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Evaluation of some integrals over solid angles—Part 2

The angular distribution of the power liberated by an accelerating point charge emoving
with velocity ~v ≡ c ~β and acceleration ~a ≡ c ~α = d~v/dt is given by eq. (14.38) of Jackson,

dP (t′)

dΩ
=

e2

4πc

∣

∣n̂× [(n̂− ~β)× ~α]
∣

∣

2

(1− n̂ · ~β)5
, (1)

where t′ is the retarded time. One can simplify the numerator of eq. (1) by employing a
number of vector identities (such as the BAC–CAB rule). We then obtain:

n̂× [(n̂− ~β)× ~α] = n̂ · ~α(n̂− ~β)− ~α(1− n̂ · ~β) , (2)

and

∣

∣n̂× [(n̂− ~β)× ~α]
∣

∣

2
= (n̂ · ~α)2(n̂− ~β) · (n̂− ~β) + α2(1− n̂ · ~β)2

−2 ~α · (n̂− ~β) n̂ · ~α (1− n̂ · ~β)

=
[

1 + β2 − 2n̂ · ~β
]

(n̂ · ~α)2 + α2(1− n̂ · ~β)2

−2 (n̂ · ~α)2(1− n̂ · ~β) + 2 n̂ · ~α(1− n̂ · ~β)~α · ~β

= (β2 − 1)(n̂ · ~α)2 + α2(1− n̂ · ~β)2 + 2 n̂ · ~α(1− n̂ · ~β)~α · ~β , (3)

where α2 ≡ |~α|2 and β2 ≡ |~β|2.
In order to compute total power liberated by an accelerating charge, we must integrate

eq. (1) over all solid angles. In particular, we need to compute the following three integrals
over the solid angle Ω,

I1 =

∫

(n̂ · ~α)2

(1− ~β · n̂)5
dΩ , (4)

I2 =

∫

dΩ

(1− ~β · n̂)3
, (5)

I3 =

∫

n̂ · ~α

(1− ~β · n̂)4
dΩ . (6)

Then, the total power is given by

P (t′) =
e2

4πc

[

(β2 − 1)I1 + α2I2 + 2 ~α · ~β I3

]

. (7)
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Let’s begin with I2. Choose the z axis to lie along the direction of ~β. Then, it follow
that ~β · n̂ = 1−β cos θ, where β ≡ |~β|. Writing dΩ = d cos θ dφ and introducing w ≡ cos θ,
it follows that

I2 = 2π

∫

1

−1

dw

(1− βw)3
=

2π

β

∫

1+β

1−β

dy

y3
= −

π

β

[

1

(1 + β)2
−

1

(1− β)2

]

, (8)

after changing the integration variable to y = 1− βw. Hence,

I2 =
4π

(1− β2)2
(9)

Next, we can take the derivative of I2 with respect to ~β by making use of eq. (5),

∂I2

∂~β
= 3

∫

n̂ dΩ

(1− ~β · n̂)4
. (10)

Thus, we can identify

I3 =
1

3
~α ·

∂I2

∂~β
. (11)

We can evaluate the right hand side of eq. (11) by using the result obtained in eq. (8).

Since eq. (8) is a function of β = |~β|, we can use the chain rule to write

∂I2

∂~β
=

∂β

∂~β

∂I2
∂β

=
~β

β

∂I2
∂β

. (12)

To obtain the last step above, we noted that β = (~β · ~β)1/2. Hence, it follows that

∂β

∂~β
=

∂

∂~β
(~β · ~β)1/2 = 1

2
(~β · ~β)−1/2 ∂

∂~β
(~β · ~β) = (~β · ~β)−1/2~β =

~β

β
. (13)

Finally, we can use eq. (8) to evaluate ∂I2/∂β ,

∂I2
∂β

=
16πβ

(1− β2)3
. (14)

Hence, we end up with

I3 =
16π

3

~α · ~β

(1− β2)3
. (15)

Finally, we can use eq. (5) to obtain

∂I2
∂βi

= 3

∫

n̂i dΩ

(1− ~β · n̂)4
, (16)

∂2I2
∂βi∂βj

= 12

∫

n̂in̂j dΩ

(1− ~β · n̂)5
, (17)
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after two successive differentiations. Hence, we can identify,

I1 =
1

12

∑

i,j

αiαj
∂2I2

∂βi∂βj

. (18)

Note that eqs. (13) and (14) are equivalent to

dI2
dβi

=
16πβi

(1− β2)3
. (19)

The second derivative can now be easily evaluated with the help of eq. (13),

∂2I2
∂βi∂βj

=
16πδij

(1− β2)3
+ 16πβi

βj

β

∂

∂β

(

1

(1− β2)3

)

=
16πδij

(1− β2)3
+

96πβiβj

(1− β2)4
. (20)

Consequently, eq. (18) yields,

I1 =
4π

3

α2

(1− β2)3
+

8π(~α · ~β)2

(1− β2)4
. (21)

An alternative technique for evaluating the integrals I1 and I3 that does not rely on a
separate computation of I2 is presented in Appendix A.

Inserting the results of eqs. (9), (15) and (21) into eq. (7), we obtain

P (t′) =
e2

4πc

[

−
4π

3

α2

(1− β2)2
−

8π(~α · ~β)2

(1− β2)3
+

4πα2

(1− β2)2
+

32π

3

(~α · ~β)2

(1− β2)

]

=
e2

4πc

(

8π

3

)

[

α2

(1− β2)2
+

(~α · ~β)2

(1− β2)3

]

=
2e2

[

α2(1− β2) + (~α · ~β)2
]

3c(1− β3)
. (22)

Finally, we employ the vector identity

α2 − |~β × ~α|2 = (1− β2)α2 + (~α · ~β)2 , (23)

Introducing γ ≡ (1− β2)−1/2, we arrive at our final result:

P (t′) =
2e2γ6

3c

[

α2 − |~β × ~α|2
]

, (24)

which is the relativistic generalization of Larmor’s formula.
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APPENDIX: An alternative technique for evaluating I1 and I3

We can define the following two integrals,

Jij =

∫

n̂in̂j dΩ

(1− ~β · n̂)5
, (A.1)

Ki =

∫

n̂i dΩ

(1− ~β · n̂)4
. (A.2)

By the covariance properties of Euclidean tensors, it follows that

Jij = c1δij + c2βiβj , (A.3)

Ki = κβi . (A.4)

Consider first the evaluation of Ki. Multiplying by βi and summing over i yields

κβ2 =

∫ ~β · n̂ dΩ

(1− ~β · n̂)4
. (A.5)

The integral above is now easily evaluated by employing the same method used to obtain
eq. (8). Thus, we can obtain an explicit expression for κ. I will leave it as an exercise for
the reader to show that

κ =
16π

3

1

(1− β2)3
. (A.6)

Likewise, to evaluate Jij, we first multiply by δij and sum over i and j to get one
equation. A second equation is obtained by multiplying by βiβj and summing over i and j,
Thus, we get two equations for the two unknowns c1 and c2,

3c1 + c2β
2 =

∫

dΩ

(1− ~β · n̂)5
, (A.7)

c1β
2 + c2β

4 =

∫

(~β · n̂)2 dΩ

(1− ~β · n̂)5
. (A.8)

Again, the two integrals above are easily evaluated by employing the same method used to
obtain eq. (8). One can then solve for c1 and c2. I will leave it as an exercise for the reader
to carry out the remaining computations to obtain,

c1 =
4π

3

1

(1− β2)3
, c2 =

8π

(1− β2)4
. (A.9)

Finally, we obtain

I1 =
∑

i,j

αiαjJij , I3 =
∑

i

αiKi . (A.10)

Using eqs. (A.3), (A.4), (A.6) and (A.9), we recover the results obtained in eqs. (21) and
(15), respectively.
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