Chapter 1
Special Theory of Relativity

1.1 Physics before 1905

At the end of the 19th c entury there was a common belief that me-
chanics was a final physical theory. In this framework, mechanics
would be able to explain all known physical phenomena. One of tasks
undertaken by physicists of that period was looking for a maximally
simple description of physical phenomena using a minimal number of
logically independent postulates.

Principle of Relativity

The principle of relativity, formulated by Galileo, was commonly accepted
as such fundamental postulate. It states that in absence of interaction
(with other bodies) a physical body remains in uniform motion — it
moves with constant speed along a straight line. This statement cannot
be true in any frame of reference. For instance, it does not hold in
rotating systems where the trajectory of such a body is a curve. The
class of reference frames in which Galileo’s principle does apply is
called inertial frames of reference or inertial reference systems. Such frames
move in relation to each other with constant velocity. The principle of
Galileo was then reformulated as so-called principle of relativity which
states that the laws of classical physics hold in all inertial frames of reference.

The mathematical transformation of coordinates associated with
two different inertial systems is called classical transformation or Galileo’s
transformation. It establishes relations between the positions and ve-
locities in these inertial systems. We denote by ¢, x time and position
vector of the material point in the reference frame S and by ¢/, x’ its
time and position vector in the frame S’ that remains in motion with
the velocity V with respect to S. The classical transformation has the

Principle of Galileo

Inertial frame of reference

Classical transformation
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form:

=, (1.1)
x =x-—Vt. (1.2)

The transformation (1.1) is the postulate — one of the foundations of
Newtonian physics. It constitutes the definition of simultaneity. of
events. On the other hand (1.2) has origin in classical concept of
addition of positions. The classical transformation implies the velocity
addition formula

vV=v-V (1.3)

where V is velocity of S’ with respect to S and v’ = d’t‘,/ , 0= % are

velocities of the material point in these frames.

Maxwell’s electromagnetic theory

In 1854 James Clerk Maxwell (1831-1879) began work on formulation
of the theory of electromagnetic phenomenas. Yet in this year he wrote
a letter to his friend William Thomson, announcing that he “intends to
attack electromagnetism”. The first work entitled On Faraday’s Lines of
Force (1855) was unsuccessful and presented barely qualitative hydro-
dynamical approach to electromagnetic material medium. In 1861, he
published a dissertation On Physical Lines of Force, in which he tried to
build a mechanical model of electromagnetic field.

This dissertation contains some elements of electromagnetic field
theory, subsequently developed in Maxwell’s next work entitled A
Dynamical Theory of the Electromagnetic Field (1864-1865). In order to
replace the Faraday’s idea of polarisation of medium Maxwell has
introduced the concept of electric displacement and medium variation
called by him displacement current.

Both Maxwell’s works contain a very important conjecture. Namely,
Maxwell has noticed that the ratio of electric and magnetic units in
field equations has dimension of velocity. Moreover, he has also noticed
that the numerical value of this characteristic speed coincided with
the experimental value of the speed of light. He assumed that there
can exist periodic transverse displacement waves in the medium and
calculated the speed of their propagation. He got the value which was
very close to the value of speed of light. The results of his theoretical
study of electricity and magnetism led him to the hypothesis that light is
an electromagnetic wave.

Classical concept of simultaneity

Classical addition of velocities

Figure 1.1: James Clerk Maxwell (1831-
1879)

Figure 1.2: Picture from Maxwell’s work
On Physical Lines of Force.
Observation that a velocity pa-
rameter has value that coincides
with the light speed

Hypothesis that light is an elec-
tromagnetic wave
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It is manifest that the velocity of light and the ratio of the
units are quantities of the same order of magnitude. Neither of
them can be said to be determined as yet with such a degree of
accuracy as to enable us to assert that the one is greater or less
than the other. It is to be hoped that, by further experiment,
the relation between the magnitudes of the two quantities may
be more accurately determined.
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In 1873 he published Treatise on Electricity and Magnetism in which
he has presented the final form of electromagnetic field equations. In
contrast to his previous works this publication does not contain any
mechanical models of the electromagnetic field. The field equations
were obtained considering the hypothesis of existence of displacement
current and electronic state i.e. such a state that variation in the magnetic
field creates solenoidal electric field.

The form of Maxwell’s equations presented in the treatise is signif-
icantly different from their present form. In particular, Maxwell did
not use the vector calculus. In particular, some of the equations were
written using the quaternion notation. The currently used, vector form
of Maxwell’s equation was proposed by Oliver Heaviside (1850-1925),
which has significantly contributed to the popularisation of Maxwell’s
theory. Let us stress that Maxwell was not aware of the fundamental
character of the theory he created. In particular, until his last days
he was convinced that the foundations of electromagnetism are based
on the concept of a material medium. Such a medium would enable
propagation of electromagnetic waves. This medium was termed aether.
The constant parameter having dimension of velocity that appears in
Maxwell’s equations was interpreted as the speed of propagation of
electromagnetic waves in the aether.

Problems with electromagnetism

It turned out quickly that Maxwell’s theory of electromagnetic phe-
nomena, although very consistent with experiments, leads to some
fundamental problems:

1. A problem with construction of mechanical model of aether;

2. A problem with the lack of covariance of Maxwell’s equations under
the classical transformation.
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Figure 1.3: The value of speed of light
and ratio of electric and magnetic units.

Figure 1.4: Treatise on Electricity and
Magnetism

Figure 1.5: Oliver Heaviside (1850-1925).
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Luminiferous aether

The existence of a substance (medium) that supports the propagation
of electromagnetic oscillations was expected in Maxwell’s times.” It
was, to some extend, natural expectation. All known wave phenomena,
such as sound propagation, possessed mechanical interpretation. Many
renowned physicists, as for instance Augustus Cauchy, George FitzGerald,
Goeorge Green, Oliver Heaviside, Herman Helmholtz, Gustav Kirchhoff, Joseph
Larmor, Hendrik Lorentz, James Mac Cullagh, James Clerk Maxwell, Arnold
Sommerfeld, George Stokes, William Tomson (Kelvin), published papers
concerning the construction of mechanical model of the aether. The
fundamental question that they pretend to answer was if the aether
drifts together with moving objects.

* Let us assume that the aether drifts and consider a laboratory S’ with
transparent walls and with the source of light at its center. If such a
laboratory moves with a constant velocity V with respect to external
observer S, then provided that the laws of classical mechanics are
valid, the speed of light observed in S would be given as a length
of the vector obtained adding velocity of the light in the aether and
velocity of the aether with respect to S.

It means that observed light speed should depend on the motion of
its source. This conclusion has no confirmation in experiments. The
further development of the theory and new experimental results
forced physicists to conclude that light moves in empty space with
the same speed ¢ — independently on its frequency and motion of
its source (so-called “ ¢ — principle”). It is important to notice that if
the speed of light would depend on the motion of its source, then
the images of tight binary stairs would be much more involved than
they actually are.

* Another possibility is that the aether cannot be carried by moving
bodies. In such a case its rest frame would be unique. Consequently,
there would be possible “absolute motion” i.e. motion with respect
to the aether. In such a case Galileo’s principle would not be true
anymore. The form of physical laws in the aether reference frame
would be different to their form in other reference frames. Thus each
observer would be able to determine whether he is or not in motion.
It would mean thet the measured speed of light would depend
on velocity of the observer with respect to the aether. The problem of
measurement of the speed of light in dependence on the velocity of
the observer was considered in 1887 by Albert Abraham Michaelson
and Edward Morley. The results of their work has been presented
in the paper On relative motion of Earth and relative luminiferous aether
published in American Journal of Science 34, 333 (1887). The authors

* A. Einstein, L. Infeld, The Evolution of
Physics

Does the aether drift together
with objects?

Yes: light speed depends on mo-
tion of its source

No: Galileo’s principle is invalid

No: the light speed depends on
motion



determined that the speed of light does not depend on motion of the
observer (in this case the Earth).

* Both these assumptions lead to incompatibilities with experimental
data. Physicists of that period tried to maintain aether theories
postulating that the aether can be carried only partially, however,
without success in confrontation with experimental data.

Thus physicists were forced to abandon the concept of ether and
looking for a new theory that would be compatible with experimental
facts:

1. All laws of nature are strictly the same in two inertial reference frames.
There is no way to detect absolute uniform motion.

2. The speed of light in a vacuum is ¢, and its value does not depend on motion
of a light source or motion of a detector.

Covariance of Maxwell’s equations

Let us note that addition of velocities (that follows from the classical
transformation) stays in conflict with the constancy of light speed. There
was more problems associated with the classical transformation.
According to experimental data the laws of electromagnetism are
valid in distinct inertial reference frames. Mathematically it means that
Maxwell’s equations have exactly the same form in each two different in-
ertial frames. In other words, when doing a series of experiments in two
laboratories S and S’ that move uniformly with respect to each other
one would deduce from tese experiments exactly the same Maxwell’s
equations. Sine both reference frames are related by classical transfor-
mation one would expect that equations in S’ can be obtained from
equations in S just applying the classical transformation. It turns out
that the classical transformation spoils the form of Maxwell’s equations.
The resulting set of equations has not form of Maxwell’s equations — it
contains some new terms! Thus we see that the classical transformation:

e contradicts the constancy of the speed of light,

* does not allow for covariance of Maxwell’s equations.

In such a case the only reasonable way out is rejection the form of the
classical transformation. This rises the question of the form of “correct”
transformation. Such transformations must preserve covariance of
Maxwell’s equations and constant character of light speed. The last
means that for any speed v the sum (more precisely — its composition

“F") of this speed with the speed of light ¢ must be equal to c.

SPECIAL THEORY OF RELATIVITY ¢

All assumptions about aether
leads to incompatibility with ex-
perimental data

Incompatibility between Max-
well’s equations and the classical
transformation

Classical transformation must be
rejected!
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1.2 Special Theory of Relativity

A special theory of relativity was proposed by Einstein as an attempt
to get rid of the unsatisfactory situation that led to the confrontation
of electromagnetic phenomena with classical mechanics. Einstein’s
work published at June 30, 1905 in Annalem der Physik constituted
breakthrough in our understanding of space and time.

@i Figure 1.6: On the Electrodynamics of

ANNALEN Moving Bodies.
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ein elektrisches Feld von gewissem Energiewerte, welches an
den Orten, wo sich Teile des Leiters befinden, einen Strom
erzeugt. Ruht aber der Magnet und bewegt sich der Leiter,
50 entsteht in der Umgebung des Magneten kein elektrisches
Feld, dagegen im Leiter eine elektromotorische Kraft, welcher
an sich keine Energie entspricht, die aber — Gleichheit der
Relativhewegung bei den beiden ins Auge gefabten Fillen
vorausgesetst — zu elektrischen Strdmen von derselben GroBe
und demselben Verlaufe Veranlassung gibt, wie im ersten Falle
die elektrischen Kriifte.

Beispielo ihulicher Art, sowie die miBlungenen Versuche,
cige Bewegung der Erde relativ zum , Lichtmedium* zu kon-
statieren, fihren zu der Vermutung, da8 dem Begriffe der
absoluten Rube nicht nur in der Mechanik, sondern auch in
der ik keine Kig der i ent-
sprochen, sondern da8 vielmehr fur alle Koordinatensysteme,
fir welche dio mechanischen Gléichungen gelten, auch dis
gleichen elektrodynamischen und optischen Gesetze gelten, wie
dies for die GroBen erster Ordnung bereits erwiesen ist. Wir
wollen diese Vermutung (deren Inhalt im folgenden ,Prinzip
der Relativitit« genannt werden wird) zur Voraussetzung er-
heben und auerdem die mit ihm nur scheinbar unvertriglicke

LEIPZIG, 1\105/
VERLAG VON JOHANN AMBROSIUS BARTH.

The work itself has a profound connection with electrodynamics as
suggested by its title On the Electrodynamics of Moving Bodies. Einstein
has assumed two postulates:

1. The laws of physics are the same in all inertial reference frames.

2. The speed of light in vacuum has the same value c in all inertial reference
frames.

The transformation of coordinates in two different inertial frames is
not a classical transformation. It has such a form that provides con-
stancy of light speed in all inertial reference frames. It is called Lorentz
transformation.

Simultaneity

The postulate that the speed of light takes the same value in all reference
frames is explicit resignation from the concept of absolute simultaneity (1.1).
The assumption that ¢’ = ¢ and #' =  leads to logical contradiction. The
resignation from the absolute character of time means that time should
be treated not as an external parameter but rather as a coordinate. In

Einstein’s postulates

New concept of simultaneity
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this approach, the concept of simultaneity depends on the observer. Each
observer has his own time coordinate. Collections of events having
equal value of time coordinate in a given reference frame form surfaces
of simultaneity. There are following relativistic effects that have their
origin in non-existence of absolute simultaneity:

¢ Lorentz-FitzGerald contraction,

e dilation of time.

Spacetime

An important feature of the Special Theory of Relativity is the fact that it
can be expressed in geometric language. A geometrisation of the theory
allows for deeper insight into its structure. In order to geometrize the
Special Theory of Relativity one starts with a set of basic objects called
events which are counterparts of points in Euclid’s geometry.

Definition.> A collection of all events that carry information about
“when” and “where” independently on what “happened” is called
spacetime.

Thus spacetime is a set of labels. A mathematical model of spacetime
is obtained imposing some structure on this set. In the case of Special
Theory of Relativity a spacetime has structure of four-dimensional affine
space, i.e. the homogeneous space with operation of translation. This
spacetime is called Minkowski spacetime.

Affine space structure of Minkowski spacetime

The model of Minkowski spacetime is a four-dimensional affine space
(M, V*) with scalar product where M stands for set of points (events)
and V* ia a four dimensional real vector space. We shall use letters
p,q,t,... € M for denoting events and x,y,z,... € V4 for denoting
vectors — called here four-vectors.

In similarity to the Euclidean affine space we have translation opera-
tion “+” (translation) which maps events on events

MxV*> (px) > p+xeM (1.4)
and has properties:

1.

(p+x)+y=p+(x+y), VpEM and Vx,yc V¥

p+0=p Vp e M;

Relativistic effects that originate
in lack of absolute simultaneity

2 Definition introduced by Andrzej Mar-
iusz Trautman (born January 4, 1933) a
Polish mathematical physicist who has
made contributions to classical gravita-
tion in general and to general relativity in
particular. Trautman and Ivor Robinson
discovered a family of exact solutions of
the Einstein field equation, the Robinson-
Trautman gravitational waves.

Affine space as a model of space-
time

Figure 1.7: Hermann Minkowski (1864-
1909).
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VpeM JxeVi: g=p+ax

If one distinguishes an event py € M and fixes basis e, in V4, then
each point p € M can be uniquely represented as a translation of py by
four-vector x € V*

3
p=pot+x=po+ ) x*(ples (1.5)
a=0

where coefficients {x*(p)}a—0,1,,3 are Cartesian coordinates of the point
p in the affine basis (po, ex).

We shall use index notation for expressions containing sums and
assume that greek indices run over a set of numbers

apB,...={0,1,2,3}
wheres latin indices (spatial indices) run over
ij,...={1,23}.
The index a = 0 labels temporal coordinate x°, temporal vector e etc.
Thus the four vector x in (1.5) reads
x*(p)ea = 2°(p)eg + x' (p)er + 2 (p)ez + x°(p)es
= x%(p)eo + 2 (p)e; (1.6)

In order to introduce metric structure in Minkowski spacetime we
choose a metric tensor whose components form a symmetric nonsingular
matrix

Sup = 8(eq, ep). (1.7)
The expression g(x,y) represents a scalar product of two four-vectors
atp

g(x,y) = g(x"es, yPeg) = x"yPg(eq, ep) = x*yPgp € R.

In Cartesian coordinates the metric tensor has components

1 0 0 0
0 -1 0 0 .

=M= o o _1 o = diag(1,-1,-1,-1). (1.8)
0 0 0 -1

Note that another equivalent choice has the form
ap = diag(—1,1,1,1).

Curvilinear coordinates can be introduced as diffeomorphic transfor-
mation

X =220, 2, x=0,...,3 (1.9)

ie. an invertible transformation which is at least of C! class. It is
required that the inverse transformation is also at least of C! class.

Cartesian coordinates

Notation

Metric tensor is a mapping

g:(xy) —~glry) eR
which is
1. bilinear
glax +by,z) =ag(x,z)
+bg(y,2)
Vx,y,z€ V* and VabeR
2. symmetric
gs(xy)=glyx) VxyeV*

3. nondegenerate

gx,y)=0 Vy thenx=0
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Tangent space

At any point of Minkowski spacetime there can be introduced a set of
smooth curves. The vectors tangent to these curves at p form tangent
space. It is denoted by

T,M:={v: vistangentto M at p}.

Let {ex(p) }a=o0,..3 be a basis of tangent space T, M. Any other basis at
p, denoted by {e},(p) }a—o,. 3, is related to the previous one by linear
transformation

oxP
eu(p) = 5w (P)ep(p)- (1.10)

where x™* are “new” coordinates. Four-vectors are geometric objects
which means that they do not depend on coordinates. Their compo-
nents however do depend. Taking v = v'*e(p) = vPes(p) we can
conclude that components of four-vector transform as

axllx
T oxP

/x

(p)oP. (1.11)

In particular, one can choose Cartesian coordinates x* in Minkowski
spacetime. Thus e, (p) = e, where vectors e, € V* and e, (p) € T,M.

Minkowski diagrams

Minkowski diagrams constitute a very useful tool in analysis of problems
in Special Theory of Relativity. They are sections of spacetime (two-
or three- dimensional charts), see Fig.1.8. Each event in Minkowski
0, x1,x2,x3). Time
coordinate is defined as x° := ct where ¢ is the speed of light. Some of

spacetime is represented by collection of numbers (x

numbers {x*} can be fixed for whole diagram. In such a case we usually
ignore the presence of irrelevant coordinates writing components of
four-vector as it were two—component or three-component vectors
ie. (x0,x1), (2%, x1,x?). A history of material objects in Minkowski
spacetime is represented by curves, sheets or hyper sheets — depending
on dimensionality of these object. They are called: world lines for points,
world sheets for one dimensional objects and world volumes for two and
three dimensional objects.

Typical Minkowski diagrams contain world lines and world sheets.
A constant character of the speed of light is represented on any two
dimensional diagram by straight lines that form angles 7 with its axes.
These axes are defined as follows:

0

e x' —a world line of the inertial observer,

1

* x' —a set of events simultaneous with the event (0,0).

Transformation of basis vectors

Figure 1.8: Worldlines of point-like par-
ticles in reference frame S: (a) particle at
rest, (b) accelerated particles, (c,d) fotons.

xlO S/
a
A
\0~.~ a 56,1
7 M
mirror
—a

Figure 1.9: Construction of axis x'. The
event (0,a) belongs to the axis x! and it
is given by reflection of the light beam
emitted at the origin at x* = —a.
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Let S and S’ be two different inertial observers. We shall construct
axes of a diagram associated with the observer §’ on a diagram S. Thus
we consider an observer S’ as being in uniform motion along the x!
axis. Its velocity is denoted by V. The x™ axis is just a world line of
the observer S’ so it corresponds to a straight line that form an angle ¢
with the x0 axis. This angle, shown in Figure 1.10(a), is associated with
relative velocity

tang = p = %

In order to determine the x'! axis one has to identify at least one
event simultaneous with (x°,x1) = (0,0) = (x/°,x'!), where the second
equality is an assumption which does not lead to loss of generality.
Such an event can be determined with the help of thought experiment
(gedankenexperiment). Let us consider a mirror in S’ in a distance x'! =
a from the origin, see Figure 1.10(b). A constant character of the
light speed leads to the conclusion that the light impulse (a photon)
emitted from (x",x"1) = (—a,0) in direction of the mirror reaches it
at (x'%,x"1) = (0,a) and after reflection it returns to the observer S’ at
(20, x"1) = (a,0). The event correspondinf with reflection of a photon
from the mirror is represented by intersection of the light rays. Such
rays form Z angles with x* and x! axes on the Minkowski diagram
S. The intersection of light beams corresponds with an event which
is simultaneous with (0,0) event. The coordinates of this event in S
are such that ¥° # 0. It means that x' and x’! axes form a certain
angle. These axes are simultaneity lines associated with different inertial
observers. The fact that x! and x'! axes do not coincide reflects the
fact that the concept of absolute simultaneity does not exist in special
relativity. With help of elementary (Euclidean!) geometry applied to
triangles on the diagram we conclude that the angle that form x! and
1

x'! axes has value ¢ i.e. it has the same value as the angle formed by

%% and x0 axes.

Geometry of spacetime

Spacetime geometry is not Euclidean. A fundamental concept which lies
at the base of Euclidean geometry is the concept of distance between
points. This quantity is given as the length of the vector connecting
two points. Let Ar be a vector which connects two points in Euclidean
space. Its “square” is given by expression

A2 = Ar- Ar = (Axh)? + (Ax?)?2 + (AxP)2 (1.12)

The value of quantity (1.12) does not depend on the choice of the
reference frame i.e. it is invariant under rotations, translations and
reflections. Such invariance is a consequence of symmetries of Euclidean
space.

0
S T a m/0
3 w/l
0.7 ™,
¢ a
'."‘(b xl
/(‘
i
()
/0
:L‘O a ‘ S,
IR
. o
Y 4 21
PN
—a
(b)

Figure 1.10: (a) Construction of the x'!
axis at diagram of the observer S. (b)
The same situation seen in the reference
frame S'.

Finite line element in E3
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In the case of Minkowski spacetime there also exists invariant ex-
pression associated with four-vector Ax that connects events A and B
such that B = A + Ax where Ax = Ax'e, and Ax# := xg — xlfl. This
expression is called spacetime interval and it has the form

’As2 = (Ax")? — (Ax1)? — (Ax?)? - (Ax3)2.‘ (1.13)

Spacetime interval (1.13) has larger number of symmetries then
spatial interval (1.12). It is onvariant under rotations, translations and
reflections (now extended to time reflections). There is also another
symmetry associated with the constant character of the speed of light.
It is described by continuous group of transformations.

We consider another thought experiment which allows us to show the
invariance of expression (1.12) under transformations that connects two
inertial reference frames. In this experiment we consider two parallel
mirrors separated by distance Ax? = L in certain reference frame S.
A light impulse that travels along the axis x? is reflected periodically
by the mirrors, see Figure 1.11. Its world line is shown in Figure 1.12.
In Figure 1.13 we show its spatial trajectory which forms a polygonal
chain in the reference frame S’. The reference frame S’ has velocity
—V (where V > 0) in direction of axis x! in the reference frame S. We
shall denote A, B, C as events that represent consecutive reflections of
the light impulse. Differences of coordinates of events A and C have
values:

¢ in the inertial frame S :
AP =cAt=2L, Ax'=Ax*=Ax*=0
e in the inertial frame S’ :

Ax'1

2
1%
A0 =cAt =24/12 + < ) , A = ?Ax'o, AX?=Ax" =0

/ 1\ 2
where 24/L? + (A%l) is the route traveled by the light impulse in S’

whereas Ax'! is a relative dislocation of the reference frames during the
interval of time in which the light impulse returns to the mirror. It has
been already set, according to the second postulate, that the speed of
light in S’ has the value c. It follows that values of spacetime intervals
calculated in coordinates S and S’ are perfectly the same

As? =417 = NS

Note, that although our argument is not a general proof, it strongly
suggests the expression (1.12) as a good “candidate” for invariant
quantity in Minkowski spacetime.

Spacetime interval

A 2

_[

Figure 1.11: Two mirrors an a ray beam
in the rest frame of mirrors.
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Figure 1.12: A ray beam and two mirrors
in the rest frame of mirrors.
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Figure 1.13: A ray beam and two mir-
rors in the inertial reference frame which
moves with relation to the mirrors.
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If any two events A and B are infinitesimally close3, B — A, than the
interval associated with such events is also an infinitesimal expression
ds? = lim As? =(dx®)? — (dx!)? — (dx?)? — (dx®)? (1.14)
B—A
=(dx®)? — dx - dx

and it is called line element of Minkowski spacetime.
The invariant character of ds? is shown in few steps.

1. The universal character of light speed means that if the line ele-
ment vanishes in S, i.e. ds? = 0 then it must also vanish in §’ so
ds'? = 0. This statement must be also true for finite expression As?
which is the interval between two events: emission of the spherical
electromagnetic wave and any event at the front of this wave.

2. Two infinitesimal quantities of the same order must be proportional.

3. The proportionality coefficient must be some function of absolute
value of relative velocity of reference frames S i §’. It leads to

expressions
ds"* = a(|V|)ds?, ds* = a(| — V|)ds". (1.15)
4. Since | — V| = |V|, then combining both formulas (1.15) one gets

a(|V|)? = 1. Clearly, the coefficient does not depend on |V| i.e.
a = +1. Moreover, both expressions ds? and ds’? must coincide in the
limit V' — 0. It allows to eliminate the case with the minus sign.

Causal structure of Minkowski spacetime

Let us consider the four-vector Ax = Ax!e, that connects events A and
B: B = A+ Ax. The spacetime interval As? associated with these events
has interpretation of “square” of this four-vector i.e. scalar product
with itself involving adequate metric tensor

8(Ax,Ax) = g(Axte,, Ax"e,) = g(ey, e,)Ax!Ax" =
= NuDx! Ax" = As?.
There are four-vectors of three kinds:
e null for As? =0,
o time like for As®> > 0,
e space like for As? < 0.

Notice that in alternative convention 7,, = diag(—1,1,1,1) the four-
vector with As? > 0 is space like and four-vector with As?> < 0 is time
like.

3In this section we denote by dx* in-
finitesimal differences of coordinates and
not linear basis forms in cotangent space
T*pM. For instance, dx! is an infinitesi-
mal difference of coordinate x! and not a
form dx! such that (dx!,9,) = J}.

Invariance of the interval

Square of the four-vector

Classification of four-vectors
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The appearance of three types of four-vectors reflects the fact geome-
try of Minkowski spacetime is essentially different from the geometry
of Euclidean space. Any two events can be connected by four-vectors:
a null one, a temporal one or a spatial one.

The invariance of the interval tightly related to the universal character
of the speed of light implies that the relation between each two events has
universal character i.e. it does not depend on the choice of inertial
reference frame. In particular, for any two events separated by space like
four-vector there exists certain inertial reference frame in which those
events are simultaneous. Similarly, there exist an inertial reference frame
in which two events separated by time like four-vector have the same
value of spatial coordiantes in certain inertial reference frame.

Causal relations between events can be geometrically illustrated with
the help of light cone structure, see Figure 1.14. We choose certain event
A and assume that it coincides with the apex of a light cone. A side
surface I' of the cone contains all events that are connected with A by
null four-vectors. The surface I't, which is characterized by condition
Ax® > 0, is called the future light cone and the surface I~ for Ax? < 0 is
called the past light cone. The interior of the light cone is a set of events
that are separated from A by time like four-vectors. The events inside
the future light cone can be reached from A by world lines (region of
dependence of event A). Similarly, all events that belong to the interior
of past light cone reach A along world lines (region of dependence of
event A).

The region outside of the light cone contains all events separated
from A by space like four-vectors. This is so-called elsewhere region.
Events remaining outside the light cone are neither achievable from A
(cannot depend on A) nor can make influence on A. It follows from this
elementary analysis that Minkowski spacetime (spacetime of Special
Theory of Relativity) has causal structure.

Calibration of axes
Let us consider a class of inertial reference frames with synchronized
clocks. A hyperbola

(%) = (x1)? = a”. (1.16)

is a collection of events which have numerically the same value of
temporal coordinate (each one in respective inertial reference frame).

Similarly a hyperbola
(%)% = (x)? = b (1.17)

represent a set of events having the same value of spatial coordinate in
any inertial reference frame.

<=

Figure 1.14: The light cone of the event A.
The surfaces '™ and I'™ are, respectively,
the future and the past light cones of
A. Events B, C € Tt and E are causally
connected with A. Event D belongs to
elsewhere of A.

Figure 1.15: Invariant hyperbolae in 1+1
dimensions.
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Left hand sides of equations (1.16) i (1.17) are spacetime intervals
of two events, one localized at the origin of the reference frame (0,0)
and the other one given by (x’, x!) in the reference frame S. Due to the
invariance of the interval the values a2, (—b?) can be expressed in S’
by identical combinations of new coordinates (x"°)2 — (x'1)? = a? and
(x0)2 — (x'1)2 = —b?. Hyperbolae are curves that are invariant under
change of inertial frame.

They have a direct application to axes calibration of the reference
frame S’ drawn on the diagram S. The hyperbola (1.16) is a set of
events possessing the property that clocks of the inertial observers with
common origins shows identical times. In other words, if the set of
synchronized clocks coincide at (0,0) and these clocks have different
velocities then events labeled by identical marks of all clocks form a
hyperbola (1.16).

In (2+1)-dimensions such hyperbolas are substituted by hyperboloids.

The spacetime hyperboloids are counterparts of spheres in Euclidean
space. Such hyperboloids are shown in Figure 1.16 and Figure 1.17.

Lorentz-FitzGerald contraction

Lorentz-FitzGerald contraction does not have dynamic character. It
is a purely kinematic effect which is a direct consequence of failure of
absolute simultaneity. To discuss this effect we shall consider a thought
experiment in w (1+1) dimensions.

We consider a stiff rod which has length L in his own rest frame S.

Let §' be another inertial frame that drifts with velocity V in S along
the x! axis. A history of the rod form a world sheet in Minkowski
spacetime. Both inertial observers S and S’ slice the spacetime with
their own simultaneity surfaces i.e. with x! and x’! axes. It means that
their perform cross-sections of the world sheet of the rod. This situation
is sketched in Figure 1.18 and Figure 1.19.

A difference of spatial coordinates Ax!, (Ax"!) of the extreme points
of the cross-section has interpretation of length of the rod L, (L) in
reference frame S, (S’). One can assume without loss of generality
that (x%,x1) = (0,0) = (", x1). ¥ and x"° axes form an angle ¢ on a

diagram S. Similarly, x! and x! axes form angle with the same value.

This angle is equal to dimensionless relative velocity tan¢ = .

Let (x%,x1) = (0,0) be the coordinates of the end of the rod in S
(event A) and (x°,x!) = (0, L) be coordinates of its second end (event
C). Events A and B are (by assumption) simultaneous in S’ and they
have coordinates (x"0,x"1) = (0,0) and (x/,x"!) = (0, L’), where length
L’ of the rod can be obtained from the interval As%,. The ratio of

@

Figure 1.16: Hyperboloid

(XO)Z _ (xl)Z _ (XZ)Z — ”2

@
Figure 1.17: Hyperboloid

(x0)2 _ (x])Z _ (x2)2 _ _bZ

™|

LI
A1

tang = 8

0 L

—>

xll
.| B
BL \¢ z!
C

Figure 1.18: The rod at rest in the refer-
ence frame S and observer S’ in motion.
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coordinates x% /x} in the reference frame S is given by the angle

AxY 0
tan(]):ﬁ:ﬁ—ixAB:x—f.

T Axl
Lo Axup g
that form x!' and x"! axes. Invariance of the interval leads to equality

AS%B == AS%B
02 _ L/2 (ﬁL)Z _ L2

L’:,/l—ﬁ%;%L,

where 0 < B < 1. It means that the rod in motion in S’ is shorter than
rod at rest in 5.4

which gives

Time dilation

We consider two inertial frames S and S’ that move with relative velocity
V. One can always choose the x! and x'! axes in direction of the velocity
vector. We assume that S’ drifts with velocity V' > 0 in the positive
direction of the x! axis.

Without loss of generality we can choose (1%, x!) = (0,0) = (x/,x"!).

A value of time coordinate associated with any inertial observer in its
own rest frame is time shown by its own clock. Our assumption means
that clocks of both observers (each at the origin of its own reference
frame) are synchronized i.e. at intersection point of x” and x'° axes they
show exactly the same time.

Let us consider a line of simultaneity which corresponds with certain
instant of time x° = 4 in the reference frame S. This line, shown in
Figure 1.20, has intersection with a world line of observer S’ (the axis
x'0). The clock of observer S’ marks x’° = a’ at the point of intersection
(event A). The event A has following components ininertial frames of
reference S and S':

e in §": (x,x'}) = (a',0) - the event loclalized at the x" axis,
e inS: (x9,xY) = (a Ba).

The value of spatial coordinate of event A is x}, = Ba. It can be obtained
from the ratio

1
Ba _ x4
Xa

where ¢ is the angle formed by x° and x"0 axes. The invariance of the
interval As?, leads to the equation a”> — 0> = 4> — B%4?, which implies

Figure 1.19: The rod in uniform motion
in the reference frame S’ in which the rod
remains in motion with constant velocity.

41t is worth to notice that, the observer
S can qualitatively justify the result ob-
tained by S’. From its point of view
events A and B corresponding with end-
points of the rod are not simultaneous.
Taking into account that the observer S’
drifts in S, (moves during the measure
process) the observer S will interpret the
divergence of the result obtained by S’
with its own as the result of dislocation
of §’. From the point of view of S, the
dislocation of S’ during the measure pro-
cess has a value AL = B?L,and so the
result would be (1 — 82)L. This is quan-
titatively inconsistent with the correct re-
sult L' = /1 — B2L.

Figure 1.20: Time dilation according to
the observer S.
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that

ad =4/1-B%a= %a. (1.18)

Thus the observer in S sees the clock S’ running slow.

Does it mean that S’ sees the clock S running fast? In order to answer
this question we consider the line of simultaneity in S’ that contains
A. Such a line consists of events with time coordinate x’° = 4’ in the
reference frame S'. This line (parallel to the x'! axis) crosses the world
line of the observer S i.e. the 0 axis at X% = b (event B). The coordinates
of B read:

e inS: (x9,x}5) = (b,0) — the event at the x0 axis,
o wS: (xf,x)=(a,—Bd).

The minus sign reflects the fact that S drifts with relation to S’ in
negative direction of x'! axis. Thus x} < 0 gives

Invariance of the interval As?; leads to the equation b* — 0% = a'2 —
(—Ba’)? which has solution

b=4/1-p% = %a’. (1.19)

The observer in S’ claims that the clock in S is running slow. This result is
symmetric with the previous one in the following sense

b a
9 _ _gp_®
a 1 ’B_a

which means that none of the inertial observers is distinguished.

Proper time

A worldline of any inertial observer is plotted as straight line on the
Minkowski diagram. The length a segment with endpoints p and g
divided by the speed of light has interpretation of a time interval that
separates the events p and 4. In the limit g — p this segment became
infinitesimal and its length is given by a differential expression (the
line element) which has the form %\/@ In the reference frame S’ this
interval is equal to

dt' = %\/ds2

where dx" = 0 because S’ is a rest frame of the inertial observer.
If the observer moves with non-constant velocity then at each point

Figure 1.21: Time dilation according to
the observer S'.

Clocks in drifting reference fra-
me S’ are running slow accord-
ing to external observer S

The instantaneous rest frame
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at the world line its own reference frame coincides with one infinitely
many inertial reference frames. Such a reference frame is called the in-
stantaneous rest frame (IR). The time which shows a clock of the observer
that moves along the (curved) worldline is called its proper time and it
is denoted by . The differential of the proper time is directly related
with the line element in Minkowski spacetime

dr = %vdsl

The infinitesimal length of the world line of such an observer is equal
to cdt. Note, that there is no proper time for photons because of ds? = 0
(there is no rest frame for photons). Let x' = x/(t) be parametric
equations of certain worldline

ds? = (dx°)2 — (dx)? = (1— ClZV2)(dx0)2.

Thus dt = /1 — ,B(t)zdt.The parameter T can be obtained as follows

T(t) = /Ot dt'\/1— B(t')* + const. (1.20)

This function can be inverted (it is strictly increasing) and so one
gets t(7). Usually we shall assume from the very beginning that the
world line of an observer (e.g. point-like particle) is given by a set of
four functions of T i.e. x* = x#(7). A world line which connects events

A and B has
tp >
g — Tg = dtr/1 — B(t)” < tgp —tq.
soTa= [ 1B <ts—ta

This result shows that a clock in IR runs slower than in any other inertial
reference frame.

Let us consider two observers: inertial and non-inertial one. The
event A in Figure 1.22 is a point at which both observers occupy the
same position and their clocks are synchronized. One can alternatively
say that they have equal age (that is why they are called twins). They
follow different world lines such that they meet again at B. At the
instant of time when they encounter the clock of the observer which
was moving along the curved world line is late comparing with the
other clock. This phenomenon is called a twin paradox. The paradox
term associated with this thought experiment comes from the fact that
one could (wrongly) expect that the situation is symmetric and the
twin observers would have the same age when they meet whereas their
actual ages are different. The solution of the paradox comes from the
observation that there is no symmetry. One of the observers accelerates
whereas the other one moves with constant velocity.

Proper time

Figure 1.22: The twin paradox. World
lines of two observers with common
events A and B.

Twin paradox: two different
curves with ends on the same
pair of events has in generality
different lengths. Length of the
curve is proportional to proper
time of observers.
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Four-velocity and four-momentum

Let x¥(7) be components of four-vector which describes position of the
particle in Minkowski spacetime in certain inertial reference frame S.
Equivalently, we say that x# = x#(7) is parametric equation of their
world line.

Definition. The four-velocity is defined as a derivative with respect
to proper time. It has components

_dxt

ut = = (1.21)

This four-vector is tangent to the world line of the particle. The compo-
nents (1.21) are of the form
dt o dxtdr ,
0 i i
W=cf=eplt)  ui= T =0l (r)
which gives
ut — (ye,yo').

The four velocity has components u’* — (c,0) in the reference frame
IR of an accelerated (non-inertial) observer. A relativistic square of the
four-velocity is a Lorentz scalar which takes the value

utuy, = 2.

Certainly this is a time-like four-vector.

Let us consider a massive particle. Such particles move with sub-
liminal velocity and so they have four-velocity. We shall define their
four-momentum.

Definition. The four-momentum of a massive particle is a product of
the mass and its four-velocity

pt = mut — (ymc,ymo')

where

o, = m>c?. (1.22)

The components p!, p?> and p® of the four-momentum constitute a
relativistic generalisation of the standard (three-)momentum compo-
nents. The meaning of the component p® can be established from small
velocity limit v < c. The Taylor series expansion gives
172 1 1 E
0_ _ 2 2 —
p° = mc {1+§C—2+...} = {mc +§mv +... =

We recognise the term %mvz which is non-relativistic kinetic energy

of massive particle. It suggests that py is the energy of the particle
divided by the speed of light. The constant term mc? has interpretation

Four-velocity

Four velocity is a time-like four-
vector

Four-momentum of massive par-
ticles

Interpretation of component po
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of energy which the particle has at their rest frame. Such term is absent
(irrelevant) in classical mechanics because the Lagrangian of a particle
is determined up to constant term. The expression (1.22) gives

E? = m?c* + 62p2.

It shows that square of relativistic energy is proportional to square
of three-momentum. Any relativistic quantum theory that describe
elementary particles must be consistent with this relation.

The four momentum can be also introduced for photons. It is light-
like four-vector with components

E E
Pt — <;, ;ﬁ> where a-n=1 (1.23)

Note that in quantum mechanics energy and linear momentum of
photons are given by

E=hw p =hk
what leads to dispersion relation

E? 2 w? 2

— = = — = k“.

2P c2
This relation, which is present in quantum mechanics, reflects relativis-
tic character of relation energy—- linear momentum for photons.

Four-acceleration

Definition. The four-acceleration is a second derivative of x* ()

d?xt dut
T T (29
where u# — (¢, yv). It has components
dut dy d do
I — ( d’)’ dZ +7E> . (1.25)

The derivatives (1.25) have the explicit form

dv dtdv
g arar Y
dy _dtdy _ 1 —28 _LlagdB_1
dv ~dcdr 7 [2(\/7132} B =
what gives
at — ( YB-9), Y0+ (B v)ﬁ) (1.26)
= (8 1 p2)5+4(B- 9)B)
=" (B9, B x (3% B)). (1.27)

Relativistic relation between en-
ergy and linear momentum

Four momentum of photons can
be introduced in spite of lack of
proper time
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The velocity vanishes B = 0 (y = 1) in IR frame of the accelerated
observer, however, the acceleration in this frame o is different from zero.
It gives

d /
at" — (0,9')  where ¢ := dit)’ (1.28)
The Lorentz scalar a'a, reads
do'\?
atay, = ata, = — <dit]’> < 0. (1.29)

It allows us to conclude that the four-acceleration is a space-like four-
vector. Note that the acceleration has no absolute character in special
relativity i.e.

dv’ | do

dar 7dt

1.3 Lorentz transformations

A desired transformation that relates any two inertial reference frames
must have the form which guarantee the invariance of the spacetime
interval. In this section we shall restrict our attention to coordinate
transformations

i 1

Xt = (20, 21, x%, x°)

called also passive transformations. Thus two sets {x*} and {x'*} are
collections of coordinates describing the same event in two different
inertial reference frames.

In some physical problems, for example in the literature devoted to
physics of elementary particles, it is commonly accepted to use active
transformations i.e. transformations that act on four-vectors (e.g. four-
momentum) mapping them on some other four-vectors. For instance a
four-momentum of an elementary particle at rest is mapped by certain
boost transformation on a four-momentum of an elementary particle in
motion.

For instance, translation

X't = xt 4+ a¥, (1.30)

where a# are constant Cartesian components of a four-vector, is a
coordinate transformation that preserves the line element.

All other transformations which preserve the line element and that
are not of the form (1.30) are called Lorentz transformations. The Lorentz
transformations map a zero four-vector on a zero four-vector.

Space-like character of four-
acceleration

Translation
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General condition

A general Lorentz transformation is formally a transformation between
coordinates so it can be written in terms of elements of the Jacobi
matrix’

_ox't
v = ax]/ .

" (1.31)
The Cartesian components dx* of the infinitesimal four-vector of posi-
tion in the reference frame S and their components dx’* in the reference
frame S’ satisfy®

dx'® = LF dx". (1.32)

The transformation (1.31) must be global so it should contain only
constant parameters. The linear element is of the form

ds? = g(dx,dx) = ndxdx’ (1.33)

where 7, stands for Cartesian components of the metric tensor in
Minkowski spacetime. Components of the inverse tensor are obtained
from general condition 7/#*1,, = &),. Note that components of both
tensors coincide in Cartesian coordinates i.e.

nv

N = diag(1,-1,-1,-1) =y

The condition of the invariance of a linear element, ds’2 = ds?, can be
written in the form

v (L ydx®) (L”ﬁdxﬁ) = iyaﬁdx“dxﬁ.

This condition must be satisfied for any dx*. It is possible if

Lﬂtx Lvﬁ’hw = TaB (1.34)

i.e. when transformation (1.31) is such that it preserves the components of
the metric tensor. It means that universal value of the speed of light in
any inertial reference frame is geometrically represented by condition
of invariance of the interval and algebraically by condition (1.34). Thus

we have
! _ 12 _ 4.2 Horv —
c=c¢c <« ds” =ds & Lol gt = 1ap -
postulate geometric condition v

algebraic condition

The expression (1.34) can be written in the matrix form. We define two
matrices with elements given by components of the Lorentz transfor-
mation and components of the metric tensor

L:=1[L"), 7= [l

5 We stress that according to adopted here
convention for elements of the Jacobi ma-
trix J¥, = gi(,’: the Lorentz transforma-
tion introduced in (1.31) correspond with

elements of the inverse Jacobi matrix

o't "
T o TR

gh*.

¢ Although in this section we consider
dx" as components of contravariant vec-
tor dx*e, € T,M the transformation rule
(1.32) of these components has formally
the same form as transformaton of differ-
ential forms dx! € T; M.

Algebraic condition defining
Lorentz transformations (ten con-
straints)



26 LECTURE NOTES ON CLASSICAL ELECTRODYNAMICS

In order to call a given element of the matrix we shall use notation

DY @

The left index y numbers lines of matrices and right index v numbers
theirs columns. The transpose matrix LT is such that its elements are
given by elements of the Lorentz transformation (LT)", := LV u- The
condition (1.34) takes the form

(235

where multiplication of matrices has explicit form?”
(ETAL)ap = (LT (Do (L) = L L’ .
Multiplying the condition (1.35) by L7~! from the left we get equation

(L~ 'Ll =1L

La~7 't =571, (1.36)

The condition (1.36) says that Lorentz transformations preserve the

which implies that

inverse metric tensor. Left hand side of this equation has the from

#A17T Hoa—1 FT\E _ 1M
(LA~ 'L = (D) a (gL = LV ap*PLY .

Thus using index notation one gets

L, L ﬁq“ﬁ = (1.37)

Conditions (1.35) and (1.36) are equivalent.

Lorentz group

An important fact about Lorentz transformations is that they have
mathematical structure of group. For further convenience we shall recall
definition of abstract group.

Definition. An abstract group G is a set of elements furnished with
composition law (or product) defined for every pair of elements of G
and that satisfies:

(a). if g1 and g are elements of G, then the product g1 is also an
element of G (closure property);

(b). the composition law is associative, that is (g192)93 = §1(g243) for
every g1, §2 and g3 € G;

(c). there exists an unique element e in G called identity element such
that eg = ge = g for every g € G;

Condition satisfied by Lorentz
matrices

7 Note that when indices represent lines
and rows of matrices then they might be
on the same level. What really matters
is their positions as number of row and
number of column.

Alternative form of condition
that defines Lorentz matrices

Abstract group
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(d). for every element g of G, there exists an unique inverse element,
denoted ¢!, such that g7 lg = ¢¢~ ! =e.

In order to show that Lorentz transformations form group we shall
check if they obey all necessary conditions (a-d). The symbol L is
adopted for denoting the Lorentz group.

Ad. (a). Let us consider two successive Lorentz transformations Composition rule
dx" = (Ly)Y ydx*, dx'"" = (Lp)V,dx".
A resultant transformation can be cast in the form
dx"t = (L), (Ly)" ydx* = (L) ydx” (1.38)

i.e. the result of two consecutive Lorentz transformations can be rep-
resented as a single Lorentz transformation (L3)" 1- The composition
law (1.38) can be represented in the matrix form

Ly = L,L;. (1:39)

Thus consecutive changes of inertial frames can be represented by
multiplication of respective Lorentz matrices. The result of any such
multiplication is another Lorentz matrix. The elements of Lorentz
group are given by Lorentz matrices and the composition law is just matrix
multiplication. The closure under multiplication of matrices means
that L1 € £ for any i, L, el

Ad. (b). The product of any three matrices is associative so certainly Associativity
holds for the Lorentz matrices.

Ad. (c). The unit element of the group is represented by the identity Unit element
matrix

e=14 (1.40)

i.e. the Lorentz transformation which does not change coordinates
associated with given inertial reference frame.

Ad. (d). The existence of the inverse Lorentz matrix follows from non- Inverse element
vanishing of the determinant of Lorentz matrices. Taking determi-
nant of both sides of relation (1.35) we get det LT det7j det L = det#
what results in (det [.)> = 1 and so det . = 41. The inverse Lorentz
matrix can be obtained directly from (1.35). Multilpying this relation
from the left by 7/~ and from the right by L~! one gets

Lt =7~"L" (1.41)

which means that with any matrix L there is associated the matrix
L=1 such that

~

L' =14=LL"1
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Note that the equality L =1L = 1, is consistent with (1.35)

whereas the equality LL~! = 14 is consistent with (1.36)

Relation (1.41) can be written in the index notation

(B = BT D)o = 1Lt

and thus

(iil)”v = WWL‘BaWﬁv = Lvy (1.42)

Note that rising and lowering the indices in (1.42) is (a convenient)
abuse of notation because the Lorentz matrix is not a tensor.

The relation (1.36) can be also written in terms of the inverse Lorentz
matrices. Multiplying it by L1 from the left and by (LT)~! from the

right we get expression

L—lﬁ—l(i—l)T — ’7'\—1
which lhs is given by
B P (RHDP = () B (L) = L Ly

Thus

L'Lg"n* = (1.43)

Classification of Lorentz transformations

Lorentz transformations can be classified in dependence on the sign of
the element L) and the value of determinant of the Lorentz matrix L.

Since (detl.)?> = 1 then determinant of the Lorentz matrix takes
one of two possible values detl. = +1. Setting « = 01 8 = 0 in the
condition (1.34) we get

3
(L%)* =1+ ) (Lp)?
i=1
which gives LOO >1or LO0 < —1. Transformations with LOO > 1 are
called ortochronus L1 (preserve direction of time) whereas L% < -1
are called anti-ortochronous L. All proper transformations £ are given
by det L = 1 whereas improper ones £_ have det L = —1. Table below
shows classification of Lorentz transformations.
Note that only proper ortochronous transformations £T+ form a
subgroup because they contain unit element (an identity transformation).

Elements of the inverse Lorentz
matrix

8 When adopting the symbol L,” to de-
note elements of the inverse Lorentz Ma-
trix we must by quite careful with trans-
position of the Lorentz matrix. Note that
(£)," # (LT)", because

L= 5]

whereas
— o't T B oxv
(L) = oxv T loxr |

Condition for Lorentz transfor-

mation in terms of elements of
inverse Lorentz matrix
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19 >1

0
19 < 1

detl = +1 Ll boosts, rotations

Ei total reflections

detl. = —1 | £T  spatial reflections

cr temporal reflecions

Reflections

We give here explicit form of Lorentz matrices that describe reflections
in Minkowski spacetime. Reflections are the simplest transformations
that preserve components of the metric tensor. There are three kinds of
reflections:

o temporal reflections T : (dx°,dx) — (—dx®,dx),
o spatial reflections P : (dx°,dx) — (dx°, —dx),
o total reflections TP : (dx°,dx) — (—dx, —dx).

Their Lorentz matrices have the form

B T e P A
0 |13 0| —13 0 |13

Rotations

Rotations in three dimensional Euclidean space E? are given by the set
of linear transformations x = R,-]»xf which are orthogonal (RTR = 13)
and have determinant equal to unity det(R) = 1. When considered as
transformations in Minkowski spacetime, rotations are given by the

Lorentz matrix
1

0

[l
I
o

(1.44)

=

which satisfies the condition ﬁTﬁﬁ =1ie.

We shall consider rotations of the coordinate reference frame i.e.
passive rotations. The simplest rotations are given by transformations
that leave invariant one spatial coordinate:
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Table 1.1: Classification of Lorentz trans-
formations

Reflections

Rotations as Lorentz transforma-
tions

Particular rotations
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/1

1. x'! = x!: rotations in the x?x*-plane (around the x'-axis), given by
Ri(¢1),
2. x'? = x% rotations in the x3>x!-plane (around the x-axis), given by
Ro(¢2),
3. x® = x3: rotations in the x!x2-plane (around the x3-axis). given by
Rs(¢3),
where
1 0 0
Ri(¢p1)=| 0 cos¢y singy (1.45)
0 —sing; cos¢y
cos¢p 0 —singy
Ro(¢p) = 0 1 0 (1.46)
singp 0 cos¢y
cos¢z  singz 0
R3(¢3) = | —sings cos¢s O (1.47)
0 0 1
According to Euler’s theorem any rotation can be expressed in terms Euler angles

of three Euler angles. The Euler angles gives three consecutive rotations:

1. Rotation about the x*-axis represented by

cosax sina 0
R3(a) = | —sina cosa 0 |. (1.48)
0 0 1

The x! and x? axes are denoted by 1’1 and x'? after rotation, see
Figure 1.23, and they point out in direction of versors e} and e):

e] =cosae; +sinaep, e, = —sinae; +cosaey, e = e3.

2. Rotation about the x'!-axis represented by

1 0 0
Ri(B)=| 0 «cosp sinB |. (1.49)
0 —sinf cosp
This transformation gives x> — x"? and x”® = x> — x, see Fig-
ure 1.24. New axes point out in direction of versors e}’
el =e|, e)=cospe)+sinPe;, ej =—sinpe)+ cospe;.

Figure 1.24: Rotation about the x-axis.



Rotation about the x"3-axis represented by

cosy siny 0
R3y(y)=| —siny cosy 0 (1.50)
0 0 1
After rotation, see Figure 1.25, new axes x’!, x"”2 and x""" point out
into directions given by versors e:
e/’ = cosye] +sinyey, ey = —sinye] +cosye, ey =ej.

Composition of all three consecutive rotations gives the following

rotation matrix

R(a, B,7v) := R3(7)Ry(B)Ra ()

where

COS & COs 7y — cos Bsinasin 7y

cos 7y sina + cos & cos Bsin 7y
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Figure 1.25: Rotation about the x"?-axis.

(1.51)

cos & €os 3 cosy — sina sin 7y

R(a,B,7v) = | —cosBcosysina — cosasinvy
sina sin B

—sinasin 8

sin Bsiny
cosysinf |.

cos

It gives transformation from the reference frame {x'} to reference
frame {x"}. Let us denote X' = x”"" and E; = ¢/"". Any vector x € E3
can be written in the form

x = x'6; = X'E, (1.52)

where

>
N
I
>~
=
N
x
R‘

E, = ej(R_l)jk = éj(RT)jk-

General form of Lorentz transformations

In this section we shall analyze the form and physical interpretation
of Lorentz transformations.? Let us consider transformation from the
inertial frame S to another inertial frame S’. The transformation of
coordinates x'* = L",x" have the explicit form

X0 =10x0 + Lojxf and X' =L 2O+ L ]-xj. (1.53)
Since L%, # 0 we get

K0 = L (x’o — L0 <x7) )
LOO ]

Plugging this expression into the second formula (1.53) we find

L o LPL0
¥ = CLTZI" + (L'j - 0 L) o (1.54)

9 See the original text: H. Arodz, Didac-
tic derivation of the special theory of relativ-
ity from the Klein-Gordon equation, Eur. J.

Phys. 35 (2014) 055015
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If the material point remains at rest with relation to the reference frame
S i.e. its spatial coordinates x' are fixed, then a change of its spatial
coordinates x” as the function of time in the reference frame S’ has
origin in relative motion of frames S and S’. The expression (1.54) gives
the components of the velocity of the reference frame S with relation to
SI

L
T
L%

w'i=c

(1.55)

We shall repeat these steps for the inverse Lorentz transformation
x# = L,"x" i.e. transformation from S’ to S. It has the form

=L+ L% and ¥ = L0+ L
Note, that expression (1.42) implies that
Loo _ UO“LﬁMﬁO _ UOOLOOUOO _ Loo £0

what allows to divide by L,°

, L. o L L0\
x’—cLOOtJr(le 07 ) o, (1.56)

If now the material point remains at rest in the reference frame S’ then
x'l are fixed numbers. The change of its coordinates x' in function of
time t in the inertial reference frame S has its origin in relative motion
of Sand S’. According to (1.56) the velocity of the frame S’ with relation
to S has components

o= = —c (1.57)

where we have used Loi = ﬂi“Lﬁaﬂﬁo = —61-]-L0]-;700 = —LOZ.. Note, that

the generic Lorentz matrix (L), is not symmetric. It follows that in

general o' # —w'". The equality takes place for some special cases.

This will be clear from subsequent considerations. Squares of velocities
read™®

010 o
vv‘:ch iL i /iw/i:CZLloLlo_
(L%)? (L)
One gets from (1.37) that L% L%, = (L°)* — 1 and similarly from (1.34)
that L jL' ; = (L°,)? — 1. Plugging these results to (1.58) we get

- 1 .
v = 1— —— | =o' (1.59)
( (Loo)2>

Some important conclusions can be drawn from (1.59).

(1.58)

The velocity of the reference
frame S with relation to S’

Equality L, = L%,

The velocity of the reference
frame S’ with relation to S

The generic Lorentz matrix is not
symmetric

°Here ) ; v'v' = v'v' etc.

Equality of squares of velocities
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1. First of all, the equality of squares of velocities v'v' = w''w’ and not
their components, vt #+ —w' i means that vectors v and w’ form an
angle different from 7.

2. Second, the fact that (L°))> > 1 implies that |[v| < c and |w'| < c.

The existence of velocity v which has modulus smaller that the speed Subluminal character of relative
of light c is a consequence o formulas x"* = L¥ xV and L¥,L" pllpv = velocities
Nap-

In further part of the text we shall present explicit form of elements of the
Lorentz matrix.

e The form of LO0 follows directly from (1.59) Element LO0
LOO = +v (1.60)
where
— e BB B
= =5 = |B|, =
e The element L° j can be obtained from (1.57) and it reads Element L° j
0. — j
L i= Fvp. (1.61)
e The form of element L/ j follows from expression (1.34) with a =7 Element L/ j
and g =j

070 k 1k
Plugging the above results we can cast it in the form
LLE = 6+ BB (1.62)

There can be associated a square 3 x 3 symmetric matrix with ex-
pression (1.62). We define three by three dimensional real matrix A
which has elements equal to expressions L* ) Le. Definition of (H )ij

& 71k
(H)kl «-— L l'
The expression (1.62) written in matrix form reads

ATA =13 +*82 8.

According to polar decomposition'® of matrices any three by three 1 Polar decomposition can be prrformed
matrix can be written as a product of an orthogonal matrix R i.e. ff’f complex matrices Z = UP where
ST 5 i oA . K U™l = 1 and P is positive-semidefinite
R'R = 13 and an symmetric matrix A with non-negative eigenvalues. hermitian matrix. The matrix P is unique.
Thus plugglng expressions Denotting z := detZ, r := detP and

¢'? ;= detl] we have z = re'?.

A=RA, H"=ART

into (1.62) one gets
Ny =6+ 7B (1.63)
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B is an eigenvector of the matrix A? associated with the eigenvalue
2.

7
N = B+ = (147701 ) = 720p.
We can derive explicit form of the matrix A assuming the ansatz

Ajj = adi; + bp'p/

where a and b are two free coefficients. Then taking the square of A
one gets
NG = Dby = a*5ij + (2ab + b* %) B/, (1.64)

Comparing (1.64) with (1.63) we get two equations
=1 and (17%>b2+2ab772:0,
v

They have solutions 4 = +1 and b = %(i’y —a). Plugging

expression for b one gets'> 2 We do not plug explicit value of a = +1
in order to avoid confusion with another
,YZ o (not related with it) sign “4” in expres-

Ai]' = ll(si]‘ + ﬁ (’)’ + {1),31,3]. sion for b.

It leads to expression
, , 2 . A
M = ap' £ B (rFa)p = =7p (1.65)

N——
1

independently on the value of a. The negative sign must be rejected
because Ai]' has, by definition, non-negative eigenvalues. We are
left with two values of 4. To get the correct solution we observe
that in the limit B — 0 the transformation must tend to the identity
transformation. It means that only a = +1 is correct. Finally we get

i

ﬁ_z ! Bipl. (1.66)

2
Bij =0+ PP =0+

Thus we have the final form of L i= RixAxj, where Ry is an orthogo-
nal matrix RTR = 13 with (det R)? = 1. The matrix R gives rotations
for det R = 41 and spatial reflections for det R = —1.

e Expression for L o can be obtained from (1.37) for y =0 and v = i. Element L' 0
It gives L0 L% ) — LOjLij =0 and so

o LLY (Rid) (B
Ly=—t=—" = —yRyp* (1.67)
LY +y

where we have used (1.65).
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Summarising, we get that the Lorentz matrix*3 has the form

, tr | TP

(L)Hv = ﬁ
—YRiB* | Rixdyj
+1|0 7 \ B
0 |d — YR B* ‘ Ry
+1]0 1‘ 0 o ‘—7 i

= P (1.68)

0 | d 0 ‘ Rik B ‘ Aj

The matrix product (1.68) shows that the general Lorentz transfor-
mation can be decomposed on temporal reflections, rotations/spatial
reflections and boosts. We define two matrices

) il‘ 0 1‘ 0 +1]0
0 .= = (1.69)
0 ‘13 0|R 0 |R
and
) 0% —B"
Av) = (1.70)
7B | L+ 1w B

where O is a four by four orthogonal matrix, orTo = 14, and A is
symmetric. A(v) represents a transformation that relates two inertial
reference frames that move with respect to each other with constant
velocity (boost transformations). The inverse boost transformation is a
boost with inverted velocity

A~ (v) = A(—v) (1.71)
where B = %. The general Lorentz matrix is the matrix product
L = OA(v). (1.72)

Expression (1.72) is called polar decomposition of the Lorentz matrix.

Relativistic composition of velocities

Let us consider composition of two Lorentz boosts parametrized by
velocities v; and vy. We take O = Oy = 14 so

tl = [\(’ZJl) and I:z = A(Z)2).

3 The “£” sign in (1.68) has origin in
(1.60) and (1.61).

Decomposition of the Lorentz
matrix on temporal reflections,
rotations/spatial reflections and
boosts

The orthogonal transformation

The Lorentz boost matrix

Polar decomposition of the
Lorentz matrix
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The resultant Lorentz transformation is given by a matrix which has
the general form [ = [,L. It can be written in the form

A(v2)A(v1) = OA(v) where v =v(vy,v1) (1.73)

i.e. the order of arguments in v(-,-) is exactly as in the product of
matrices Ay (-)A1(+). The orthogonal transformation O is not an identity
transformation if v; and v are not parallel. The orthogonal matrix O
must be some function of velocities v; and v, i.e. O = @(vz, v1).

The matrix which represents composition of boosts is of the form

72 ‘—vzﬁg % ‘—’nﬁ{

A(vp)A(vy) = - -
—7282 ‘ Ay -7B1 ‘ M

T2+ B1-B2) | —11m2Bf — 12BiA

—1172B2 — MB2B1 | 1171282 ® B1 + Aoy

(1.74)

On the other hand, according to (1.68), this matrix must have the form

(1.75)

where B = 2, v = (1 — p2)~1/2. The minus sign, which corresponds
with anti-orthochronous transformations, was excluded in (1.75) be-
cause we consider a composition of two orthochronous transformations
tl and z,z.

In order to get the resulting velocity v(vy, v1) and the factor y = y(v)
it is enough to study the first line of matrix equality (1.73). Thus,
comparing (1.74) and (1.75) we get

01 - 0
T=m72 (1 + 5 2) (1.76)
and
(17287 + 12BIMT i { 14 }
= = +—A
A Y Y A T 1h2
1172 [ B2 ( 71 > ]
=2 P2y (g T g, : s
- {71 P 1ﬁ1 B2 | B1 (1.77)

Multiplying both sides of (1.77) by constant ¢ we get relativistic law for
velocity composition

Composition of two arbitrary
boosts

O depends on velocities v; and
()

Relativistic composition of veloc-
ities



_ 1 () T U1
77(7]2, '01) - 1 + II]C~2U2 |:,)/1 + <1 + ,)/1 + 1 C2 'U] * (178)

We shall adopt a symbol “I” for denoting the operation of composition
of velocities

’vz F o = o(vy,01). ‘ (1.79)

The composition of velocities (1.78) has the following properties:

1. The resultant velocity, obtained from composition of two subluminal
velocities |v1] < ¢ and |v;| < ¢, is also subluminal, |v| < c.

2. It is noncommutative
(%] H 01 7& (41 H (%)

since v(+, -) is nonsymmetric in its arguments: v(vy, v1) # v(v1, v2).
3. It is nonassociative

(’01 F 172) = U3 75 (41 F (172 F ’03).

We shall discuss these properties below.

Ad. 1. The resulting velocity never exceeds the light speed. It can be
seen after taking square of expression B which yields'4

1 (1-p7)1-p3)
2 1 2
=1-==1—-—~ <7 1.80
F=1-0 1+ B1- o) (3-89
For fixed B2 < 1 and B; — 1 the expression (1.80) behaves as
2(1-£3)
IS 21— .
B (1+ Bpcosw)? (1=p1) (1.81)
fixed

and it has limit [32 =1 for f; — 1. A similar argument for B, fixed
and By — 1 gives the same result. In Figure 1.26 we plot the absolute
value of the resulting dimensionless velocity B for anti-parallel and
parallel velocities 81 and B,.

Ad. 2. Noncommutativity of the operation “-” has its origin in the
fact that

[A(v1), A(v2)] #0

for v; and v, not being parallel. If v; and v, are parallel'> then the
composition of velocities has the form

U1+ 7
- V10
1_‘_17

(1.82)

and it is symmetric in velocities, v(vy,v1) = v(vy, V7).
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Subluminal value of resulting ve-
locity

Noncommutativity

Nonassociativity

4 Exercise: Derive the expression (1.80)
by explicit squaring of both sides of
(1.77)-

5 Exercise: Find the form of (1.74) for
parallel velocities.
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Proof: We take B, = AB; what gives

b= g [t (1 )
_ %. (1.83)

Ad. 3. Let us consider a triple product matrices A. Since the matrix
product is associative then we get the identity

(A@1)A(w2) )Alws) = Aor) (Ae2)Aes) ).
Applying (1.73) to left hand side of this expression we get

LHS = O(vy,v2)A(vy F v2)A(v3)
= @(vl,vz)@(vl F oy, v3)f\ ((v1 F ) Fo3). (1.84)

The right hand side of the identity has the form

RHS = A(v1)O(v2,v3)A(vy - 3)
= A(v1)O(v2,v3) A~ (01) A(01) A - 03)
= A(v7)O(vp,v3) A~ (01)O (01,02 F v3) A0y F (v F ©3)).
(1.85)

The matrix
O(v1,v2)O(v1 - v2,03)

is orthogonal so the expression (1.84) constitutes the polar decompo-
sition of the Lorentz matrix obtained as triple composition of boosts
A(v1)A(v2)A(v3). On the other hand (1.85) is a polar decomposition
only if

A(v1)O(v2,v3) A7 (1)

is an orthogonal matrix. It turns out that for a general directions of
velocities v1, v; and vs this expression is not an orthogonal matrix. If it
was orthogonal then (1.85) would provide the polar decomposition of
the Lorentz matrix. Taking into account that the polar decomposition is
unique one would conclude that the composition of velocities would
be associative (arguments of Lorentz matrices i.e. (v1 - v2) - v3 in
(1.84) and v1 F (02 F v3) in (1.85) would be the same). If the matrix
O(v3,v3) would be an identity matrix then A(v1)O(va,v3)A~(v1)
would be also an identity matrix which would lead to polar decom-
position and associativity of composition of velocities. We conclude

A
\, /
0.0 00

(b)
Figure 1.26: The composition of velocities.

Expression = |B| where B = B(B2, 1)
for B1 and B being (a) anti-parallel and
(b) parallel.

Orthogonal matrix

Not necessarily orthogonal ma-
trix
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that the main reason of non-associativity of such decomposition is
the presence of matrix O(v,,v3). The presence of this matrix means
that, in general, composition of two Lorentz boosts is not a boost.

Generators of the Lorentz group

Proper orthochronous Lorentz transformations constitute a subgroup (we
shall call it “the Lorentz group”) of the most general Lorentz group. It
can be verified by checking all necessary conditions, namely,

1. ﬁzﬁl S 51, for ﬁl, ﬁz S £1;

A A N

s(Laly) = (Lsla)Ly;

N
[l

3. there exists an unit element e = 1y;

4. for any element L € ET,_ there exist exactly one element .~! such
that L1L = LL~1 = 1,.

The Lorentz group is a special orthogonal group denoted by SO(1, 3).
It is an example of Lie group (continuous group). Each element of this
group can be written as the exponential

L=exp(+Q) = i %(iﬂ)”. (1.86)

n=0
The (+) sign in (1.86) allows us to distinguish active (+) and passive
(—) transformations. In this section we shall consider only passive trans-
formations. Note that any finite Lorentz transformation can be expressed
as a composition of infinitely many infinitesimal transformations

AN T )
. O _ oot (O
LJ%<1in> *,}E&%WT
n 1(n_k+1)...(n—1)71
il e

(=)

I
=y
&5

R

[ ag!
=

(£O)*. (1.87)

In odder to study the Lie algebra associated with the group SO(1,3)
we look at condition (1.34) when transformations are infinitesimal. It
can be put in the form
LTh =#L™!
where LT = exp(—Q7) and L~}
expansions we have

= exp(Q)). Then plugging the series

v 1. A1
IL4fQT+§(QT)2+...}ﬁ:ﬁ{14+Q+

502 +...].  (1.88)

Composition of two boosts is not
a boost in generality

Restriction to E1

Composition of infinitely many
infinitesimal transformations



40 LECTURE NOTES ON CLASSICAL ELECTRODYNAMICS

Equation (1.88) must be satisfied in all orders of expansion. In the zero

order (1.88) reduces to equality /7 = #, so there is no condition on ).

Such a condition appears in the first order of expansion
NUOREN® (1.89)

where we have used the property /7 = 7. Thus (1.89) implies that

T

is an antisymmetric matrix @' = —w. This matrix has components

Wypy = 77}10400(1# (1.90)

Since the matrix @ is antisymmetric and real-valued then it has six
independent elements. These elements can be chosen in the following
way

@ Y2\ —¢3 0 ¢ (o0
P3| ¢ -1 O
and so the matrix () reads
0| ¢1 ¢ ¢
O=n"o= P 0 =ds g2 (1.92)

P | ¢3 0 —-¢
Y3 | =2 1 0

The matrix (1.91) can be represented in the form of linear combination
containing matrices associated with generators of boosts Ky and generators
of rotations J

3 3
O=—i) Kepe—i) Jc e (1.93)
k=1 k=1
There are three generations of boosts that are anti-hermitian, K = —K.

They have the form

Similarly, there are three generators of rotations that are hermitian,
Jt = J. They have the form

Antisymmetric matrix

4(4; U_s independent free pa-

rameters

Expansion on generators

Generators of boosts

Generators of rotations
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The Lie algebra of the SO(1,3) group is given by commutation relations
of generators Ji and K;:

i i) = ieijx (1.94)
i, Kj] = ieijKe, (1.95)
Ky, Kj] = —iejjJi- (1.96)

Any element Q) of the Lie algebra of SO(1,3) can be represented as
contraction of the matrix elements wy,;, := (&), where

woi = —wijp :=1; and  wjj = €;Pk- (1.97)

with elements of an antisymmetric matrix M*" = —M"# with compo-
nents being generators

MY = MO0 =K MY = ejjfi. (1.98)

Let us check:

1 . o1
SWuMH = 5 (woiM” + wigM™) + SwiiM?

N —

X 1 .
=ik + 5 Eijk€ijl il
——

26y
= ;K; + ¢ fi = iQ. (1.99)

The passive Lorentz transformations L = exp(—Q)) can be cast in the
form

L=exp (%wwMW> . (1.100)

Note, that elements of M*" are generators in the matrix realisation.
In order to get components of these generators we need another pair of
Lorentz indices. The generators M*" have Components16

(M) = 0 (M) o5 = i (8555 — 54a0)

then

(M;ll/)lxﬂ — i(;y"‘V(SE - W“V(sg)_ (1.101)

In particular, the generators K; and J; have the form
(Ri)* g = (MO = i35} — i0f),
() = (M) = 736} = 1175},

Lie algebra of SO(1,3)

¢ Exercise: check it by explicit calcula-
tion.

Components of Lorentz group
generators
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Plugging (1.101) into (1.100) one gets
exp (%wHV(M?‘V)“ﬁ> = exp <—%ww17"‘p((5g§:§ - (52(5}5))
= exp <—%17”‘P(wp,g - wﬁp))
= exp (=™ wyp) = exp (—Q"‘ﬁ) :

The commutation relations (1.94)- (1.96) can be represented'” by a
single commutator containing generators M""

’ [Myv, Mpzr] — i(ﬂVpM]uT _ HVPMVO + W}‘”MVP — ;7V‘7M’4p> . ‘ (1.102)

In order to proof this expression we express the generators M*" in
terms of their elements.
Proof.

(M, MP)) 5 = (MPMPTYS 5 — (M MY
= (M) (M) — (P (M)
= (n"1ex — "o (0 0f — "7 8)
— B8] — 88 (e - o))
_ i2(17ay17vp5g _ ﬂaynva(sg — eSS + 170(1/77;4052
ey + ﬂapnav(sg Pl — nwﬂpv(sg)
(MHT) g (M)
= i G0 — o 0)] i GOr0g ~ 77 03)]
i (i 0 — P ag)] i [y — oel].

(MP)*

(M0

B B

Boost in direction of the x'-axis

We consider the Lorentz boost with 1 = ¢ and ¢, = i3 = 0. Insuch a
case the boost transformation L(1) is generated by Kj and it reads

n

0 1/0 0
(o)
. . (—p)" | 1 0 0
Ly) = k) =1
() = exp(ipKq) ﬁEl | o olo o
0 0[0 O
10‘00 01‘00
0 1]0 0 | & ¢* 1 0/0 0 | & (=t
= Lo lﬁkv“L 0 2(212’))1"
0 0[0 0 [~ (2k)! 0 00 = (2k-1)!
0 0[0 O - 0 0/0 0 )—~——
cosh(yp)—1 — sinh(¢)

7 Exercise.

Lorentz algebra
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This expression is equal to the Lorentz matrix of the boost transforma-

tion in direction x!

cosh(y) —sinh(y) [0 0O
Lgy = | ZHh)_cosbiy) [0 0 ron
0 0 0 1

The parameter 1 is called rapidity and has following relation with the
velocity of the inertial frame S’ in S

B = tanh(y). (1.104)

One gets in this parametrisation

h(y) 1

cosh(y) = <o = =7 (1.105)
\/coshz(tp) — sinh?(y) V1-p

and
sinh(y) = tanh(y) cosh(y) = By. (1.106)

The presence of hyperbolic functions allows to interpret the Lorentz
boost as hyperbolic rotation in Minkowski spacetime.

The composition of two parallel velocities can be represented by their
rapidities. We choose axes x! and x/! in direction of velocities . The
composition of two successive boosts with rapidities ¢ and ¢, gives

da = LYy (o)dx'™ = Lo (92) L (r)dx” = LYy ()dx". (1.107)

which can be written as a product of two Lorentz matrices

L(w2)L(y1) = L(y). (1.108)
Equation (1.108) has explicit form
A -B 0 0 cosh(¢) —sinh(yp) 0 O
-B A 0 0 | | —sinh(y) cosh(y) 0 O
0 0 1 0 [ 0 010
0 0 0 1 0 0 0 1
where
A = = cosh coship, + sinh ¢y sinh ¢, = cosh(yy + ¢7)
B = sinh; cosh iy + cosh ¢ sinh P, = sinh(¢1 + ¢7).

It allows to obtain the function ¢ = ¢(¢,91). We conclude that
composition of two boosts in a given direction results is an usual sum

(109

of their rapidities

Rapidity parameter

Composition of parallel veloci-
ties

The addition of rapidities
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It allows to obtain the resulting velocity g =
velocities B tanh(¢;) and B = tanh(y,)

sinh 11 cosh ¢, + cosh ¢y sinh ¢,

tanh(y) in dependence on

p = tanh(y1 +¢2) = cosh 1 cosh ¢, + sinh ¢y sinh ¢
_ tanhypy +tanhyy _ Bi+ P2 (1.110)
14 tanh ¢y tanhyp, 1+ BB .

Rotation in the x*x3—plane

Let us consider a rotation generated by f;. The parameter of this

rotation is denoted by ¢; = ¢. The other parameters are set zero,

¢2 = ¢ = 0. The exponential form can be transformed in following

way
0o o0fo o \"
> 0 00 O
L(¢) = exp(i = .
(¢) = exp(ig]1) n;"' 0 0lo -1
0 0j1 O
(1.111)
Since the matrix
A -1
C::((l) 0 > (1.112)
has properties C?* = (—1)K1, and C%*~1 = (-1)¥1C
one gets
0 0|0 O
oo 0 0/0 0 |&, oy*
Lo =1t | 501 0 k;( Y
0 0|0 1 )>—>~"""
cos(¢)—1
0 0lo o chio(*UI%
0 0j0 © o1 lo ¢!
ool =1 Z(l Gk —1)1
0 0|1 O
—sin(¢)
The the Lorentz matrix L(¢) reads
1 0] o0 0
R 01 0 0
L(¢) = - . (1.113)
0 0| cos¢p sing
0 0| —sing cos¢

The parameter ¢ has interpretation of angle of rotation in the x?x*-plane.

Note that the composition of two rotations in the x?x3-plane given
by matrices L(¢1) and L(¢») is a rotation with matrix L(¢) such that

L(¢2)L(¢n) = L(9) (1.114)

The composition of velocities
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where ¢ = ¢1 + ¢». The addition of angles of rotations follows from

cos(¢1) cos(¢z) — sin(¢y) sin(¢a) = cos(¢y + ¢2)
sin(¢1) cos(¢z) + cos(¢1) sin(¢z) = sin(¢p1 + ¢2).

1.4 Poincaré group

Basic notions on the Poincaré group

The Lorentz group L is parametrised by six parameters. It does not
contain translations. The extension of the Lorentz group which includes
translations is called the Pioncaré group P. The contravariant compo-
nents a four-vector transform under the Poincaré transformation in the
following way

X' =LF x* 4ot (1.115)

where L « are components of the Lorentz matrix and a* are constant
components of a four-vector a. A given four vector x has components
¥ in S and x* in §’. When considering (1.115) as passive transformation
(our case) the reference frame S’ experiences translation by the vector
“—a”in S.

Each element of the Poincaré group P € P canbe represented by a
pair

P:=(L,a) (1.116)

where L € El is an element of the proper orthochronous group and
a € Ty is a constant four-vector (element of the translation group in four
dimensions). The composition of two Poincaré transformations can be
deduced from transformations of coordinates of reference frames S, S’/
and S”. Let x#, x'# and x""* be components of certain four—vector x in
the inertial reference frames S, S’ and S”. Components of x""# can be
obtained either from components of x"* or x#. One gets

X' = (P = (Py(Prx))! = ((PyPy)x)* (1.117)
where we have used notation®®

(Pyx)t = (ﬁn)”“x“ +ah

ie. Pyx represents transformation of components of a four-vector. One
gets from (1.117) that

X/ (L) o™ +af = (L) 2 [(L1)* 2" + af] + af)

(LoL)" x¥ + (ﬁz)”aa’i‘ + a;. (1.118)

Poincaré transformation

Figure 1.27: Henri Poincaré (1854-1912).

® When the Poincaré transformations act
in active way then P,x is a new four-
vector. In our case (passive transforma-
tions) the symbol P,x must be used care-
fully, otherwise it may be confusing.

Composition of Poincaré trans-
formations
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Expression (1.118) gives the following rule of composition of the Poincaré
transformations

’ (tz, az)(ﬁl,al) = (tztl, tzﬂl + ﬂz).‘ (1.119)

In order to show that the Poincaré transformations form a group we
have to check if they satisfy all necessary requirements.

1. The composition rule (1.119) assures that P,P; € P for any two
elements P;, B, € P.

2. The composition of any three Poincaré transformations is associative
Le.
P3(PyPy) = (P3P)Pr. (1.120)

Indeed, the Lh.s. of (1.120) reads

Ps(PyPy) = (L3, a3) (LaLy, Loay + )
= (L3lyly, Laloay + Laan +a3)
whereas the r.h.s. of (1.120) is of the form
Py = (L3La, Laas + a3) (L, a1)
= (ig,iztl, i3£2111 + 13112 +az).

3. The identity element is given by a pair

)

and it satisfies

x
=
I

(14,0)(L,a) = (14 L, 14a +0) = P,

(L,a)(14,0) = (L1y,LO+a) = P.

=)

e

4. The inverse element has the form

pli= (L7, - I:’la).‘ (1.122)
It obeys
PP = (L7, L7 ta)(L,a) = (L7'L, L7 ta— L7 1a) = (14,0) =,
PPt = (La) (L7, —L %) = (LL7Y, —LL 'a+a) = (14,0) =e.

Each element of the Poincaré group possesses unambiguous decom-
position into product of elements such that one of them belongs
to the four-dimensional group of translations (I4,4) € Ty and the
other one is an element of the proper orthochronous Lorentz group
(L,0) € /51. It can be written in the form

Composition rule

Associativity

Identity element

Inverse element

Decomposition on translations
and boosts
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’ (L,a) = (14,a)(L,0). ‘ (1.123)
Note that he order of elements does matter since

(L,0)(14,a) = (L, La) # (L, a).

The form of the decomposition (1.123) indicates that the Poincaré
group is a semidirect product of Ty group and El group. 19

The Poincaré group constitutes a very important concept in theoreti-
cal physics. It is a symmetry group of each relativistic field theory.

The Poincaré algebra

The Poincaré algebra is given by commutation relations involving genera-
tors of translations P¥ and generators of the Lorentz transformations
MM . The commutator [MM, MP?] is given by (1.102). We still need to
get commutators [P¥, P'] and [P}, M*"]. Note that although M*" can be
realised as a matrix (for each fixed y and v we have one such matrix) we
do not have a matrix form form for generators P¥. For this reason com-
mutators of generators are just Lie brackets — they are antisymmetric
compositions (but not matrix products) of these generators.

The infinitesimal Poincaré transformation for a = 0 (the Lorentz trans-
formation) has the form

(L,0) = exp (%wwM’“’) =1+ %wwM’“’ + O(w?). (1.124)

Pairs (L,0) can be identified with exponentials exp (%WW M;ﬂ/) because
they are two equivalent realisations of the abstract group SO(1,3).
Similarly, the infinitesimal Poincaré transformation for L = 1 (pure
translation) is given by

(1,a) = exp (ia,P*) = 1 +ia,P* + O(a?). (1.125)
Let us consider the following equality
(1,b)(1,a)(1,b) " = (1,a). (1.126)
For a and b being infinitesimal this equality takes the form
(1 +ibyP*)(1 + iayP*)(1 — ib,P") = 1 + iay P
The Lh.s. of the last equality reads

LHS = 1 + ibyP" + iayP* — ibeP” + i*byap P* PN — i2b,a) PP PV + O(b?)
=1 + i?bua, [P¥, P'] + O(b?).
The Lh.s. contains term proportional to b,a, whereas the r.h.s. does

not. Thus the generators of translations commute [P#, PY] = 0 which is
necessary condition for satisfying the equality (1.126).

The Poincaré group as a semidi-
rect product of Ty and £1

*9 For a direct product of groups it would
be (tz, az)(ﬁl,al) = (tzt],lll + 112) what
has no reflection in the composition rule
(1.119).

Composition of translations
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In order to compute the commutator [P*, M*'] we consider an ele- Composition of translations and
ment of the Poincaré group (L, La) which can be written in two equiva- boosts
lent ways

(L,0)(1,a) = (1,La)(L,0).
Multiplying by (L,0)~! we get
(L,0)(1,a)(L,0)7! = (1, La) (1.127)
Expanding Lh.s. of (1.127) up to linear terms in wy,, and a, we get
LHS = (1 + fwuyM") (1 +iayP) (1 — SwoapM*F)
=1+ia)\P" +W7W+ éwwap (MM, PP] + O(w?).
The rh.s. of the equality (1.127) reads
RHS =1 +i(La)*Py = 1 +i(8) + fwpu (MM)*,)a’ Py

=1+ia\ P + gapww,(iy’\"éz — 17)"’(5];)&

=1 +ia\P* + gapww[—i(n”f’P” —n"PPH)].
Comparing terms proportional to a,wy,, we get commutation relation

[PP, MF] = i(y"PP" — y"PPH).

Summarising, we have seen that the Poincaré algebra consists on the Poincaré algebra of generators of
following commutation relations the Poincaré group
[P*,P"] =0, (1.128)
[PP, MM] = i(ytPP" — 5P PH), (1.129)

[MFY, MP7] = i (" MP — g0 MY + gl MYP — g " MM) . (1.130)

1.5 Meaning of Special Theory of Relativity
1. New concept of space and

The Special Theory of Relativity is an extremely important achievement time

in theoretical physics. First, this theory has changed our way of thinking o
2. Unification of energy and mo-

about space and time. Time is no longer considered as a parameter, )
mentum in one structure

instead, it has been promoted to the status of coordinate. In this
sense, time is not absolute. In consequence, simultaneity became an 3. Unification of electricity and
observer dependent concept. Second, the theory of relativity unified magnethism

the principles of conservation of energy and momentum into one law -

conservation of four-momentum. Third, the formalism of the Special

Theory of Relativity allowed us for full unification of electricity and

magnetism. Electric and magnetic phenomena are manifestations of

the dynamics of a single structure — the electromagnetic field. Finally,

this theory gives the speed of light new status — universal constant.
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Exercices

1. Derive the Lorentz matrix for transformation describing uniform motion of
two inertial frames with parallel axes. The reference frame S’ has velocity
V = Veq with respect to S.

The coordinates x” and x! transform so we expect that Lorentz matrix
is of the form

(1.131)

h
(=}
I~
—_
S = O O
_ o O O

The metric tensor is preserved by the Lorentz transformation. It
gives three conditions

(%) —(L})? = 1, (1.132)
(LY)? — (L01)2 =1 (1.133)
Two first conditions can be solved immediately using appropriate
parametrisation
L% = coshy, Ly = —sinhy,
LY, = coshy/, L% = —sinhy'.

The last condition leads to tanh ¢’ = tanh ¢, which implies that
¢’ = 1. The meaning of parameter i can be obtained from world
line of the inertial observer S'. In its own reference frame the world
line is described by condition dx’' = 0. This condition can be cast in
the form
Llydx® + LY dx! = 0.
The world line of the observer S’ in the reference frame of the
observer S is given by dx! = Bdx". Plugging this expression to the
last equation we get
L

LT+'B:O = tal’lhlIJ:’B.
1

Note that

coshy _ 1 _ 1 =
\/Cosh2 ¢ — sinh? ¢ \/1 — tanh? ¢ V1-p

The remaining parameters can be obtained as follows

0 1

Llo = LO1 = —sinhyp = — coshy tanh¢p = —B.
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Finally we get the Lorentz matrix:

Yy By 00

. — 0 0

ap-| T 00 139
0 0 01

2. Find the general form of the Lorentz boost for velocity B = B'e;, where
i = {1,2,3}, generalising a boost transformation in direction of the x'—
axis.

First of all we note that the form of particular transformation suggests

that spatial components of the four-vector perpendicular to the
velocity vector does not change under the transformation 7.e.

dx"0 = o (dx® — Bdx|) (1.136)
dxm = y(dx) — Bdx") (1.137)
dx'| =dx; (1.138)

where B = |B|. Any vector dx can be decomposed on components
parallel and perpendicular to the vector B:

dx — ﬁ(dgz- B, Bx (t/i;zc xB)
dx dx |

(1.139)

Since Bdx| = B - dx then
dx"® = y(dx® — B - dx). (1.140)
The spatial part dx’ of the four-vector dx'* reads
dx' = dx| +dx/,
— dxil +dx,|
= y(dx) — Bdx") +dx
= y(dx) — Bdx") + dx — dx

= dx — yBdx" + 7 1(/3«dx)ﬂ (1.141)

P
The expression dx'* = L', dxv implies that
dx"® = 19,dx° + Lojdxj, (1.142)
dx" = L' ydx® + Li]-dxj. (1.143)
Expressions (1.140) and (1.141) can be written in the form
dx"0 = ydx® — ypldx,

dx'' = —yBidx + {(51-]- + %ﬁfﬁf} dxl.
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Comparing this with (1.142) and (1.143) we find that

LOO = Loi _ LiO _ _,)/ﬁl Ll] — 61/ + Y

0 0
', = Eo| L} )
Ly | T

3. Find the rule of composition of parallel velocities

BB (149

It is enough to restrict our considerations to a pair of coordinates

(xo, xl). The inertial reference frameS’ moves along axis x! with
constant velocity V. Let v = % be the velocity of certain massive

particle in S and v/ = daﬁ/,l its velocity in S’. The Inverse transforma-

tion is given by (L~1)¥, and it is of the form

dx® = 4dx® + yBdxt dx! = 4Bdx"0 + qdxL.

It gives

dx'! %4
dx? =« <1 +ﬁdx’0> dx0 = o <1 + C—Z) dx'°

n
dx1:7<ﬁ+dx >dx'0: 7

1370 - (V+7) dx"0

The velocity of the particle measured in S reads

U= Cdixl — M (1 145)
T '
This form formula is meaningful also for photons v/ = c. The photon

velocity in S reads
o V+ec

= =c.
v
1+ ¢
It reflects the fact that the speed of light has universal character.




Chapter 2
Maxwell’s Equations

The form of transformation which preserve Maxwell’s equations is not
straightforward from their standard (non-covariant) from. The transfor-
mation of field equations must be consistent with transformation rule
of electric and magnetic field. The existence of such transformation rule
is expected. For instance, electrically charged particles at rest in the
laboratory reference frame S are identified with sources of the electric
field (electrostatic in S). On the other hand, these particles remain in
motion in §’ and thus they form electric current which is the source of
magnetic field in §'.

2.1 Electromagnetic potentials

The set of Maxwell’s equations read

V -E =4mnp, (2.1)
1 47
V X B - EatE == TJ, (2.2)
V-B=0, (2.3)
V X E+ %atB =0. (2.4)

It is known fact that for E and B given in terms of electromagnetic poten-
tials the sourceless Maxwell’s equations (2.3) and (2.4) have the form
of identities. The vector potential A is a vector field such that magnetic
field is obtained as B := V x A. The equation (2.3) is an identity,”
V- (V x A) =0, because it contains antisymmetric combinations of
symmetric second-order partial derivatives. The Faraday’s law (2.4) can
be cast in the form

V x (E+ iatA> =0.

This equation reduces to identity when expression E + %E)tA is propor-
tional to the gradient of certain function ¢(t, x). In order to establish the
correspondence with electrostatic potential we choose the minus sign in

* Independently on particular form of A.
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E+ %atA := —V@. The scalar potential ¢ depends on variables t and
x'. In some special cases it can be a function of only x' (electrostatic
potential). In terms of electromagnetic potentials one gets the electric
field strength and the magnetic field in the form

1
E=—-0A-Vg, (2.5)
B=V xA. (2.6)
The electromagnetic potentials possess the gauge freedom i.e. they can
be substituted by new potentials

1
¢ =~ o A=A+ Vy (2.7)

leaving the fields unchanged ie. E' = E oraz B’ = B. The gauge
transformation (2.7) is the electromagnetic field internal symmetry.

Four-current

The density of electric charge p and three components of the electric
current density J' combined together

JH = (cp, ]i). (2.8)

transform as components of contravariant four-vector. This statement
follows from the fact that electric charge is invariant under the Lorentz
transformations?.

Let us consider static configuration of electric charges in certain
inertial reference frame3 S’. The electric charge density of this configu-
ration is given by p’ = gng where n is the concentration of electrically
charged particles in their rest frame. For simplicity, we shall assume
ny = const. According to the Lorentz-FitzGerald contraction the electric
charge density is higher by the factor 7y i.e. p = qng7y in the reference
frame S in which the configuration moves with a velocity v.

Moreover, the moving free charges contribute to the electric cur-
rent density J = gnoyv in this reference frame. It follows that J# is
proportional to a four-velocity u* — (yc,yv). It allows to conclude
that J# transform exactly as contravariant components of some four-
vector. If the electric charge configuration has some velocity in S then
its four-current has the form (2.8).

Note, that the four-current transformation law J’* = L¥,]JV can be
also deduced from the continuity equation dg(cp) + 9;]' = 0. This
equation describes the conservation of electric charge and so it must
have the same form in all inertial reference frames. The Lh.s. of the
equation of continuity can be written in two inertial reference frames
9,J™ = 9,]". Since partial derivatives transform as components of
covariant four-vector, then components of four-current density must
transform as components of contravariant four-vector.

SI

Figure 2.1: Spherical electric charge den-
sity o’ = gny at its rest frame.

* According to experiments hydrogen
atoms and deuteruim atoms are electri-
cally neutral. Protons and neutrons in
deuterium atoms interact via strong inter-
action what significantly increases theirs
kinetic energy. If the motion of the pro-
ton would have any affect on its elec-
tric charge then it would not be possible
the existence of neutral deuterium atoms.
Neutrality of the deuterium means that
motion of electrically charged particle has
no influence on their electric charge

S S

v
—

/

Figure 2.2: Electric charge density p =
gno7y at the laboratory frame. The charge
configuration has velocity v in this refer-
ence frame.

3 For instance, it can be represented by a
charged spherical conductor



2.2 Electromagnetic field tensor

We shall consider components with respect to Cartesian basis {e;}i—1 23
of electric and magnetic field and components of the vector potential

E — E, B — B, A — AL

Partial derivatives with respect to the coordinates xl,i=1,2,3, and
with respect to time t are denoted by 9; and d;. The gradient operator
has Cartesian components

V — al’.

For further convenience we define the symbol
19
Jdp 1= ——
07 cot

The set of derivatives of any function f(x% x) i.e. (dof,d1f,02f,05f)
transform as covariant components of a four-vector i.e.

a;:f - Lyvai/f'

Taking into account that function f is arbitrary we can write the last
formula in the form 8;4 =L, 0.

We shall assume that the sequence of four elements ¢ and A!, A2, A3
transform as contravariant components of a four-vector. Thus, we
denote

Al — (A, AT

where AV =g,

In order to justify this assumption we note that Maxwell’s equations
imply that the electromagnetic potentials must obey equations

F-Vg="T@),  @G-VIA=T] (o
where the Lorenz gauge condition* d;¢ + 9; A’ = 0 has been imposed.>

Since the d’Alembert operator 95 — V2 is Lorentz invariant and
the components (cp, | i) — JI transform as contravariant components
of the four-current then the sequence (¢, A’) must also transform as
contravariant components of a four vector. Note, that the Lorenz
condition is invariant under Lorentz transformations when A" =
LF,AY.

The covariant components A, — (A% —A') can be obtained from
contravariant ones by contraction with components of the metric tensor

Ay = 1, AY. Note, that expression Af appears in two different contexts.

1. Spatial components y = 1, 2,3 of the four-potential that differ from
covariant components A; = ;A" = —51-]-Af = —A'. In this case
the involved metric tensor is 77, because the four vector lives in the
Minkowski spacetime.

MAXWELL'S EQUATIONS 55

4 Ludvig Valentin Lorenz 1829 - 1891. In
the literature frequently confused with
Hendrik Antoon Lorentz.

51f the original potentials ¢’ and A" give
9r¢' + ;A" = f(t,x) then the function
x(t,x') which is a solution of equation
(83 — V2)x(t,x') = f(t,x') allows to ob-
tain new set of potentials ¢ and A’ that al-
ready satisfy the Lorenz condition. Note
that Lorenz condition do not fixes the po-
tentials completely. New potentials has
still gauge freedom given by functions x
which are solutions of the wave equation
(8 — V2)x(t,x') = 0.



56 LECTURE NOTES ON CLASSICAL ELECTRODYNAMICS

2. On the other hand, they appear as Cartesian contravariant compo-
nents A of the vector potential A. Such components are mapped on
the covariant components by the metric tensor of a Euclidean space
which has the form g;; = §;; in the Cartesian coordinates. It follows
that ©

A = 6;A = Al
Components of electric and magnetic field can be cast in the form
Ei = —aoAi — a,‘AO = aoAi - aiAO = FOi/ (2.10)
; 1 1
B' = Gijka]'Ak = —Eeijk(a]'Ak - akA]) = _Eeijkl:jk (2.11)

where, by construction, Fy; and Fj are antisymmetric expressions. They
constitute components of the electromagnetic field tensor (called also
electromagnetic strength tensor, Faraday tensor” )

F=Fyel'®e"

where

Fyy = 0,A, —dyAy. (2.12)

Components F,;, transform as covariant components of a second-rank
tensor because A, and d, transform as covariant components of a
four-vector. In terms of electric and magnetic field they read

FOi = Ei, F. = —Gl‘]'kBk.

ij (2.13)

In order get the second relation (2.13) we contract both sides of (2.11)
with the Levi-Civita symbol. It gives

1
7(Fah _Fba) = Fap-

| 1
—€uiB' = Se€ami€ijFix = §(5uj(5bk — Oakpj) Fi = 5

2

Covariant components of the electromagnetic field tensor can be identi-
fied with the following matrix

o| E! E2 E3
—E! 0 —B3 B2

Fw — _p2| B o g |’ (2.14)
—-E3 | -B*> B! 0
whereas the matrix
0| -E' —E* —E3
v, | E 0 —B> B (2.15)

E2| B3 0 —B!
E3| —-B2 B! 0

contains its contravariant components FF = 17”“7’]1//31:“/3.

In order to avoid confusion one could
define the four-potential as A" and pre-
serve the letter A’ exclusively for three
components of the vector potential. In
such a case A; = — Al where A' = A’ =
A;.

7 See Gravitation Charles W. Misner, Kip
S. Thorne, and John Archibald Wheeler.
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2.3 Covariant form of Maxwell’s equations

With help of the electromagnetic field tensor we can put Maxwell’s
equations in their covariant form.

* Gauss’s law for the electric field can be cast in the following form

47”]0 — 9, F"0 = 47"10.

0;E' = 4mp — 0,F0 =
o Ampere-Maxwell law can be also written in terms of the electromag-
netic field tensor

4 4

£ik0;BX —9pE' = — ' = =T —9gF° = — T,

——

9 (eiji BY)
which gives

9, F! = - J.
Thanks to tensor approach Gauss’s law and Ampere-Maxwell’s can
be wrapped up together in a single, frame-independent law First pair of Maxwell’s equations
4
9, M = T" . (2.16)

* Gauss’s law for magnetic field reads
9;B' =0 — 01Fo3 + 02F31 + 93Fpp = 0.
* Faraday’s law is of the form
£ijkd;E" + 0B’ =0

and it is equivalent to the following set of equations

32E3 — 83E2 + aoBl =0 02Fy3 + 93F0 + dpF3p =0
B3E1 - 81E3 + 8032 =0 — d03Fy1 +01F30 +9gFi3 =0 . (2.17)
01E2 —9,E' +99B% =0 01Fp 4+ 92F19 +9pF1 =0

Gauss’ law for magnetic field and Faraday’s law form the second pair
of Maxwell’s equations. They can be wrapped up together in a single

law Second pair of Maxwell’s equa-
9aFpy + 9pFya + 9y Fap = 0. (218)  fons
or equivalently as
Iafpy) =0
where |...] stands for anti-symmetrization of any group of indices.

In the case of three indices it reads
1
8[,XFM = ? (a,xl-“m + algny,x + a,yF,Xﬁ — 8513,” — aaF,yﬁ — a,yFﬁ“) .

The expression (2.18) is known as Bianchi identities in electromag-
netism. Indeed, for F,, given in terms of four-potential A, the
expression (2.18) vanishes identically.
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The Levi-Civita symbol

The second pair of Maxwell’s equations can be put in similar form as
the first pair. It can be done in terms of dual electromagnetic field tensorS.

First, we define the antisymmetric symbol in four dimensions

+1 for even permutation of 0123,
€pvap = e .= 1 for odd permutation of 0123, (2.19)
0 for repetition of indices

known also as the Levi-Civita permutation symbol.
In order to establish its transformation law we consider some general
transformation of coordinates

{xM} — {2} (2.20)

which, in contradistinction to Lorentz transformations, is not neces-
sarily globally constant. We assume that transformation (2.20) is a
diffeomorphism (invertible and has at least first partial derivatives).
The coordinates without prime are called “old” whereas those with
prime are called “new”. The Jacobian matrix J of the transformation
contains first partial derivatives and it has the form9

s [oxt s [ox
e laml =5

where the existence of the inverse transformation is assured by our

assumption about the form of the transformation. The upper index
numbers the lines of the matrix and the lower one numbers its columns.
The Jacobian determinant must not be zero

dxH 9xV 9x* 9xP

J = det(f) Cuvap3 70 dx/0 ax/l axlz ax/S # (2.21)
and 1
J 7= et ) = 5

The Levi-Civita symbol is not a tensor because it has not tensor law
of transformation. Its transformation law can be obtained from an
alternative expression for the Jacobian determinant

mvap 9x0 9x! 9x? 913

9 9x 9x 9x'P (222)

] =

where there appears a symbol €'**f with indices that label new coordi-
nates on the rhs of (2.22). Any permutation of two rows changes the
sign of the determinant (2.22). Thus we can write

omvap 9xf 9x7 Ix7 ox°

006 _
]6 ox'H ax/v ox'« axlﬁ

(2.23)

8 This object naturally appears in the ap-
proach based on differential forms

Permutation symbol

Diffeomorphism

9 We use convention in which the Jaco-
bian matrix contains derivatives of old
coordinates with respect to the new ones.
In such approach the Jacobian determi-
nant appears in the volume element. For
instance, when changing of coordinates
from Cartesian {x'} to polar {x"} ones
then

]Edefz ( YY) _

and so dxdy = rdrdg.



9x’® 9x'* 9x'w 9x'x
0xP 9x7 9x7 9xf

Contracting the equation (2.23) with one gets

50X/ 9x"* 9x'@ 9x'x
oxP 9x7 9x7 9x°

]epa’y /K/\(U)(. (2.24)

The presence of Jacobian determinant spoils the tensor law of transfor-
mation.”™® Similarly, taking arbitrary permutation of columns in (2.21)

and dividing by | we get

, 1 oxt 9xV 9x* oxP
P01 = TN 3275 97 927 9x0” (2-25)

In order to define the Levi-Civita tensor we observe that Jacobian
determinant of any rank-two tensor cannot be a scalar. In particular
we are interested here in the metric tensor. Its covariant components
transform under (2.20) according to

Ix* 9xP
S (') = axﬁaxﬁgtxﬂ(x) (2.26)

where x’ on the lhs is a function of x i.e. X' = x/(x). The formula (2.26)
can be cast in the matrix form

) =T"8)]. (2.27)
Taking determinant of both sides of (2.27) we get

g'(x') = Jg(x). (2.28)

where
g(x) :=det(g(x)),  &'(x') :=det(¢'(x")).

The signature™ of the quadratic form cannot be changed by transforma-
tion of coordinates hence the sign of the determinant must be consistent
with the sign of determinant of metrics in any frame. In particular, we
know that in Cartesian basis det(77) = —1 so g(x) < 0 and ¢'(x’) < 0.
Multiplying (2.28) by —1 and taking the square root of its both sides
we get

—g'(x") = sgn(]) ]/ —g(x). (2.29)

Next, dividing the lhs (rhs) of equation (2.24) by the lhs (rhs) of (2.29)
one gets expression

1 A — sign(])

V7

Ly 0x" ox" 9x'w 9x'x
76 S —
Vg 9xP 9x7 9x7 9x?

which is the pseudo-tensor transformation law. When restrict consid-
erations to transformations with sign(J) = 1 one gets that expression

l ‘Hvﬂéﬁ ._ o . .
——c transforms as a tensor. The Levi-Civita pseudotensor is
Vs P
defined as'?
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Transformation formula of the
Levi-Civita symbol ehvep

*° Such objects are called relative tensors of
weight W = +1.

Transformation formula of the
Levi-Civita symbol €04

" Numbers of positive and negative ele-
ments when the form has its canonical
form.

*> The minus sign is optional. Our choice
agrees with Landau Lifshitz convention
adopted in The Classical Theory of Fields.
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1

uvap —
eM*P (x) - =)

ehveb, (2.30)

Since (2.30) is a tensor we can define another tensor contracting (2.30)
with components of the metric tensor (lowering its indices)

epryo (%) :=8pugovgyagspe P (x)

1
[ A
gPﬂgUVg’Y"‘g5.B€ /7g(x)

= et (§(3)) o

Thus

epmyé‘(x) = _g(x)epa'yé- (2.31)

Using (2.25) and (2.29) we get that (2.31) transforms as

8;)(775(x/) = _g/(x/)€;7(775
1 oxH 9xV 9x* oxP
= sgn(])]\/ —g(x) Teym,zaxi,paxﬁaxjw

ox* 9xV ox* 9xP
= Sgn(])ﬁym/z(x)mwmw- (2.32)

It shows that (2.31) is a pseudotensor.
Note that contraction of pseudotensors (2.30) and (2.31) is a scalar

ehvep (x)g}ll/ﬂéﬁ (x) = —4!

Dual electromagnetic field tensor

Now we are ready to express the second pair of Maxwell’s equations
in different but equivalent form. We are going back to Cartesian
coordinates where \/—¢ = 1 and thus ¢"*f = —e*%h and Euvap =
+€vap- The electromagnetic dual tensor is defined in the following way

1
FM = el PR (2:33)
and it has the form *F* = f%e?“’“ﬁFaﬁ in Cartesian coordinates.
It gives

% 701 1 o123 1 o132 0123 1

Fr=—ge @ — ;e p=—e"Ip=-In=58,
1 1
*p02 _ _§€02311_~31 _ 5602131313 A N

1 1
*p03 _ _5603121:12 _ §€0321F21 — B2, — _F, = B},

Dual electromagnetic tensor



and similarly

1 1

*F12 56‘12301:30 Ee1203 F03 601231:03 F()g E3,
1 1

*FZB = —5623101:10 — 5623011:01 = —601231:01 = _F01 = —El,
1 1

*F31 = —§€3120F20 — 563102&)2 = —601231:02 = _FOZ = —EZ.

The contravariant components of the dual tensor can be arranged in
the form of matrix

o | BB B B
-B'| 0 -E FE
-B2| E* 0 -—E!
-B3|-E2 E' 0

(2.34)

Comparing (2.34) with (2.15) we conclude that dual transformation
maps electric field into negative of magnetic field and magnetic field
into electric field

*E=—B and *B=E. (2.35)

Double dual transformation changes the sign of the field.
Contraction of Bianchi identities (2.18) with constant expression

_%ewﬁv
gives
1 avBy 1 avBy 1 avBy
Oy —66 Fgy | +0g —66 Fyo| +0, —66‘ Fug| = 0.

Changing labels of indices in the above equation one gets

o {—26””’571-}7} +0y |:—2€0“/ny70¢:| +9y [—ée“”ﬁ"ﬁxﬁ} =0.

%*F;w %*FW %*F;n/

Finally, the second pair of Maxwell’s equation reads

9, “F' =0 (2.36)

where v = 0 corresponds with magnetic Gauss’s law and v = 1,2,3

gives three components of Faraday’s law.

Covariance of Maxwell’s equations

The expression F¥¥ = ot AV — 9" A¥ represent components the rank-two
(%) tensor so it transforms according to

P — L”aL"ﬁF"‘ﬁ.
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Alternative form of second pair
of Maxwell’s equations
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where A* and 90V transform as components of rank-one (é) tensor
(four-vector).

First pair of Maxwell’s equation in the inertial reference frame S’
which moves with the velocity V with respect to the reference frame S
have the form o) F'*" — 47w — 0. This equations are equivalent to the
following ones

_ 4
(L™1)P LYy LY o, F*P — TL"ﬁjﬂ =0
o
which can be written in the form
v lxﬁ 47T ,3
L 8 0, F*P — T] =0. (2.37)

Each equation in (2.37) in §’ (with given value of v) is linear combination
of Maxwell’s equations in S where coefficients of the combination are
elements of the Lorentz matrix. First pair of Maxwell’s equations (2.37)
takes the form

4 Y
LY {aaP“O — 7” ]0} +LY, |95 FY — 7” ]l] =0. (2.38)
| -
Gauss’s law in S Ampere’s law in S

Similarly, components of the dual electromagnetic tensor in S’ are
given by components of this tensor in 53

FFM = L LY P
Hence the second pair of Maxwell’s equations reads

(L7HP, LY LVﬁBP*P"‘ﬁ =0
| S —
o

and it can be cast in the form

LY, [aa*F“O} +LY, [aa*F"‘i] — 0. (2.39)
N——
Gauss’ law in S Faraday’s law in S

The important fact about transformation of Maxwell’s equation is
that left hand sides of these equations in a given reference frame are

linear combinations of left hand sides of the equations in another frame.

The coefficients of linear combinations are elements of the Lorentz
matrix. The Lorentz transformations do not mix equations belonging
to different pairs.

Transformation of first pair of
Maxwell’s equations

3 The sign +£1 = sgn], where J1 =
det(L) is a Jacobian of a transforma-
tion, appears due to transformation rule
of the Levi-Civita pseudotensor &% (x)
given by (2.32). In further part we shall
choose +1 because we are interested in
boost transformations which are proper
Lorentz transformations.

Transformation of second pair of
Maxwell’s equations



2.4 Maxuwell’s equations and external differential forms

The formalism of external differential forms provides natural frame-
work for representation of Maxwell’s equations. Among others, especial
useful are applications of Stokes theorem. Using this theorem one gets
integral form of Maxwell’s equations which is explicitly Lorentz invariant.

External differential forms

Differential forms can be defined in spaces with any finite number of
dimensions. The case N = 4 is of special importance in application to
electromagnetism.

Let (A, V) be 4—dimensional affine space where A is an infinite
collection of points (more precisely — manifold) and V® is a vector
space.

1. . . .
One-form w is a linear function which maps vectors v € T(p) on real
numbers
1
w:vi— R

such that
1 1 1
w(ay vy +azvp) = ag w(vy) + ax w(vy). (2.40)

A set of all such linear forms (covectors) at any point p form a vector
space provided that

(W1 +@)(V) = wi(v)+wa(v), (2.41)
(@w)(v) = aw(v). (2.42)

This space, denoted by T*(p), is dual to T(p) and it is called tangent
space of covectors or cotangent space. Components of one-forms are de-
noted by w, and they are defined as sequences of numbers representing
values of one-form on basis vectors {e, },—¢ . 3 at the point p i.e.,

1
Wy = a)(elx).

In the space of one-forms one can define the dual basis which consists
on one-forms {ef} p—0,...3 that act on the basis vectors e, € T(p) giving

eP(ey) == o, (2.43)

1
Elements of dual basis {¢*},—o,. 3 and components of one-forms w
transform in the following way

ox'® oxP
- W(p)eﬁ/ (’Uz/x = ' (p)wﬁ (244)

I
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One-form definition

Linearity in argument of the
form

Linear space of covectors

Cotangent space

Components of one-form
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Geometric interpretation of covectors

Let O be certain region of spacetime and f a differentiable function
f + O = R. The differential of this function df is a liner operation
which associates a number
0

af = S (pyxt
with the function f at any fixed point p € O. This number depends
on some (arbitrary) sequence of numbers {dx’,---,dx3}. It can be
interpreted as linear form with N = 4 variables. Derivatives %( p)
form a sequence of real numbers which depends on f.

Let v € T(p) be a vector which has components {v,---,v3} in a
given basis {e, }4—0,... 3. The mapping between sequences {dx?, - - - ,dx3}
and {0°,---,03} allows to associate a linear form with the differential
df at p (tangent covector). It acts on vectors v € T(p) according to

af(v) = 2L (pyor. (2.45)

ox%

The formula (2.45) allows us to associate with the differential df at p
the linear differential form
1 of

wi= L (et e T (p) (2.46)

Such association does not depend on the reference frame. Moreover,
it is invertible — with any sequence of numbers it can be associated a
sequence of derivatives d, f|,. Since p is fixed the sequence of deriva-
tives is a numerical sequence. The simplest function which allows to
associate a sequence of numbers with a sequence of partial derivatives
at p has the form

F(X0, -+, x3) = wex®

where wy is a sequence of numbers. It gives

uflp = wﬁéf = Wy.

It means that, there is one-to-one correspondence (isomorphism) be-
tween the space T*(p) and the differential of function f at p. This
correspondence preserves the structure of both spaces.

1 . .
Any covector w can be decomposed in basis of covectors {e*},—o, . 3
dual to vector basis i.e. e*(eg) := (5%. In particular, covectors e* can be
cast in the form (2.46) what gives

eLX aftx()

5B P (2.47)

where {f*},—0,.. 3 is a sequence of functions. Each function f* defines
one covector . Components  of this covector in the basis that the

Differential of a function at the
fixed point as a model of one-
form

Invertibility

Basis



covector belongs to read

(e)p = 2L (p) = a8,

- oxP
The simplest set of functions satisfying this requirement is given by
FE0, w8 = a

Differentials of such functions, associated with covectors, read
et = dx*.

We stress that dx* in this expression have the meaning of linear forms
that act on elements of the space T(p) according to

dx*(v) = dx“(vﬁeﬂ) = vﬁdx“(eﬁ) = Uﬁég ="

Hence .
w(v) = wedx®(v) = w,v".

Linear differential forms

In previous section we managed to establish one-to-one correspondence
between differentials of functions at fixed point and linear forms with
constant components w, in the basis dx*. In this section we shall
extend the idea of differential forms on expressions with non constant
components wy.

We consider certain region O of Minkowski spacetime™ and linear
forms at each point p € O. We say that field of covectors (or field of linear
differential forms) is given in O.

Linear one-form cb(p) = wq(p)e® is defined only by its coordinates
Wa(x0, - -
O. In such fixed coordinate frame an arbitrary linear differential one-form

,x3) after setting the coordinate reference frame whole region

is given by expression

1

w = wa(xo, .. ,x3)dx”‘. (2.48)

Note, that w, in (2.48) form a sequence of functions and not a sequence
of numbers. This fact has some immediate consequences. Namely,
for a given sequence of numbers we can always find such a function
f(x%,...,x%) that the sequence of its partial derivatives at p corre-
sponds with wy. It is not possible for generic sequence of functions
wa(x0,...,x%). It follows that each differential of function is a differential

. . . . . 1
form whereas the inverse is not necessarily true. The differential form w
acts on vector field v € T(p). It maps sequence of differentials {dx"}
onto sequence of functions

{dx0, ..., dx*} — {°,...,0%} (2.49)
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Differentials dx* as linear forms

Linear one-form in a region of
spacetime

4 Here we concentrate on definition of
linear forms in Minkowski spacetime,
however, it must be stressed that such
considerations do not depend of this par-
ticular fact.

Linear differential one-form

Each differential of a function is
differential form but not each dif-
ferential form is a differential of
a function
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where {v*} are components of certain vector v in vector basis {e, }4—0,.._3.

This mapping defines the function wv(p) : T(p) — R which is given
by

wv(p) == (L(V) = w,v". (2.50)

Linear two-form is a function which associates a real number with
a pair of vectors from T(p)

2
w: (vi,v2) — R

This function has the following properties

e it is linear in its first argument

2 2 2
w(ay vy +ap vy, v3) = ay w(vy,v3) + ap w(vy,v3), (2.51)
where a; and 4, are some real numbers,

® it is anti-symmetric

é(vl,vz) = —(3)(V2,V1). (2.52)

The set of all such forms on T(p) is a (g) = 6 dimensional real vector
space provided that

(5)1 + C%12)(V1,V2) =& (vi,v2) + éZ(VerZ) (2.53)
(ad0)(v1,v2) = ado(vy, v2). (2.54)

. . 11 .
With each pair of one-forms wy, wy there can be associated a two-

1 1 ) .
form wq A wy which acts on vectors vy, vo according to

1 1 1 1
(wy A (,L)2)(V1,V2) = €jjwy (Vi)a)z(v]‘)
1 1
= get | “1v) @20V,

wl(Vz) wz(V2

1 1 _ 1
The form w1 A wy is obtained as external product of covectors wi and

1

wy. Each one-form maps vectors from T(p) on real numbers and these
numbers are arranged in anti-symmetric expression. It follows from
determinant properties that

1 1 1 1
w1 Nwy = —wrN\wq (2.56)
1 1 1 1 1 1 1
(W1 + W) ANws = w1 Aws+ Wy Aws. (2.57)

The external product can be used to define differential two-forms and
more generally k—forms.

Function p — wv(p) € R

Linear two-form

Linearity

Skew-symmetry

Linear space of two-forms

External product of one-forms as
a prototype of two-form
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Linear differential two-form is given by formula Linear differential two-form

&= %waﬁ dx® A dxP. (2.58)

It associates a real number with each pair of tangent vectors (vy,v3),
according to

2 1
w(vy,vp) = Ewaﬁ (dx™ A dX‘B)(Vl,Vz)

1
= Ea)aﬁeijdx”‘ (v;)dxP (vj)

dx*(vqy) dxP(vq)
= 5 Wap det l dx”‘(v;) dxﬁ(vl) 1

1 % v/f
= Ew“ﬁ det[ . vg ] (2.59)

where dx*(v;) = dx“(v?ey) = U?éﬁ = of.

form are values which it takes on each pair of vectors from the set

The coefficients of this

{ezx}uc:O,...,?)/
2 1 o ob
= = - ]’L ]’l
wyy 1= w(ey, ey) 5 Wap det l 50 55 ] . (2.60)
Linear differential k-form clf), where 0 < k < N =4, is a covariant Linear differential k-form
tensor of rank (2) given by
k 1 2y o
w = Hwal___akdx A...N\dx (2.61)

where a; = 0,1, 2,3. The antisymmetric expressions
Ax® A LA dx™

are elements of basis in the space of differential k—forms. The form
(2.61) associates a real number with each sequence of tangent vectors
V1, ...,V according to the formula

(181 Xk
L 1 Uy Uy
w(vy, ..., vg) = Fwal---“kdet oo . (2.62)
' & ok
Y Yk

k
Components of w are given by values which this form takes on each
k-th element sequence of vectors {e,} i.e.

k
Wayooay = W(€xys -+, € ) (2.63)
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Dual forms (adjoint forms)

. . k. . . .
With each given k—form w in N dimensions there can be associated

—k
the (N — k)-form*> N, This operation is defined in terms of Hodge

“u

operator “x”, which depends on the scalar product (and so it requires
the metric tensor) and space (spacetime) orientation.

The Hodge operator requires Levi-Civita pseudotensor which is pro-
portional to Levi-Civita permutation symbol €4, .. 4. The permutation
symbol in N dimensions is introduced exactly in the same way as in

the case N = 4 discussed before. Let
m(0,1,...,N—1) =as,as,...,aN_1

be a permutation of numbers 0,1, ..., N — 1 and n(7) stands for number
of permutations i.e. number of mappings of the sequence 0,1,..., N —1
onto aqy,y,...,an_1. It is defined as

(—1)n(m),
€uy.ay = €1 1= " . .
0 for repetition of indices

Levi-Civita pseudotensor is an expression whose components has pseu-
dotensorial transformation law. The covariant components of Levi-
Civita pseudotensor are defined as follows

elX].A.IXN = |g| 60{1...0{[\]' (264)

Its contravariant components e*1"*N are given by expression

AN . — g"‘lﬁl . 'g"‘N,BN /13l €6,.. by

= 2 /Igley

E(S) sy

il

Hodge star operator is a mapping between linear forms which as-
sociates (N — k)—form with the form (2.61). This k-form is given by

Lk 1 1
w = ) {k‘ |g| w1tk e“lm’xk.B]m,BNk] dxPTA LA dxPN-k

(N—K)!

where

N 1
WBrBn-k T T |8l €ny .. By (2.65)

are components of dual form (adjoint form).

> Here we are mostly interested in the
case N=4. However, for generality we
shall keep explicitly N for denoting num-
ber of dimensions.

Levi -Civita permutation symbol

Covariant components of Levi -
Civita pseudotensor

Contravariant components of the
Levi -Civita pseudotensor

Hodge operator



Physical examples
The four-current one-form is a differential form with components J# i.e.
J = Judx". (2.66)

Its dual is a 3—form *J given by expression
] = %*]“m dx® A dxP A dx7 (2.67)

where *J, gy =1 e ,0p,- We shall restrict our considerations to Cartesian
coordinates, so \/|g| = \/—g = 1. The electric current dual form has
components

0 0
“Jis = eo13 = I,
1 1
“Joos = €103 = —J,
2 2
*Jos1 = J“e2031 = —J°,

_]3

“Jor2 = Pezor2
and so
J = J0%dxt Adx® Adx® — [rdx® A da® A dx®
— PPdx® A dx® Adxt — Pdx® Adxt A dx?. (2.68)
Another important example are differential forms which involve

components of electromagnetic tensor. For instance, Faraday’s two-
form is defined as follows

1
F:= EFW dxt A dx”. (2.69)

The explicit form of the Faraday’s two-form in terms of components of
electric and magnetic fields reads

F = E'dxO Adx! + E2dx0 A dx® + E3dx0 A di®
— Bldx? A dx® — B?dx® Adx' — B3dx! A dx?. (2.70)

Similarly, Maxwell’s form is a two-form dual to Faraday’s form. It
reads

*F:= %*Faﬁ dx® A dxP, (2.71)

where
1

“Fop = EF”VsW‘X}g. (2.72)
They have their explicit form
0| -B' —B> —B
B! 0 —E& E?
B*>| E3 0 —E!
B®| —E* E! 0

* ap — (2-73)
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Electric current one-form

Dual there-form of the electric
current density

Cartesian coordinates

Two-form of the electromagnetic
field

Dual two-form of the electromag-
netic field
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Thus, Maxwell’s two-form is given by expression

“F = — Bldx0 A dx! — B2dx® A dx? — B3dx0 A dx®
— EYdx? Adx® — E?dx® Adxt — E3dxt A dx. (2.74)

The adjoint operation interchanges electric and magnetic field in such a
way that “E = —B and *B = E. Note, that in the alternative convention
where gg1p3 = —1 the duality relations read *E = B and *B = —E.

Exterior derivative

We have seen that with a differential of certain function f : O — R there
can be associated differential one-form in the region O of Minkowski
spacetime. Since the function f can be interpreted as zero-form then
differential of function associates one-form with each zero-form.

The exterior derivative (exterior differential) is a generalization of this
operation for an arbitrary k—form. This operation associates (k + 1)—
form of class C" ! with k~form of class C’:

dio = d <;‘wal_,akdx“1 A A dx”‘k)

1
= ﬁdwm---ak Adx™ AL A dx™
1
= Eaaowalmakdx"‘o Adx®™ A LA dx™E, (2.75)

The exterior derivative has the following properties

(o1 + &) = dioy + dioa, (2.76)
Al N o) = d A w + (—1)K A da, (2.77)
dd(lf) =0 for any form, (2.78)
4 = Do dx®, (2:79)

A differential form (If) is called closed if

50

A differential form clf) is called exact if

c]f) = dk(}l. (2.81)

k—1
Each exact form is closed because dd ¢ = 0. The inverse statement
holds only in regions contractible to a point.

k
Poincaré Lemma. Let O C A be a region contractible to a point and w,
where k = 1,2, - -, be an arbitrary closed differential k—form defined in O

. k . k-1 k k—1
i.e. dw = 0. There exists a form o such that w =d o .

Exterior differential

Properties of exterior differentia-
tion

Closed form

Exact form

Poincaré Lemma



Examples of exterior differentiation

Let us consider three examples of differential forms of degree 0, 1,2
which depend only on spatial coordinates x!, x? and x>:

c?J =w, (2.82)
&) = wy dx + wy dx? + w3 dx3, (2.83)
(%) = wipdx! Adx? 4 wyz dx® A dx® 4 wsy dx3 A dxl. (2.84)

The exterior derivatives of these forms read

dc% = 0ywdx! 4+ dpw dx? + d3w dx>, (2.85)
d(}.) = (ale — azwl) dx! A dx? + (82w3 — 330.)2) dx? A dx®

+ (93w — d1ws3) dx® Adxt, (2.86)
A = (01w3 + Dpws31 + D3wry) dxt Adx® A dx®. (2.87)

One can associate components of forms c’f;, k =0,1,2 with components
of some vector fields. In such a case the differential forms obtained
by exterior derivatives of given forms have components which can be
identified with components of well-known operations: gradient, curl
and divergence.

Physical examples of application of the Poincaré Lemma

The Poincaré Lemma applied to closed forms has some implications
on associated vector fields — with components equal to components of
differential forms.

1 . 1 .
e If the form w is closed i.e. dw = 0 (their components correspond
with a components of a certain curl-free vector field or irrotational vector

. . 0 P .
field), then there exist an exact form o (scalar potential) in the region
1 0
contractible to a point, such that w = do. The vector field associated

1 0
with w is the gradient of this scalar potential ¢ = 0.

2 . 2 .
e If the form w is closed i.e. dw = 0 (their components correspond
with components of solenoidal vector field), then there exist an exact

1 o . . .
form o (vector potential) in the region contractible to a point, such
2 1 2
that w = do (vector field associated with w is the curl of the vector
field).

Let us consider the field

- y .
X+ x2+y2y

4 x
E =2A0- =2A
0% V242
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Exterior derivatives of time-
independent zero-, one- and two-
form

Relation with gradient, curl and
divergence

Existence of scalar potential

Existence of vector potential

Electrostatic field of linear charge
density of infinitely long line
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This field correspond with the electric field of infinitely long uniformly
charged lines where A stands for linear density of electric charge. The
second field has the form

~

2y ¢ 21y Y . X .
H=r =" 2y T2y’
Y x+y

and it corresponds with magnetic field of infinitely long straight con-
ductor with current intensity Iy = const.

We define two differential one-forms with components equal to
components of the above vector fields

1 x y

e =2\ [xz ey dx + O dy] , (2.88)
12l y x

h= - [_x2+y2dx+ x2+y2dy} . (2.89)

1
It follows that both forms é and h are closed
de=20 & VXE=0, (2.90)
dh=0 & VxH=0 in E*{0,0}. (2.91)

A closed form is not necessarily exact. This can be seen as follows. We
shall integrate each form along the circle belonging to the z = const
plane. Their center is located at the z—axis. We parametrize the circle in
the following way C(t) — (cost,sint) where t € [0,27]. The integrals

read
1 2r
]4 6=21 [ 0dt=o0, (2.92)
) 0
-1 21y 2n 47
h=— 1dt = —1. 2.
]{C " c J oo (2.93)

The second integral does not vanish. It means that the integral between
two points depends on the integration path that connects these points.

1
Hence, the differential form / is not exact (it cannot be represented by

the exterior derivative of some zero-form). The form }11 is not definite at
r = 0 (vector ¢ is not definite at the origin) what requires exclusion of
this point from domain of the form. Consequently, the form is definite
in the region which is not contractible to a point i.e. there is no satisfied

1
the assumption of Poincaré Lemma. On the other hand, the form e is

e=d {2Aoln\/x2+y2+const} :

exact and it reads

Magnetic field of infinitely long
conducting wire

1
Both é and h are closed
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Volume form

The form

4
w = woraz dx° A dx! A dx® A dx®

4
is a 4-form in Minkowski spacetime. It is closed, dw = 0, because its
degree is equal to number of spacetime dimmensions. The example of

4-form is volume form (0 which is given by Volume form

1
vol = 1 = R /—8 €uvap dxt Ndx" Adx" A dxP. (2.94)

Maxwell’s equations in formalism of differential forms

Exterior derivative of Faraday’s form F reads Exterior derivative of Faraday’s
form

dF :%dpl/“/ ANdxt ANdxV = %a)\Fyv dx™ A dx? A dx?
1
:ﬁ {aAFiﬂ/ dx™ Adat A dx? + 9uFy\ dxt A dx? A dx?
+ 9y Fyy dx” A dx* A dx”}

1
=3 [0rFuv + 0uFyp + 9y Fryl] dx™ Adx? A dxV. (2.95)
0

The coefficients of the resulting differential form are equal to elec-
tromagnetic Bianchi identities. It allows to represent second pair of
Maxwell’s equations as exterior derivative of Faraday’s form, namely Second pair of Maxwell’s equa-

tions
(2.96)
On the other hand, first pair of Maxwell’s equations can be expressed
using Maxwell’s form *F. Its exterior derivative has the form Exterior derivative of Maxwell’s
form

d*F = %d*aﬁ A dx® A dxP

1

=3 (91" Fup + 0u " Fgy + 95" Fya] dx7 Adx™ A dxP. (2.97)

In spite of formal similarity between expressions (2.95) and (2.97) their
physical content is quite different. The expression (2.97) reads

d*F = [01"Fa3 + 2" F31 + 95" Fip] dx! Adx® A dx®
+ [00* Fa3 + 02" F3g + 93" Fop] dx® A dx® A dx®
+ [09* F31 + 03" Fig + 01" Fog] dx® A dx® A dx!
+ [00" Fio + 01" Fag + 02" F | dx® A dxt A da?,
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where dual components *F,, are given in terms of components Fyg. It
leads to expression containing left hand sides of Maxwell’s equations

d*F = [—01E! — 0,E? — 03E%] dx! Adx? A dx®

~VE
+ [—9oE! + 0,B% — 93B%] dx® A dx? A dx®
—9E+(VxB)!
+ [—99E? + 93B! — 9, B%] dx® A dx® A dx?
—9E2+(V xB)?
+ [—09E® + 91 B% — 9,B] dx® A dx! A dx?. (2.98)
—9E3+(VxB)3

Making use of Maxwell’s equations we substitute right hand sides of
(2.98) by sources what gives

d*F :4%[—]0 dx' Adx® Adx® + J1dx0 A da® A dx®
+ 12dx® Adx® Adxt + P dx® Adxt A dx?]
=— 477[ [*Tio3 dxt A dx® A dx® + * Jopz dx® A dx® A dx®
+ *Joa1 dx® A dx® A dxt + *Joro dx® A dxt A dx?]
=— 477-[%*]%43 dxY Adx® A dxP = —4771*].
The first pair of Maxwell’s equations takes the form

d*F = - J. (2.99)

Note, that the property dd = 0 implies the continuity equation

(2.100)

A = dJP Adxt Adx® Adx® —dJt A dx® A dx® A da®
—dPP Adx® Adx® Adxt —d]P A dx® A dxt A dx?
= (9.J") dx® Adxt A dx® A dxB. (2.101)

where

2.5 Integral form of Maxwell’s equations

Integral form of Maxwell’s equations which commonly appears in
the literature is, in fact, not a fully integral form because it contains
temporal derivatives. In order to get fully integral form one needs
to integrate Ampere-Maxwell’s law and Faraday’s law over temporal
coordinate. It leads to surface integral calculated on two-dimensional
surfaces parametrizes by temporal coordinate. Differential forms allow
us to obtain explicitely invariant formulation of fully integral Maxwell’s
equations.

First pair of Maxwell’s equations

Continuity equation
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Integration of differential forms

The integral of differential form is given by integration of a function
representing values that differential form takes on vectors v; € T(p).
Let us consider k—dimensional regular surface sector P embedded in
some region of Minkowski spacetime O C A (k < N) Parametrization of the surface

® sector P
RF> D> (tl,...,tk) — x(tl,...,tk) e RN (2.102)

such that for all values of parameters (t!,...,t*) € D the matrix

p {ax"‘

= atf]' «=20,1,2,3 i=1,...k (2.103)

has rank k. Rank k transformation matrix
A regular surface sector is called oriented if a certain parametriza-
tion of the type (2.102) has been chosen, and admitted changes of
parametrization Fixing orientation of the surface

i i ¢ . sector
T ="1(t,..., 1), i=1,...,k (2.104)

are such that their Jacobian is positive

ot
det |—| > 0.
ot/
Figure 2.3: Oriented surface sector em-
bedded in O.
A Rk @ A
P = ®(D)
For the differential form of degree k
ko1
w = Ewaluﬂk(xo,. ) .,x3) dx®t AN dxk, (2.105)
given in some region O, the integral of this form over some regular
surface sector P is defined as follows Definition of the integral of

k—form
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/(I:J::/ (IA(J(Vl,...,Vk)di’l...dtk, (2.106)
P D

k
where w(vy, ..., V) is the value of the form on vectors
V= —jea(p), a=0,1,23, i=1,...,k (2.107)

Since
K

dx"i(vj) = dx" (vfeﬁ) = vfdx"‘i (eg) = WPt = ot = ot

798 j o7 (2.108)

are partial derivatives, then applying (2.62) one gets in (2.106) the
determinant of partial derivatives. This determinant is just the Jacobian
of transformation x* = x*(t,...,t5) i.e.

x|  9(x™... x%) .
det [aﬂ] = W i,j=1,2,...,k (2.109)

Thus the integral (2.106) reads

ko1 a(x™ ... xM) 4 k
/pw'_/pﬂw’xl‘““"mdt Lodtt. (2.110)

k
When the integral of the form w splits into a finite or countable number

of integrals over orientable surfaces P; which have no common points,

k
then the integral of the form w over hypersurface P is a sum of integrals
over P;

/PcIfJ = XIZ/PI &, (2.111)

Let us consider an oriented hypersurface 0P that consists on regular
sectors 0Py, ...,0Puy. The hypersurface 9P = ®(dD) is the image of
faces S;, i =1,..., M of the polyhedron D in the space of parameters

{t1, ...t} ie.
0D =5USU...USy.

The orientation introduced on D allows to introduce invariantly the
orientation on dP. This is so-called induced orientation. One can choose
outward unit vector n of the polyhedron D. It is perpendicular to S; at
any point p localised in its interior. The orientation on S; is determined
by the basis fy, ..., f;_1, and chosen in such a way that n,f;,... f;_4
has orientation compatible with the orientation of R¥.

Integral of volume form
We shall consider the integral of volume form

1
vol = %1 = a,/—gewaﬁdx” Adx’ Adx® A dxP.

Integral of k—form

Splitting the integral into inte-
grals over distinct orientable sur-
faces

Induced orientation at the border

ezﬂ

>

€1

Figure 2.4: Induced orientation.



over some four-dimensional region of Minkowski spacetime P C A.

This integral is given by expression

— 1 At xx*xP) 1o 4 _ 4
/'PVOI—/Dgeywxﬂmdt dt dt dt —‘/Dd Q (2.112)

where

Ry 1 o(xtxVx%xP)

— 1942 73 744
— Igywxﬁmdt dt dt dt (2113)

is the four-dimensional volume element in Minkowski spacetime.

Stokes Theorem

k—
Given (k — 1)—form w0 of class C' on P U QP the integral of this form over
dP is equal to the integral of its exterior derivative over P

/ k@l:/ dkc:)l. (2.114)
P P

This theorem is of extremal importance in physics.

As example we shall consider application of the Stokes theorem for
one-form and two-form that are defined in Euclidean space IE3.

1 . . o
The one-form w and its exterior derivative read

(1) = widx! + wpdx® + wsdx3,
d(}) = (82w3 — a3w2)dx2 Adx® + (63(,01 — 81w3)dx3 Adxt
+ (91wy — dpw )dxt A dx?. (2.115)

If one associates Cartesian components of certain vector field with

1
components of the form w
H — (wl,wz,wg)

(i.e. H; = w; ), then Stokes theorem for differential forms takes the form
of familiar Stokes theorem for vector fields

/&;:/d&) o fH-dx:/vXH-ds,
2S S C S

where components of the curl operator V x H are given directly by

1
components of the exterior derivative dw. The physical example of
such a vector field is magnetic field strength.
Similarly, in the case of two-form one gets

2
W0 = wyzdx? Adx® + wsdx® A dx' 4 wipdx® A dx?,

déo = (01wo3 + drws31 + d3win)dxt Adx® A dx®.
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Stokes theorem for differential
forms

Stokes theorem for one-form and
its relation with Stokes theorem
for vector fields

Stokes theorem for two-form and
its relation with Gauss-Green the-
orem for vector fields
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If one associates components of a certain vector field D with compo-
nents of this two-form,

D — (w23, w31, w12),

then the exterior derivative of this form corresponds with divergence of
this vector field V - D. In such a case the Stokes theorem for differential
forms results in the Gauss theorem for vector fields

'é:/dé o ij-ds:/v-de.
oV 174 S 14

The electric dislocation vector is an example of such a vector field.

Integral form of Maxwell’s equations

Let P be a three-dimensional orientable surface sector P in Minkowski
spacetime. A border of this surface sector is some piecewise regular two-
dimensional closed surface 0P. Integrating the first pair of Maxwell’s
equations over the region P UdP and applying Stokes theorem one
gets

./E;P *F = —477-[/7; 7. (2.116)

The second pair of Maxwell’s equations can be integrated in a similar

way and it takes the form

F=0. (2.117)

JoP

Applying formula (2.110) to rhs of (2.116) one gets

1 x7 1 1* a(x“xlgx'Y) 1442 1,3
E/p J = E/p§ Jotr 5y O A (2.118)
1 1 a(x"‘xﬁXV) 1 7.2 1.3
A bt )
c /p] [3!8”%7 a(t11213) ardtdt
1
= E/P]P‘d:“zy (2.119)

where three-volume element in Minkowski spacetime reads

1 A(x*xPx7)

3 —
B2y = gipmp o(t11213)

dtldr?de. (2.120)

If the four-vector J* has a single non-vanishing component J° in the
laboratory reference frame, than the integral over three-dimensional
region will contain only d®% — three-volume element on hypersurface

x0 = const. Hence the expression 1 [ J°d%% has interpretation of total

Components of strength vectors
correspond with component of
one-forms

(EH) & w

whereas components of induc-
tions correspond with compo-
nents of two-forms

(D,B) ¢+ &

First pair of Maxwell’s equations

Second pair of Maxwell’s equa-
tions

Three-volume element in the
Minkowski spacetime



electric charge contained in the region D. It allows us to conclude that
the expression

(2.121)

_1 3
Q._C/D]"d 5,

represents total electric charge in the spacetime region P. This expres-
sion is Lorentz invariant and thus it must remain unchanged under
the change of inertial reference frame (i.e. under the Lorentz transfor-
mations). For generic situation all components J# are different from
Zero.

Applying formula (2.110) to lhs of (2.116) one gets

. 1 e O(x%xP)
RS 2
P 2 Jap d(ulu?)

1 1 o(x*xP)
— - uv | — Y\ A 4142
2 aDF [ZSW'Xﬁa(uluz)du du
1

= F*d2s
2 Jop w

duldu?

(2.122)

where

! 78(x“x/3) duldu®

2 .
@Sy = 5 Euvap A(ulu2)

(2.123)

is two-dimensional surface element and parameters u!, u? are chosen

in such a way, that orientation of faces S; (border of three dimensional
region) induces the orientation which is consistent with orientation of
R3 given by 1,12, 3. Thus, lhs of the equation (2.117) takes the form

1 a(x”‘xﬁ) 1. 2
F=_ ——Zdu'd
/ap 2 Jap P y(utuz) M

L 1 i s 0P o
=5 /Eﬂ) EFHV(&X(SE - éﬁéx)a(uluz)du du

1 1 1 o(x*xP)
- __ - uvAo | | = A A ) 142
3 Jp [ZFHVS } {Z%ﬁwa(uluz)du du

(2.124)

We define two generalized fluxes

1
B(IP) i= 5 }’gp FId2S,,

and

_ 1
— - * UV 32
dOP) : +zf[5p FF2S,,.
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Invariant definition of electric
charge

Two-area element at the surface
in the Minkowski spacetime

Generalized fluxes
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They are invariant under Lorentz transformations. Maxwell’s equations
in its integral form are given as generalized fluxes eveluated on surfaces

P

P(0P) =4nQ, ®(0P) = 0. (2.125)

This form of Maxwell’s equation is physically very sound. It shows
that the content of Maxwell’s equations is the relation between generalized
fluxes and the electric charges. Moreover, the explicit invariance of integral
Maxwell’s equations follows from the fact that they are built of Lorentz
invariants. For a particular choice of the surface 9P (border of purely
spatial surface) these equations reduce to electric and magneticGauss’s
law in its integral form. On the other hand, when the surface is the
cylinder with height measured by temporal coordinate x°, then the
equations give integral version of Ampere-Maxwell law and Faraday’s
law.

Example

Let us consider purely spatial surface P in the form of cube with side a
and the center located at the origin of reference frame. We choose the
following parametrization

KV = const, X =

3

The vector normal to the upper face x° = 5 is given by n = e3. The

infinitesimal area element at this surface reads

o(xlx?
dSpz = eo3lza(<tlt2>)dt1dt2 = dtldr.

Let E — (0,0, E) be the electric field F®® = —F (uniform in space). It
follows that the flux of the electric field through the face x> = § reads

1 a/2 a/2
P(3=14) = _7/1?!4”,125 :/ dtl/ dt?E = a°E.
( 2) 2 N —a/2

If we substitute the electric field by some uniform magnetic field with
components B — (0,0, B), where *F93 — B, then

N 1 a/2 a/2
o X3 — a4y — _l_,/*]??“/dzs = / dtl/ dtzB = LIZB.
( 2) 2 i —a/2 —a/2

Maxwell’s equations as general-
ized fluxes

Electric flux

Magnetic flux



Chapter 3

Electromagnetic fields of uniformly moving charges

3.1 Electromagnetic invariants

The formulas which give transformation rules for the fields E and B
can be obtained directly from the expression

F''(x') = LyaL”ﬁF“ﬁ(x) (3.1)

which gives transformation law of the electromagnetic field tensor.
There are many invariant expressions that can be constructed from
four-vector A, and its derivatives but only some of them are physically
suitable. Since we are interested in gauge invariant expressions then we
look at tensors F¥” and FF'*. There are only two independent and
Lorentz-invariant combinations that can be constructed from these
tensors, namely

I := F"Fy,  Ip:= F"*F,. (3.2)

First of these invariants I is very important because it is proportional
to Lagrangian density for electromagnetic field. In terms of components
of electric and magnetic fields the invariants (3.2) read

L = 2F0iF0i + Fl‘]'Fij = —2FyiFyi + F,']'Fij

= —2E'E' + (—€;B") (—€;B') = 2(B* — E?) (3:3)
and
I, = 2Fy*F" + F;*F'/ = —2F;* Fy; + F;;*F;
= —2F/(—B') + (—e;uB")(—€;E') = 4E - B. (3-4)
where *E = —B and *B = E. Note that in the convention ¢yjp3 = —1

the second invariant has opposite sign Iy — —I.

3.2 Transformation of fields under Lorentz boost

We consider the most general Lorentz boost from inertial frame of refer-

ence S to S'. The transformation is parameterized by three-component

Lorentz invariants quadratic in
fields
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velocity vector B = VT'

7

(i)yv = (A)yu = ! B ‘ 7,Yﬁj . .
—pB 5z‘j+7ﬁ;zlﬁlﬁ]

where V is the velocity of S’ with respect to S. The electric and

magnetic components are denoted by E’ and B and E" and B’ and
they give components of tensors F*' and F'*’. Transformations of
components E! and B can be deduced form the transformation law for
FM_ Thus, the electric field in S’ reads

Eli _ F/iO _ LiaLOIBFIXﬁ _ LiOLOjFOj + LijLOOFjO + LijLOijk
= [L%L; = LIl P+ L/ 10, F*

= |7 05+ 25768 ) - (=818 | B

‘BZ
+ <5ij + ryﬁ_zlﬁiﬁ]) (—vB*)(—€juB)
— b+ T g By (B BB -+ 1
=y [E+ 6]+ (Tt =) (5B 6:5)
where
y—1 P I G ok S
g T 72—1(7_1)_7_ Y+1 o+l T
Finally, we get
2
E'=y[E+px B~ (5 E). G6)

This formula, together with the duality transformation *E = —B, *B =
E,leads to !

2

B'=y[B-pxE - 1B B 67)

In order to make clearer the meaning of obtained formulas we decom-
pose both fields in two components: parallel and perpendicular to the
vector of velocity 8. Thus, we define

2

EH = (E . n)n, EL :=E— EH (38)

_B

p
and similarly for magnetic components. Formulas (3.6), (3.7) take the
form

E' =y[E+BxB]—(y-1E|, (3-9)
B'=y[B-BxE]—(y—-1)B, (3-10)

General boost

Electric field in S’

* Exercise: Derive formula (3.7) without
using duality transformation.

Magnetic field in S’

Decomposition of fields on par-
allel and perpendicular part
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2
where we have made use of relation # = Wﬁ—zl Taking a scalar product
with vector n we get
! /I _
B =E. B =By- G11)

Next, plugging E = E +E, and B = B| + B into (3.9) and (3.10) and
making use of (3.11) we obtain

E| =v[EL +BxB],
B =v[B, —BxE,]. (3.12)

Expressions (3.12) show that only perpendicular components of the elec-
tric and magnetic field transform. Moreover, the Lorentz transformation
mixes electric and magnetic components. It means that components E
and B do not transform as components of vectors under Lorentz boosts.
In order to justify this statement we compare the obrained transfor-
mation law with transformation of four-vectors which connects events
in Minkowski spacetime. Components of any such vector (four-vector)
transform exactly as components of dx" i.e.

dx'0 — 'y(dxo —B-dx) = 'y(dxo - ,deH) (3.13)
dxl_dx_,)/ﬁdxo_‘_vﬁ_zl(ﬂdx)ﬁ (314)
(vy—1)dx i

Multiplying (3.14) by ( - n)n we get
dxh = ’)/(—,deo + dxH)

It follows that the perpendicular part dx; does not transform at all!
It shows that electric and magnetic components do not transform as
components of vectors when a transformation is the Lorentz boost.

The fact that electric and magnetic field are often considered as vector
fields is justified by the choice of transformations. Such transformations
leave the zero-component of four-vectors unchanged. In next section
we look in more details at this question.

3.3 Transformation under spatial rotations

We consider rotation in the x2x*>-plane. The Lorentz matrix and the
electromagnetic field tensor read

10 0 0 0 -t —-p* -p3
1 3 2
oo o | pe_|E 0o -B B
0 0 cos¢ sing E2 B 0 —B!
0 0 —sing cos¢ E3 -B> B! 0

Parallel components do not trans-
form

Only perpendicular components
participate in transformation

Electric and magnetic field are
not vectors under Lorentz boosts

Transformation of a typical
Lorentz vector

Rotation around axis x!
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Components of the electric field in the frame S’ have the form
1 10 170 1 70 10 1
E" = F10 = L1 10 F*P = L1 1O F' = E
E? = F? = 17,10 F*P = 17 L% F* + 1%L F® = cos g E* + sin¢ E
E? = F? = 3 10 F*P = 1310 F? + L% L% F* = sin¢ E* — cos ¢ E°.

It follows from the above expressions that rotation mixes only electric
components. It can be written in terms of three-dimensional rotation

matrix
E 1 0 0 E!
E? | = 0 cos¢ sing E? |. (3.15)
EB 0 —sing cos¢ E3

Similarly, transformation of magnetic components gives

B = F? = [3,17F*F = 1%, 1% F® + %1% F* = (sin” ¢ + cos” ¢) B
B? = F"® = L', 1°;F*F = L4 1%F" + L' I’;F" = cos ¢ B* + sin ¢ B?
B? = F?' = 12, L1 gF*f = 1% LY P 4+ I3 1L PP = —sing B” + cos ¢ B.

Transformation of magnetic components can be cast in the form

B 1 0 0 B!
B2 | = 0 cos¢ sing Bz |. (3.16)
B? 0 —sing cos¢ B3

We conclude that components of the electromagnetic field tensor
E— (Fl(), FZOI F30), B — (F32, F13/ FZ])

transform as vector components under rotations.

3.4 Transformation under spatial reflections

The Lorentz matrix for spatial reflections P is of the form

o= ()
The electric field components in the reference frame S’ read
E" = L' L% F* = L' 1O F° = —6;F° = —F" = —E'.
The magnetic components transform as
B = —eF* = —ejyl) (L¥FP = —eipl) L, P

= —€iji(—0) (=6 F™ = —egF/* = B.

Components of electric field have
vector law of transformation un-
der rotation

Magnetic field transform as vec-
tor under rotations
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It shows that there is fundamental difference in transformation of
electric and the magnetic components under spatial reflections

E = —E, B' = B. (3.17)

The magnetic field is called pseudovector because it dos not change the
sign under reflections.

Comment. Equalities (3.17) should be understood in the following
sense: for passive transformations (the frame transformations) compo-
nents of the fields transform, whereas the fields itself remains un-
changed i.e. E'e! = E'e; where e/ = —e;.

3.5 Electromagnetic field of a point-like electric charge in an
uniform motion

We consider a point-like particle with charge g. The particle moves with
velocity V = cp in the laboratory reference frame S. The rest frame of
the particle is denoted by S’. We assume that origins of both frames S
and S’ coincide at t' = 0 = t. The field of the charge g in §’ is the static
Colulomb field given by the zero-component of A’*

At (K'Y — <|z|,0, 0, 0) , x| := Vaxlix/i. (3.18)
Thus, the electric field strength is given by

x/

E'(x) = -V'A"(x') = T (3.19)

What is the form of electric and magnetic field in S? We shall solve

this problem by computing the four-potential A*(x) in the laboratory

frame S and then calculating the electromagnetic field tensor F,, which

allows us to read E’(x) and B'(x). The four-potential of the charge in
the laboratory reference frame reads

Al (x) = (L7H(B)" A" (x), (3.20)

where one has to write all the coordinates of the four-vector x'# in terms
of components x¥, namely

= (L(B)) " (3.21)

We denote by B the Cartesian components of 8 in S. In absence of
rotation the inverse Lorentz boost is just a boost with velocity —
(LB = (L(=B))".

We shall write explicitly the argument of Lorentz transformations only
for “—B”. Otherwise, it is assumed that L", = (L(B))",. The four-
potential has components

Magnetic field components do
not change the sign under reflec-
tions

Electric point-like charge at rest
in§

Transformation to the Laboratory
reference frame S

Four potential in the laboratory
reference frame S depends on a
single function A®(x)
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Al (x) = (YA (), BYAP(x)) = (A°(x), BA" (x)). (3.22)
The components of x’ transform according to
W= = Li0x0+Li PO —— U <5ij+ ’Yﬁ_zlﬁi[y) X/

_ ‘le() +

5 LB x)p = - (- Dy (3.23)

where x| := x| - ;. The expression (3.23) can be cast in a slightly
different form, namely

X = o — B+ (1)

1
= <x| B+~ M) (3-24)
We define the vector
. 1
ri=x) - Bx° + ;xL (3.25)
= x 'on o Y — x|
-1 < B-x >
=R—— |(x— —- .26)
where
R :=x— Bx°. (3.27)

The length of the vector r* reads

(x — Bx0)? + %xi (3.28)

= /(x— pa0)2 — p2 (3.29)

1
=R (= (pexrp)
- \/ R?+ (B-x)* - p?x° (330)
The four-potential is given in terms of its zero-component
0(y) — 9 _ _ 4

Now, we calculate Cartesian components of the electric field

El= —9;A° —9pA' = —g (airl* + ﬁfaorl*>

L@ + Bagr). (3:32)

Spatial components of the posi-
tion vector

The relative position vector of the
particle at instant of time ¢

Final form of A%(x)
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Making use of the relation d;x = é; we get

i = % 2R & +2(B-x)(B- &) —2p°x o]
= L a-p g+ (80P (533

r*

Similarly, the expression dgr* reads

|
dor' = — [P0~ (B- ). (334)
Combining the above formulas we obtain expression

xi— ‘BixO R!

djr* + ploor* = A = (335)
The electric field (3.32) reads
R
E= # (3-36)

We can write the electric field in slightly different form. Thus, we
parametrize (3.29) by angle 6 that form vectors R and

2
r* = 4/R?— p2x% =Ry/1— ,BzLRLz' =Ry/1—-B2sin’0  (3.37)

It gives the electric field in the laboratory reference frame

_ 1-p 4R
E= (1 — B2 sin?9)3/2 R3" 538)

The magnetic field can be obtained in similar way. Taking V x A
one gets

B' = €3 A* = e 9;A°(x) = eijkﬁkajri*

= eyt Hoyr = e Ly [(1— B2)x) — px + (B-x)p]
k(¥ v ( aR
—eut (5s) = ()

Thus
639

1. The electric field (3.38) has direction of the vector R, i.e the vector
that connects the point Bx° in which the charged particle encounters
at x¥ and the point where the field is evaluated, see Fig.3.1. It should
be stressed that the field at position x and at time x0ie E (xo,x)
was generated earlier i.e. not at x¥ but at certain instant of time
determined by the intersection of the world-line of the particle with
the past light cone of the event (19, x).

Figure 3.1: Relations between vectors in
the laboratory eaference frame S.

Electric field of a charge in uni-
form motion

Magnetic field of a charge in uni-
form motion
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2. The electric field is not radial because its radial component depends
on the angle 0. In particular, it means that

E(6=0)=5(1-p) <1,

r

_ry_g9_ 1 q
E(0 = 2)—rz\/@> - (3-40)

This result shows that the field is “flattened” in the direction of
motion of the particle.

3. One can conclude from comment 2 that circulation of the electric
field along the closed loop cannot vanish § E - dl # 0. For instance,
one can take a closed loop that consists of two radial segments with
non-equivalent angles § and two circular segments. Only the radial
segments contribute to the integral. Since the radial integrations
are performed in two regions that differ by intensity of the electric
field then they cannot cancel out. It means that the electric field of
uniformly moving electric charge is not static. According to Faraday’s
law there exists magnetic field associated with such electric field.

3.6  The electromagnetic field of electric dipole in uniform mo-
tion

We shall consider an electric dipole with the moment pg (measured in
the dipole rest frame S’). The four-potential of the dipole in S’ reads

AM(x) = (AP(x),0), AV (x') = p|§c’|§ . (3.41)

In S’ there is only electric field

) 3 0-x/x'i—x'2i .
E/l _ (p )|x,|5 ‘ | pO, B/l — 0 (342)

The four-potential in the laboratory reference frame reads

Al(x) = (1A°(x), AP () = (A°(x), BA°(¥))  G43)

where . (")
AO(y) = PO X _ PO 0T ) _ Po-t
(x) i |x/|3 ,)/37*3 77*3
The electric field has components E’ in S which read

E'(x) = —9;A%(x) — 9pAl(x)
=" (air*3 +,31801,*3>

Y
|:31’*21‘* (aﬂ’* + ,Biaor*) — 1’*3 (aﬂ"* + ‘Biaoi‘*)
%6

(3-44)

— Po.
v
_ 3(po-r*)r* (9 + dor*) — r*?po - (9" + B'or™)

P (3-45)

Figure 3.2: Electric and magnetic field of
the uniformly moving charge in S.

Electric field is not static

Four potential of electric dipole
in rest frame of dipole

A? is the only one nontrivial
function
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where 9,7 + Blogr* = Wl}—; follows from (3.35) and 9;r* 4 Bidor* reads

d;r* + Bdor* = (3; + B'd) [x[}xo B ,YT_l (x i ﬂ

‘82
_ _’Y—l)A, Y—1BB i
(1 Y )ity B> AP
1. —1 2 i
:»ﬁ*(yvﬁ i71)
1 l
=3 é; — 7Hﬁﬁ (3-46)

Plugging this result into (3.45) we find

_B(po-)R" po [1,
El — — | —e; .
’737’*5 77*3 v é; ,Y T 1 :B:B (3 47)
where 7-1H = 72 ﬁi The last term can be cast in the form

po [1, v—1pB] _ 17 1.1
R ;ei IR {'Yplo —(r— 1)%” 73[?’0” +7POL]
= ?pb + 73 pf)L (3-48)
which gives Electric field of electric dipole
3(po-*)R—12po v —1poL
E= po e T (3-49)
The magnetic field components read
0 1‘*
B = ept9;A° = el]k,ka s
3(po - ") (r9;r*) — r*(po - 1)
= ej;p" ! p— : (3-50)
where
1,
P —— j
a]r v ] ')’+1'B‘B
and

roirt = (1— B2l — BIxY + (B-x)p.
The terms proportional to 8/ do not contribute to B'. It reads

j

; 3(po - r*)x/ / 3(po - r*)R/
Bzzeikjﬁk[ (po-r)x 1y ]Zeikjﬁk[ (Po-r )R po

,),31,*5 ,),21,*3 '731’*3 ,),21,*3
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Note that the vector product of § and E, given by (3.49), reads

BxE—px |[2PoTIR—1"p _7_1P0L]

I ,)/37,.*5 73 7*3
3(po-r*)R 1
=P x W+ﬁ X [*PO* (7*1)(}90*}90“)} 3
[3(po-r" )R po
=B x TS R

It means that the magnetic field is just the product of the electric field

and the velocity
o)

3.7  Electrodynamics of media in motion

Covariant form of material equations

In this section we shall discus transformation of the electromagnetic
field in continuous media. This problem is physically sound. We
shall discuss only the case of material media which are characterized
by constant permittivity ¢ and constant magnetic permeability #.Such
media are homogeneous and isotropic.

Maxwell’s equations constitute a complete description of electro-
magnetic phenomena in material media only if constitutive relations are
known. Constitutive relations are some additional equations which
relate fields E and D and also H and B. In the medium rest frame Sy the
constitutive relations read

Dy = €E, By = uH,, (3-52)

where subscript “0” stands for the values of the fields in the frame
stiffly attached to the medium.

Now we consider transformation to another inertial reference frame
S such that the medium has velocity V in this frame. In such a frame
fields have new components E!, D!, B' and H'. We have seen that
transformations that relate Eé, B(i) and E!, B follow directly from the
transformation law for the tensor F/*V. First pair of Maxwell’s equations
in the region of space where there are no sources, p = 0 and J = 0,
reads

V x H—99D =0, V-D=0. (3-53)

Equations (3.53) can be written in tensor form provided that there is

given anti-symmetric tensor with components

Magnetic field of electric dipole
in the laboratory reference frame

Constitutive relations in the
medium rest frame

In the laboratory reference frame
material medium has certain ve-
locity

Tensor of electric induction and
magnetic strength
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0 | -D! -p* -p3
D'| 0 —H® H?
D? | H?3 0 —H!
D3| -H?> H! 0

HM = (3-54)

which has the same structure as F*¥ with E! replaced by D' and B

replaced by H'. Hence, equations (3.53) take the from

o H" = 0. (3-55)

The second pair of Maxwell’s equations in material have the same form
as in empty sppace

OuFp +0vFay +0)Fw =0 & 9, F" =0. (3.56)

The Lorentz symmetry of electrodynamics manifests itself in covari-

ance of Maxwell’s equations. It means that they have the same form in
any reference frame. In particular, in Sg they have the form

(0) (0)

ouHM =0,  0,"F" =0 (3-57)

where I-S(P)‘)V and I-(IOV)" have components Dé, H(i), Ef) and B(i) whereas in S
they are given by (3.55) and (3.56). What about constitutive relations?
Do they preserve their form? It turns out that the presence of dielectric
media modifies constitutive relations in a nontrivial way. The solution
of this problem was proposed by H. Minkowski in 1908. He shown that
Einstein’s principle of equivalence applied to constitutive relations in the
rest frame of the material medium leads to general tensor form of the
relations (3.52). The four-velocity of the medium in its own rest frame

Sp reads

(0)

ut — (c,0). (3.58)
The fields can be cast in the form

O ©
Dy =H" = %HW&B,
- ©
Ey = F0 = %FW&V).
Thus, first constitutive relation (3.52) can be cast in tensor form what

gives
U ©)
nglg = EFW&B. (3-59)

In order to write second relation (3.52) in tensor form we consider the

Sourceless first pair of Maxwell’s
equations, J¥ = 0.

Electromagnetic Bianchi identi-
ties

Maxwell’s equations in the rest
frame of the medium S

Minkowski’s solution

First constitutive relation in ten-
sor notation
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following combinations

(0) 0) 0y @) (0
Zyyr = Fyupy + Fopyuy + Fyy iy,

(0) © © 0 © (0 (0
A = Hyytiy + Hypuy + H)\yuv

which do not vanish only if two indices are spatial and one is temporal
eg.

(0) (0) (0) (0) (0) (0) (0) (0)
Zoij = Zijo = Zjoi = cFij, Woij = Wijo = Wijoi = cHjj.

The second constitutive equation (3.52) has thus the form

(0 (0) 0 ( 0
Z;uu\ = ,uwyw\ < *FW\Z(’[; =H *Hm\l(lxi (3.60)

where the second expression uses dual tensors *Hy,, and *F,,

o | BB B> B
-B'| 0 -E E?
*ERV . | N E (3.61)
-B*|-E*> E' 0
0 | H' H>? H°
—_— H'| 0 -D® D?
' -H?| D3 o0 -D!
-H*|-D* D' 0
It it is obtained taking contractions
1 (0) 1 0) (0 ©) (0 ©) (0
3 £VWT/\Z;“//\ — g(fymm[—"yv’(l))\ + S}MMFW\&}), + SVV‘TAF/W&B

(0)
_ (;Syvm 1@23/ ) ;0/3 o« FUA&OA)

and

Now the point is that the equations (3.59) and (3.60) have tensor charac-
ter so they must have the same form in any reference frame S in which
the material medium has the four-velocity

ut = (yc,veP). (3.62)

The constitutive equations have the covariant form

’HVVuV = sF”"uv‘ (3.63)

Second constitutive relation in
tensor notation

Tensor equations must preserve
its form in all inertial reference
frame

First constitutive relation
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and

Fuyuy + Foauy + Fayuy = p(Hywty + Hypty + Hyyuy) (3-64)

or equivalently

“FMu, = u*H" uy,. (3.65)

The parameters ¢ and yu take the same numerical values in all inertial
reference frames. It is consistent with the fact that first pair of Maxwell’s
equations

V. (EE()) =0, V x <:{BO) — ao(SEo) =0

in Sg has the same form in S with By replaced by B and E replaced by
E. Equations (3.63) and (3.65) written in terms of electric and magnetic
fields have the following form

e u=0:
D-g=¢E-B), B-p=u(H-p) (3.66)

o ]/l:l
D+pBxH=¢E+PBxB), (3.67)
B—BxE=u(H-BxD). (3.68)

Note that (3.66) do not contain new information. It can be seen from
transformation formulas that relate fields in Sy and in S. The refer-
ence frame S moves with the velocity —p with respect to Sy so the
transformation formulas have the form

E=(E)— B x By) — 7[3_21(/3-150)!5/
B =~(By+ B x Ey) — 7[3_21(13-30)13/
D = (Dy— B x Hp) — 7[;21(1300)/3,
H = ~(Hy+ B x Dg) — Wﬁ_zl(ﬁ-Ho)ﬁ-

It leads to D - B = Dy - B and similarly for other fields. When plugging
these results to (3.66) then they result in equations Dy - B = €Ep - B and
By - B = uHy - B which are projection on B of constitutive relations in
the rest frame of the medium. On the other hand, equations (3.67) and
(3.68) are the constitutive relations for electric and magnetic field in
S. Multiplying by B both sides of relations (3.67) and (3.68) we get
equalities of parallel parts D- B =¢(B-E) and B- B = u(p - H) which

Second constitutive relation

93
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are satisfied. It means that parallel components in constitutive relations
drop out and the relations read Constitutive relations in the lab-

oratory reference frame in which
D, +BxH, =¢E +BxBy), (3-69) Y

B, —BxE, =u(H —BxDy). (3.70)
Eliminating B, from (3.69) we get
(1—eup?)Dy =e(1—B*)EL + (ep—1)B x H,.
Similarly, eliminating D, from (3.70) we get
(1—eup®)BL = u(1 - B*)H, — (ep —1)B < E..
Left and right hand side of (3.69) read

the medium has certain velocity

1
D, +BxH, =Dy, —BxHy )+vBx (Hy +BxDy)= ;DOL/

E, +BxB =7(Ey —BxBy)+7Bx(BoL+BxEp)= %EOJ_-

Plugging these formulas to (3.69) we obtain expression Dy, = €Ey,. In

a similar way expressions B — B x E; = %BOL and H —fxD, =

%HO 1 allow to put the equation (3.70) in the form By, = pHj, (up to

overall factor y~1).

Let us go back to covariant form of constitutive equations. The fact Alternative form of tensorial con-

that formulas (3.63) and (3.65) have different proportionality constants stitutive relations

means that H*" is not proportional to F*. It means that tensor compo-

nents H"" can be obtained from F*V by contraction with another tensor.

We shall determinate the form of this tensor. Contracting relation (3.64)

with u?, and using uMu A= c?

we get

‘u(czHW + Hyut uy + H,\Hu/\ uy) = csz + qu)‘uy + F;\yu)‘uv
\V\/ ——
R ey

and then 1
—¢
uHyy = Fu + T“(qu’\uy + FM,uAuV).

For expression with raised indices y and v we get
uH" = F* + eyc%l(lf/\”u;\u” + Fruyu)
eu—1
= (;7]”“"171/:8 + 7]16‘2 (U“A;?Vﬁu/\u}‘ + 17}4“;7)\,81/[/\1/[1/)> Faﬁ

(ep—1)?
TR

u}‘uvu“uﬁFaﬁ
c

=0
-1 -1
= (77””‘ + Wczu”u“> (17”5 + E‘uCZuVu5> Fap (3.71)
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We define effective metric tensor

-1
g =t ot 672
which allows us to write the last expression in the form
uH"W = FW ) where FW) .— gwgvﬁpaﬁ. (3.73)

Covariant components of the effective metric tensor can be obtained
from condition of inverebility g,,¢"" = 5;. Plugging gux = Nya + PUylla

we get p = —Ciz (1 - i). Hence

ey
1 1
“a (1)

This approach allows us to describe the electromagnetic field in moving

Suv = Muv (3-74)

media as it would be the electromagnetic field in an empty curved
space.?

Arbitrary media

The relations D = E + 4P and H = B — 47tM can be cast in the form
HM"W = F" —4n MM (3.75)

where all three tensors are anti-symmetric and given by expressions

FY = —FJ, Fii = —€i]'kBk, (3.76)
HY% = -Di,  HU= —¢HF, (3.77)

and
MY = -|—Pj, M = —Gi]‘kMk- (3.78)

The tensorial notation suggest that we can easily derive transformation
laws for polarization P and magnetization M. Let us consider a mate-
rial medium which moves with velocity B with respect to laboratory
reference frame S. In the rest frame of the medium S’ the polarization
and magnetization have values P’ and M’. The laboratory reference
frame has velocity — B with respect to S’ so

MM = (L(=B))"a(L(—B))" gM"F (3.79)

where

L= L=Ly=+1p, L;=6+

e

Contravariant components of ef-
fective metric tensor

Tensor form of constitutive rela-
tions

Contravariant components of ef-
fective metric tensor

2 This fact was spotted by W. Gordon in
1923 in the paper Zur Lichtfortpflanzung
in der Relativitditstheorie.

Tensor of polarization and mag-
netization
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It gives

~

Pl = M" = (L(~PB))°u(L(~B))’ pM"™P
— (LOOLi L LO ‘Li )M/Oj+LO‘Li kM/jk

(751]+ <ﬁ2 )513]) PP

+9p (@'k + ﬁlﬁk> (—ejuM").

‘32
After some organisation of terms we get Transformation of polarization
vector

P=q(P +BxM)— (ﬁ P')B. (3.80)

[32

Similarly, we get

M = _%eijijk = _%eijk(t(—ﬁ))ja(t(_ﬂ))kﬁM/aﬁ

1 ; ; 1
—Eeijk(L] oLk =L/ LX) M — Eeijka [LF, M
= —eijkL] OLklM,OI — EeijkL] lLkmM,lm

Plugging elements of the Lorentz matrix we obtain

4 . 1
M' = —ejjyp! <5k1 +% P"
1 -1
- Eeijk < jl + ,32 ;B].B > (5km + 7[32 :Bk:Bm) (_elman)
- 1
= —yeup P* + 5 €ijk€1mnOjiOkm m™
—_———
26y
i 568%™ + 5. BB
+ zeljkelmn( ]l,B B + okmp ﬁ)
1
Y (')’ ) €1]k(':lmn.B],B ﬁ .B

2 pt Tl
0

y—-1.,
g M

= M- 'Yeijk,BjP/k ( Eijk e]mnﬁ " + Eijk Elk” ﬁ]’B )M

ejki enlk

Zﬁz
= M" — yep P*

-1
+ rg?[(ékm‘sin — kn0im) BB™ + (BemOin — OknOim) BB | M™

= M e P+ T M - 2(p- M)B)

and finally Transformation of magnetization

vector
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v—1

M=yM -BgxP)— (B-M')B. (3.81)

G

These formulas allows us to get expressions for transformation of total

momenta: electric p and magnetic m, where

= PxP, m:= / d®xM. .82
pi= i (3.82)
In rest frame of the medium S’
p = [ dKP, m = | &M (3.83)
o o

Note that the Lorentz contraction gives d>x = 7~ 1d%x’. Integrating the
formulas (3.80) and (3.81) over the region occupied by the medium we

get
—ppxm =g p)p (3.84)
P=pr /32’7 P )b, 3.04
m=m'—pxp —LL(p.m)p. (3.85)

B>y

Transformation of electric and
magnetic dipole moments






Chapter 4
Conservation laws

4.1 Local conservation laws

Conservation laws associated with the electromagnetic field are con-
sequences of symmetries of the electromagnetic action. This subject is
discusses using the Lagrangian formalism which is a natural framework
for such analysis. Unfortunately, in some basic courses on electromag-
netism the Lagrangian formalism is absent. For this reason we shall
present an alternative way for obtaining Noether identities. It is based
on some mathematical manipulations involving Maxwell’s equations
which leads to formulas for local conservation laws. Although this
approach enable us to discuss the physical content of conservation laws
it certainly skips physically sound relation between conservation laws
and the underlying symmetries. The discussion of conservation laws in
the context of Noether theorem will be given in subsequent section.

The electromagnetic field is a material object because it possesses
energy, linear momentum and angular momentum. These quantities
can be obtained from the electromagnetic field tensor F,,. Energy has
dimension * [E] = [F]L = M L2T~2, and energy density

[E]L~3 = ML™'T2,
The dimension of electric charge in Gaussian units reads
le] = [F'/2L = MY/213/2771,
Squares of the electric field and the magnetic induction have dimension
[E*] = [B*] = [*]L™* = ML™'T 2

i.e. the same as dimension of energy density. It suggests that energy den-
sity should be quadratic function of E and B, or equivalently, quadratic
function of Fy,. In the region of spacetime where four-currents vanish,
J#* = 0, the electromagnetic field is isolated (it does not interact with
other forms of matter). In such integrals of motion of the field can be

Noether identity — simplified
approach for undergraduate
courses

The electromagnetic field is a ma-
terial object

*In Gaussian units M = 1g, L = 1lcm,
T =1s, F = 1dyne
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obtained integrating local conservation laws. The existence of integrals
of motion can be associated with symmetries of action and it is the
subject of Noether theorem. In this section we obtain local conservation
laws in different way. The ideia of the calculus is to derive an equation
which contains a four-divergence of some tensor quadratic in fields.

In the first step we perform contraction of the first pair of Maxwell’s
equations

BuF = e (4:)

with components of the electromagnetic field tensor F,,. The result of

contraction can be cast in the form
o o 4 «
BF(F Foa) — 0y Fyu FM* = TFWJ , (4-2)

where the second term on Lh.s. can be written as four-divergence

_Fpue

aFaF;l—*aF,XF‘u —I—B,XF F
utv 2(}{1/ vy )
—F
nv

1 1
= E(a”F"“FW + aaF;wFH“) — > (aywa + aaF;u/) iz
N———.

-’
~ 3 Fay

1
= %aVFWFV"‘ = %aV(FaﬁF”‘ﬁ) =0, {455‘55#@ :

Both terms on Lh.s. of (4.2) are total divergences so they can be put
together

4
Fva ]tX

1
yu |FFF', — 477“”54,5#/3} =—

where the index v has been raised. Thus we have equation

1
T + ~F,J* = 0. (4-3)

In fact, this equation is an example of Noether identity which follows
from Noether theorem. The expression

1
TH = % —FMCFY o " FogFP

is called tensor energy-momentum of electromagnetic field.

Derivation of local conservation
laws

Energy-momentum tensor



4.2 Noether identity and the spacetime symmetries

General comments

Lagrangian formalism? is a very useful tool that allows to obtain some
quantities that characterize physical properties of electromagnetic field.
Such quantities are conserved when the electromagnetic field form an
isolated system.

According to first Noether theorem (1918) there is a mathematical
relationship between conserved quantities (or underlying conserved
currents) and symmetries of the action. Noether (on-shell) identities
leads to conservation laws for field configurations satisfying Euler-
Lagrange equations .

A particularly important group of symmetries are spacetime sym-
metries. According Einstein’s theory, spacetime curvature depends
on mass-energy distribution. A generic (without special assumptions)
spacetime has no symmetries. However, for some special mass distribu-
tions it can have certain symmetries. For instance, spacetime around
spherical stationary objects reads

ds? = (1 - ri) c2dt? — (1 - ri)—l dr* — r?d0y?
r r
where r; = Z(E—QM is Schwarzschild radius. The frequency of a photon
that moves in the radial direction decreases together with increasing
of its distance from the mass center. Its frequency at spatial infinity
is function of the frequency w* of the photon at the moment of emis-

sion, the mass of the object M and the radial coordinate R (describing
position of the point at which the photon was emmited)

.
=w*y/1- 2.
w w R

The observed variation of frequency Aw = w* — w is associated with
photon energy loss AE = iiAw (or equivalently its linear momentum).
This effect has been confirmed experimentally providing one of im-
portant tests of Einstein’s General Theory of Relativity. On the other
hand it shows that energy of electromagnetic field is not conserved in
spacetime which is not maximally symmetric. The energy of photons,
equal to c|p|, is not conserved in generality. Thus, conservation of linear
momentum, associated with translational symmetries of the action, has
origin in symmetries of spacetime.

Infinitesimal Poincaré transformation

Spacetime of special relativity (Minkowski spacetime) is maximally sym-
metric. The most general group of transformations that preserve its
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2 Content of graduate course

Linear element in Schwarzchild
spacetime

Frequency of the photon at r —

(o]
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metric tensor is Poincaré group. This group consists on transforma-
tions containing ten generators, where six of them are Lorentz group
generators and remaining four are translation generators. It means
that there exist ten corresponding conserved quantities. In order to
obtain pertinent Noether identity it is sufficient to look at infinitesimal
Poincaré transformations.

In present section we shall mainly discuss active transformations i.e.

transformations that map four-vectors onto four-vectors. Let G be a
group of transformations (f, F),

G > (f,F) (4-4)

parametrized by continuous and real-valued parameters w = {w"},
« = 1,2,...,5. Such parameters are coordinates on the group G in
vicinity of unit element g = e. The function f maps points of spacetime
(or equivalently on position four-vectors) onto points

f: x—x = f(x;w),

where x’ and x are two different four-vectors that have components x'*
and x/ in certain Cartesian basis {e; }. The function F acts on physical
fields

F: up(x) — ul(x") = Fy(up(x); w).

Since the unit element e has coordinates w® = 0 then
x=f(x;0),  ug(x) = Fa(up(x),0).

We are interested in symmetry transformation of electromagnetic
action generated by infinitesimal Poincaré transformation. Thus

* f(x;w) is an infinitesimal Poincaré transformation parametrized by
six Lorentz parameters w,g < 1 that form an anti-symmetric matrix
wWyp = —wpy and four translation parameters " < 1,

* F(A;w) is an infinitesimal Lorentz transformation parametrized by
wap < 1. A = (AF) is certain vector field which enters as argument
of F.

The infinitesimal Lorentz transformation and its inverse have the form
L, =", + o, (LY, =", — W,

where (L71)",L*, = 6", + O(w?). Components of the four-vector x’
which is the result of transformation of x read

M= (0, + W ))xV e = x4 Wl ¥ e (4.5)

We shall denote by dx# the infinitesimal net change of components of

Active transformations

Transformation of position four
vectors

Transformation of physical fields

Here w = {w,p, e}

Here w = {w,p}

Expression x# := x/t — x#



the position four-vector

XM= x4 5x#  where  OxF = Wl xV + €. (4.6)

In matrix notation the last formula reads
X =Lx+e=x+ox
which gives
Lx—dx=x—e (4-7)
Acting on both sides of (4.7) with inverse Lorentz transformation we

get

L' x—e)=LYix—-0x) = L' x—e)=x— (1-a)éx

———

x+0(w?)+0(we)

Summarising the above results:

Lx+e=x+ox and L7 (x—¢) =x—ox. (4-8)

The change of components of any tensor field3 T(x) generated by
infinitesimal Poincaré transformation x* — x# + dx# is defined as

5,1_,;1... v...(x) = len'v...(x) - TV V...(x)‘ (49)

Note that both sides of (4.9) are taken at the same point of space-
time. The tensor field transform under active Poincaré transformation4

according to

T () = L (L) T () (4.10)
where x’ = x + éx. Shifting arguments> on both sides of (4.10)
X — x —0x
one gets
T () = L (LD T (x—6x). (4.11)

It gives the following expression describing variation of tensor compo-
nents

STy (x) = (s + ') - (8P — Py - -

T 5 (x _ (Sx) — T.“.._ Vm(x).

412)
In particular, for the scalar field T(x) this expression simplifies to the
following one

ST (x) = T'(x) — T(x) = T(x — 6x) — T(x). (4.13)
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3 Here A" (x), F'" (x) e.t.c.

Change of components of
generic Lorentz tensor under
infinitesimal Poincaré transfor-

mation

4 Translation that acts on arguments of
tensor field

5 Often passive coordinate transformation
is used to mask the effect of active trans-
formation.
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The Noether identity for the electromagnetic field
Let () be some region of spacetime
Q= {(ct,x),t € [t',"],x € R®}
and () its image under f
fiO-0 = f(Qw).

We consider the electromagnetic action being functional of A,

Sald,] = % [ AL (40), 0,4, (1)), (4.12)

The set of transformations (4.4) is group symmetry of the model® (4.14)
providing that

Sv[AlL] = SalA,] + /a A3, K" (A; x; @) (4.15)
Q

for all ¢, t’, where K¥ is surface term? equal to
/ dx, K'(A; x;w) = / d*x0, K.
90 O

Note that (4.15) gives the relationship between arbitrary functions
Au(x) and Ay, (x') even though they do not satisfy the Euler-Lagrange
equations (off-shell condition). When A, represents physical field con-
figurations (solutions of the Euler-Lagrange equations) than (4.15) is
called on-shell condition. In such a case the symmetry condition leads to
(on-shell) Noether’s identity

/Q dhxd, gl =0,

where ]Z are currents densities (Noether currents). We shall not present
derivation of j neither give their explicit form because we shall use
different approach. The reason is that direct application of this formal-
ism to electromagnetic field gives energy-momentum tensor which is
not gauge invariant.

In order to get gauge-invariant form of currents and gauge-invariant
energy-momentum tensor we adopt another strategy. Namely, we shall
perform the symmetry transformation of the Lagrangian density®

1
167

generated by an infinitesimal Poincaré transformation taking into con-

L(x) = Fo (x) FM (x)

sideration formulas (4.9) and (4.13). We shall apply (4.13) to left hand
side of

1

O0L(x) = —QF””(x)éFw(x). (4.16)

The symmetry condition

¢ Symmetry of a model does cannot be
confused with symmetry of its solutions.
In fact models invariant under rotations
have also solutions which are not invari-
ant under rotations.

7 The surface term is admissible because
in quantum mechanics such a term is re-
lated to a change of phase factor of state
vectors. It can be shown that on classical
levels the postulate (4.15) correctly cap-
tures the idea of symmetry of a model.

On-shell Noether’s identity

Problem with gauge invariance

Alternative derivation resulting
in gauge-invariant energy mo-

mentum tensor

8 Note that variation of the action with
respect to metric tensor gives also gauge-
invariant the energy-momentum tensor.



CONSERVATION LAWS 105

and (4.9) to its right hand side. The left hand side of (4.16) reads Symmetry transformation of

scalar expression £(x)
SL(x) = L(x—dx) — L(x)

= L] — 6x19, L(x) — Lgx)

= %59&‘8% [P x F“ﬁ(x)} —éxviy "Hay, { FugF 5}

:ia {(Sx VEF F“/ﬂ——a Sx, V" F g F*P (4.17)
167 |0V Fap 16ni,_”,’7 “p '

(LJV],L
where
00Xy = Oy (Wyax" +€y) = wyy.
The last term vanishes because it contains contraction of symmetric and

anti-symmetric tensors wy,n"* = 0.
On the other hand, applying (4.9) and (4.12) to the right hand side
of (4.16) one gets

FISF,y = FM (x)[Fjy (¥) — Fu(x)]
= F"(x)[(6%, — ®,) (%) — 0P)) Fug(x — 6x) — Fuu ()]
=" (x)[ Mx — 6x) —w”‘ﬂ Fry(x — 6x) —wﬁv Fup(x — 5x2 —Mﬂ

Euck®) 0300, Fyy () .. Fa (%) ... Fup(x)+...

—Fy (9v0x%) Fya

/\’\ —
= F"[—6x"09y Fuy —(0u6x")Foy — (av(sxﬁ)pyﬁ]
= F’“/[(SxaaaFvy — ay(éx“l—“w) + (5x"‘8VFM — av((sxaFﬂa) + 5x’XaVwa]
= F'"[6x" (0 Foy 4 0vFua + 0y Fay) =0, (6x% Fay) — 0y (6x" Fyg )]

0
—F"[0,(6x"Fav) + 0y (0x* Fua)] = —2F"9,,(6x*Fyy)
_za‘ll(Fvam/(sxa) + ZHVFW(FM&C“). (418)
;\/—/

ﬂ]v
Hence the right hand side of (4.16) is of the form

1 1

4
— P ()0Fw (x) = = {—BV(FWFMJJC“) +

T
T]v(szfsx’X)] . (4.19)
The identity (4.16) reads LHS = RHS
15 [5x VIE F“ﬂ] = L (BB ox) + T (Favox®)
o o0 [0V Fap 47 # i c v '

It can be written in the form

1 1 1 '
= |~ (M Fuéxt) +59, [5%17”‘3,51?“5] = [V (Fudx") =
FraFv, ox, v, Jedx,
Defining the energy-momentum tensor W =T

1 1
TH = in {—F}‘“FVW + 177""[7“/51:“!3} (4.20)
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one gets

0, (T bxy) +%Fva]“5xv =0. (4.21)

—_——
9, T éx,4-(9,,0x, ) TH

The symmetry of the energy-momentum tensor under exchanging of its indices
allows for further simplification. Remembering that expression 9, x, is anti-
symmetric i.e. d,xy = wyy = —wy, we get that (9,6x, ) TH = 0. Thus, Noether
identity takes the following final form

1
9, TH + EF",, JV = 0. (4.22)

The equation (4.22) is on-shell identity because it was derived using Maxwell’s
equations.

In absence of external currents J¥ = 0 the electromagnetic field is an isolated
object. Thus equation (4.22) simplifies to the following one

0uTH =0 (4-23)

The equation (4.23) are local conservation laws for any physical (i.e. obeying
Maxwell’s equation) and isolated electromagnetic field configuration.

Note, similar considerations are possible in curvilinear coordinates. In such a
case the ordinary partial derivatives in first pair of Maxwell’s equations must
be replaced by covariant ones

4
V=
c
The same is true for second pair of Maxwell’s equations (Bianchi identities)
ViyuFua + VaF = —VyFuy.

Rising indices is imediate because the metric tensor is covariantly constant for
choice of Christoffel symbols as connection coefficients. Thus covariant version
of Noether identity reads

1
V,TH + zF"V]V =0

where

™ = iﬂ —FMpY 4 igWF,xﬁF“ﬁ ) (4.24)

Balance of four-momenta

Although we announced (4.24) as energy-momentum tensor, its relation
with energy and momentum has not been shown yet. In order to justify
this name we consider a point-like charged particle in the external
electromagnetic field. The trajectory of the particle is a solution of the

equation
dpt e

E EF”VMV. (425)

The interaction of the particle with electromagnetic field results in
change of its four-momentum. In order to get the difference of particle

9,0x, TH = wy, TH =0

Noether identity

THY in curvilinear coordintes

Figure 4.1: The world-line of the charged
particle.



four-momenta we look at spacetime region () such that the world-line
of the particle pass through it, see Figure 4.1. Two instants 7; and o
correspond with events of intersection of the world-line of the particle
with the boundary 0Q) of the region. The four-momenta take values
p'(7) and p*(12) at two points at this world-line. The four-current
density, associated with the motion of a point-like particle, reads

JV(x") = ec /_0:0 dru’ (1)6* (x' — x(7)) . (4.26)
The integral of (4.3) over the region () is given by
/Qd4x’ 9 TH +e /Qd4x’ /j:o dt F', (X )u’s* (x' — x(1)) = 0.
It can be written in the form

T
7{ WAL, + e/ " dt ¥, (x(1)) u¥ = 0. (4-27)
Q) Tl

Multiplying both sides of (4.27) by % and using equation of motion
(4.25) one gets

1
o TR 4 () — () = 0. (4.28)

This equality allows us to interpret the term

1
= ¢ TMPE,

C JoQy
as the variation of four-momentum of the electromagnetic field due to

interaction with the charged particle.

4.3 The energy-momentum tensor

The energy-momentum tensor? possesses the following algebraic prop-
erties:

e it is symmetric TH = T"F,
e it is traceless T" u=0.

In present section we shall analyse components of this tensor. In
order to analyse the physical content of T#" we fix the inertial refer-
ence frame S and calculate its components in this frame. Moreover,
for simplicity, we look at its Cartesian components. Its curvilinear
components x'* can be easily obtained from the Cartesian ones through
the transformation x* — x'# which gives

_oxMox™

T'H (x") S 9P (x).
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Difference of four-momenta of a
charged particle p# (1) — p#(1)
is equal to variation of four-
momentum of electromagnetic
field

9 Called also stress-energy tensor
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The component T% is given by the expression

1 1 1
TO = — | —F%F% + —FgF%| = —(B*+ E?). :
It has interpretation of energy density of electromagnetic field. The com-
ponents of tensor T# have dimension of energy density because La-

grangian density £ o F*'F,, has this dimension [£] = ML™'T~2. Thus
1) = MLT' T2 = 172 (ML2T72),
N
dim. of energy

where “density” refers to volume density. The integral over bulk of the
box V (at rest in the reference frame S) gives total energy of electromag-
netic field in this region.

The mixed components T have the form

__
T o4rm

. . 1 ) 1 )
T FIF; = EeijkBkE] = ;- (ExB)" (4.30)

The expression 2T has dimension of momentum density (amount of
linear momentum confined in unit volume)

ETI’O]:L3 (MLT*l) — LT (ML*lez)
2

dim. of momentum dim. of energy density
If the integration region V is some region on the hyperplane x° = const
then amount of linear momentum in V is given by
i_ 1 [ ciogs
P'=— | TVd>%,.
cJv

Expression T% = T/ is proportional to Poynting vector

Si= i(E x B)) = cTY (4.31)

4

which has interpretation’® of energy flux density (amount of energy
passing through unit area in unit time)

8] = L2T! (MLZT*Z) = LT} (ML*lT*Z) :
dim. of energy

In order to justify interpretation of this quantity we consider the inte-
gral™

‘ 1 1
Lz =2 [ s (4.32)
where the region of spacetime X given by

Y = [cty, ctp] X AV (4-33)

T% : energy density

Components T = T0

170 = P! : momentum density

cT% = S/ : Poynting vector - en-
ergy flux density

*° Interpretation of components T and
T% depends on adopted convention of
contraction of the tensor T*" with three-
surface element d°%Y,. Here we have
adopted convention TH @3y, i.e. the sec-
ond index of T is contracted with three-
area element.

" This integral has dimension of energy
because [T#'] = [E]JL™% and [#°%;] = L?



and where [cty, ctp] is time interval and 9V stands for border of the
cuboid-shape region. The quantity T"'d3%; represents the amount of
energy which crosses an infinitesimal area dx?dx3 in time interval dx’
e.t.c. Thus, the integral (4.32) expresses the total amount of energy that
flows out/in (positive/negative value of the integral) the box V during
the time interval t, — t7.

d3% (xh)

7/ 4

f

7 4

$2

7

[ X
T >
. ' d322 (.CC?,:)

The symmetry of energy-momentum tensor gives relation between the
momentum density carried by electromagnetic field and energy flux
density

P =T0 =10 = %Si. (4-34)

Note, that the proportionality relation § = Pc? resembles the relativistic

relation for particles E = mc?.

Components of the tensor T# containing spatial indices = i and

v = j read
. 1 [ 1
T = — P F“F , + 451']‘130431:“5]

__ 17 L 5 FupF

== i FiOFjO — Fiijk + 1 ijPaﬁF

_ i -EiEj — (—€ Bl)(—e' B™) + 1(5“(32 — EZ)

=i ikl jkm 271
1 .. . . 1

= — E E'El — ((SZ]BZ — BZB]) —+ E(SIJ(BZ — Ez):|
17 irj ipj 1 2 2 —

=~ 4= |[FE+ BB - 56,(E* + BY)| = 0y (4-35)

It is called stress tensor. We express its physical dimension in terms of
dimension of momentum™ and it reads

[T] = ML™1T2 = L7271 (MLT*) .
——

dim. of momentum
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Figure 4.2: The box oV = Z|—const and
its border. Three-volume integration ele-
ments on the region X have the form:

d321 = +dx0%dx2dx3,
Py, = +dx%dxldxd,
%5 = +dxOdx'dx?.

Energy flux density is propor-
tional to momentum density by
factor c?

i — pi2

T : Stress tensor

>t is suggested by spatial character of
indices
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Tensor 03 := —T' has interpretation of momentum flux density (amount

of “i”-th component of the momentum that crosses unit area perpendic-
ular to “j”-th axis in unit of time)."> When integrated on three-surface
%, defined by (4.33), it gives expression with dimension of momentum
multiplied by LT~

(ML'T=2)L3 = (MLT Y)LT .

ll ”

The component of linear momentum that flows through the

two-surface dx?dx3 during the time interval dx? is given by

1 . ,
:tETﬂdedxzdx3 = +THdtdx?dx®

The integral

1 ij3‘71/i'1 A(x*xPxY) o102
- [Ty = [T 5 J“ﬁ’Ya(AOAW)‘” dAldA

1 a(xk l) 1452
/Tl] dx <_€0]kl ()Ll)t2)d/\ dA
1 iy 7.0 [ 1 a(xkxl) ALdA2
2 (—Tii -
= [ (=T dx (2% SomE A
. ty .
:/(Ti]‘dtdll] :/ dt% U’ijdll]
z t v

taken on the surface ¥, defined in (4.33), has interpretation of “i”-th

(4.36)

component of total momentum that crosses the border of the box V
during the time interval t, — t;. Note, that the integral (4.36) can be
transformed into three-volume integral evaluated on the interior of V

i 3., _ i 13
f{;vaijda] —/Va](?’l]d X—/Vfld X.

This integral represent three components of net force acting on the

(4-37)

volume V.

A formally identical expressions appear in theory of elasticity in
description of tensions that are present in deformed physical bodies."
The net force, acting on small volume element of a deformed body, can
be transmitted only across its border. It cannot be caused by internal
forces because such forces must cancel out due to the action-reaction
equality. Consequently, the total force, obtained integratng force density
f!, has origin in the surface integrals. It is possible if the force density
is given as divergence of certain tensor, called stress tensor, Tij, ie.

fi = 8](71]

Summarizing our results, we have found that the energy-momentum

T : momentum flux density

BIn convention d°%, TH interpretation

of indices “i” and “]” is exchanged.

t 22 Tl?d?’;g_,
— .
> 2!

Figure 4.3: Flux of component i = 1 of T’/
through “area” elements A%, and d°%,.

22 TEPEx,

z A v
— T?'d*%
/ ...........
/
» .Tl

Figure 4.4: Flux of component i = 2 of T’/
through “area” elements %% and d°%,.

Relation with force density

The analogy with material media
4 Landau, Lifshitz “Theory of Elasticity”



tensor is of the form

™ — (4-38)

where 15" = cP! according to TH = T"# .

4.4 Integral form of conservation laws

Conservation of electric charge

Before discussing conserved quantities that are consequences of Noether
identity 0, T*" = 0 we shall analyse the continuity equation involving
electromagnetic four-current. The continuity equation follows directly
from first pair of Maxwell’s equations. Taking four-divergence of its
both sides one gets

0,0, F" = 4—”&,]" = ayJ' =0. (4-39)
< C
=0

The equation (4.39) is similar to Noether identity d, T*", however, sim-
pler than it. This is the main reason why we discuss first the problem of
integration of such equation considering (4.39). The integral of continu-
ity equation over some four-volume () gives quantity of electric charge
inside this region. This can be seen as follows. We fix the four-volume
) whose border 0Q) consists on three-dimensional regular surfaces.
The integral over the region () can be converted into three-dimensional

integral over its border

/ 400, ]" = / B,V = 0. (4.40)
Q 0
The three-dimensional volume element d°Y%, reads
1 A(x*xPx7)
3 1742 7,3
d Xy = ay/ 7g€wxlgtymdt dtedt (441)

where x# = x#(t,12,3).

We shall take the hyper-surface 0Q2 which has the form presented
in Figure 4.5. It consists of two purely spatial three-surfaces at t; and
ty, denoted by Z; i Xy (in a certain inertial reference frame), and the
three-surface X such that 0Q) = X1 UX UX. The integral over 0Q)
takes the form

/ Py, ] — / P ]+ / P, ] =0, (4.42)
by} Py} Yoo

where the minus sign reflects the border orientation (d(2 is outwardly
oriented). Thus orientation of X is given by —ep. In addition, the
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Local conservation law of the
electric charge

Global version of conservation
law

Three-surfaces x¥ = const in the
Minkowski spacetime
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spatial character of the surfaces £; and ¥, implies that the only non-
vanishing volume element d°%, is spatial volume element d°%y = dV.
Assuming that the current [V is localized i.e. it vanishes currents at
spatial infinity one gets (after multiplying by %) that electric charge
preserve its value on hyper-surfaces parametrised by ¢

1/ d320]0=1/ B
clJs, cJs,

Q(t2) Q(t)

(4.43)

It shows that differential equations, like 9,J" = 0, represent local
conservation laws.

Note, that demonstration of electric charge conservation does not
requires purely spatial character of surfaces ¥ and ¥,. In fact, it is
sufficient have them as space-like surfaces. The example of such surfaces
is presented in Figure 4.6 and Figure 4.7. The electric charges obtained
by integration over these hyper-surfaces read

E / Pr,p =1 [ @z,
cls, cJs,
Q1

Q2

(4-44)

providing that the four-current vanishes at spatial infinity. Both terms
in (4.44) are invariant expressions representing the amount of electric
charge.

Conservation of four-momentum

The electromagnetic field is isolated in the absence of electromagnetic
four-currents, [ = 0. In such a case the equation (4.3) simplifies to the
following one

9, T =0.

In fact we have here four continuity equations - each one for each value
of v. The integral of the equation 9, T*" = 0 taken over the region ()
can be replaced by integral over the border d() of that region

/ #Q9, TV =0 = / P, T = 0. (4.45)
Q Ja
Assuming that the energy-momentum tensor vanishes sufficiently

quickly'5 at spatial infinity |x| — 0 (quicker than |x|~2)

™ —0  for |x| — oo,

and taking the region of integration as in Figure 4.5 that one gets

- Bx,TH — / Br, T + / Bz, T — 0, (4.46)
%, % Teo

¢ PH(ty) cPH(t) 0

cto T Yo

-

Yoo

cty l Y1 ot

Figure 4.5: The region Q) and its bor-
der 0Q) that consists on two surfaces si-
multaneity X; and X, and the surface

Yoo X [cty, chy].

/1

T
Qo Yoo

21 l xf

Figure 4.6: The region 0Q) which consists
of two surfaces of simultaneity in two
different inertial reference frames an the

sphere at spatial infinity.

51t excludes the radiation field which
behaves at spatial infinity as F'" ~ |x|~!

so T ~ |x| 2.

Conservation of four-momentum

for region presented in Figure 4.5



where P¥(t;) i P¥(tp) are two four-momenta of electromagnetic field at
21 and X,. This relation shows that total four-momentum of electromag-
netic field is conserved. In particular, conservation of the component
P? expresses energy conservation of the field, whereas conservation of
P expresses three-momentum conservation.

Taking 1 and X, as two space-like surfaces, shown in Figure 4.6
and Figure 4.7, and assuming that the energy-momentum tensor van-
ishes sufficiently quickly at spatial infinity one gets four-momemtum
conservation

1 1

~ [ P, ==
cJx, cJs,

4, T, (4-47)

where the total four-momentum P¥ is defined as the integral over the
hyper-surface

(4.48)

1
PI(Z) = — /Zd3ZVTVV.

This result has the following interpretation: the total four-momentum
of the field is conserved quantity which means that two different inertial
observers, shown in Figure 4.6, on the simultaneity surfaces ¥; and X,
measure equal amounts of total four-momentum of the field

P = Pte, = P"e,.

The respective components of total four-momentum in different inertial
frames do not coincide, P # P'#, because {e, } and {e } are different.
Both sides of the equality (4.47) are expressed in the same coordinates
(e.g. of the observer S), however, the integrals are taken over different
hyper-surfaces.

The right hand side of (4.47) can be equivalently expressed in coor-
dinates of the observer S'. Taking %; as hyper-surface of simultaneity
in S and ¥, as hyper-surface of simultaneity in S’ we get

1 s 17

L[ pBsaTro — (-1 7/ Bzl 70 '

¢ Jy, TR0 (L7) % - e (4-49)
—_———

PH(Z) P (%)

where the only non-vanishing three-volume element on the surface
¥ (in coordinates of the observer S') is d3%. Similarly, the only non-
vanishing component of the volume element at £; in coordinates of the
observer S is d°%.

In the example shown in Figure 4.7 there is no global inertial refer-
ence frame such that the surface ¥; (or X;) would be a simultaneity
surface (one cannot reduce an integration over such surfaces to a purely
spatial integration with the volume element d°X%).

Another example, shown in Figure 4.8, presents the case when
integration region () is finite. The difference of four-momenta at X
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The precise meaning of the inte-
gral at spatial infinity:

/ B, T = lim [ dPx, T
J Yo

\x\%oo. ZM

Four-momentum conservation
for the regions presented in Fig-
ure 4.6 and Figure 4.7

Interpretation of conservation of
the four-momentum

o
33 me
— 7l
3

Figure 4.7: The region 0Q2 which consists
on two arbitrary space-like surfaces and
the sphere at spatial infinity.

€ 22
Q
o o
Y+ 7l

Figure 4.8: The compact region () with
time-varying border.
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and X, depends on the four-momentum flow through the time-like
surface X

1
PH(%,) — PH(Z) = - 3L, T, (4.50)
2
The integral over ¥y represents flow of four-momentum from/to the re-
gion ). The formula (4.50) expresses balance of the field four-momenta

and flow of four-momentum through the border.

Angular momentum of the field

Before discussing the problem of angular momentum stored in electro-
magnetic field, it is very instructive to recall the mechanical example
illustrating the concept of torque and angular momentum in the case
of continuous media.

The torque acting on some infinitesimal volume element dV contain-
ing matter and localised at x reads *®

Aty = (FdF* — x*dF) = (X ¥ — x*f)av,

where f¥ is force density at the point r = x/ é;. The usual form of torque
is obtained using duality transformation

1 . .
dr! = SeipdTy = e/ AV = (r x f)idV.
Similarly, matter inside some infinitesimal element 4V at r has angu-
lar momentum

dM* = xidp* — xkdpl, (4.51)

where dp* is linear momentum of matter inside the region dV. The
most frequently used form of angular momentum

dJt = %eijdejk = eijkxjdpk = (rxdp)

is formally the dual tensor of dM/* in three-dimensional space [E3. The
expression dM'/ captures correctly the idea of angular momentum for
continuous material object.

The electromagnetic field has angular momentum. The amount of
angular momentum in certain region of space is given as integral if its
density over this region. This density is a rank-three tensor built up of
TH and x*

MWV o= TV — xVTH, ‘ (4.52)

Since the energy-momentum tensor T#" and the currents J# obey

1
aaTW — EFW]“’

Example: continuous media

1 Here gz] = 51‘]' SO xk = X, fk = fk e.t.c.

Angular momentum in material
media

Definition of the field angular
momentum density



then the four-divergence 9, M*"* can be cast in the form
0
———
D MM = xHQ TV — XV, TH* + SE TV — 5L TH*

1
= — (F" = 2P .

Hence, M#"* satisfies the following differential equation

O MIV™ + %x[”FV]”‘],X =0. (4-53)

In the absence of currents, J* = 0, the electromagnetic field is an
isolated object. It leads to continuity equations for M*"*, namely

I MM = 0. (4-54)
Total quantity of angular momentum at the space-like three-surface X
reads
MW = 1/(xVTW‘ — W TFY AT,
cJL
- / (xMdP’ — x'dPt) = / AMH (4.55)
z z
where
dpH = %T”“dBZ,X (4.56)

stands for infinitesimal amount of four-momentum and dM"¥ for in-
finitesimal amount of angular momentum of the field. Comparing the
integrand of (4.55) and the expression (4.51) we see similarity between
these two expressions.

The integral (4.56) does not depend on the choice of the surface 3.
Integrating the equation (4.54) over the four-dimensional region Q) (like
this one presented in Figure 4.7) with the border'” 0Q) = % UX; UZ
and multiplying it by 1/c we get the equality of integrals'® on X; and
2

1

1
Y I VNS / MR PE, . (4.57)
c 21 c Z‘2

MH (%) MM (22)

In particular, when the surface ¥ is purely spatial (surface x* = const
in certain inertial reference frame) then only d°%y = d3x does not vanish.
In such a case, one gets

MM = %/3 dPx (XM TVO — xVTHO),
R

Since the expression 1 TH0 is density of four-momentum then the electro-
magnetic field inside the volume element d°x at x# has four-momentum
1TrOg3y.
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Local conservation law of an-
gular momentum of electromag-
netic field

Independence of M*’ on the
choice of %

7% and X are spatial-like surfaces and
Y is a time-like surface at spatial infinity

®We assume that T"' vanishes suffi-
ciently quickly at spatial infinity (absence
of radiation field).

Angular momentum of the elec-
tromagnetic field at the surface
x0 = const
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Poynting theorem

What is the physical meaning of equations
9, TH 4 %F’ﬂ,]” =0

integrated over some (purely spatial) region V at t = const? The current
density J# represents contributions from many charged particles.
Integrating the y = 0 equation over V one gets

1/ d?’xatTOO—i—/ d3xa]-T0f+1/ BrE-J=0.
cJv 1% cJv

Since the border of V (by assumption) does not depend on time, then
the integral of 9;T% over V is equal to the total time derivative of the
integral of T% over V. Applying the divergence theorem to the second
term, containing divergence of T%, one gets

lgj
d A~
—/ d3xT00+c% dal TY +/ dBxE-J=0. (4.58)
at Jv v v
—_—
E $da-S

The first term in (4.58) describes variation of the energy of the electro-
magnetic field in V and the second term expresses flux of the energy
through the border dV. Finally, the third term has interpretation of
power associated with transfer of energy to charged particles. It can be
seen taking the four-current density

N
J(tx) = Y qeopd[x — xi (1)), (4-59)
=

where x(t) are trajectories of the particles and plugging (4.59) into the
third term. It gives

N
| @xE@x)-T(t3) = Y Bt xut) o
v k=1
N
= Y Fea) B (60
k=1

The above expression has interpretation of power i.e work done by the
electromagnetic field in unit of time. The equation (4.58) is known as
Poynting theorem.

Theorem. The rate of change of energy of the electromagnetic field in the
region V is equal to minus energy flux through the border 0V and the work
done by the field on charged particles inside V.

The loss of energy per unit of time ’fi—lf < 0 is related with flow of energy
outside of the region, f da - S > 0, and/or work done by the field on
particles, [, d*>xE-] > 0.

Integral on three-volume V of
component y =0

Poynting theorem
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Similarly, integrating equations with y = i one gets

/d%&(LW>+/d%@Tjﬂ/fxFP+1UXE1:Q
v c %4 14 Cc

This equality can be cast in the form

Integral on three-volume V of
components y = i

a1l [ 3 i0 ij i / 3 i 1 il —
dtL/deatT]—f— aVTda —i—de pE+C(]><B) =0.
&w

~————
pi flux of momentum

(4.61)

One can expresses the last term in the following form
[ |oE+ 2 % BY | =
14 c
: N . 1 ,
= / dx Y g [El(t,x) + E(v X B(t,x))’} Blx —x (b)) =
v g

N . 1 .
= Z qx {El(t,xk) + E (Uk X B(t,xk))’] .
k=1

The above expression represents sum of Coulomb’s and Lorentz’s forces.
The electromagnetic field acting on the charged particles changes their
linear momenta and the rate of change of these momenta is given by
the sum of forces. Equation (4.61) describes balance of liner momenta.

Theorem. The rate of change of the linear momentum of the electromag-
netic field in the region V is equal to the momentum flow of the field through
the border oV (flux of the momentum per unit of time) and the rate of change
of linear momentum caused by its transfer to the particles in V.

The loss of the momentum per unit of time, % < 0, is associ-
ated with the momentum which flows out of the region and/or the
momentum transferred to the charged particles

The balance of three-momenta

3 i1 i
AdxFE+CUxm}>O



Chapter 5
Electromagnetic waves

5.1  Electromagnetic waves in non-dispersive dielectric media

In this section we discuss some basic properties of electromagnetic
waves.” Maxwell noticed that sourceless electromagnetic field equations
possess wave solutions. This theoretical prediction was experimentally
confirmed by H. Hertz in November 1886. The most important Hertz’s
results were published in 1888.2

Wave equations

Macroscopic sourceless Maxwell’s equations in non-conducting continu-
ous media read

—9yD+V xH=0, (5.1)

V-D=0, (5-2)

B+ V XE=0, (5.3)

V-B =0, (5.4)

where 99 = 19;. They can be solved only if there are also given

constitutive relations i.e. relations between fields forming pairs (E, B)
and (D, H). In the simplest case of isotropic linear media those relations
have the form

D = ¢E, H—; (5-5)

where ¢ = const and y = const. Acting with the curl operator “V x” on
equations (5.1) and (5.3) one gets

—edg VXE+V XV xB=0, (5.6)
—dB  V(V-B)-V2B
HVXB+V XV XE=0. (5.7)

endE  V(V-E)—V2E

! The radiation mechanism is discussed
in a separate chapter.

2 Ann. Phys. 34 610, Ann. Phys. 36 769,
Ann. Phys. 36 1

Constitutive relations in linear
and isotropic media



120 LECTURE NOTES ON CLASSICAL ELECTRODYNAMICS

It gives
E=0, and 9°B=0 (5.8)

where 92 is the d’Alembert operator

&
P = Ciz‘ ?2 - V2, (5.9)

Equations (5.8) are just wave equations. They indicate that Maxwell’s
theory may support the existence of electromagnetic waves.3 The
parameter (characteristic speed)

V= —— (5.10)

which appears in the d’Alembert operator depends on properties of
continuous media. Note that for ¢ = 1 = y the continuous medium
is replaced by an empty space where v = c¢. The fact that the speed
of electromagnetic waves in dielectric media is lower than the speed
of light in empty space does not violate the Einstein’s postulate. The
slowing effect originates in effective description of dielectric media.
On quantum level photons are absorbed end emitted by atoms. Thus,
speed v cannot be interpreted as real speed of photons — it is rather a
sort of phenomenological parameter.

Longitudinal and transverse components

The electromagnetic potentials (¢, A) also satisfy the wave equation.
Indeed, plugging expressions

E=—-00A—Vy, B=VxA (5.11)
into the first pair of Maxwell’s equations (5.1) and (5.2) one gets

(e — VA + V(epdpp+V-A4) = 0, (5.12)
—9(V-A)—V3p = 0. (5.13)

Furthermore, imposing the Lorenz gauge condition

sy&mp#—V-AzO‘ (5.14)

one gets that potentials ¢ and A satisfy the wave equation

%9 =0, 9’A =0. (5.15)

The approach based on the electromagnetic potentials requires further
comments due to some redundancy in description based on electro-
magnetic potentials. The gauge transformations of the potentials

¢'(x) = ¢(x) —dox(x) and  A(x) = A(x) + Vx(x)

3 Wave equations are resultant equations
and thus not all their solutions are solu-
tions of the set of Maxwell’s equations.
In order to get the electromagnetic wave
solution one has to show that solution
of wave equation solves Maxwell’s equa-
tions.

Lorenz gauge condition



preserve the fields E and B. It means that there exists a whole class of
electromagnetic potentials that describe the same physical situation.
We shall split the solution of the equation (5.15) into two components

(9,A) = (9,0) +(0,A)
—— N~
(p1.A1)  (92,42)

(5.16)

and assume that each pair of components satisfies the Lorenz condition

1) 0
P N
euoy 91 +V- A =0 = dop =0 (5.17)
eudy g2 +V- Ay =0 = V-A=0 (5.18)
\/_/ \A,-/
0

Clearly, the potentials (¢, A) being a superposition of (¢, A1) and
(¢2, Ay) satisfy the Lorenz condition as well. We shall assume that each
pair of potentials (5.16) satisfies the wave equation. Potentials (¢, A7)

give
E,=-Vg, B; =0, (5.19)
whereas potentials (@2, Ay) lead to
Ey = —0dpA, B, =V x A. (5.20)

According to (5.19) the electric field obeys
V X E; =0.

Thus, waves described by 9>¢ = 0 would be longitudinal 4. On the
other hand, from (5.20) and the Lorenz condition (5.18) we get

V.E =0.

Hence, the electromagnetic waves being solutions of 3?4 = 0 would
be transversal. For instance, taking E; = n'Ex(n - x,t) withn' -n = 0,
one gets V - E; = 0. Thus, the potentials (¢1, A1) represent longitudinal
degrees of freedom whereas the potentials (¢, Ap) represent transverse
degrees of freedom. Note, that distinguishing on longitudinal and
transverse time dependent degrees of freedom is meaningful only for
the electromagnetic potentials. The longitudinal degrees of freedom can
be eliminated by properly chosen gauge transformation. In order to
see it we consider the gauge transformation

A=A+ Vy.

¢ =@ —dox, (5.21)

which leaves unchanged the electric field E = E’. Transformation (5.21)
can be seen as combination of two gauge transformations (¢, A1) —
(¢}, A]) and (92, Ap) — (95, A}) with x1 = x = x». The fields E; and
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Decomposition on two sets of po-
tentials

4 First, note that we do not claim that
such waves do exist in the nature. We
just analyse some consequences of de-
scription of the field in terms of electro-
magnetic potentials. Second, note also
that for electric field given by expression
E; = nEq(n-x,t) one gets
VX E = (éi X M)aiE1 (l’l - X, f)
= (&; x n)n'dsE (s, 1)
= (n xn)osEq(s,t) =0,

where s :=n - x.

Elimination of longitudinal de-
grees of freedom
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E; given in terms of (¢1, A1) and (¢, Ap) can be replaced by E/ and
E}, expressed by new potentials (¢}, A}) and (¢}, A}). One gets

E E
E = [—V(P — 800] + [—aoA — VO]
E| E
= [~ V(¢ —00x) — 900+ ¥X)] + [~0(A + Vi) — V(0 - 967)]
= V¢ — A (5.22)

The appropriate choice of x(t,x), namely

@ = dox, ?’x=0 (5.23)

allows to eliminate longitudinal degrees of freedom: —V¢’. The condi-
tion 92y = 0 assures that new potentials (¢, A’) satisfy also the Lorenz
condition. Indeed, one gets

endop’ + V- A’ = eudo(p —dox) + V- (A+ Vy)
=eudop +V-A— x .
—_————

N~
0

Note that the choice ¢ = dgx is compatible with the fact that 9%¢ = 0.
The Lorenz condition (5.14) imposed on the potentials (¢, A’) reduces
to the form

¢ =0, V- A=0| (5.24)

for x given by (5.23).

It restricts wave solutions to transverse waves. It is important to stress
that the gauge fixing (5.23) exist only for some free and time-dependent
fields. For electromagnetic field which is not free the condition (5.24)
is not gauge condition anymore. Instead it is a kind of restriction
which allows to separate out the transversal (radiation) part of the
electromagnetic field. The longitudinal part represents static fields that
do not satisfy (5.24). Note that such decomposition is not invariant under
Lorentz transformations.

5.2 Plane waves

Phase velocity.

A special group of electromagnetic waves is given by waves character-
ized by constant phase surfaces. Such surfaces are solutions of condition

P(t,x) = const. (5.25)

The form of function ¢ determines geometric character of constant
phase surfaces. For instance, any constant phase surface describing

An appropriate choice of the
gauge transformation

Coulomb gauge condition:
gauge potentials giving trans-
verse fields



plane wave that propagates in homogeneous dielectric media is given by
solution of equation

Y =n-x— vt = const, (5.26)

where n is a constant unit vector that points out in direction of propaga-
tion of the wave. For spherical wave the vector n is replaced by a radial
spherical versor # and for cylindrical wave by a radial versor in cylindrical
coordinates g.

The phase velocity v, of a wave is defined as velocity of translocation of
its phase surface. It can be obtained from equation dip = 0 which can be
written in the form

A dt + Vi -dx = 0.

Dividing by |V| one gets

_ Yy dx_ o
Ve = vyl d T vyl (5-27)

The phase velocity is just a projection of %

% is the velocity of the point x belonging to the surface of constant

Vy
vyl
a plane wave with the surface ¢ = const given by (5.26) reads

on a unit vector %, where

phase and is a vector normal to this surface. The phase velocity of

c
Vp=0= \/—87! (5.28)

Solution of wave equation in 1+1 dimensions

Equations 9°E = 0 and 8’B = 0 can be represented by a single equation
0°® = 0 where ® = {E!, E?,E3, B!, B%, B3}. In the case of plane waves
the surface of constant phase depends on a single coordinate. Aligning
one of the axes (e.g. x) of the Cartesian reference frame in direction of
propagation one gets ® as function of only two variables (¢, x). Defining
two light-cone coordinates

Xy :=xZ+ot (5-29)
one gets
o ox+ ox_ _
9 = ?aJr + 7a, =v(d4 —9d-), (5.30)
. ox+ ox— _
9= 5 L0y + 50 =04 0, (5-31)
P =490 (532)

The equation 0;0_®(x4,x_) = 0 has general solution which is a
sum of two arbitrary functions, each depending on a single light-cone
variable ® = ® (x ;) + ®_(x_). In our original coordinates
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Plane surface of the constancy of
a phase of a wavefront

Light-cone coordinates

Superposition of two waves
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‘ D(t,x) = Py (x+0vt) +P_(x —ot). ‘ (533)

This solution describes superposition of two waves ®_(x — vt) and
®, (x + vt) that propagate forward and backward along the x-axis.

Let us observe that for spherical waves> one can also get an explicit
form of the solution. The wave equation in this case reads

1 1
R0 - 0, (#arcp) = 0. (5.34)

Plugging ®(t,7) = 1x(t,r) into the above equation one gets
111
- LZB?X - 93)(} =0, (5-35)

where 729,®(t,r) = rd,x(t,r) — x(t,r). The function x(t,r) satisfies
equation d;d_x = 0, where x4 := r = vt. Thus the spherical scalar
wave reads

o(tr) _ L) X (r—oh)

. . (5-36)

This solution contains superposition of two spherical waves: the ingoing
X+ and the outgoing x_ one.

Spectral decomposition

In this section we study a generic plane wave which can be decomposed
on many plane waves with different frequencies w. The frequency of
a single component enters to the solution through one of the factors
cos wt, sinwt, exp (—iwt). Here we shall not focus on polarization
aspects. This subject will be discussed in further part of the present
chapter. We assume that all vectors A (or E) assigned to different
frequencies oscillate in single common direction. Mathematically, such
superposition of waves can be represented by Fourier transform.
Any function f(x) of class £ i.e.

/j; |f(x)[dx < o0 (5.37)
which satisfies
F(x) = 31f(x—0) + f(x +0)] (538)

at the discontinuity points can be represented by Fourier integral

Fx) = o [ dkEGR)eR (539

The expansion coefficients are given by Fourier transform of f(x)

F) = FIFIR) o= [ dxf)e ™. (5.40)

5 Thy are so-called scalar spherical waves.
The spherical electromagnetic wave must
satisfy the Maxwell’s equations and not
only the wave equation.

Spherical wave for scalar field



If the function f(x) depends on more spacetime coordinates x then

£ = G fop PO, (541
F(k) = /]R Pk fx)e . (5.42)

A very convenient approach to electromagnetic field is based on
its complex-valued representation. The complex version of the elec-
tromagnetic field may be seen as a sort of auxiliary field. The physical
content of the field is encoded in its real or imaginary part. The electro-
magnetic plane wave can be represented by Fourier decomposition on
monochromatic plane waves

1 ik-
AW = s oo PRalt )t (5.43)
where
a(t k) = /]R3 d3x A(t, x)e"kx, (5.44)

Here A is a complex-valued vector function.® Since the generic wave is
given by superposition of many waves with different frequencies then
one can factorize the time dependence in expansion coefficients”

a(t k) = a(k)e @®, (5-45)

which depend on wave number k := |k| and wave vector k. The electro-
magnetic potential takes the form

1 i(k-x—w
A(t,x) = W/]RS Pk a(k)e!kx—w®)t) (5.46)

Let us observe that each monochromatic component must be a solution
of wave equation

2
€ (ex— w
(Ci;ag - Vz) gkx—wk)t) — = sy—cz —K*=0. (5.47)

The algebraic equality in (5.47) is called dispersion relation and it can
be written in terms of wave number ck = /eyt w(k). The characteristic
expression /ey is called refraction coefficient and it is usually denoted
by

n:i= \/eu.

If the x—axis is parallel to the vector k then
a(k) = a(k') (27m)*5(k*)5 (k).
Consequently, Fourier integral can be written in the form

At x) = % /_ °; dit ()i xR, (5.48)
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¢ Note, the Fourier coefficients must obey
relation a*(t, —k) = a(t k) for a real-
valued electromagnetic potential.

7 A factor e~ ®)*t can be introduced only
for complex-valued fields. For real-
valued fields it must be replaced by either
cos(w(k)t) or cos(w(k)t).
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Suppose that the coefficients a(k!) vanish outside the interval k' —
ké| < €, where ¢ is certain small number. If k%) > 0 then the integral

contains only contributions from k! > 0. In such a case k' := k = |k|.8 SFor k} < 0 analysis is very similar with
K'=—k.

Figure 5.1: The amplitude coefficient

a(kY) |a(k")].

|O kg—e ko kg + €

First few terms of expansion of w(k) in neighborhood of ko have the

form
dw
@) =wko) + (k—ko) (5] + G49)
k=ko
Then, defining wy := w(ky) and Group velocity
dw
Vg i= () (5.50)
dk J x—x,
one gets
ko+e .
A(t, x) _ % A 0 e dka(k)ez(kx—wot—(k—ko)vgt) (5.51)
—

- ei(koxfamt)Zi/k0+edku(k)ei(k*ko)(vagf)_ (5-52)
T Jk

0—€

A (t,x)

The expression e!(ko¥~«0!) contains the dominant frequency term and
therefore it is the fastest oscillating function. The amplitude term
Aq(t, x) assumes constant values on the planes x — v¢t = const. This
expression defines the profile (envelope) of a wave packet. The velocity
with which the envelope moves is given by (5.50). This velocity is
termed group velocity.
When frequency is a certain linear function of wave number, i.e. Linear dispersion

w = vk, then the phase factor ¢ has the form ¢ = kx — vkt. In such a

case the group velocity is equal to the phase velocity
_dw Yy w
== v, vp = Yyl = = . (5.53)

Let us observe that relation w = kv,, where v, = v, (k) # const, leads

Vg

to

d(kvyp)
dk

where wavelength is denoted by A := 27” Wavelength

avp B avp
k- Vp — /\ﬁ (5-54)




Monochromatic wave in homogeneous dielectrics

We consider an electromagnetic wave with a single value of angular
frequency — monochromatic wave. The wave propagates in homoge-
neous dielectric medium with constant permittivity ¢ and constant
permeability u. Such wave is described by auxiliary complex fields

E — Eoei(k'x—wt), B — Boei(kx—wt)’ (555)

where Ej and By are some constant complex amplitude vectors. The
fields (5.55) are solutions of the wave equation provided that

n? = = k2. (5.56)

It is enough to consider k as real-valued vector. In order to establish
what is the mutual orientation of vectors E, B and k one has to plug so-
lutions (5.55) into Maxwell’s equations and solve the resulting algebraic
equations. Considering that

Vei(k-xfwt) — ik ei(k~x7wt)
one gets
V-E=ik-E, VXE=ikXxE, 0tE = —iwE (5.57)
and similarly for B. Electric and magnetic Gauss laws give

V-E=0 = k-Ey=0, (5.58)
V-B=0 = k-By=0, (5.59)

whereas from Ampere-Maxwell’s law and Faraday’s law one gets
n? 2w
VxB- —3E=0 = k % By +n"—Eg =0, (5.60)
1 w
VXE+EatB:O = kXEO—?BOZO‘ (561)

Equations (5.58) and (5.59) imply that vectors E and B are orthogonal
to the wave vector k. Taking into account that the wave number k = n%
is given by dispersion relation (5.164), one gets from (5.60) and (5.61)
that

Fo= - kxB,  By=nkxE, k=k| e

From scalar product of amplitudes one gets
Eo-By = —[k*Eo- Bo— (k- Eo)(k-Bo)l = —Eo-Bo  (5:63)

which allows us to conclude that

560
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Thus electric and magnetic field vectors are mutually perpendicular.
The amplitudes of both fields are proportional. It can be seen from

* 12 7. * 12 * 7. i *
Eo- Ej = — [k x Bo] - [k x Bj] = ﬁ[kz(B(yBO) — (k- By)(k-B})]

which gives

1
|Eo|? = ﬁ|30\2- (5-65)

Moreover, the electric and magnetic fields have the same phase. It is
clear from the fact that the amplitude of a given field is a vector product
of two vectors: the amplitude of the other field and the real-valued
vector nk. The square of Eg is a complex number and thus it can
be represented in the form E3 = |Eo|?e~%¢. The choice of the phase
“—2¢” is motivated by convenience. Taking the square of the complex
magnetic field vector one gets

(Bo)? = n®(k x Ep)? = n?|Eg|?e %% = B3 = n?|Ep|%e 9.

what proves our statement. Some of the above statements® do not hold
in conducting media where the vector k must be replaced by a complex
vector.

5.3 Polarization of electromagnetic waves

Decomposition on polarization states.

We consider a free electromagnetic field in an empty space. The field
is described by solutions of sourceless Maxwell equations. In order to
eliminate non-physical degrees of freedom we impose the Coulomb
gauge condition

A’=0, V-A=0

We shall solve explicitly the condition V - A = 0. The vector potential A
is a solution of the wave equation (93 — V?)A = 0. Since the equation
is linear then the potential can be written in the form of Fourier integral

T .
y / Pk &0 (K)aq(t k) €%, (5.66)

A(t,x) = g L

where é,(k) are some real-valued and constant vectors that satisfy the
condition of orthogonality

éa(k) - &y (k) = Oup- (5.67)
They are called polarization vectors. We take the vector é;(k) as
k

ek i= o kA0 (5.68)

9 For instance, the equality of phases of
electric and magnetic field.

Coulomb gauge condition

The polarization vectors



The vector k in quantum field theory is proportional to linear momen-
tum of photons. Since photons with k = 0 do not contribute to total
energy and momentum of the electromagnetic field one can assume
that coefficients a,(t, k) vanish at k = 0 i.e.

aq(t,k = 0) = 0. (5.69)

Another assumption is independence of the polarization vectors on spatial
reflection of k, namely

éa(—k) = é,(k) for a=1,2. (5.70)
The complex coefficients a,(t, k) are called modes of electromagnetic field.
Since the electromagnetic field is described by real-valued function

then the modes satisfy some additional constraints. The condition
A*(t,x) = A(t,x) has its explicit form

Z/d3kea (1 k) ek = Z/d3kea K)aa(t, k) €%,
Substituting variables k' — —k' in the first integral one gets
Z/cﬁkeﬂ 5t —k) eF* = Z/d?’kea k)aq(t, k) i€
where the sign change dk' — —dk' has been absorbed in limits of
/::dk—> A;oo(—dk) _ /jodk.

éﬂ(_k)a;(tr_k) = éa(k)au<t1k)' (5'71)

Since polarization vectors labeled by a = 1,2 do not depend on spatial

integration

It gives

reflection of the vector k i.e. é,(k) = é,(—k), then (5.71) implies that

ay(t, —k) = a(t,k). | (572)

On the other hand, the vector (5.68) satisfies é3(—k) = —% = —é&3(k)
which gives

ay(t,—k) = —as(t, k). | (5.73)

The Coulomb condition V - A = 0 takes the form
3 .
y / Phik - e (K)aq(t, k) e** = 0
a=1

This condition is satisfied providing that

k-éq(k)aq(t, k) = 0. (5.74)
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The condition (5.74) is satisfied for k = 0. Since vectors é,(k) are
orthonormal and é3 « k then for k # 0 the condition (5.74) constititues
constraint on a3(t, k) which is of the form |k|as(t,k) = 0. It has a
solution

as(t, k) = 0. (5.75)

We conclude that electromagnetic potentials which are consistent with
the Coulomb gauge condition are parametrized by just two Fourier
amplitudes a1 (f, k) and a5 (¢, k). It means that the electromagnetic field
has only two polarization states. Both of them are perpendicular to the
propagation vector k.

Totally polarized electromagnetic wave

In order to study polarization of electromagnetic waves we choose any
point P and look at the electric field E at this point.’® The magnetic
field can be discarded in this analysis because it is not independent. Its
orientation is determined by (5.62).

The monochromatic wave is totally polarized — spatial orientation
of constant amplitude vector Ey remains unchanged in time. In this
section we shall consider totally polarized waves. We consider complex-
valued™ electric field E = Ege!(k*~@!) describing monochromatic elec-
tromagnetic wave. The amplitude vector Ej is complex-valued and
constant. The physical electric field is given by its real part Re(E). The
field E is function of time at any fixed point P.

Gauss law implies that Ey - k = 0. The expression Ej - Eg is a complex
number because the amplitude vector is complex-valued. Following
the previous section we shall parametrize this number as

Eo-Eg = |Eo%e 9. (5.76)

The amplitude vector Eq can be parametrized in terms of two real vectors
e1 and ey in the following way

Eo = (e; +inex)e ™, 5 =41 (5.77)

The square of (5.77) reads Ej - Eg = (312 — e + 2ineq - ez)e’Zi‘P. This
expression must be equal to (5.76). It means that e; and e; are mutually
perpendicular real vectors which, in addition, are perpendicular to the
wave vector k,

e;-ep =0, e;-k=0, er-k=0. (5.78)

Lengths of vectors e; and e,, denoted by e, := |e;|, can be expressed
in terms of three parameters: two amplitudes of electric field in certain
reference frame, measured in two orthogonal directions, and a third
parameter — phase shift. Without loss of generality we can choose two

Two polarization states of electro-
magnetic waves

> We choose x = 0 in order to avoid the
additional complex number e’*"*.

" Auxiliary field



Cartesian versors £ and # which are parallel to the plane defined by e;
and e). A third versor £ is defined as the vector product £ = £ x §J. The
versors £, J, £ define laboratory reference frame. The amplitude of electric
field has components

Eg = Ac*z2 4+ BelPy (5.79)

where A, B, a, B are real-valued quantities. Then
E;-Ey= A%+ B?, (5.80)
Ei x Ey = AB [e“ﬁ*“) - e*i(ﬁfﬂd] 2 = 2i ABsin(0)2 (5.81)
where § := B —a € [—m,m]. On the other hand, scalar and vector

product of the electric vector and its complex conjugate can be cast in
the form

ES -Ep = (21 — i17e2) . (61 + i?]EZ) = 6’% + 6’%, (5.82)
Ej x Ey = (eq — iney) x (e1 +iney) = 2ine; x ep = 2injejez é1 x é;

(5.83)

where é; X &; is a unit vector. One can always choose both versors é;
and é; in a way that é; x é; = 2. Comparing (5.80) with (5.82) and
(5.81) with (5.83) one gets

242 =A%+ B2 nejep = AB sind. (5.84)

Note, that since ¢; > 0 and A, B > 0 then = sgnd. Hence, 6 € [0, 71].

One gets

(e +e2)? = A%+ B2 +2ABsin(6). (5.85)

Sum and difference of square roots of (5.85) gives

e1 = % [\/Az + B2+ 2ABsin(y6) + \/A2 + B2 —2AB sin(iyé)} (5.86)

and

ey = % {\/AZ + B2 +2ABsin(76) — \/A2 + B2 —-2AB sin(iﬁ)] .

(5.87)
Expressions (5.86) and (5.87) give, respectively, lengths of major and

minor semi-axes of the polarization ellipse. The orientation of the
ellipse is given by the angle & between vectors £ and é;

X-é1 =cosd, X-é)=—sind (5.88)

76 =sind, 7 é, =cos?. (5.89)
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The angle ¢ can be determined from the identity
Re[(Ep-é1)(Ep - &2)] =0 (5.90)
which follows from
[e79(ey + iney) - 81][e"0 (e1 — iney) - &) = —ineres.
Plugging (5.79) into (5.90) one gets

Re[(Ae®% - &, + BelPyy-e))(Ae ™% - o + Be - &y)]
= Re[(Acos®d+ Be“sind)(—Asind + Be cost?)]
e[(B* — A%)sin®cos ¢ + AB(e ™ cos® ¢ — e sin® 9)]

|
=

%(A2 B?)sin(20) 4+ ABcos d cos(28) = 0. (5.91)

Equation (5.91) has solution

2AB
tan(20) = 22— g2 o8 J. (5.92)

Below we study some characteristic cases.

1. Linear polarization
For 16 = {0, t}, and consequently cosé = %1, one gets

T 2AB
= A2 + B2, 62 = 0, tan(219) = im

The complex-valued electric field reads
E = (ey +iney)e X, xX:=wt—k-x+¢. (5.93)

It gives physical electric field

Re[E] = \/ A% + B2 cos x é;. (5.94)

Electric field vector at any point of space is a periodic function which

oscillates with frequency w. The vector Re[E] is fixed in direction
of é;. The field oscillate in the é; = % direction for B = 0 and it
oscillates in the é; = ¢ direction for A = 0. In the case A = B the
electric field vector form an angle ¢ = 7/4 with £ providing that
0 = 0 and it forms angle ¢ = —m/4 for 6 = m.

2. Circular polarization
Another interesting case is 70 = 7 and A = B. In this case

e = A, ep = £B = £A, tan(29) = undetermined. (5.95)
The auxiliary, complex-valued, electric field reads

E = A(é; £iné;)(cos x —isiny) (5.96)



whereas the physical electric field has the form

‘ Re[E] = A[cos x é1 + 1 sin x é;] ‘ (5.97)

where x = wt —k-x+ ¢. A characteristic property of circular
polarization is length preserving rotation of the vector Re[E] at any
point of space. The rotation has positive helicity (anti-clockwise) for
0 = /2 (n = +1) and negative helicity (clockwise) for 6 = —m/2
(n=-1.

. Elliptical polarization

If non of cases listed above is present then the electromagnetic wave
has elliptical polarization. The electric field vector rotates and oscillates
simultaneously. Note that elliptically polarized wave

Re[E] = Re[(e1 + iney)(cos x —isin x)] = e1é1 cos x + nezé; sin x
(5.98)

can be seen as superposition of two linearly polarized waves with polariza-
tion planes being mutually perpendicular. Each linear polarization
can be decomposed on a combination of two circularly polarized
waves. With help of two vectors

€4 1= é1cosx £ érsiny, (5.99)

one gets

1 1
é1cosx = E(éJr +eé_), érysiny = = (é4 —é_). (5.100)

2

It allows us to cast the formula (5.98) in the form

Re[E] = it —1-21762 éy+ a _21762 é_. (5.101)

One can conclude that each elliptically polarized electromagnetic
wave can be decomposed into two linearly polarized waves with
mutually orthogonal directions of polarization, or alternatively, into
two circularly polarized waves with opposite helicities.

Partially polarized electromagnetic wave

A realistic electromagnetic wave is not perfectly monochromatic. Its
frequencies belong to a narrow interval Aw around some frequency w.
A single monochromatic wave is polarized, however, superposition of
such waves with different polarizations needs a special treatment. At
fixed space point the electric field of such a wave is of the form

E = Ey(t)e ', (5.102)
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where the amplitude Ey(t) is slow-varying function of time. The ampli-
tude vector describes polarization hence polarization of electromagnetic
wave changes slowly with time .

Experimental data of polarized wave contain measurement of the
intensity of the light beam that passes through the polarizing filter. The
intensity of light is a quadratic function of electric field. For this reason
we shall consider only quadratic functions containing components E’(t)
and E*i(t), namely

EZE] — EZOE{) e*Ziwt, E*lE*] —_ ESZES] €2iwt’ ElE*] — EéES]

Actual values of such quantities are less important than theirs time
average values '

() =7 [ atso. (5109

The characteristic time scale in which amplitudes vary and the period

of functions e*%w!

are essentially different. Thus, time averaging over
the interval T >> 2%, such that the phase factor oscillates many times
whereas the amplitude remains essentially unchanged, vanishes for
terms which depends on dominant frequency w. On the other hand,
the average values (E'E*/) = <E6E3j > do not vanish. It means that
properties of partially polarized electromagnetic wave are completely

characterized by the tensor

Jij = (EOEY ). (5.104)

Since the vector E, is perpendicular to the wave vector k then J;; has
only four components. We choose the Cartesian x!, x?> axes perpen-
dicular to the wave vector. The indices in (5.104) run over i,j = {1,2}.
The trace of this tensor represents intensity of the wave (density of the

energy flux) and it reads

Trf = i]ﬁ = <\E(1)\2> + <|E5|2> = <|Eo|2>. (5.105)

This quantity is not related to polarization properties of the wave and
therefore tensor containing relative intensities is more adequate than
(5.104). A polarization tensor is defined in the following way

g (BE)
pij = if = W. (5.106)

It has the following properties:

1. Trp=1 & o1 +po2 =1,

> A measure process is made at a certain
time interval.

<eiiwt> =0

Tensor of absolute intensity

Polarization tensor



2. pP=p < p11,02 € R, o1 = 0Ty

The polarization tensor determinant reads

detp = <|1510|4> [(EbEs") ((E3ES?) — (E3Es®) (E3ES")] . (5107)

There are two limit cases of partially polarized waves — total polar-
ization and absence of polarization.

For totally polarized electromagnetic waves the amplitude vector is
constant, Ey = const, and its time averaging give the proper vector,
hence

i p*]
pis = EOE02 .
| Eol

(5.108)

The polarization tensor determinant vanishes in such a case

A 1 * * * *
detp = (s [(ESEGY) (ERES?) — (EOEG)(ERES)] = 0. (5100

On the other hand, for unpolarized electromagnetic wave (e.g. natural
light beam) the average intensity has the same value in all directions. It
gives

(ESES") = (EBES) = 2 (IEoP?). (5.110)

The components Etl) (t) and E%(t) are not correlated for totally unpolarized
wave. It leads to vanishing of expressions

<E})E32> =0= <E5E31> . (5.111)
Plugging this results into (5.106) one gets the polarization tensor
1
pij = 59%- (5.112)

Its determinant (5.109) has value detp = %. Thus, the polarization

tensor determinant vanishes for totally polarized electromagnetic wave
and it equals to 1/4 in absence of polarization. A grade of polarization
P € [0,1] is defined as follows

detp = i (1 - PZ) , (5.113)

where P = 0 and P = 1 represent, respectively, absence of polarization
and maximal grade of polarization.

A convenient decomposition of polarization tensor consists on its
symmetric S;; and anti-symmetric A;; part. They are defined as follows

1 1 .
Sij = E(Pij +pji) = E(Pij +p0i) €R, (5.114)

—_

1 . i
Ajj = E(Pij = pji) = E(Pij *P,‘j) = *Ee,‘jA el, (5.115)
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where A € R, then

i
pij = 81] — Eel].A (5.116)

Polarization tensor for totally polarized wave.

In this section we shall analyse what is the meaning of the polarization
tensor components in the case of totally polarized electromagnetic wave

E= Eoei(k‘x—wt) — (Eéf‘*— E%g)eik‘xe—iwt,

where E} = Ae® and E3 = Be'f. At given point P described by the
position vector x the expression e’** is a fixed number. It is irrelevant
for the tensor p;; because it is an overall phase factor and therefore it

does not contribute to § = B — a. Plugging this components to (5.108)

one gets
1 A2 | ABe™¥
Pil = AZ1B2 | AB | B2
o1 A | ABcoss | i 0 |1] 2AB .
A2+B?| ABcoss| B? 2| -1]0 | A2+B2
Sii A
(5.117)

The parameter A vanishes for § = {0,7}. It has been shown that
electromagnetic wave is linearly polarized for such values of phase
shift. The corresponding polarization tensor is symmetric,

1

N A? | £AB
Pij = A2 + B2

+AB | B?

, (5.118)
and it takes the following forms

1]0 0o 1] 1 |41
Pi= 1700 Pi = 1701 Pi=a 1 a1

for polarizations aligned with, respectively, the x, y axes and the di-

(5.119)

agonal y = +£x direction. The circular polarization is corresponds to
0 =247 and A = B. It gives

pij = % [%%] - %(i) [_Ll%] - (5.120)

The coefficient A has interpretation of degree of circular polarization.
Its extremal values A = —1 and A = +1 correspond to circularly
polarized waves with, respectively, negative and positive helicity.

Linear polarization

Circular polarization



Stokes parameters

Going back to our observation that the polarization tensor is a 2 x 2 Her-
mitian matrix we shall make use of the fact that it can be decomposed
on the Pauli matrices

o 01 o — 0 —i . 1 0
it Polioo|r oo
and the identity matrix 1,

p=5l+Gai]. (5-121)

Coefficients ¢, are called Stokes parameters. The polarization tensor
determinant is related to the polarization degree P according to (5.113).
Hence, the equality
1

(1-P?) = 7 det

1+383 &1 —1id
G1+i6 1-233

I

]—hr+ﬁ+ﬁ+ﬁn

gives

P=./G+2+E (5.122)

The expression (5.122) means that all states having the same grade

of polarization form spherical surfaces in three-dimensional space of
Stokes parameters. The states with maximal polarization form the
sphere with P = 1 radius and unpolarized states correspond with the
point at the origin {1 = ¢» = 3 = 0.

In order to understand better what is the physical significance of
the Stokes parameters we consider all the states P = 1 and express the
parameters ¢, in terms of A, B and 4. Using properties of the Pauli
matrixces

Tr(0,0p) = 26,4, Tr(oz) =0
one gets from (5.121) the coefficients
Ea = Tr(0up)- (5.123)
Next, plugging the polarization tensor parametrizd by A, B and ¢,

L1 A? ‘ AB (cosé —isind)
P~ AT B2 | AB (cosé +isind) | B2

7

into (5.123) one gets

2AB 2AB A% — B?

1= 1B cos o, Gy = 1B sind C3 = YV

(5.124)
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Comparing with decomposition (5.117) and (5.121) one gets {» = A,
and thus it describes the grade of circular polarization. For B = 0 one gets
¢1 = ¢» = 0 and 3 = +1 what correspond to polarization along the
x-axis. Similarly, for A = 0 the Stokes parameters read ¢; = ¢» = 0
and ¢3 = —1. This case stands for the wave polarized along the y-axis.
One can conclude that the parameter &3 describes polarization along the x
and y axes. Finally, in the case A = B and § = 0 the wave is polarized
along the line which form the angle ¢ = /4 with the x axis. This case
corresponds to the Stokes parameters ¢, = ¢3 = 0 and ¢; = +1. For
6 = O replaced by § = 7 the parameter {3 became 3 = —1 (polarization
along the line which form the angle ¢ = —7 /4 with the x-axis).

n Yy
S — .
1
pY e v N
| \ o \‘< 1 52 | w
— —> > — e
| | —1 ,_/ b“ _
i L, R -
4 -1
Yy ."' »
x é—l ,'l' \\\\

It has been shown that totally polarized electromagnetic wave, P = 1,
is characterized by the polarization ellipse with semi-axes e; and e; that
satisfy

2AB

e%+€%:A2+BZ' A2 _ B2

neiep = ABsind, tan(209) = cos .

These partameters allows us to express the Stokes parameters in the
form

1

3

tan(29),

G =

26182
=57
e t+e;

(5.125)

Expressions (5.125) gives relations between parameters of the polarisa-
tion ellipse (its size and orientation) and the Stokes parameters. The
circular polarization component exists if none of the parameters e; and
ey is equal to zero. Otherwise, the ellipse degenerates to a segment of
straight line.

Figure 5.3: The space of Stokes parame-
ters and the meaning of points at the sur-
face of the sphere with the radius P = 1.



The parameter ¢, and 4/ (;‘% + ij% are invariant under Lorentz trans-
formations.

Decomposition of partially polarized wave on polarized and unpolarized
components

We split the tensor J;; = (E'E*/) into two parts: the component ]i(jn)
that represent unpolarized electromagnetic wave and the component
] i(jp ) corresponding to totally polarized electromagnetic wave. It has been
shown that the polarization tensor describing unpolarized wave is

proportional to the Kronecker delta. Hence

I 1
o ==t = =" (5.126)

1

where [ = Tr(J(")). Time averaging of polarized components is
redundant ]i(jp) = Eé(p )ES] (p), hence the expression J;; — ]i(jn) = ]z‘(jp)
reads

1 i ]
Jij = 5]y = BV ESY. (5-127)

The matrix [Eé(p )Egj (p )} has null determinant, see (5.109). It leads to
the equation

1
det []ij - 2](")51‘]'] =0, (5.128)

where J;; = Jp;; with | = Tr( f). The equation (5.128) allows us to
determine the intensity of unpolarized component J(")

get| Tn =2l e
Jo Joon — 37

1 1
= (Jpu1 — 5](”))(]922 - 5]('1)) — J*p12p21
1 1
= J? 11022 — P12021] +Z(](n))2 - EI(H)] [011 + p22]
—_— —_——
detp=1(1-P2) Trp=1

= 2 (02 =21 + 1= PP =0 (5.129)

which gives J") = (14 P)]. Since J(") < J, then the physical solution
reads

J" =(1-P)J. (5.130)

The intensity of the polarized component equals to J(P) = PJ since
]i(jp ) — Ji—1T i(jn)' One can easily establish the relation with the Stokes
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parameters. The only difference is that the polarized component in-
tensity is certain fraction of total intensity i.e. €5 +¢3 = A2+ B> = PJ.
Hence

1 2eqep

& = tan(29), Go=1 P (5.131)

Decomposition of partially polarized wave on two incoherent elliptically
polarized waves

The eigenvalues A,;, a = 1,2 of the polarisation tensor p are real-valued
because the tensor is Hermitian. The eigenvectors n(?) of the polariza-
tion tensor have the form of two complex versors n*(?) - n(?) = 1 that
satisfy equations'3

pijn](u) = )\anl(u). (5.132)

Multiplying this equation by n?(a) and taking sum over i we get

*(a a 1 i ] *(a a 1 i *(a *j (a
o= o = LB Y — (e )

_ % (| ) > 0.

Hence, both eigenvalues are real-valued and positive. The eigenvalues A,
can be parametrized by the polarisation degree P. Indeed, the equation

det[p —Al]=0 &  A2—Trp A+ detp =0 (5.133)
~— ——
! §(1-P2)
has two solutions A1 = (14 P).
The eigenvectors are mutually orthogonal. This can be shown as

follows. Multiplying the equation with a = 1 by n*() and the complex
conjugated equation with a = 2 by n)

pim’ = A/
. o*2) +(2) 1) (5-134)
i = /n

and subtracting the resultant equations one gets

(0ij — Pﬁ') ”](-1)”?(2) =M - )\2),11(1)”:(2).
—_——

0

Since A1 — Ay = P # 0 (there is unpolarized cimponent) then n .

*(2)

n*\%) = 0. It means that the complex eigenvectors form the orthonormal

set

n@ ) =5, (5.135)

13 L.D. Landau, E.M. Lifshitz, The Classi-
cal Theory of Fields. Volume 2.



The matrix whose columns are formed by the eigenvectors is an unitary
matrix

u:=
n*(

*(1
n) ‘ n2) ] and ut.= [n(zil .

This definition and the fact that n(?) are eigenvectors of p give

A~ /\1 O A /\«1 0 +
utpu = & =U u 136
p 0 A ] p 0 A (5.136)
The last expression in (5.136) reads
pij = M 7151)71;(1) + Az n§2)n;(2). (5.137)

A complex amplitude vector can always be chosen in the way that one
of two mutually perpendicular components is real-valued whereas the
other one is purely imaginary-valued. Let e; and e, be two ortogonal
real vectors. We consider the following form of first eigenvector

n = e181 + inexés. (5.138)

The normalization condition n*() . #(1) = 1 leads to the condition
e2 +e2 = 1. The second eigenvector n?) is orthogonal to the first
one. Thus, taking n*(2) = a*&; + B*é, one gets a*e; + inf*e; = 0. The

solution of the last condition reads «* = —ie; and B* = 5e;
n?) = iey61 + ne1é, (5.139)

where we made use of the fact that n*(?) - n(?) =1 = |a|? + |B|%.

The vectors (5.138) and (5.139) describe two identical ellipses (the
same ratio of semi-axes). The major semi-axes of these ellipses form the
angle 7t/2. The polarization components associated which each ellipse
are incoherent i.e. there are no cross terms in (5.137).

5.4 Energy and momentum flux of electromagnetic waves

The energy density u and the momentum flux density S of the electro-
magnetic field is given by expressions

1
u—8—n[E'D+H~B], (5.140)
S= é [E x H], (5.141)

where all fields are real-valued. We assume that the continuum medium
in which the wave propagates is linear, homogeneous and isotropic. It
leads to linear constitutive realtions D = ¢E and B = pH.
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The physical real fields are given by real (or imaginary) parts of
auxiliary complex fields E € C, B € C, hence

ReE= 2 (E+E), ReB=(BHB).  (5142)

Consequently, the expressions (5.140) and (5.141) must be replaced by
the following ones

_ 1 2, 1 2
u=g- e(ReE)” + V(Re B)“|, (5.143)
c
S = prem [ReE x ReB]. (5.144)

Instantaneous values of u and S are less relevant than theirs time aver-
age values (u) and (S) for fields that oscillate very quickly. Taking the
monochromatic wave in the representation of complex-valued auxiliary
fields

E = Egellkx—wt), B = Bye!(kx—«wt), (5.145)
one gets
((ReE)?) = i () +2(E-E") + (E?)] = %E-E* - %Eo ‘E,
((ReB)?) = i [(B?) +2(B-B*) + (B?)| = %B B = %Bo "B},

where quickly oscillating terms drop out

E) (= () ()0

Similarly, the following expression

(ReE x ReB) = ~[(E x B*) + (E* x B) + (E x B) + (E* x B")]
——— —

~—

N

0
= %Re [E x B*] = %Re [Eo X By] (5.146)

tiwt

does not contain terms proportional to e*'“*. Thus, time averaged

values of energy density ant the Poynting vector read

1 * *
(u) = 167126 [E-D* + H - B (5.147)

(S) = S%Re [E x H*]. (5.148)

It has been shown that Maxwell’s equations and plane wave ansatz lead
to the following algebraic equations

A 1
_ _ 2 _ 2
E__EkXB' B=nkXxE, |E| —n2|B\ , (5.149)



where k := |k?| The average value of the energy density reads
1 o 1,5 1 ep > 1 2
= |elEP + =|B]*| = —— | =~ +1||B*= —|BJ?.
W) = T6r [‘g' - w 167 1 [z +1] 1Bl gt B

Similarly, the average value of the Poynting vector has the form

_ el Lk 1o\ ¢ 2\7
(S) = SnRe[ n(ka) X <FB )} = 8nynRe(|B| )k
___ ¢ 24
= 87ryn‘B| k.

The magnitude of (S) is proportional to (1), namely

(5.150)

where the proportionality coefficient is equal to the speed of propaga-
tion of electromagnetic wave.

5.5 Reflection and refraction of light at the interface between
two dielectrics

In this section we shall deal with description of electromagnetic wave on
the border of two different homogeneous dielectrics. Such dielectrics
are characterized by electric permittivities £1, € and magnetic per-
meabilities yq and po. The refractive indices read n; := ,/ejp; and
ny := ,/ezp2. The boundary between two spatial regions containing
different dielectric media is called an interface. One of the simplest
solutions is obtained for interface in the form of infinite plane. Let #i
be a unit vector, normal to the interface and pointing out from first
dielectric (1) to the second dielectic (2). In absence of free charges and
free currents the fields are solutions of sourceless Maxwell’s equations

V-D =0, V x H — %atD =0, (5.151)
V-B=0, V x E—Q—%atB:O, (5.152)
and the boundary conditions
- (Dy—Dq) =0, it x (Hy — Hy) =0, (5.153)
- (B, —Bp) =0, i x (E;—E;) =0. (5.154)

These conditions imply continuity of normal components D, and B,
and continuity of tangent components H; and E;.

We choose the z—axis perpendicular to the interface and oriented
in direction of 7, i.e. Z = #i. The incoming electromagnetic wave,
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Figure 5.5: The incidence, reflection and
refraction wave vectors at the interface of
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characterized by the wave vector ko, propagates in the medium (1)
We shall denote by k; the wave vector associated with the reflected
electromagnetic wave in (1) and by k; the wave vector describing the
transmitted electromagnetic wave in (2). For oblique incidence the
vectors ko and i are not parallel. In such a case they define a plane of
incidence. The wave vectors ko, ki, ky form angles 6y, 61 and 6, with the
vector 7i. Without loss of generality we choose the £ versor parallel to
the plane of incidence (and perpendicular to £). Third versor § is given
by § = 2 x %.
The incident, reflected and transmitted waves are given by fields

Incident beam Ey = EJ¢i(kor—wot)

Hy = M i&o X Ey = (1’11 ’20 X E8> ei(ko-rfwgt),
1 #1

Reflected beam E; = E(l) ei(krr—awit)

H, = ﬂ ’21 X E1 = (1’[1 kl X E?) ei(kl'riwlt),
M1 H1

Refracted beam  Ep = EJ ¢f(k27—w2t),

Hz = Q 122 X Ez = (1’12 122 X Eg) ei(k2~r—wzt).
M2 M2

Angles of incidence, reflection and refraction

All waves must exist simultaneously at the boundary z = 0 which
is the xy-plane. Tangential components of the fields must be equal
on both sides of the interface. The fields satisfy boundary conditions
at the interface z = 0, namely their tangential components must be
continuous on both sides of the boundary

ﬁX[Eo—l—El]:leEz,
ﬁX[Ho—i-Hl]:ﬁXHz.

(5.155)
(5.156)

Plugging the complex vectors into the boundary conditions (5.155) and
(5.156) we get

ﬁ % [Egel’(kg-rwat) + Egel’(kl-rfwlt)] — ﬁ % Egel’(kZ-rf(lJzt)/ (5157)

fi X [ngl‘(kg-rwat) + H?ei(kl-rfwlt)] —fix ngi(kz-rfwzt). (5158)

If the wave amplitudes are constant, the only way that the conditions

(5.157) and (5.158) can be true is phase matching
ko-r—wot=ki-r—wit =ky -r— wst. (5.159)

For r = 0 the condition (5.159) gives wot = wit = wyt which imply
equality of frequencies wy = w1 = w,. We shall denote this frequency

The incident, relected and re-
fracted waves have the same fre-
quency w = wy = Wi = wy



by w. Consequently, (5.159) gives
ko-r=ki-r=kp-r (5.160)
The vector r restricted to the interface z = 0 has only components x
andy, r=x2+y{.
Without loss of generality we can assume that the incident wave
vector has no y-component (otherwise, one can rotate Cartesian frame
to eliminate the y-component), ko, := 0 i.e. ko -§ = 0. The condition

(5.160) must be true for any x and y. It leads to sequence of equalities
involving coefficients that multiply the variables x and y

ko-2=k1-2=ky-%, (5.161)
O=ki- =k 9. (5.162)
The second condition (5.162) gives k1, = kp, = 0. It means that the

refraction and reflection wave vectors belong to the plane of incidence.
In terms of angles

ka'fzkgCOS(eu—l-T[/Z)I—kg sinea, ﬂ:O,l,Z
the condition (5.161) reads
ko sin 90 = kl sin 91 = k2 sin 92. (5163)

Taking into account the dispersion relation in homogeneous media,
one gets the following sequence of equalities

w _k _k_k

< = " = o (5.164)

(5.164) implies k1 = kg and ky = %ko. The first equality in (5.163)
implies equality of the incidence and refraction angle

sin 6y = sin 61 = (5.165)

which is known as law of reflection.
The second equality in known as Snell’s law or law of refraction

‘ n1 sin 6y = n, sin 05. ‘ (5.166)

Snell’s law determines the angle of refraction 6, = arcsin(% sin6)
in dependence on the angle of incidence. Note that the solution 6,
could not exist. This depends on the ratio of coefficients #n1/n,. For
ny > nj the solution 6, exists for any value of the angle of incidence 6.
On the other hand, for n, < n; it is not true. There exists the critical
value of the angle 6,

0, = arcsin 2 (5.167)

ny
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np

2
such that cosf, = \/ 1-— (ﬂ) sin? @y is not real number for 6y > 6,.

This subject is discussed in the further part. The relation between angles
of incidence 6y and refraction 6, is shown in Fig.5.6.

Conditions for amplitudes

The amplitudes are solutions of the boundary conditions (5.155) and
(5.156). Since B = nk x E, or equivalently, E = —% k x B one gets that
Eand H = %B satisfy relation

H:%fcxﬁ, E=-ZkxH, (5.168)
where Z = £ = /L is called impedance.*4 The field amplitudes are

proportional E = Z H. It can be seen by taking square of equations
(5.168).

The generic monochromatic incident wave can be decomposed into
two components — perpendicular and parallel to the plane of incidence

E,=E, + Eu”’ H,=H, + H“H’ a=0,1,2. (5.169)

In further sections we study incidence waves which has electric field
perpendicular to the plane of incidence (s-polarized waves) or parallel
to this plane (p-polarized waves). In the last case, the magnetic field
is perpendicular to the plane of incidence. Such plane waves with
linear polarizations are also called transverse electric (TE) and transverse
magnetic (TM).

The ratios of amplitudes of reflected (and refracted) electric field
by the amplitude of the incident field define amplitude coefficients of

reflection and refraction. These coefficients were obtained by A. J.

Fresnel in 1818. Fresnel analyzed oscillations of light in hypothetical
luminiferous ether. The result was obtained before the final formulation
of Maxwell’s equations. Fresnel was the first who understood that light
is a transverse wave.

Perpendicular electric field (s—polarization)

We shall consider the case of incident electric field Ey = Eo which is
perpendicular to the plane of incidence (transverse electric field TE).">
This is also true at the interface z = 0. The amplitudes EY and E9 can be
determined from boundary conditions at z = 0. Their direction is is not
known beforehand. For simplicity, we shall assume that they have the
same polarization as the incident field i.e. they are perpendicular to the
plane of incidence: E; = E;3j and E; = E»). The continuity conditions

* For instance, 4/ g—g = 377 Q). Moreover,

in most of dielectrics it is sufficient to

approximate y & po.

Figure 5.7: Augustin-Jean Fresnel, 1788-
1827.

5 To simplify formulas, we shall omit the
subscript L.



(5.155) and (5.156) read

i x §[Eo+ E1] =f x § Ey, (5.170)
U S U S 21~
nx(koxy)E0+nx(1><y)E1:Z—1n><(k2><y)E2, (5.171)
- - 2 %/A_/
—(f-ko)y — (k1) —(f-k2)g

where 7 x (k, x §) = (- §)ks — (A - k,)§ = — (7 - k,)9) because 4 - § =
0. Note that i - k; = —# - k.
The conditions (5.170) and (5.171) takes the form

—E1 =+ E2 = Eo, (5.172)
Zy(i - ko)Ey + Zy (7t - ko) Ey = Zo (1 - ko) Eo. (5.173)

Solving equations (5.172) and (5.173) one gets amplitude coefficients

Ey _ Zo(-ko) = Zy(1 - ko) (5.174)
Eo  Zy(i-ko) + Zy (7t ko)’
E, 27, (7 - ko)

Eo Zy(n-ko)+ Zi(A- ko)

>

(5.175)

The amplitude coefficients can be parametrized by angles of inci-
dence 6y and refraction 6,. The ratio of impedances reads

Z1 _pr2 _ psinbo
Zz U2 nq 125 sin 92 !

(5.176)

where the last equality is true for all angles of incidence 6y providing
that n; < ny. Otherwise, it holds only for 6y which is smaller than
the critical angle 6.. The value of this angle shall be determined in
Section 5.5. All three wave vectors are real-valued providing that 6, is
a solution. In such a case the vectors read

ko = —sinfy £ + cos 6 2,
k1 = —sinfy® — cos b 2,
i%z = —sin9232+c05922.

The amplitude coefficients read

& _ Zpcostly — Zq cos 0

Ey Zpcosfy+ Zicosy’ (5.177)
E, 275 cos 6y
Eo  Zpcosby+ Zicosty’ (5.178)
or equivalently
Ey _ tan 6 — pq tan 0 =t M (5170)
Ey  pp tanf + jy tan 6y sin(6 + 6p)” 5-179
B pmanfy e 2cosfosingy o

Ey  pp tan6y + pq tan by sin(6, +6y)
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Figure 5.9: The ratios of amplitudes of
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Last equalities in (5.179) and (5.180) were obtained for p1 = pp = po.
Each amplitude coefficent E; / Ey and Ej/ Ey is considered for two cases:
ny < np and ny > ny. Figure.5.9 shows these ratios in dependence on
the angle of incidence for the case 1 = p».

For ny < ny the ratio E1/Ey (at z = 0) is negative independently on
the value of angle of incidence. It means that the electric field vector of
the wave reflected at the interface separating the material media changes
its phase by 7, ¢/ = —1. The absolute electric field amplitude |E| is
thus less than the amplitude |Ep.

Both ratios satisfy the condition E;/Eg — E1/Ey = 1 which follows
from (5.172). For the special case of normal incidence, 8y = 0, 62 = 0, the
amplitude coefficients simplify to the form

Ei _ pam —pana B 2m (5.181)
Eo  pony + pamy Eo  poni+ping
where first equality of (5.176) has been used.

For ny > ny the reflected wave and the incident wave have equal
phases. However, the refracted wave exists only for 6y < 6.. This

phenomenon, called total internal reflection, is discussed in Section 5.5.

Parallel electric field (p—polarization)

For the case of electric field parallel to the plane of incidence (p-
polarization), the magnetic field is perpendicular to this plane (TM
waves). We assume magnetic field in the form

H,=H,j, a=0,1,2.

The electric field is given by expression E = —Zk x H. Plugging these
expressions into continuity the conditions (5.155) and (5.156) one gets

A A Z A
ix (kox§)Ho+ax (ki x§)Hy = 22 i x (ky x §) Ha,  (5.182)
? z 21 —
—(f-ko)y —(#-kr)g —(-k2)g
i x § [Hy+ H1] = A X §H;. (5.183)
Taking into account that 7 - k; = —i - ko and plugging the amplitude
ZH = E one gets from (5.182) and (5.183)

(- ko)Er+ (- ka)Ex = (- ko) Eo. (5.184)
—Z2E1 + Z1E2 = Zon. (5.185)

The solution of (5.184) and (5.185) gives amplitude coefficients

Ei _ Zi(f-ko) — Zo(n - ky) (5.186)
Eo  Zy(a ko) + Zo(f - ka)’

B__ 2%0k) (5.187)
Eo  Zi(A-ko) + Zy(7 - ky)

optical axis

=

“

interface

%‘ H2 k2
. y ® ‘ .4..“......‘...... E 2
interface

ko

HO Ak
1
EO E i

Figure 5.10: The magnetic field vector
perpendicular to the plane of incidence.

X
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The solutions (5.187) and (5.186) can be cast in the form
Ei _ Zjcos 0o — Z» cos 6

Ey Zjcosfy+ Zpcos’ (5.188)

E2 - 2Z2 cos 90

Ey Zycosfy+ Zycosy’ (5:189)
Er _ 1 sin(200) — p2 sin(26,) ju=p2 tan(6p — 6>) (5.190)

Ey  p sin(26p) + pp sin(26;) tan(6y + 65)”

where

. [26,—26 2609+26
sin(26p) — sin(26,)  2sin [ 2 2} cos { B 2} _ tan(6y — 6,)
sin(26) +sin(262) ~ ogin {26045292} cos {2905292} " tan(fp +6,)

. Z1 __ p1sinfy
Plugging 7> = 1 5in,

The second coefficient (5.189) takes the form

into (5.188) one gets

& _ 445 cos g sin 6,
Eo 1 sin(26p) + pa sin(26;) n < ng
p1=p2 2 cos By sin 0, 0 0
~ sin(fp +6) cos(fg — 02) 0 5 0 0 ;70
Figure 5.11 shows the amplitude coefficients for 1 = p> ~ g and ®)

Figure 5.11: The amplitude coefficients

. ] o . for electric field parallel to the plane of
solutions exist for all angles of incidence 6y and for n; > n; they exist incidence (TM waves) for ji; = jia =~ Jio.

in a limited range of that angle, There is no reflected wave for the Brew-
ster angle 6p.

for both cases of n; < np and ny > ny. For the case n1 < np the

For ny < ny the ratio E?/ E8 is positive for §y < 6p and it is negative
for 6y > 0. The angle 0p, called Brewster’s angle, represents a very spe-
cial value of the incidence angle which results in absence of reflected wave.
According to the formula (5.190) (the case of equal magnetic perme-
abilities) an intensity of the reflected beam vanishes (the denominator
tends to infinity) for

T
O + 0, = 5
Applying Snell’s law one gets
ny sinfg = nysinf, = n, sin (g — 63) = 1y cosbp

which gives expression for Brewster’s angle in terms of the ratio of
refractive indices

tanfp = 2 (5.191)
m
A general electromagnetic wave (for instance natural light beam) Getting polarized light

is a mixture components with different polarisations. If the incident
light beam form Brewster’s angle with normal to the interface then
reflected beam necessarily does not contain light with p-polarization.
Consequently, reflected beam is polarized — its electric field vector is
perpendicular to the plane of incidence (s-polarization). This method is
used to obtain polarized electromagnetic wave.
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Total reflection

We shall present the formulas that involve 6y and 6; in the form such
that they are sound for n; > ny and 6y > 6.. The vectors k,; belong
to the plane of incidence and thus they do not contain components in
direction of §, ksy := 0. The components normal to the interface are
kan = kaz whereas the tangent components are ks = k,x where

kix =k, - £ = ku(fcu-ﬁ) =kycos (/2 —6,) =k,sinb,

with 2 = 0,1,2. According to our previous results, the components kg
are equal

k() sin 60 = k1 sin 91 = kz sin 92 .
——

kor=kox k1i=kix koy=koy

The reflected and incoming normal components have opposite values,

ki, = —kon. Taking into account that k3, = k3 — k3, = k3 — k3, one gets
k2t = ko sin 90, (5'192)

2
k3, = k3 —K3sin?6y = k3 [1 - (Z;) sin’ 90] . (5.193)

These formulas are valid for any angle 6y and for any value of the ratio
n1/ny. Plugging kyy = kysinf and kyp, = ky cos6, into (5.192) and
(5.193) and using (5.164) one gets

1y sin 0y = n sin 6, (5.194)
2
cos’fy =1— (Zl) sin’ 6. (5.195)
2

The expression (5.194) is just Snell’s law. Now, the point is that the
angle 0, may or may not have geometric meaning. The formula (5.195) is
used to determine this variable independently on its interpretation.

The amplitude coefficients are given by ratios of amplitude field
components. Going back to to this subject we write down electric fields
of the incident and transmitted wave

EO — E8 ei[kg't‘—wt] — E8 ei[(ko,(x+kgzz)—wt]
— E8 ei[ko(xsm(-)o—&-zcoseo)—a}t],
E2 — Eg ei[kz.rfwt] — Eg ei[(k2xx+k2Zz)fwt]

0 i[(kox sin6y+k —wt
:Ezel[( 0x sin 6g+kz.z) W]I

where r = x& + 22, ko, = ko = ko and ko, = ko,,.
The main question is a problem of angles for 111 > 13 and 6y > 6. In
such a case the right hand side of (5.195) is negative and consequently



cos? 0, < 0. It shows that 6, has no geometric meaning for the considered
case. Thus, we define

2 : 2
2. 12 _ 2| (M .o | _ 2| (sinbo\"
s° = —k5, =k; [(M) sin” 6 1] =k; l(sin&) 1] . (5.196)

We made use of the fact *° that for 8y — 6. the refraction angle tends

to 7t/2. The Snell’s law gives 1y sinf; = ny. The formula (5.196) gives

2
s = k2\/<2) sin? @y — 1. (5.197)

Plugging k», into E; one gets

ko, = +is where

E, = Egefszei[kox sineofwt]/ (5.198)

where e%* is not allowed because it leads to unlimited grow of ampli-
tude for z — oo (what is not consistent with energy conservation).
Penetration depth is defined as

11 A
8=~ 2 (5.199)

s 2n\/(Z;YsinzGO—l

where k = 27t/A with A being wavelength. The formula (5.198) shows

that the refracted electromagnetic wave penetrate the second medium,
however, the penetration depth is very short — of the order of magnitude
of wavelength A,. The refracted wave has phase ¢ = koxsin6y — wt.
Hence, its phase velocity reads

Y  w c c/ny <sin9c>v

T [Vy|  kosinby ~ npsinfy (n1/n2) sin 6 ~ \sin6p

Up:

The expression v, = ¢/n; stands for phase velocity of plane wave in the
medium with refractive index 1;. Since the phase velocity v, is smaller
than v,, (6: < 6p), then we can conclude that (5.198) does not represent
electric field of plane waves. In other words, the wave is not plane. Its
amplitude and phase are not constant on planes perpendicular to the
wave vector k. The phase of this wave clearly depends on properties
of both media, 6, = arcsin %, and the angle of incidence 6.
Replacing cos 6, in Fresnel formulas (5.177) and (5.188) by

2 .
cos bt = \/1 — (Zl) sin? 6y = %

E; _ Zycosby —iZi(s/ka) _ i,
( )L ~ ZpcosOy+iZi(s/ky) o (5200

(El) _ Zycosby—iZy(s/ky) 29|
[

one gets

= Zicosby +iZo(s/ka) (5-201)
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Parameters ¢ | and ¢ are defined as follows

Z1(s/ka) Z>(s/k) Z1 _ pim

— , tang) ;= —=—"—-~ — ===
Z» cos By il

t = , =
aneL Z] Ccos 90 Zz U2 N1

In the case of first formula we get

. Zl(S/kz) s L. .
1+i (_chose()) _ l+itang, cos¢ +ising;  e'PL _ 2o

1_Z-<_Z1(s/kz)) ~ l—itang, cos¢, —ising, e it

Z» cos By
and similarly for ¢ . Since ratios of the amplitudes have absolute values
291 = 1 and [¢¥?I| = 1 then magnitudes of reflected and incident
wavs are equal (only their phases are different).

It means that the energy flux of reflected wave is equal to energy
flux of incident wave. Consequently, there is no energy transfer to the
other medium. This is the reason why this phenomenon is called total
reflection. The existence of penetration depth does not contradict the
above result that whole wave is reflected. Experiments show that there
exists small region in the second medium such that the refracted wave
propagates parallel to the surface of interface. Finally, the wave goes
back to the first medium. Total reflection is responsible for formation
of mirages.

Energy fluxes of reflected and refracted wave

The energy flux is represented by time average of Poynting vector given
by

_ ¢ *] ¢ 27
(S) = —SNVRe [E x B*] 87TZ|E| k. (5.202)

The normal component of this vector is projection of (S) onto a versor
it normal to the interface, (S), = (S) - 71. Its tangent component is given
by (S) — (S), .

Reflection coefficient is given by the ratio

R.— [(S1)-a _ |E1|?
| (So) - a1 [Eol?

(5.203)

where kg - i = kq - fi since 6; = 6. The reflection coefficient R repre-
sents total flux of energy reflected on the interface. This flux can be
split into two parts perpendicular and parallel to the plane of incidence.
Squares of the amplitude coefficients (5.177) and (5.188) give reflection
coefficients R (for s-polarized component) and R (for p-polarized
component)

Eo), | Zacosfy+ Z;cosby

R, — Eq 2_ Z1cos By — Zp cos b, 2
= Z1cosfy+ ZrcosOy |

R, — (El)z B [choseo—zlcosﬂz}2
=2t

Eg

(b)

Figure 5.12: Total internal reflection; (a)
water-air, (b) glass—air.

Reflection coefficient



In the case of normal incidence 6y = 0 and for y; = uy =~ py the
reflection coefficient has the form

< )
Rl’l

(5.204)
Transmission coefficient is defined as follows
| (S2) - 1 Z1 cos 6, |E2\2
T:= - . .
| (So) -] Zacos b |Eo|? (5.205)

The perpendicular and parallel transmission coefficients are propor-

tional to squares of the amplitude coefficients (5.178) and (5.189) and
they read

_ Zycosth Ey 47173 cos by cos 0,
L ZycosOy \Eg/ | - (Z5 cos By + Z1 cos 02)2’
_ Zycosth Ey 2 _ 4Z1Z3 cos by cos 0,
= Z, cos@y \ Eo I "~ (Zycos By + Zpcos )2’

For normal incidence and for y1 = 2 one gets

4n1n2

Ty = ——.
" (np +mnq)?

(5.206)
Let us observe that R} + T, = 1 and similarly Rj+T) =1 The
energy conservation requires that it must hold for total coefficients

Reflection and transmission coefficients are shown in Figure 5.13. All
coefficient belong to the interval [0,1]. In the case 17 > n; the reflection

coefficient is equal to unity and the transmission coefficient is equal to
zero for Oy > ..

(5.207)

5.6  Electromagnetic waves in conductors

Constitutive relations in conducting media contain Ohm’s law which
relates the current density J with the electric field E which exists inside
the material. Ohm is a local relation between these two quantities.
We shall study the case of linear and non-perfect conductors (with
dielectric and magnetic properties) characterized by

D = ¢E, B =uH, J =0E, (5.208)

where o stands for electric conductivity and p for density of free electric
charges. A natural extension of a single conductor is a material con-
taining many domains made of different type of conductors separated
by interfaces. We shall consider the homogeneous and non-dispersive

p=0,
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medium, &€ = const, u = const. Electric and magnetic fields in such a
medium satisfy Maxwell’s equations

V-E=0, V X B— %”atls — 47”@115 =0 (5.209)
V-B=0, V><E+%atB:0 (5.210)

where (5.208) have been used.

Relaxation time

We shall study propagation of plane electromagnetic waves in non-
perfect conductor. Without loss of generality we can choose the &3
Cartesian versor as being aligned with direction in which the wave
propagates. It has been shown that electromagnetic fields are transver-
sal in empty space. Now we shall look again at this problem. In order
to get a general solution we shall not assume the perpendicularity of
wave vector and the fields. First of all, we observe that for electric field
which depends on t and spatial component x> one gets

V-E = ¢-(9;E)=¢é;-(93E),
V X E é; X (aiE) =é3 X (83E).

Thus, electric and magnetic Gauss’ law reads
- (03E) =0,  é&-(03B) =0, (5.211)

whereas Ampere-Maxwell law and Faraday’s law have the form

&3 x (03B) — %atE = 4%(7;45 (5.212)
1
é3 x (03E) + EatB =0. (5.213)

Taking a scalar product of &3 and (5.212) one gets

4o
é3-0E = v é3-E (5.214)

Taking sum of (5.214) multiplied by dt and (5.211) multiplied by dx®
one gets equation

&5 - [atEdt + a3de3} - —? &5 - Edt

dE

which can be cast in the form

(5.215)



In fact, solution of(5.215) represents longitudinal component of the electric

field,E| := &3 - E In a similar way, we get from other two Maxwell’s
equations é3 - %7 = 0. Thus, one gets
d”—i— —-E; =0, ﬂ— Ti= & (5.216)
e ol a7 " 4o >

where relaxation time is denoted by 7. First of equations (5.216) has
solution

Ey(t, x3) = E\ (0, x3)e_$. (5.217)
This solution shows that there could exist time dependent longitudinal
component of the electric field in non-perfect conductors. This compo-
nent decreases with time in exponential manner, e~7. On the other
hand, magnetic longitudinal component being solution of Maxwell’s
equations is static, B| = const. Any electromagnetic wave has both,
electric and magnetic fields which depend on time. Thus the longitu-
dinal component of electric field cannot be related with any wave and
therefore all electromagnetic waves in conductors are transversal.

Dispersion relation in conductors

In similarity to the case of non-conductors one can derive the second-
order equations for electric and magnetic fields. Taking rotational
of Ampere’s-Maxwell equation and using remaining equations one
can get equation for magnetic field. Similarly, acting with rotational
on Faraday’s law one gets equation for electric field. The resulting
equations have the form

LE =0, LB =0, (5.218)
where linear differential operator £ reads
L= M82—|—47r ”a - V2 (5.219)

The first order differential operator 471%& plays the role of dissipative
term (like in diffusion equation). For ¢ — 0 the operator £ is reduced
to the d’Alembert (wave) operator. We assume the following general
form of solutions describing electromagnetic plane wave in conducting
media

E = Egel(xm—wt), B = Bye! (7wt (5.220)

The equation (5.218) gives condition for x. There is only a single
condition for both the electric and magnetic parts, namely Le!(*"—©t) =
0. It gives the following algebraic equation

&l W?— 4 ]’lw+K (Kr wt) _ -0
C

CZ
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which must be satisfied for any ¢ and r. It leads to dispersion relation

2
W Ao
K- = ey—cz [1 +z—£w } . (5.221)

Note, that right hand side of (5.221) is complex. It means that ¥ must

2

be some complex-valued vector, i.e. k2 = k2 € C. The complex number

x can be represented by its real and imaginary parts
x=k+1is, k,s € R.

Plugging this expression into (5.221) and comparing real and imaginary
parts of both sides one gets
2 2 w? w
k*—s" = e ks = 27w;4c—2. (5.222)

Combining equations (5.222) one eliminates variables s or k

e w? 2mopw\?
ool () (5.223)
4 EHW? , 2mopu w 2 o
s +Ts == =0. (5.224)

Both these equations are quadratic in variables k?, s> and they have
equal discriminants

27\ 2 2
A= (@Z‘Z" ) l1+ (487;7) ] . (5.225)

Physically sound solutions are of the form

2 2]
K= SF;CL; 1+ (W> +1], (5.226)

2 4 2
#= () -

Terms with —+/A were discarded because they would give k> < 0,
s2 < 0 and consequently the variables k and s would be imaginary.
Thus, the final form of the solution reads

=) [ 1+(4;jj)2+1] _—

;1)
s:\nﬁ(f>[ 1—|—<4§j> —1] . (5.228)



Relation between amplitudes

The field (5.220) where « is a solution of (5.221) solve equations (5.218).

However, the electromagnetic wave must satisfy not only the wave-like
equation but a complete set of Maxwell’s equations. Plugging the
ansatz (5.220) into Maxwell’s equations we get algebraic conditions for
amplitudes Ey and By. Thus, we consider an electromagnetic wave
which propagates along the axis x°. Taking the wave vector in the form
& = (k +is)é; one gets

E— Eoe—sx3ei(kx3—wt) (5.229)

B= Boe*”sei(ka‘*’t). (5.230)
Electric and magnetic fields depend on spatial coordinate x*> and time

t. Faraday’s law é3 x d3E + %atB = 0, where d3E = i(k + is)E and
0B = —iwB results in

By = é(k +is) &3 x E. (5.231)

where complex number «x is parametrized by its amplitude |x| and
phase ¢,

K = |k|e?, k| = VK> + 52, ¢ = arctan (%) . (5.232)

Plugging (5.227) and (5.228) into these formulas one gets

1
nw 4o\ 2| *
=— |1 —_— .
K| = = l+<£w)] ’ (5-233)
—larctan dno (5.234)
=3 cw ) 5.234

Proof. We consider expression

-1 2 4 2
tanrp:%: {$+1] , uEl—i—(ZZ)T) . (5-235)

Then, applying some trigonometric identities we get

_sin(2¢)  2sin¢gcos¢  2tang
tan(2¢) = cos(2¢)  cos?¢ —sin’¢ 1 —tan’¢

1 1
Vu-1]2 Vi—1]2
_ %, bmi |G
_17(§>2_ 1 Vil T Vutl—utl
k Viu+1 Viutl

~eae[45]

_ [(\/E)Z _ 1]1/2 — \/uf: 4ﬂ
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Finally, we obtain relation between complex electric and magnetic field
amplitudes

1
4 211
By 1+ ( ;Zj) 1 e'? &3 x Ey. (5.236)

The factor €'? is responsible for time lag associated with relative phase

shift for fields B and E. Since é; - Ey = 0 = &3 - By then taking square
root of a square of (5.236) one gets

1
14 (47w>2 :
ew

|Bo| = n |Eo|. (5.237)

Limit cases
In this section we study the equation
Sciz‘a%ls +an ”atE V2E =0

looking at some characteristic limit cases. The term %G%E which is sec-
ond order in time derivatives originates in displacement current whereas
the term 4n%8tE originates in conduction current. Bothe these terms
contribute to the dispersion relation through expressions

L3E - L2, nLE — —i RACA
2 c? 2

The ratio of absolute values of these two terms determines the phase
shift and it reads

47'[(7;: 4 -

2 7t
—_ = = tan(2 .238
sy 2 e an( 4)) (5 23 )

e Case 4”" <1

In this case the effect of conduction current is small comparing with
the effect of displacement current. Expanding k in powers of 4”‘7
one gets

NI

S
NI

n /w 1 /42

= (—) |14+ — 1

ﬁ(c) +2<s )+ -
47'(02

5 2
141 (7‘[0)

=n—
C

g

. (5-239)

Time lag
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and similarly for s,

=+..., (5.240)

where Z := \/E Notice that the imaginary part s = Im(x) does not
depend on the frequency w. For o ~ 0 the phase shift is very small,
¢ =~ 0. Consequently, the fields E and B have approximately the
same phase.

Case 2% > 1

Ew

In this limit the conduction current dominates. This is the case of
metals where o/¢ ~ 10'8. The conduction current dominates for
frequencies lower than 107 Hz (microwaves, radio-frequency, light,
some range of X-ray). It means that the real and imaginary parts are
almost equal,

V2o pw.

k~s~

Q| =

It gives

k] = VK242 %\/47wyw (5.241)
s s
¢ = arctan (E) ~ arctan(1) = 1 (5.242)

The relative phase shift of fields takes value ¢ = 71/4 whereas abso-
lute values of their amplitudes satisfy the proportionality relation

4rto
Byl ~ ny/ =2 |E .
|Bo| ~ n 8a)| ol, (5.243)

where 7 takes values of the order of unity. Since % > 1 then
| Bo| > [Eq|-
Distribution of electric current in conductors

The term 9;D, that represents the displacement term, is irrelevant
for good conductors. In such a case the equation

V2E — 475#&15 =0
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is equivalent to the following one

4o
2 VatI =0, (5244)

V2 —

where | = oE. (5.244) is a diffusion equation. Since the electric field
depends on time through ¢~, then the current J one can expect
that the current density is proportional to this exponential function,
namely J = Jo(r)e ™. Plugging this expression into (5.244) we

get'” 7In Sl units § = | / 72

driopw
2

V2Jo+12Jo =0, =i . (5.245)

Considering that

- 1 . 4o
\/;_ﬁ(l—l—l) arld w»l

we get
T_l—i—i 5 c 1
5’ N

We shall look at the example of a conductor which occupies the
region x! > 0. The border x! = x = 0 is the interface that separates
conducting material and empty space. The electromagnetic wave

propagates along the axis x! = x. This case corresponds with normal
incidence of the wave. We assume that the wave is linearly polarized

in direction of the x> axes and then Jy(r) = J3(x)é;. The resulting

equation
i + 7| J3(x) =0 (5.246)
d(x)2 0 - 5-24
has the solution
J3(x) = J3(0)e'™* = J3(0)e s e'e. (5.247)

We have to reject the second solution

because it leads to non-physical behaviour in the conductor x >
0. The electric current density vanishes exponentially inside the
conductor. The characteristic length ¢ is called skin depth.

In the case of silver, ¢! = 1.58 x 10~8Qm, and wave frequency
v = 4% 10° Hz which skin depth has value ¢ = \/% = 10"%m
whereas for copper, c~! = 1.68 * 1078Qm, and UV light with v =
10" Hz it reads 6 = 10~"m.




5.7 Electromagnetic waves in dispersive dielectric media

Dispersive media

The dependence of dielectric permittivity € and magnetic permeability
 on the electromagnetic wave frequency w is called dispersion. Many
dielectric media, like for instance water, are characterized by permit-
tivity € which is constant for slowly varying electromagnetic field and
varies (differently for different substances) for higher electromagnetic
field frequencies.

The study of high-frequency electromagnetic field in polarizable me-
dia is a very interesting subject. The electromagnetic field which is
periodic in time is also periodic in space. Spatial oscillations are char-
acterized by wavelength A ~ £, where w is the frequency of the field.
The wavelength is getting shorter as frequency w is increasing. For suf-
ficiently high frequencies the corresponding wavelength is comparable
with typical size of atoms represented by atomic scale.'® The macro-
scopic description of the electromagnetic field is meaningless for A ~ a.
Thus, the macroscopic regime for electromagnetic waves is charcterized
by wavelengths A >> a. For this reason we are interested in the range
of frequencies for which

¢ there is a meaningful macroscopic description,
¢ there are present some new effects caused by dispersion.

The existence of dispersion for most of materials is expected within the
scenario of electronic mechanism. This mechanism is the most rapid
manner of establishment of the electric or magnetic polarization in
matter. For v being a typical velocity of electrons in atoms, the ratio
a/v is a characteristic time which is of the order of relaxation time.
The relaxation time is of the order of characteristic time v <« c. The
wavelength corresponding to these times A ~ ac/v is much larger than a
because v < c. In what follows we shall consider electromagnetic waves
with wavelength A >> a. This condition, applicable dielectrics, may not
be sufficient in generality. For instance, meta Is in low temperatures
possess region of frequencies in which the macroscopic theory has not
application, although the condition ¢/w >> a is satisfied.

Macroscopic Maxwell’s equations in material media have formally
the same form as in empty space

V-D =0, VXH:%BtD,

and 1
V-B=0, VXE:—EatB.

Differential equations in such a form have no solution until they are
complemented by relations between fields E, D and B, H i.e. constitutive
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relations. For static and quase-static fields in homogeneous and isotropic
media these relations are just proportionality relations D = ¢E, B = uH,
where parameters € and y are material constants. The constitutive
relations in such a case are local in time. In other words, fields D at
instant of time t is determined bt E taken at the same instant of time.
The same is true for the pair B, H.

Temporal locality of equations is a consequence of the fact that the
electric and magnetic dipoles have enough time for changing their
orientation responding for slowly varying electromagnetic field. The
situation is different for quickly varying electromagnetic field. Since
dipoles cannot immediately change their orientation then there exists
certain time delay in response of the material. In such a case, the electric
permittivity and magnetic permeability are functions of the frequency
w. The dependence on w is different for functions describing electric
and magnetic properties of matter.

Dielectrics

The polarization vector P is defined taking into account neutrality of
dielectrics, [;, d®x (py) = 0, where V is the region occupied by dielectric
body and {p;) is volume density of bounded charges. Electrical neu-
trality is assured by the assumption that the polarization divergence is
proportional to the electric charge density, (p,) = —V - P where P = 0.
The electric dipole moment of the body is given by expression

p:/‘/d3xr<pb> :/Vd3xP. (5.248)

It means that the polarisation vector P has interpretation of electric dipole
moment density. The derivation and interpretation of the polarization
vector holds for time-varying fields. Thus the vector P = ;1 (D — E)
represents the electric polarization independently on dispersion in the
medium.

Fields which oscillates with high frequencies have usually small
amplitudes. For fields which are not too strong the fields D(t, x) and
E(t,x) are related by linear transformation. The most general such
transformation is given by integral

t
D(t,x) :E(t,x)+[ dt' f(t — £)E(F, %),

where the function f(t) is determined by properties of the medium. The
upper limit ¢’ = t of the integral represents causal cut-off. For further
convenience the term E(t,x) has been separated from the integral
expression. 9 Changing the variable of integration

t 0
Ti=t—"t, / dt’—>/ (—dT1),

" Note that absence of the integral is
physically interpret as absence of dielec-
tric medium. The adopted way of rep-
resenting the electric displacement field
allows us to remove the Dirac delta from
the function f(t).



one gets

D(t,x) = E(t,x) + /Ow def(T)E(t — T, %). (5.249)

One can put the constitutive relation for dispersive media (5.249) in the
similar form to the relation D = ¢E, namely

D=°%¢E (5.250)

where € is some linear integral operator. The presented formalism has
also application in metals.

In what follows we shall apply the method of Fourier decomposition
of time-dependent field. For a single frequency field

E(t,x) = e “'E(w, x)

the expression (5.249) takes the form

D(t,x) = E(t,x) + (/oo de(T)ei“’T> e “'E(w,x) = e(w)E(t, x)
JO N—————’
E(t,x)
(5.251)
where

e(w)=1+ /OOO dtf(7)e“T. (5.252)

Hence, for dingle frequency fields the integral operator € takes the form
of proportionality coefficient between fields D and E. This coefficient
depends on properties of the material medium and the field frequency.
The dispersion law €(w) is a complex-valued function and thus it can be
represented in the form

e(w) = €' (w) +ie" (w). (5.253)

where ¢ (w), €’ (w) € R are, respectively, its real and imaginary parts.
The expression (5.252) implies the relation

¢(-w) =& (w) (5-254)
which gives
¢ (—w) +id (—w) = (w) —ie" (w).
It follows from the above expression that
¢(-w) =d(w),  (-w)=-(w), (5-255)

i.e. the real part of €(w) is even function of w whereas the imaginary
part is odd. Expanding the real and imaginary part of the function &(w)
in Taylor series at w = 0 one gets that

[ee) [ee)
€(w)=¢e+ ) eaw®, '(w)=ew+ ) o™,
n=1 n=1
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i.e. they contain either even or odd powers of w.

Only the lowest order expansion terms are significant in the limit
w — 0. Thus, the first term of approximation for the real part £¢>°
corresponds with non-dispersive dielectrics. For the imaginary part the
lower order term id linear in frequency w.

The function e(w) is physically sound for metals in the low range
of frequencies. Ampere’s law in dielectric media (without free current)
with this law in non perfect conductors have the form

4 (1 4r

Je

Ja

where J; and ] are, respectively, displacement and conduction currents.
Thus the expression (5.249) can be formally applied for metals with
substitution 9;D — 470 E. It means that

aD(t x) = 9 (s(w)e—fwfﬁ(w, x)) = —iwe(w) E(t, %)

—_———
4no
and thus the function w(e) is of the form
Ano
e(w) =i-—. (5.257)

Hence, the function ¢(w) for conductors contains the singular imaginary
term, proportional to w~!. The subsequent expansion term is a real
constant, however, in the case of metals this constant has no similar
interpretation as ¢g in dielectrics.

The Lorentz model

The Lorentz model is a classical model of polarizability. Typical veloci-
ties v of electrons in atoms are small when comparing with the speed
of light c. It mens that dislocations of electrons in atoms are of order
v/w and thus they are much smaller than the electromagnetic wave-
length c/w. Consequently, the electric field experienced by bounded
electron is approximately uniform in space and can be approximated by
E(t) = Ege~™“* at some point rg in vicinity of the electron.

We shall consider a classical model in which the electron-nucleus
interaction is modeled by harmonic force F = —kx, where x denotes
dislocation of the electron from the position of the equilibrium. By
assumption the electric field is uniform in whole region where the
electron moves. The loses of energy are modeled by the force F; =
—17%. Thus, the dynamics of the electron is governed by classical
equation of motion

d*x dx

moy = —kx — Ui eE(t), (5.258)

2° Note that ¢( is not an electric constant
in vacuum because in Gaussian units this
constant is equal unit.



or equivalently

d2x dx e s
yrey + ')/E + w(z)x = —%Eoe iwt, (5.259)

We shall consider a complex-valued form of the solution, namely x(t) =
xpe Wt Tt gives®!

xXg = —— (5.260)

Note that electric field E(t) which depend on multiple frequencies
can be represented by the Fourier integral E(t) = 5- [ dwe “E(w),
where E(w) plays the role of Eg. In such a case the solution x(t) is
assumed to have the form of Fourier integral x(t) = 5 [ dwe “!¥(w).
The coefficients X¥(w) are of the form

e E(w)
m (wf — w?) —iyw’

The electric dipole moment of a single electron reads

p(t) = —ex(t).

If the material has N such electrons per unit volume than the polariza-
tion vector reads P(t) = Np(t) and thus

_ N EQ

2

P(t) = — (@B —w?) —irw

= XeE(t). (5.261)

More realistic models assume that different electrons interact dif-
ferently with the electric field. For instance, a dielectric material with
N,; molecules in the unit of volume and Z electrons in each molecule
(N = NpZ) possesses f; electrons (of total Z electrons) that are charac-
terized by frequencies w; and damping constants 7;. Thus the electric
susceptibility is generalized to the form

2 i
LGS S Ji Y fi=2 (5.262)
]

_ 2_.'/
m T (w; —w?) —iy;

Xe

The function &(w) reads

w? 47tNe?
_ P 2 _
e(w) =1+ (@2 —?) — i’ wp=——- (5.263)

wgere wp is plasma frequency. The real and imaginary parts of ¢(w) have
the form

wrz,(w% —w?) 4 w’z,cu

+1 .
(W3 — w?) +72w? (w5 — w?) + Y2w?

e(w)=1+ (5.264)

e (w) e (w)
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In the limit of high frequencies w the function ¢(w) is approximated
by expression
w2
_ P 6
e(w)=1- ) (5.265)
which tends to unity for w — co. This approximation is valid for light
atoms in deep UV region and for heavier ones in the region of X-ray

frequencies.

Dispersion of magnetic permeability

In contrast to e(w), the magnetic permeability y(w) loses its physical
meaning for high frequencies. The expression

1
M= (B—H)

can be interpreted as magnetic moment density providing that d;P can
be neglected. This can be seen from magnetic moment definition

1 .
m= /Vd3xr X (fp) (5.266)

Ampere’s law in absence of macroscopic conduction currents can be
put in two different ways, namely

4

VxB:%BtE—i—T(]b), VxH:%BtD

Subtraction of these equations gives

1 4
Vx(B—H)==0(E—D)+— ().
—— C c

4nM —4nP

Thus the current density of bounded charges reads
(jp) = cV X M + 0;P. (5.267)

Clearly, this current depends on time derivative of a polarization vector.
Plugging (5.267) into (5.266) and using the fact that M = 0 in empty
space we get

m:/deM—i-l/dgxrxatP.
v 2c Jv

This expression shows that M has interpretation of magnetic moment
density only if the term 9;P is very small comparing with the other
term

JtP(t) < cV x M. (5.268)

For instance, we can take a small body with characteristic size [ (e.g.
a sphere of radius [) in oscillating and approximately uniform magnetic
field B ~ Bye 't



Integration of (5.268) over small disc localized inside the body and
having radius approximately equal to I gives

/sda LP(t) ~ 123, P(t)

and
/Sda- (V x M) = fcdz-M ~ IM(t) = LxmH().

Thus the condition (5.268) results in the following one

AWP(t) < @H(t). (5.260)

The polarization vector is given by P = ;& (D — E) = £1E. Taking
e—1~1(eg. for teflon ¢ = 2.1) we get

AP(t) ~ OE(t).

The electric field magnitude can be estimated from Faraday’s law

/dl~E:—1/du~B.
C cJs

Choosing the integration region S as a disc of radius / we get integrals

[t~ e —li/da-B o) ~ - Can

c ’ cdt Js ¢! T

where the approximation of the field B by H follows from the fact that
Xm is usually vary small for paramagnetics and diamagnetics. Thus we
have from Faraday’s laws

E(t) ~ —éatH(t).

Since H ~ Bye !, then

I

lw?
0;P(t) ~ —Ea%H(t) =

— < H(®).

Plugging this expression into (5.268) we get

2
c
? < XZZZ . (5.270)

However, | cannot be arbitrary small. The macroscopic character of the
body is given by the condition / >> a where 4 is the atomic size. The
condition (5.270) does not hold for optical frequencies because x;; ~ 2’—;

and w ~ 2. Thus the right hand side of (5.270) is proportional to a’.

Consequently, the concept of magnetic permeability is meaningless for
optical frequencies. In such a case y = 1.

ELECTROMAGNETIC WAVES

167



168 LECTURE NOTES ON CLASSICAL ELECTRODYNAMICS

The energy of the electromagnetic field in dispersive media

The electromagnetic energy flux is given by Poynting vector

¢

S47r

E x H. (5.271)

This formula holds for any time-varying electromagnetic field including
the case of dispersive media. The rate of change of energy density o;u
is given by divergence of Poynting vector V - §, namely

C .
atu =-V-§= —Eé‘i]'kai(E]Hk)

= _E (e,-]-kaiE/Hk — GjikE]alHk>

N—
138 19D

:_%(H-(VXE)—E-(VXH))
7T N ————~ ~—

_ L

ype (E-o:D+ H-0:B). (5.272)

In non-dispersive dielectric media the constitutive relations D = ¢E
and B = ¢H allows us to put energy density in the form

_ 1l 2
U= o (eE°+ pH"). (5.273)

Thermodynamic interpretation of energy density (5.273) is the following
one: it is equal to the difference of total energy inside unit volume
with and without electromagnetic field. Such interpretation of the
electromagnetic energy is not possible in presence of dispersion due to
existence of absorption process (energy dissipation).

Dispersion for monochromatic wave

We shall consider the simplest case of monochromatic electromagnetic
field. We assume constancy of the field amplitude which means that
whole energy dissipated inside unit volume in unit of time is compen-
sate by transfer of energy from external source. The average value of
the rate of change of energy density (0;u), where

(=7 [ fo

represents averaging process on a period represents the amount of heat
per unit of time transferred into unit volume. This quantity can be cast

in the form
1
Q=(-V-§),= E((E~8¢D>t+<H-8tB>t>, (5.274)

where all the fields are real-valued. This expression is quadratic in
fields. For auxiliary complex fields this expression must be replaced by
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the following one

1

Q=1: ((Re(E) - 9iRe(D)), + (Re(H) - 3:Re(B)), ) (5.275)

where physical fields are gi