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The Standard Model (SM) of Particle Physics

Letons

The elementary particles consists
of three generations of spin-1/2
quarks and leptons, the gauge
bosons of SU(3)xSU(2)xU(1), and
the Higgs boson.

Technically, massive neutrinos
require an extension of the Standard
Model, but most likely the relevant
scale of the new physics lies way
beyond the terascale.



On July 4, 2012, the discovery
of a new boson is announced

which may be the long sought
after Higgs boson.

The discovery papers are
published two months later
In Physics Letters B.

ATLAS Collaboration:

Physics Letters B716 (2012) 1—29

CMS Collaboration:

Physics Letters B716 (2012) 30—61
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Winners of the 2013
Nobel Prize in Physics

Francois Englert

and

Peter Higgs



Higgs boson production and decay mechanisms

Higgs boson production
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Higgs boson decay channels
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Higgs boson production cross sections at a pp collider
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With nearly 140 fb! of data delivered by the LHC in Run 2 to both ATLAS and CMS
in 2015—2018 at a center of mass energy of 13 TeV, roughly 7.5 million Higgs
bosons per experiment were produced, assuming the Higgs mass is 125 GeV.
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ATLAS Run 2 observations of the Higgs boson
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CMS Run 2 observations of the Higgs boson
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LHC Run 3 started in 2022 and will finish up in 2025. So far, no
Higgs data from Run 3 have been presented. The 2024 run
began this week. By the end of 2025, the anticipated integrated
luminosity of Run 3 is about 250 fb! at a CM energy of 13.6 TeV.

2022 (pp 13.6 TeV)
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Higgs boson decay channels observed at the LHC

Higgs boson decay mode Branching ratio (for m,= 125 GeV)

h? = bb 0.582

ho—> Tt t- 6.27 x 102
ho > ¢+ €-vv (£ =eor ) 1.06 x 102
ho - yy 2.27 x 103
ho > ¢+ - ¢+ (P =eorp) 1.24 x 10

Taken from https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR#Branching Ratios

Remarks:
1. h®—= WW" is observed primarily via the £* v £-v (£ = e or u) final state.
2. h®— 77" is observed primarily via the £+€-£+£- (£ = e or u) final state.

In the decays to the diboson final state, kinematics dictates that one of the vector
bosons is off-shell (i.e., “virtual”) and is thus indicated by a superscript star.


https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR

Question: why not search
inclusively for Higgs bosons
that decay into a pair of
b-quarks?

Answer: The Standard Model

background is overwhelming.

There are more than 10’
times as many b-quark pairs
produced in proton-proton
collisions as compared to
b-quark pairs that arise from
a decaying Higgs boson.

Nevertheless, the observation of
H = bb in the VH channel was
confirmed by ATLAS and CMS in

2018!
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Summary of ATLAS Higgs boson data from Run 2 at the LHC
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Fig.3|Ratio of observed rate to predicted standard model eventrate for
different combinations of Higgs boson production and decay processes.
The horizontal bar oneach pointdenotes the 68% confidenceinterval. The
narrow grey bandsindicate the theory uncertainties in the standard model

¢ x B normalized to SM prediction

(SM) cross-section multiplied by the branching fraction predictions.
The p value for compatibility of the measurement and the SM prediction is 72%.
0,B;isnormalized to the SM prediction. Dataare from ATLAS Run 2.

Nature | Vol 607 | 7 July 2022 | 55
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Research program 1: theory and phenomenology
of Higgs bosons
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Research program 2: theory and phenomenology
of TeV-scale supersymmetry (SUSY)

Standard particles SUSY particles

0 SUSY force
particles



As members of the Particle Data Group, B.C. Allanach and |
are co-authors of the biennial Supersymmetry Theory review.

Progress of
Theoretical and
Experimental Physics

Review of Particle Physics

R.L Workman et ol. (Particle Data Group), Prog. Theor. Exp. Phys 2, 083C01 (2022)

porticle dota group
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88.1 Introduction

Supersymmetry (SUSY) is a generalization of the space-time
symmetries of quantum field theory that transforms fermions into
bosons and vice versa [1]. The existence of such a non-trivial
extension of the Poincaré symmetry of ordinary quantum field
theory was initially surprising, and its form is highly constrained
by theoretical principles [2]. SUSY also provides a framework for
the unification of particle physics and gravity [3-5] at the Planck
energy scale, Mp ~ 10'9 GeV, where the gravitational interac-

less, with some restrictions on the dimension-three terms
dated in Ref. [10]. The impact of the soft terms becomes 1
at energy scales much larger than the size of the SUSY-
masses. Thus, a theory of weak-scale supersymmetry, v
effective scale of supersymmetry breaking is tied to the
electroweak symmetry breaking, provides a natural fram:
the origin and the stability of the gauge hierarchy [6-9].

At present, there is no unambiguous experimental evi
the breakdown of the SM at or below the TeV scale.
pectations for new TeV-scale physics beyond the SM &
primarily on three theoretical arguments. First, in a the
an elementary scalar field of mass m and interaction st
(e.g., a quartic scalar self-coupling, the square of a gauge
or the square of a Yukawa coupling), the stability with r
quantum corrections requires the existence of an ener,
roughly of order (1672/))!/2m, beyond which new phy:
enter [12]. A significantly larger energy cutoff would re
unnatural fine-tuning of parameters that govern the effec
energy theory. Applying this argument to the SM lea
expectation of new physics at the TeV scale [9].

Second, the unification of the three SM gauge coupl
very high energy close to the Planck scale is possible if ner
beyond the SM (which modifies the running of the gauge «
above the electroweak scale) is present. The minimal s
metric extension of the SM, where superpartner masses
a few TeV, provides an example of successful gauge coup
fication [13].

Third, the existence of dark matter that makes up
mately one quarter of the energy density of the univers:
be explained within the SM of particle physics [14]. Ren
a stable weakly-interacting massive particle (WIMP) wh
and interaction rate are governed by new physics associ¢
the TeV-scale can be consistent with the observed densit
matter (this is the so-called WIMP miracle, which is rer
Ref. [15]). The lightest supersymmetric particle (LSP),
is a promising (although not the unique) candidate for
matter [16-20]. Further aspects of dark matter can be
Sec. 27.

88.2 Structure of the MSSM

The minimal supersymmetric extension of the SM (MS
sists of the fields of the two-Higgs-doublet extension of ths
the corresponding superpartner fields [21-25]. A particl
superpartner together form a supermultiplet. The corre
field content of the supermultiplets of the MSSM and th
quantum numbers are shown in Table 88.1. The electr
Q=T3+ %Y is determined in terms of the third comy
the weak isospin (73) and the U(1) weak hypercharge (1

The gauge supermultiplets consist of the gluons and th
fermionic superpartners and the SU(2)xU(1) gauge bo
their gaugino fermionic superpartners. The matter su)
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“The new book by Dreiner, Haber, and Martin is a must have for folks who

are interested in beyond the Standard Model phenomenology. It contains
innumerable lessons for performing quantum field theory calculations both at
the conceptual and technical level, by way of many concrete examples within
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Supersymmetry is an extension of the successful Standard Model of particle physics; it relies on the
principle that fermions and bosons are related by a symmetry, leading to an elegant predictive structure
for quantum field theory. This textbook provides a comprehensive and pedagogical introduction to
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Research program 3: explorations of the Terascale
at the LHC and at future colliders

Studies of non-minimal Higgs sectors
Precision measurements of new physics observables

Distinguishing among different theoretical
interpretations of new physics signals

Using a future lepton collider as a precision Higgs
factory

Terascale footprints of lepton-number-violation

New sources for CP-violation (Higgs and/or SUSY
mediated)
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Major thrusts in phenomenological particle physics today

» What lies beyond the Standard Model
and why haven’t we seen it yet?

= New physics beyond the Standard Model (BSM) may be associated with a
new heavy mass scale of order a few TeV or larger. If accessible at the LHC,
not enough events have been produced yet (more luminosity needed). If the
LHC is not energetic enough, one would need a higher energy collider facility.

= New BSM physics may be very weakly coupled to the Standard Model (SM).
It could consist of completely new sectors of particles (e.g., the dark sector).
The origin of dark matter could reside here. Many possibilities exist, so it is
difficult to guess where the breakthrough will occur.

= |f new BSM physics is completely neutral with respect to the SM, then it can
only communicate with the SM via “portals” that consist of products of SM
fields that have no net SM (color, weak or EM) charge.
Examples: the Higgs portal HtH; the neutrino portal HTLN (N could be a new
sterile neutrino); or photon mixing F,,X* (where X is the dark photon).




Should we expect an extended Higgs sector beyond the SM?

»The fermion and gauge boson sectors of the SM are not of
minimal form (“who ordered that?”). So, why should the spin-0
(scalar) sector be minimal?

» Adding new scalar states can alleviate the metastability of the
vacuum, allowing the Higgs-sector-extended SM to be valid all
the way up to the Planck scale.

» Extended Higgs sectors can provide a dark matter candidate.

» Extended Higgs sectors can provide new sources of CP violation
(which may be useful in baryogenesis).

» Models of physics beyond the SM often require additional
scalar Higgs states. E.g., two Higgs doublets are required in the
minimal supersymmetric extension of the SM (MSSM).



Why is the observed Higgs boson SM-like?

»There is no extended Higgs sector.

» All other scalars (apart from the SM-like Higgs boson) are very heavy
" This is the decoupling limit.

» A neutral scalar field with the tree-level properties of the SM Higgs
boson is an approximate mass eigenstate (due to suppressed mixing
with other neutral scalar fields of the extended Higgs sector).

" This is the Higgs field alignment limit.

» The other physical scalars of the model may or may not be
significantly heavier than the SM Higgs boson. That is, the
decoupling limit is a special case of the Higgs field alignment limit.



Experimental constraints on the two Higgs doublet model (2HDM)

ATLAS 1  Obs. 95% CL ATLAS
V5 =13TeV, 36.1- 139 fb? ~=- KExp.95% CL VS =13 TeV, 36.1 - 139 fb~? [ K Obs. 95% CL
_ I3 k Obs. 95% CL (inc. k) _ --- K Exp. 95% CL
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Regions excluded at 95% CL in the k-framework-based approach by the measured rates
of Higgs boson production and decays in the 2HDM with Type-I and Type-Il Yukawa
couplings, respectively. The dark yellow dashed lines show the borders of the
corresponding expected exclusion regions for the SM hypothesis. Exact Higgs alignment
corresponds to cos(f - a) = 0. Taken from the ATLAS Collaboration, arXiv:2402.05742.
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My current Ph.D. students and their projects

» 2HDM high energy flavor alignment (with S. Gori and E. Shahly). Eric
advanced to Ph.D. candidacy in September, 2020. Expected Ph.D. in
December 2024.

= Neutral Higgs-mediated flavor violation in the lepton sector.
" One-loop renormalization of the 2HDM in the Higgs basis.

» Phenomenological aspects of more general 2HDMs (with J.M. Connell).
Zippy advanced to Ph.D. candidacy in March, 2021. Expected Ph.D. in
June 2024.

= Explored some (local) 2—30 deviations in LHC searches for new
Higgs bosons, with implications for the flavor-aligned 2HDM.

" Examining the structure of lepton flavor-changing neutral currents
mediated by neutral Higgs bosons in extended Higgs models.



From a forthcoming paper in collaboration with Stefania Gori and Eric Shahly.
Off-diagonal couplings of the neutral Higgs boson to Tu can be generated if flavor
alignment is imposed at a very high energy scale A, due to renormalization group
evolution from A down to the energy scale of electroweak physics (100 GeV).

4 Results

4.1 Lepton flavor violating decays of the SM-like Higgs boson

The partial widths for the decays of the SM-like Higgs field A into a pair of fermions are given below. Note that
the color factor N¢o = 3 for quarks, and N¢ = 1 for leptons.
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Figure 3: BR(h — ur) results for the case of cos(8 — o) = 0.01 (left), 0.02 (right) and 0.05 (bottom) for fixed quark
parameters a” = 0.1 and a” = 1. Green points indicate choices of the alignment parameters that lead to h — ur
branching ratios that exceed the projected ILC upper bound of 2.3 x 10~*, but are not yet excluded by LHC bounds. Red
points are already excluded by LHC bounds and blue points remain unexcluded by both current experimental bounds and

ILC projections.
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FIG. 3. Diagram showing the correlations between the free
parameters (circles) of our model (except the Higgs masses)
and the observables. Observables providing strong constraints
are shown as red hexagons while the ones pointing towards a
NP effect are shown as black rectangles.

Taken from A. Crivellin and S. Iguro, Arxiv: 2311.03430 [hep-ph]



https://arxiv.org/abs/2311.03430

From a forthcoming paper with Joseph Connell. Nondiagonal lepton—Higgs
couplings are constrained by many observables. For example, consider T — u y.
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We define three integrals for real positive values of z [1,2]:

0=t [ g [252]

z/11—2:1:(1—:1:) - [x(l—x)} iz,

z(l—x)—z z

hiz) = _%Z/Ol ] _dZ> — {1 S e [mz_x)” '

Then, one can derive the following expressions for f(z) and h(z) in terms of g(2):

~
~~
N

N
DN | =

f(z) =22 +1nz) + (1 - 22)9(2),

hz) = z[2gl(z_) Izln z| |




An explicit expression for g(z) is given by:

9(z) = 4

where 2, = %

4

e { L) - L) — tusm (2£) ], o<z -
2z .1 1 1

\ﬁ012(281n m), forz>Z’

[1++1—4z] and 0 < sin"'[1/(2y/2)] < 37 (for z > 1). In Fig. 1, we have

employed Mathematica (Version 14.0) to produce plots of the functions g(z), f(z) and —h(2)
for 0.01 < z < 100. This figure reproduces the results first shown in Fig. 3 of Ref. [2].

10:Vl T T T T rrrry T T T T rrrry T T T T rrrryg T T """T:
Tt
0.50
0.10F
i — 9(2)
0.05F
[ e 1(Z)
- -h(z) |
001 1 Ll L Lol L Lol L [ |
0.01 0.10 1 10 100

Figure 1: Plots of g(z) given by eq. (62), f(z) given by eq. (60), and h(z) given by eq. (61) as a function of
the variable z for 0.01 < z < 100. These plots were produced using Version 14.0 of Mathematica.



Ongoing and Future Activities

» Higgs alignment at one loop (with Eric Shahly).

» Basis independent treatment of Cheng-Sher ansatz for flavor
violation in the Higgs sector (with Joseph Connell).

» Basis-invariant treatment of the 3HDM (with V. Keus).

» Beyond the S, T, and U oblique parameters in extended
electroweak models containing a dark Z boson.

» Higgs alignment in 2HDM effective field theory.
» The anapole moment of fundamental particles.

Various projects are waiting for the right Ph.D. student...



