj. (2240)

Similarly, the angular momentum of the system of particles can also be represented in terms of the
second moments and products of inertia. The angular momentum of a system of particles is defined as a

summation of the moments of the linear momentum of each individual particle and is
N N
H;, = Z m(a)eijkx§a)v,(€a) = Z m(a)eijkxg»a)ekmnwmx;"‘). (2.2.41)
a=1 a=1
The e — ¢ identity simplifies the equation (2.2.41) to the form
N
H;, = wj Zm( ) ( () (Oz)5 a) (a)) _ ijji- (2242)
a=1
The equations of motion of a rigid body is obtained by applying Newton’s second law of motion to the
system of N particles. The equation of motion of the ath particle is written

™ = F. (2.2.43)

Summing equation (2.2.43) over all particles gives the result

Z My = Z F. (2.2.44)

This represents the translational equations of motion of the rigid body. The equation (2.2.44) represents the

rate of change of linear momentum being equal to the total external force acting upon the system. Taking

the cross product of equation (2.2.43) with the position vector x( @)

produces
m(a)jgo‘)erstxga) _ erstwga)Ft(a)

and summing over all particles we find the equation

N N
Z m(a)erstxga)iéia) = Z erstxga)Ft(a). (2.2.45)
= a=1



The equations (2.2.44) and (2.2.45) represent the conservation of linear and angular momentum and can be

written in the forms
d N N
@ (Z m<a>fcf~"‘)> = >R (2:2.40)
a=1 a=1
and

7 <Z m(a)erstx(a ;@ )> Ze tx(a F(o‘). (2.2.47)

By definition we have G, = Zm(a)a';£“> representing the linear momentum, F, = 3 F\* the total force

acting on the system of particles, H, = >_ m(a)erstxga):tga) is the angular momentum of the system relative
to the origin, and M, = Zemtxé"‘)Ft("‘) is the total moment of the system relative to the origin. We can

therefore express the equations (2.2.46) and (2.2.47) in the form

dG,
T —F, 2.2.4
o (2.2.48)
and p
o,
— = M,. 2.2.4
o (2.2.49)

The equation (2.2.49) expresses the fact that the rate of change of angular momentum is equal to the
moment of the external forces about the origin. These equations show that the motion of a system of
particles can be studied by considering the motion of the center of mass of the system (translational motion)
and simultaneously considering the motion of points about the center of mass (rotational motion).

We now develop some relations in order to express the equations (2.2.49) in an alternate form. Toward

this purpose we consider first the concepts of relative motion and angular velocity.

Relative Motion and Angular Velocity

Consider two different reference frames denoted by S and S. Both reference frames are Cartesian
coordinates with axes T; and x; , i = 1,2, 3, respectively. The reference frame S is fixed in space and is
called an inertial reference frame or space-fixed reference system of axes. The reference frame S is fixed
to and rotates with the rigid body and is called a body-fixed system of axes. Again, for convenience, it
is assumed that the origins of both reference systems are fixed at the center of mass of the rigid body.
Further, we let the system S have the basis vectors %i,i = 1,2, 3, while the reference system .S has the basis
vectors €;,i = 1,2,3. The transformation equations between the two sets of reference axes are the affine
transformations

T; =Lz and x; = 4T (2.2.50)

where {;; = {;;(t) are direction cosines which are functions of time ¢ (i.e. the ¢;; are the cosines of the
angles between the barred and unbarred axes where the barred axes are rotating relative to the space-fixed

unbarred axes.) The direction cosines satisfy the relations

éijeik = 5jk and &jé;@j = 5ik~ (2.2.51)
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EXAMPLE 2.2-5. (Euler angles ¢,0,v) Consider the following sequence of transformations which

are used in celestial mechanics. First a rotation about the x3 axis taking the z; axes to the y; axes

Y1 cos¢ sing 0 1
yo | = | —sing cos¢p 0 To
Ys 0 0 1 T3

where the rotation angle ¢ is called the longitude of the ascending node. Second, a rotation about the y;

axis taking the y; axes to the y; axes

yi 1 0 0 Y1
yb ]| =0 cosf sinf Yo
yh 0 —sinf cosé Y3

where the rotation angle 6 is called the angle of inclination of the orbital plane. Finally, a rotation about

the y45 axis taking the y; axes to the Z; axes

Z1 costy siny 0 4
Ty | = | —siny cosy 0 yh
T3 0 0 1 y/3

where the rotation angle v is called the argument of perigee. The Euler angle 6 is the angle Z30x3, the angle
¢ is the angle x10y; and 1 is the angle y;0Z;. These angles are illustrated in the figure 2.2-6. Note also that
the rotation vectors associated with these transformations are vectors of magnitude é, 0, 1/1 in the directions

indicated in the figure 2.2-6.
Ys L X3
0ré

Figure 2.2-6. Euler angles.

By combining the above transformations there results the transformation equations (2.2.50)

Z1 cos ) cos ¢ — cos B sin ¢ sin Y cossing + cosfcospsiny  sinysinf 1
To | = | —sinycos¢g —cosfsingcosyy —sinysing + cosfcospcosy cosysinb T2
T3 sin @ sin ¢ —sinf cos ¢ cos 6 T3

It is left as an exercise to verify that the transformation matrix is orthogonal and the components ¢;;

satisfy the relations (2.2.51).



Consider the velocity of a point which is rotating with the rigid body. Denote by v; = v;(S), for

i = 1,2, 3, the velocity components relative to the S reference frame and by v; = 7;(5), 7 = 1,2,3 the

velocity components of the same point relative to the body-fixed axes. In terms of the basis vectors we can

write J
‘7=U1(S)é1+112(5)é2+113(5)é3: %él (2252)
as the velocity in the S reference frame. Similarly, we write
R e e e dz;~
V = Ul(S)el + ’UQ(S)QQ + Ug(S)eg = Eei (2253)

as the velocity components relative to the body-fixed reference frame. There are occasions when it is desirable

to represent V in the S frame of reference and V in the S frame of reference. In these instances we can write
V =u1(8)e; 4 va2(S)ey + vs(S)es (2.2.54)

and

—

Vv :51(5) € —|—72(S) éQ—l—ﬁg(S) és. (2255)

Here we have adopted the notation that v;(.S) are the velocity components relative to the S reference frame
and v;(S) are the same velocity components relative to the S reference frame. Similarly, 7;(S) denotes the
velocity components relative to the S reference frame, while 7;(S) denotes the same velocity components
relative to the S reference frame.
Here both V and ﬁ are vectors and so their components are first order tensors and satisfy the transfor-
mation laws
U;(S) = ;v (S) = Lt and v;(S) = £;;9;(S) = £;;7;. (2.2.56)

The equations (2.2.56) define the relative velocity components as functions of time ¢. By differentiating the

equations (2.2.50) we obtain

Cizi = 71(§) = éjl'j?j + éjil‘j (2257)
and
a = Ul(S) = gijl‘j + &jxj. (2258)

Multiply the equation (2.2.57) by £,,; and multiply the equation (2.2.58) by ¢;,, and derive the relations
U (S) = v (8) + il jiz; (2.2.59)

and
Em(S) = 5m(§) + &méij@. (2260)

The equations (2.2.59) and (2.2.60) describe the transformation laws of the velocity components upon chang-
ing from the S to the S reference frame. These equations can be expressed in terms of the angular velocity
by making certain substitutions which are now defined.

The first order angular velocity vector w; is related to the second order skew-symmetric angular velocity
tensor w;; by the defining equation

Wmn = EimnWs- (2261)
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The equation (2.2.61) implies that w; and w;; are dual tensors and

1
Wi = Z€ijkWjk-

2

Also the velocity of a point which is rotating about the origin relative to the S frame of reference is v;(S) =

eijkw;jTr which can also be written in the form vy, (S) = —wmrxk. Since the barred axes rotate with the rigid

body, then a particle in the barred reference frame will have v,,(S) = 0, since the coordinates of a point
in the rigid body will be constants with respect to this reference frame. Consequently, we write equation
(2.2.59) in the form 0 = v, (S) 4 £mifjiz; which implies that

Um(S) = —émiéﬂx]‘ = —WmkTk O Wmj = Wmnj (S, S) = émlgﬂ

This equation is interpreted as describing the angular velocity tensor of S relative to S. Since w;; is a tensor,
it can be represented in the barred system by
wmn(§, S) = &-méjnwij (g, S)
. (2.2.62)
= 5ms€jn€js

By differentiating the equations (2.2.51) it is an easy exercise to show that w;; is skew-symmetric. The

second order angular velocity tensor can be used to write the equations (2.2.59) and (2.2.60) in the forms

vm (S) = vm(S) + wm;(S, S)x;

_ _ (2.2.63)
Tm (S) =T (S) + Wjm (5, 5)T;

The above relations are now employed to derive the celebrated Euler’s equations of motion of a rigid body.

Euler’s Equations of Motion

We desire to find the equations of motion of a rigid body which is subjected to external forces. These
equations are the formulas (2.2.49), and we now proceed to write these equations in a slightly different form.
Similar to the introduction of the angular velocity tensor, given in equation (2.2.61), we now introduce the
following tensors

1. The fourth order moment of inertia tensor I,,,s: which is related to the second order moment of

inertia tensor I;; by the equations

1
Imnst = Eejmneistfij or Ii' = §Ipqrseipqejrs (2264)

2. The second order angular momentum tensor Hj; which is related to the angular momentum vector

H; by the equation
1
Hl' = §€iijjk’ or ij = eiiji (2265)

3. The second order moment tensor Mj; which is related to the moment M; by the relation

1
Ml' = ieijijk or Mjk = eijkMi- (2266)
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Now if we multiply equation (2.2.49) by e,jx, then it can be written in the form
dH;;

dt
Similarly, if we multiply the equation (2.2.42) by €;mn, then it can be expressed in the alternate form

= M. (2.2.67)

Hpypp = eimnwj-[ji = ImnstWst

and because of this relation the equation (2.2.67) can be expressed as

d
T (Lijstwst) = Mij. (2.2.68)
We write this equation in the barred system of coordinates where qurs will be a constant and consequently

its derivative will be zero. We employ the transformation equations
Iijst = éipéqusrgtkqurk
Wij = Lsilijwee
Mpq = LipljqMi;
and then multiply the equation (2.2.68) by Zipé iq and simplify to obtain
é%pejq dt (éwejﬁfaﬁrkwrk) Mpq'
Expand all terms in this equation and take note that the derivative of the Tagrk is zero. The expanded
equation then simplifies to
dwrk
dt
Substitute into equation (2.2.69) the relations from equations (2.2.61),(2.2.64) and (2.2.66), and then multiply
by empq and simplify to obtain the Euler’s equations of motion
- dw;
Iim T
dt

Dropping the bar notation and performing the indicated summations over the range 1,2,3 we find the

qurk (5au5pv5ﬂq + 5pa5ﬂu5qv) afrkWrkWyy = Mpq (2.2.69)

— eimjlijoiw; = My, (2.2.70)

Euler equations have the form

dw dwo dws

Iy — 7 L =2 L 24 Iy —2 L + (J13w1 + agwa + Issws) wa — (T1owr + Trows + Izows) ws = My
dw dwo dws

Iio—— 7 L Ly —2 L 2 4 3 —2 L + (Inwi + Iaiws + Isiws) ws — (Iizwr + Iazwe + Izzws) wi = Mo (2.2.71)
dw dwo dws

Ii3—— 7 L4 Ly —2 L 2 4 33— L + (T12w1 + Iaawa + Isows) w1 — (I1iwi + Iaiwe + I31ws) we = Ms.

In the special case where the barred axes are principal axes, then I;; = 0 for ¢ # j and the Euler’s

equations reduces to the system of nonlinear differential equations

dw

Illd—tl + (Is3 — Io2)wows = My
dw

IQQd—tQ + (I11 — Is3)wswi = Mo (2.2.72)
dws

133% + (I22 — I11)wiwe = Ms.

In the case of constant coefficients and constant moments the solutions of the above differential equations

can be expressed in terms of Jacobi elliptic functions.
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EXERCISE 2.2

» 1. Find a set of parametric equations for the straight line which passes through the points P;(1,1,1) and
P5(2,3,4). Find the unit tangent vector to any point on this line.

» 2. Consider the space curve x = % sin?t, y = %t — isin 2t, z = sint where t is a parameter. Find the unit

vectors T%, B, N*,i = 1,2, 3 at the point where t = 7.

» 3. A claim has been made that the space curve = = ¢, y = t2, z = t3 intersects the plane 11x-6y+z=6 in
three distinct points. Determine if this claim is true or false. Justify your answer and find the three points

of intersection if they exist.

» 4. Find a set of parametric equations z; = x;(s1,s2),7 = 1,2,3 for the plane which passes through the
points P;(3,0,0), P»(0,4,0) and P5(0,0,5). Find a unit normal to this plane.

2
» 5. For the helix x =sint y = cost z = —t find the equation of the tangent plane to the curve at the

T
point where ¢ = 7/4. Find the equation of the tangent line to the curve at the point where ¢t = 7 /4.

T
» 6. Verify the derivative 6_ = Mgrmi™.

ox"

d (0T OGrm . p, .
» 7. Verify the derivative — - =M | grmZ™ + g—x"xm

dt \ 0z" ox™

» 8. Verify the derivative 4 =- 99 "
oxm 277 Ox"

» 9. Use the results from problems 6,7 and 8 to derive the Lagrange’s form for the equations of motion
defined by equation (2.2.23).

» 10. Express the generalized velocity and acceleration in cylindrical coordinates (x', 22, #3) = (r, 6, 2) and

show
R S
dt — dt 5t di? dt
V2:d—x2:d—9 f2_ﬁ_@+g@d_9
et di Tot di?  rdtdt
_da®  dz §V3 %z

3~ _r 3
V=it P

Find the physical components of velocity and acceleration in cylindrical coordinates and show

dr & AW
V= TaE (a)
do d20  _drdf
Vo =r— —r 42—
ddt fo=rm V20w
_az d?z
S fz=

at?



» 11. Express the generalized velocity and acceleration in spherical coordinates (2%, 2%, 23) = (p, 6, ¢) and

show
dzt d
V! :ditQ - d_?
d do
V2 :_;753 =
d d
V3 :—;t = _d(f

2

1 2 2 2
V2 420 dp\> 2dpdd
277 27 _sinfcosh [ =2 el st
I = = qz ~sinfcos <dt> p dt dt
SV3 A% 2dpdo d6 do
3 07 _ 00 20LD 5 gL L0
P ~atoaa 2w

Find the physical components of velocity and acceleration in spherical coordinates and show

dp

Vo =
do
7 =P

d
Vs, =psin 0 —
» =psin 7

» 12. Expand equation (2.2.39) and write out all the components of the moment of inertia tensor I;;.

» 13. For p the density of a continuous material and dr an element of volume inside a region R where the

material is situated, we write pdr as an element of mass inside R. Find an equation which describes the

center of mass of the region R.

d2p aoN® ., [do\?
fp _W — (a) — pSsin 9 (E)

20 dp\* _dpdb
fg—pw—p&nGcosG(E) +2$a

@@ +2pcost9ﬁ@

fo= sin0d2—¢+2sin0
¢ =P dt2 dt dt dt dt

» 14. Use the equation (2.2.68) to derive the equation (2.2.69).

» 15. Drop the bar notation and expand the equation (2.2.70) and derive the equations (2.2.71).

» 16. Verify the Euler transformation, given in example 2.2-5, is orthogonal.

» 17. For the pulley and mass system illustrated in the figure 2.2-7 let

a = the radius of each pulley.
{1 = the length of the upper chord.
{5 = the length of the lower chord.

Neglect the weight of the pulley and find the equations of motion for the pulley mass system.
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Figure 2.2-7. Pulley and mass system

» 18. Let ¢ = %, where s is the arc length between two points on a curve in generalized coordinates.
(a) Write the arc length in general coordinates as ds = \/gmn@™@"dt and show the integral I, defined by
equation (2.2.35), represents the distance between two points on a curve.
(b) Using the Euler-Lagrange equations (2.2.36) show that the shortest distance ertween two points in a
generalized space is the curve defined by the equations: #* + {jzk }a’:j ik = 'i%
dt
(c) Show in the special case t = s the equations in part (b) reduce to % + {jlk}%dd—f = 0, for
i=1,..., N. An examination of equation (1.5.51) shows that the above curves are geodesic curves.
(d) Show that the shortest distance between two points in a plane is a straight line.
(e) Consider two points on the surface of a cylinder of radius a. Let u' = 6 and u? = z denote surface
coordinates in the two dimensional space defined by the surface of the cylinder. Show that the shortest

distance between the points where § =0, z=0and § =m, 2 = H is L = \/a?n2 + H2.

» 19. For T = 1mg;;v'v’ the kinetic energy of a particle and V the potential energy of the particle show
that T'4+ V = constant.

Hint: mf;=Qi=—-2%, i=1,2,3 and 9 —i' =i i=1,2,3.

» 20. Define H =T + V as the sum of the kinetic energy and potential energy of a particle. The quantity
H = H(2",p,) is called the Hamiltonian of the particle and it is expressed in terms of:
e the particle position 2’ and
e the particle momentum p; = mv; = mgija':j . Here z"and p, are treated as independent variables.
(a) Show that the particle momentum is a covariant tensor of rank 1.

(b) Express the kinetic energy T in terms of the particle momentum.
oT

(¢) Show that p 5
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Figure 2.2-8. Compound pendulum

det  OH dp; oH
- and Pi 7 These are a set of differential equations describing the
dt Ip; dt oxt

position change and momentum change of the particle and are known as Hamilton’s equations of motion

(d) Show that

for a particle.

» 21. Let 56—7: = kN and 56—]f = 7B' — kT and calculate the intrinsic derivative of the cross product

Bt = eijijNk and find 56—55 in terms of the unit normal vector.

» 22. For T the kinetic energy of a particle and V' the potential energy of a particle, define the Lagrangian
L=LEi)=T-V = %Mgij;tiztj — V as a function of the independent variables z?,i%. Define the
Hamiltonian H = H(z',p;) = T +V = ﬁ g% pip;j + V, as a function of the independent variables z°, p;,
where p; is the momentum vector of the particle and M is the mass of the particle.

(a) Show that p;, = or

di’
OH ~~ 0L

» 23. When the Euler angles, figure 2.2-6, are applied to the motion of rotating objects, 8 is the angle
of nutation, ¢ is the angle of precession and 1 is the angle of spin. Take projections and show that the
time derivative of the Euler angles are related to the angular velocity vector components wy,w,,w, by the

relations . .
wz = 0 cosy + ¢sinfsiny

Wy = —ésinw + gz'ﬁsinﬁcosw
W, = w + gz'ﬁcos 0
where w,,wy,w, are the angular velocity components along the 71,72, 73 axes.

» 24. Find the equations of motion for the compound pendulum illustrated in the figure 2.2-8.
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> 25. Let F= MM

7 denote the inverse square law force of attraction between the earth and sun, with
G a universal constant, M the mass of the sun, m the mass of the earth and f a unit vector from origin
at the center of the sun pointing toward the earth. (a) Write down Newton’s second law, in both vector
and tensor form, which describes the motion of the earth about the sun. (b) Show that % (7 x ) = 0 and

dr
consequently 7 x 7 =7 x % = = h = a constant.

» 26. Construct a set of axes fixed and attached to an airplane. Let the x axis be a longitudinal axis running
from the rear to the front of the plane along its center line. Let the y axis run between the wing tips and
let the z axis form a right-handed system of coordinates. The y axis is called a lateral axis and the z axis is
called a normal axis. Define pitch as any angular motion about the lateral axis. Define roll as any angular
motion about the longitudinal axis. Define yaw as any angular motion about the normal axis. Consider two
sets of axes. One set is the x,y, 2z axes attached to and moving with the aircraft. The other set of axes is
denoted X,Y, Z and is fixed in space ( an inertial set of axes). Describe the pitch, roll and yaw of an aircraft
with respect to the inertial set of axes. Show the transformation is orthogonal. Hint: Consider pitch with
respect to the fixed axes, then consider roll with respect to the pitch axes and finally consider yaw with
respect to the roll axes. This produces three separate transformation matrices which can then be combined

to describe the motions of pitch, roll and yaw of an aircraft.

» 27. In Cartesian coordinates let F; = F;(z!, 2%, 23) denote a force field and let ¢ = z%(¢) denote a curve

N
d (1 dz' d
C. (a) Show Newton’s second law implies that along the curve C — 7 < ( ;t ) ) = Fy(a', 2%, 2%) ;t

(no summation on i) and hence

a Em ((%)Z (%2)2 i (dd_x:f)

(b) Consider two points on the curve C, say point A, z°(t4) and point B, z*(tp) and show that the work

d |1 dx! dx? dz?
_E{im ] Fld g B

done in moving from A to B in the force field F; is
I b 1 2 3
imv = Fidx" + Fodx® + Fsdr
A

where the right hand side is a line integral along the path C from A to B. (¢) Show that if the force field is
derivable from a potential function U (z!, 22, 23) by taking the gradient, then the work done is independent

of the path C and depends only upon the end points A and B.

» 28. Find the Lagrangian equations of motion of a spherical pendulum which consists of a bob of mass m
suspended at the end of a wire of length ¢, which is free to swing in any direction subject to the constraint
that the wire length is constant. Neglect the weight of the wire and show that for the wire attached to the
origin of a right handed z,y, z coordinate system, with the z axis downward, ¢ the angle between the wire

and the z axis and 6 the angle of rotation of the bob from the y axis, that there results the equations of

2 2
motion % (sin%i—f) =0 and % - <Z—i> sin ¢ cos ¢ + %sinqﬁ =0



In Cartesian coordinates show the Frenet formulas can be written
4 A dN - - dB - -
— =0xT — =0x N — =0xB
ds o ds x4 ds x

where § is the Darboux vector and is defined § = Tf—i— xB.

» 30

. Consider the following two cases for rigid body rotation.

Case 1: Rigid body rotation about a fixed line which is called the fixed axis of rotation. Select a point 0
on this fixed axis and denote by € a unit vector from 0 in the direction of the fixed line and denote by ér
a unit vector which is perpendicular to the fixed axis of rotation. The position vector of a general point
in the rigid body can then be represented by a position vector from the point 0 given by ¥ = h€+rg ér
where h, 19 and € are all constants and the vector &g is fixed in and rotating with the rigid body.

de A .
Denote by w = I the scalar angular change with respect to time of the vector épr as it rotates about

%(96) = Z—z € where 0 ¢€ is defined as the

the fixed line and define the vector angular velocity as & =

vector angle of rotation.

Show thatdd%zéx éx.
L df dép  dépdd)
ShowthatV—dt—To at =To a0 di

Case 2: Rigid body rotation about a fixed point 0. Construct at point 0 the unit vector €; which is

X (TQéR):LUX (hé\-l-T’()éR):u_J'XF.

&1

d
fixed in and rotating with the rigid body. From pages 80,87 we know that % must be perpendicular

; . . L L deé
to €; and so we can define the vector €5 as a unit vector which is in the direction of d—tl such that

dey . . . . . .
o « €5 for some constant . We can then define the unit vector €3 from é3 = é; x és.

deé . . U . .
Show that d—tg’ which must be perpendicular to €3, is also perpendicular to é;.

deé deé
Show that d—t3 can be written as — = (3 &5 for some constant 3.

de
From &, = é3 x & show that d—f = (aés3 — &) x &
dé dé dé
Define & = aé3 — €& andshowthatd—tl:@'x e, d—tQ:JJ'x €, d—;:(ﬂx é3

Let 7= x &1 + yé2 + z €3 denote an arbitrary point within the rigid body with respect to the point 0.

—

dr
Show that — = & x 7"
dt
Note that in Case 2 the direction of &J is not fixed as the unit vectors és and é&; are constantly changing.
In this case the direction & is called an instantaneous axis of rotation and &, which also can change in

magnitude and direction, is called the instantaneous angular velocity.
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