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The Standard Model (SM) of Particle Physics
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Letons

The elementary particles consists
of three generations of spin-1/2
quarks and leptons, the gauge
bosons of SU(3)xSU(2)xU(1), and
the Higgs boson.

Technically, massive neutrinos
require an extension of the Standard
Model, but most likely the relevant
scale of the new physics lies way
beyond the terascale.



On July 4, 2012, the discovery
of a new boson is announced

which may be the long sought
after Higgs boson.

The discovery papers are
published two months later
In Physics Letters B.

ATLAS Collaboration:

Physics Letters B716 (2012) 1—29

CMS Collaboration:

Physics Letters B716 (2012) 30—61
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Winners of the 2013
Nobel Prize in Physics

Francois Englert
and

Peter Higgs



Higgs boson production and decay mechanisms

Higgs boson production
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Higgs boson production cross sections at a pp collider

S(pp — H+X) [pb]
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With nearly 140 fb! of data delivered by the LHC in Run 2 to both ATLAS and CMS
in 2015—2018 at a center of mass energy of 13 TeV, roughly 7.5 million Higgs
bosons per experiment were produced, assuming the Higgs mass is 125 GeV.



LHC / HL-LHC Plan
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Taken from Harvey Newman'’s

Chair Report at the USLUA
Annual Meeting (12/17/24)

Update Sept. 2024

Long Term LHC Schedule (to 2041):

= Short YETS 25/26
= Extend Run 3 to end June 2026
Towards HL LHC:
= Start LHC LS3 July 2026
Challenge and = Start final Hardware Commissioning January 2030
Opportunity = First beam June 2030
= LS3 - beam to beam: 3 years 11 months, 47 months
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ATLAS Run 3 observations of the Higgs boson
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https://link.springer.com/article/10.1140/epjc/s10052-023-12130-5

S/(S+B) Weighted Events / GeV

CMS Run 3 observations of the Higgs boson
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Higgs boson decay channels observed at the LHC

Higgs boson decay mode Branching ratio (for m, = 125 GeV)

h® - bb 0.582

ho=> T t- 6.27 x 102
hO > €+ € vv (£=eorp) 1.06 x 1072
ho = yy 2.27 x 1073
ho > £+ ¢ £+ £ (€ =eorp) 1.24 x 104
hO>2z2y > €+ €y (£=eorp) 1.03 x 104
ho > p 2.18 x 10

Taken from https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR#Branching Ratios

Remarks:
1. hO= WW" is observed primarily via the £* v £ v (£ = e or p) final state.
2. h9= 77" is observed primarily via the £+€-£+f- (£ = e or u) final state.

In the decays to the diboson final state, kinematics dictates that one of the vector
bosons is off-shell (i.e., “virtual”) and is thus indicated by a superscript star.


https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR

Question: why not search
inclusively for Higgs bosons
that decay into a pair of
b-quarks?

Answer: The Standard Model
background is overwhelming.
There are more than 10’
times as many b-quark pairs
produced in proton-proton
collisions as compared to
b-quark pairs that arise from
a decaying Higgs boson.

Nevertheless, the observation of
H - bb in the VH channel was
confirmed by ATLAS and CMS in
2018!

proton - (anti)proton cross sections
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Summary of ATLAS Higgs boson data from Run 2 at the LHC
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Fig.3|Ratio of observed rate to predicted standard model eventrate for
different combinations of Higgs boson production and decay processes.
Thehorizontal bar on each pointdenotes the 68% confidenceinterval. The
narrow grey bandsindicate the theory uncertaintiesin the standard model

(SM) cross-section multiplied by the branching fraction predictions.
The p value for compatibility of the measurement and the SM prediction is 72%.
0,Bsisnormalized to the SM prediction. Dataarefrom ATLASRun 2.

Nature | Vol 607 | 7 July 2022 | 55



Ratio to SM
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Research program 1: theory and phenomenology

of Higgs bosons




Research program 2: theory and phenomenology
of TeV-scale supersymmetry (SUSY)
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As members of the Particle Data Group, B.C. Allanach and |
are co-authors of the biennial Supersymmetry Theory review.

HYSICAL REVIEW D |

Review of Particle Physics

\\
S. Navas et al. (Particle Dcrd\GrXup), Phys. Rev. D 110, 030001 (2024)
{ ) :

PDG-

particle data group

1038 88. Supersymmetry, Part I (Theory)

88. Supersymmetry, Part I (Theory)

Revised August 2023 by B.C. Allanach (DAMTP, Cambridge U.)
and H.E. Haber (UC Santa Cruz).

88.1 Introductifpa . . . .. ..o
88.2 Structure of the MSSM
88.2.1 R-parity and the lightest supersymmetric

particle . . ... ... ..o o0 L 1039
88.2.2 The goldstino and gravitino . . . . .. . .. 1039
88.2.3 Hidden sectors and the structure of SUSY

breaking . . . . . ... ..o L Lo

88.2.4 SUSY and extra dimensions .
88.2.5 Split-SUSY . . . ... . ... ... .....
88.3 Parameters of the MSSM . . . . . .. ... ...

88.3.1 The SUSY-conserving parameters. . . . . . 1041
88.3.2 The SUSY-breaking parameters . . . . . . . 1041
88.3.3 MSSM-124 . . ... ... .......... 1041
88.4 The supersymmetric-particle spectrum . . . . . 1042
88.4.1 The charginos and neutralinos . ... ... 1042
88.4.2 The squarks and sleptons . . . . . .. ... 1043
88.5 The supersymmetric Higgs sector . . . .. ... 1043
88.5.1 The tree-level Higgs sector . . . . . . . . .. 1043
88.5.2 The radiatively-corrected Higgs sector . . .1044
88.6 Restricting the MSSM parameter freedom . . .1044
88.6.1 Gaugino mass relations . . ... ... ... 1045
88.6.2 Constrained versions of the MSSM:
mSUGRA, CMSSM, ete. . . . .. ... ... 1046
88.6.3 Gauge-mediated SUSY breaking . . . . .. 1046
88.6.4 The phenomenological MSSM . . . . . . .. 1047
88.6.5 Simplifiedmodels. . . . ... ... ... .. 1047
88.7 Experimental data confronts the MSSM . . . . . 1047
88.7.1 Naturalness constraints and the little hier-
archy . . ... ... 1048
88.7.2 Indirect constraints on supersymmetric
models. . . ... ... Lo oo L 1049
88.8 Massive neutrinos in weak-scale SUSY .. ... 1050
88.8.1 The supersymmetric seesaw . . . . . . . . . 1050
88.8.2 R-parity-violating SUSY . . . .. ... ... 1050
88.9 Extensions beyond the MSSM . . . . . ... .. 1051

88.1 Introduction

Supersymmetry (SUSY) is a generalization of the space-time
symmetries of quantum field theory that transforms fermions into
bosons and vice versa [1]. The existence of such a non-trivial
extension of the Poincaré symmetry of ordinary quantum field
theory was initially surprising, and its form is highly constrained
by theoretical principles [2]. SUSY also provides a framework for
the unification of particle physics and gravity [3-5] at the Planck
energy scale, Mp ~ 10™ GeV, where the gravitational interac-
tions become comparable in strength to the gauge interactions.

less, with some restrictions on the dimension-three ter
dated in Ref. [10]. The impact of the soft terms become
at energy scales much larger than the size of the SUS
masses. Thus, a theory of weak-scale supersymmetry
effective scale of supersymmetry breaking is tied to -
electroweak symmetry breaking, provides a natural fra
the origin and the stability of the gauge hierarchy [6-

At present, there is no unambiguous experimental ¢
the breakdown of the SM at or below the TeV scal
pectations for new TeV-scale physics beyond the Slv
primarily on three theoretical arguments. First, in a
an elementary scalar field of mass m and interaction
(e.g., a quartic scalar self-coupling, the square of a gau
or the square of a Yukawa coupling), the stability witl
quantum corrections requires the existence of an en
roughly of order (16mw2/A)1/2m, beyond which new p!
enter [12]. A significantly larger energy cutoff would
unnatural fine-tuning of parameters that govern the ef
energy theory. Applying this argument to the SM
expectation of new physics at the TeV scale [9].

Second, the unification of the three SM gauge cou
very high energy close to the Planck scale is possible if :
beyond the SM (which modifies the running of the gaug
above the electroweak scale) is present. The minimal
metric extension of the SM, where superpartner mass
a few TeV, provides an example of successful gauge cc
fication [13].

Third, the existence of dark matter that makes 1
mately one quarter of the energy density of the unive
be explained within the SM of particle physics [14]. R
a stable weakly-interacting massive particle (WIMP) -
and interaction rate are governed by new physics asso
the TeV-scale can be consistent with the observed den
matter (this is the so-called WIMP miracle, which is
Ref. [15]). The lightest supersymmetric particle (LSF
is a promising (although not the unique) candidate f
matter [16-20]. Further aspects of dark matter can |
Sec. 27.

88.2 Structure of the MSSM

The minimal supersymmetric extension of the SM (N
sists of the fields of the two-Higgs-doublet extension of
the corresponding superpartner fields [21-25]. A part
superpartner together form a supermultiplet. The co
field content of the supermultiplets of the MSSM and
quantum numbers are shown in Table 88.1. The ele
Q=13+ %Y is determined in terms of the third co
the weak isospin (73) and the U(1) weak hypercharge

The gauge supermultiplets consist of the gluons and
fermionic superpartners and the SU(2)xU(1) gauge
their gaugino fermionic superpartners. The matter
plets consist of three generations of left-handed quarks
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Research program 3: explorations of the Terascale
at the LHC and at future colliders

Studies of non-minimal Higgs sectors
Precision measurements of new physics observables

Distinguishing among different theoretical
interpretations of new physics signals

Using a future lepton collider as a precision Higgs
factory

Terascale footprints of lepton-number-violation

New sources for CP-violation (Higgs and/or SUSY
mediated)
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Major thrusts in phenomenological particle physics today

» What lies beyond the Standard Model
and why haven’t we seen it yet?

= New physics beyond the Standard Model (BSM) may be associated with a
new heavy mass scale of order a few TeV or larger. If accessible at the LHC,
not enough events have been produced yet (more luminosity needed). If the
LHC is not energetic enough, one would need a higher energy collider facility.

= New BSM physics may be very weakly coupled to the Standard Model (SM).
It could consist of completely new sectors of particles (e.g., the dark sector).
The origin of dark matter could reside here. Many possibilities exist, so it is
difficult to guess where the breakthrough will occur.

= |f new BSM physics is completely neutral with respect to the SM, then it can
only communicate with the SM via “portals” that consist of products of SM
fields that have no net SM (color, weak or EM) charge.
Examples: the Higgs portal HtH; the neutrino portal HTLN (N could be a new
sterile neutrino); or photon mixing F . X*” (where X is the dark photon).




Should we expect an extended Higgs sector beyond the SM?

»The fermion and gauge boson sectors of the SM are not of
minimal form (“who ordered that?”). So, why should the spin-0
(scalar) sector be minimal?

» Adding new scalar states can alleviate the metastability of the
vacuum, allowing the Higgs-sector-extended SM to be valid all
the way up to the Planck scale.

» Extended Higgs sectors can provide a dark matter candidate.

» Extended Higgs sectors can provide new sources of CP violation
(which may be useful in baryogenesis).

» Models of physics beyond the SM often require additional
scalar Higgs states. E.g., two Higgs doublets are required in the
minimal supersymmetric extension of the SM (MSSM).



Evidence for a new Higgs scalar ?

CMS Preliminary

132.2 b7 (13 TeV)
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boson, from the analysis of the combined data from 2016, 2017, and
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Why is the observed Higgs boson SM-like?

»There is no extended Higgs sector.

» All other scalars (apart from the SM-like Higgs boson) are very heavy
" This is the decoupling limit.

» A neutral scalar field with the tree-level properties of the SM Higgs
boson is an approximate mass eigenstate (due to suppressed mixing
with other neutral scalar fields of the extended Higgs sector).

" This is the Higgs field alignment limit.

" The other physical scalars of the model may or may not be
significantly heavier than the SM Higgs boson. That is, the
decoupling limit is a special case of the Higgs field alignment limit.



Experimental constraints on the two Higgs doublet model (2HDM)

ATLAS [ K Obs. 95% CL ATLAS
VS =13 TeV, 36.1 - 139 b1 -~ Kk Exp. 95% CL VS =13 TeV, 36.1 - 139 b1 [ k Obs. 95% CL
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Regions excluded at 95% CL in the k-framework-based approach by the measured rates
of Higgs boson production and decays in the 2HDM with Type-I and Type-Il Yukawa
couplings, respectively. The dark yellow dashed lines show the borders of the
corresponding expected exclusion regions for the SM hypothesis. Exact Higgs alignment
corresponds to cos(f - a) = 0. Taken from the ATLAS Collaboration, JHEP 11 (2024) 097.



https://link.springer.com/article/10.1007/JHEP11(2024)097

My most recent Ph.D. students and their projects

» 2HDM theory and phenomenology (with E. Shahly). Currently on leave
but returning in April 2025. Expected Ph.D. in December 2025.

= Neutral Higgs-mediated flavor violation in the lepton sector due to
renormalization group running (with S. Gori and E. Shahly).
" One-loop renormalization of the 2HDM in the Higgs basis.

» Phenomenological aspects of more general 2HDMs (with J.M. Connell).
Received his Ph.D. in June 2024.

= Explored some (local) 2—30 deviations in LHC searches for new
Higgs bosons, with implications for the flavor-aligned 2HDM.
Results published in Phys.Rev. D 108, 055031 (2023).

= Examined the structure of lepton flavor-changing neutral currents
mediated by neutral Higgs bosons in extended Higgs models.
Results to appear on the arXiv later this spring.



From a forthcoming paper in collaboration with Stefania Gori and Eric Shahly.
Off-diagonal couplings of the neutral Higgs boson to Tu can be generated if flavor
alignment is imposed at a very high energy scale A, due to renormalization group
evolution from A down to the energy scale of electroweak physics (100 GeV).

4 Results

4.1 Lepton flavor violating decays of the SM-like Higgs boson

The partial widths for the decays of the SM-like Higgs field 4 into a pair of fermions are given below. Note that
the color factor N¢ = 3 for quarks, and N¢ = 1 for leptons.
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Figure 3: BR(h — ur) results for the case of cos(8 — a) = 0.01 (left), 0.02 (right) and 0.05 (bottom) for fixed quark
parameters a” = 0.1 and a” = 1. Green points indicate choices of the alignment parameters that lead to h — ur
branching ratios that exceed the projected ILC upper bound of 2.3 x 10, but are not yet excluded by LHC bounds. Red
points are already excluded by LHC bounds and blue points remain unexcluded by both current experimental bounds and

ILC projections.
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FIG. 3. Diagram showing the correlations between the free
parameters (circles) of our model (except the Higgs masses)
and the observables. Observables providing strong constraints
are shown as red hexagons while the ones pointing towards a
NP effect are shown as black rectangles.

Taken from A. Crivellin and S. Iguro, Phys. Rev. D 110, 015014 (2024).



From a forthcoming paper with Joseph Connell. Nondiagonal lepton—Higgs
couplings are constrained by many observables. For example, consider T — u y.
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We define three integrals for real positive values of z [1,2]:

9(2) = %z/ol (1 _dz) —7 B [x(lz_ CU)] ’

ﬂ@zézﬁly—mmfngm[a1—@]d%

z(l—z)—2 2

hiz) = _%2/01 20 _d§> - {1 S e [x(lz_x)” '

Then, one can derive the following expressions for f(z) and h(z) in terms of g(2):

f(z) = 2(2+Inz) + (1 - 22)9(2),

B 2[2g(2) + In 2]
& =""m




An explicit expression for g(z) is given by:

9(z) = 4

where z, = 1|

p

ﬁ{LIQ(.’E+) = le(x_) == %1112111 (2—1_) } y for 0 < z S i, (62)
2z g 1 1

\—m(ﬂz(QSln m), fOI'Z>Z,

1++/1—4z] and 0 < sin"'[1/(2y/z)] < i7 (for z > 1). In Fig. 1, we have

employed Mathematica (Version 14.0) to produce plots of the functions g(z), f(z) and —h(z)
for 0.01 < z < 100. This figure reproduces the results first shown in Fig. 3 of Ref. [2].
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Figure 1: Plots of g(z) given by eq. (62), f(z) given by eq. (60), and h(z) given by eq. (61) as a function of
the variable z for 0.01 < z < 100. These plots were produced using Version 14.0 of Mathematica.



Ongoing and Future Activities

» Higgs alignment at one loop (with Eric Shahly).

» Reassessing the Cheng-Sher ansatz for off-diagonal flavor
couplings of neutral Higgs bosons (with Joseph Connell).

» Basis-invariant treatment of the 3HDM (with V. Keus).

» Extension of 2HDM symmetries of the scalar potential to the
Yukawa sector (with Sergio Carrolo, Luis Lourenco, and J.P. Silva).

» Beyond the S, T, and U oblique parameters in extended
electroweak models containing a dark Z boson.

» The anapole moment of fundamental particles (with H. Dreiner).
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