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PREFACE

Preface to the handwritten edition of 1980/81. My Mathematical Introduction
to Electrodynamics (/) can be fairly described as the work of a “young
formalist who should have known better;” it begins with a detailed account
of special relativity, continues with detailed surveys of the elements of tensor
analysis and the exterior calculus, and treats also the relativistic mechanics
of particles before it arrives—after nearly 300 pages of preparation—at the
dynamics of the electromagnetic field. Discussion even of the latter topic is
marked by frequent “research digressions” of an invariably formalistic nature,
digressions which I now consider to be (as even then I did) technically
interesting but pedagogically extravagant. The frankly eccentric design of that
earlier course can be partially understood if one takes into account the following
circumstances:

• I was—by staff decision—under a formal obligation to teach both
electrodynamics and the “methods of mathematical physics;”

• it was my explicit expectation that my students would be reading one or
several of the standard texts collaterally;

• during the decade prior to  Reed College physics students had shown a
marked interest in formal/structural matters; the abrupt shift to a more
“practical” set of interests and values first became conspicuous about
, and caught me by surprise (it anticipated a parallel shift in my own
interest and values);

• I had never previously taught electrodynamics, and had “many rocks to
turn over” in the service of my own technical education.

When repeated (/ and /) the course was in fact less eccentric than
those old notes suggest, for I omitted much of the formal material, and in its
place treated radiation theory, as developed in my Quantum Perturbations &
Radiative Processes (/). But the formal emphasis and relative absence
of phenomenological detail were still (in my present view) excessive.
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The course design here recorded arose in part by reaction to that former
teaching experience. My goal—as formerly—was not to “rewrite Jackson” but
to expose as clearly as I could the structural heart of electrodynamics (and
thus to prepare my students to read Jackson and similar texts). I was deter-
mined “to get Maxwell’s equations on the board” as soon as possible (I had
recently reviewed a manuscript by Julian Schwinger which indicated how that
goal might be accomplished), to treat “formal” problems only when the further
elaboration of mainline electrodynamics made such activity unavoidable, and
to abandon any explicit attempt to treat comprehensively the miscellaneous
“methods of mathematical physics.” I wanted also to give relatively more
attention to phenomenological matters, and to construct a written record of
some of the things I had learned since .

Here (as historically) relativity emerges in natural consequence of a study of
the transformation properties of Maxwell’s equations, and attention is given to
the little-known fact that a slight modification of that analytical program leads
not to the Lorentz group but to the conformal group, the main properties of
which are described in detail (details omitted when the course was repeated).
Tensors are treated only in the detail specifically required, and the exterior
calculus is (as is all reference to its electrodynamical applications) omitted
altogether. The patient reader will still find too-frequent evidence of Wheeler’s
compulsion to “turn over rocks,” and most readers will share my own judgment
that the formalism is still too dense, and the reference to phenomenologyn still
too slight. The latter defect was in practice somewhat blunted by the fact
that students were encouraged to make heavy collateral use of David Griffiths’
Introduction to Electrodynamics ().

Nicholas Wheeler
 May 
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Preface to the present electronic edition. This material came into being primarily
because I had grown tired of late-night trips to Kinko’s to print copies of my
old hand-written notes for distribution in class, and of the attendant financial
complications. I had become increasingly sensitive also to the circumstance that
the material was in fact growing “old” (was already older than my students),
and increasingly alert to the advantages of electronic publication, which had
been impressed upon me by good experiences in several other courses. So in
August  I decided to produce a “revised electronic edition” of my /
class notes. I imagined the job would keep me busy until about November. In
fact it absorbed my almost total attention over an eight-month period.

I found that I was, by and large, still fairly pleased with the basic design and
execution of original text, but as I progressed the revisions became progressively
more frequent, progressively more radical. Some of the original material has
been boiled down or omitted altogether, analytical arguments have often been
replaced with Mathematica -assisted “mathematical experiments,” whether
undertaken and reported by me or—at my request—by the students themselves.
A fair amount of material (for example: everything having to do with conformal
transformations and the covariance of Maxwell’s equations), though retained,
was omitted from the lectures.

On the other hand, some new material has been introduced. Most
conspicuously (and eccentrically), I have allowed myself to draw upon elements
of Proca’s “theory of massive photons” in order to underscore certain critical
respects in which classical electrodynamics is “atypical—poised on the razor’s
edge.” And I have incorporated a theory of “optical beams as electromagnetic
objects” that happened to occur to me as I wrote. During the interval –
I had fairly frequent occasion to take up electromagnetic topics. None of that
material was has been folded into these revised notes, though the substantial
portion of it that existed already in electronic form was made available to
students who cared to do some collateral reading.1

It has been my lifelong experience that I learn most effectively not by
close reading of what A has to say about the subject, or what B has to say,
but by comparing A’s and B’s (and also C’s) approaches to the same subject.
It has been therefore not willful self-indulgence but something approaching a
sense of duty that has led me to organize and approach the subject matter of
electrodynamics in ways that many colleagues would consider eccentric. My
presumption has been that my students will be comparing what I have to say
with what Griffiths, Marion, Jackson, . . .have to say—this in their efforts to
arrive at their own individual understandings of a complicated subject matter.
My intent has been not to sing Griffiths’ tune, but—because we are so fortunate
as to have David Griffiths among us—to sing in a kind of obbligato harmony.

1 I allude to “Electrodynamic application of the exterior calculus,” ();
“Algebraic theory of spherical harmonics,” (); “‘Electrodynamics’ in
2-dimensional spacetime,” (); “Simplified production of Dirac δ-function
identities,” (); “Theories of Maxwellian design,” ().



iv

This project began as an effort to solve a distribution problem, and to
facilitate future editorial revision. But electronic publishing provides options
not available in hard copy, so I soon confronted the question: “Am I generating
material intended to be printed (in black and white) or to be read on-screen?”
So great did I consider the advantages of using color to eliminate the distracting
clutter of primes, superscripts and subscripts that—somewhat tentatively—I
selected the latter option. Some information will therefore be lost when the
text is laser-printed, but are led to believe that the cost/speed of ink-jet color
printing will soon decrease/increase to realistic levels. Some students came to
class with black & white hardcopy versions of the text, fewer with colored copy
. . . and only one or two with their laptops. It is my hope and expectation that
the latter practice will soon become the norm, for it belatedly occurred to me
that what I have unwittingly produced is a “laptop text.” Once the general run
of students become properly equipped (I yesterday made arrangements for the
design of the prospective new physics lecture hall to be modified in anticipation
of such a development) it will become possible to build animations, links to other
documents—in short: the full range of electronic resources—into the design of
a future edition of this and other texts.

The text was created with Textures� running TEX on a PowerMac G-3
platform. The TEX code was translated into PostScript by “printing to file,”
and the final PDF (Portable Document Format) file was created by using
Acrobat Distiller� to open the PostScript file (which was then discarded).
Some of the figures were drawn by Mathematica and exported (to the Textures
folder containing the TEX code) as EPS files, others were drawn by hand using
FreeHand8,� and some were created by using FreeHand8 to add details to
Mathematica figures.

The PDF files, as distributed on the Courses Server, are all smaller—often
much smaller—than the files from which they were created. They are intended
to be opened and read with Acrobat Reader,� which is freeware distributed by
Adobe. The Acrobat Reader is a powerful tool—capable of much more than
simply opening PDF files—and readers are encouraged to familiarize themselves
with its search, mark-up and other resources: the Visual QuickStart Guide PDF
with Acrobat by Ted Alspach () is very useful in this connection.

I am indebted to my students for their patience with a project which for
the most part they seem to have taken entirely for granted (one suggested on
a class evaluation form that the course might work much better if I adopted
a better text), and especially to Eric Lawrence, who brought many typos and
misspellings to my attention.

Nicholas Wheeler
 April 
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1
PHYSICAL & MATHEMATICAL

FUNDAMENTALS

Introduction. Since “the world is unitary”—with each part connected (however
tenuously) with each other part—it is of some philosophical interest that physics
admits of semi-conventional division into semi-autonomous “branches.” Most
of those branches are concerned with the analysis of fairly general classes of
physical systems (think, for example, of classical mechanics, or of quantum
mechanics, fluid dynamics, thermodynamics), but a few (celestial mechanics,
general relativity, . . . ) are concerned with relatively particularized systems. It
is useful to note that electrodynamics is, for all of its incredible richness and
variety, a subject of the latter sort: all that follows will be motivated by a desire
to clarify the structure and dynamical properties of a single physical object—the
electromagnetic field .

Our objective, therefore, is to review progress in a field which achieved a
kind of maturity (Maxwell, ) just about a century ago, a field to which
some of the greatest minds (Einstein, Feynman . . . and many others) have
contributed, a field in which “the last word” has certainly not been written.
Much of great value can be learned from close study of the (ongoing) history
of electrodynamics . . .but for that I must refer my readers to the relevant
literature. A standard source is E. T. Whittaker’s A History of the Theories
of Aether & Electricity (). Since this branch of the history of science
is currently quite active, it would be well to consult recent issues of (say)
History of Science. For a good modern account of the “ancient history” of
some of the basic notions see Duane & D. H. D. Roller, “The development
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of the concept of electric charge: electricity from the Greeks to Coulomb” in
J. B. Conant (editor), Harvard Case Histories in Experimental Science (Volume
II, ). You should, of course, take this occasion to become acquainted with
the Victorian founding fathers (Faraday, Maxwell) of our subject. I urge you
therefore to look into Michael Faraday: A Biography by L. P. Williams (),
James Clerk Maxwell: Physicist and Natural Philosopher by C. W. F. Everitt
() and/or Contributions of Faraday & Maxwell to Electrical Science ()
. . . all of which are informative, yet fun to read. Finally, every student of
electrodynamics should peruse the pages of Maxwell’s own A Treatise on
Electricity & Magnetism the (posthumous) 3rd edition () of which was
reissued by Dover in . While the history of science is its own reward, the
history of electrodynamics (as of classical mechanics, quantum mechanics . . . ) is
also of directly utilitarian value, for it illuminates the processes/circumstances/
developments which contribute to the maturation of physics—to the discovery/
invention of new physics.

That electromagnetic phenomenology (and theoretical understanding of
that phenomenology) lies at the base of an elaborate technology—think of
electrical power grids, the electric light, motorized devices, electronic
communication/computation/mealsurement & control . . .none of which were
known to the founders of the field—is of course not news. Less well known to
the general public are the theoretical contributions of classical electrodynamics,
which (directly or indirectly) has stimulated the invention/development of

• special relativity

• quantum mechanics

• the modern theory of gravitation (general relativity)

• elementary particle physics

• many of the methods characteristic of modern applied mathematics

. . . and much else. One could perfectly well base a course such as this on the
technological applications of our subject: such an approach would be considered
standard in schools of engineering, and is reflected in the design of many
existing texts. I prefer, however, to let (my personal view of) the theoretical
applications/ramifications of electrodynamics govern the selection, arrangement
and presentation of the subject matter. Classical electrodynamics provides a
unique “classical window” through which can be glimpsed many of the principles
which are now recognized to dominate the structure of the micro-world (also
the very-large-scale macro-world . . . and much that lies in between). But
to gain access to that window we must pay close and critical attention to
structural issues . . . and to that end we must from time to time draw upon
mathematical methods which, though of growing importance, have heretofore
not been considered standard to the undergraduate education of physicists. The
latter material will be developed in appropriate detail as needed.

The “historical approach” (recapitulated psuedo-history) which for a long
time dominated instruction in classical and—particularly—quantum mechanics
has never been popular in the electrodynamical classroom . . . and it is certainly
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not my intention to attempt such an experiment. Nor shall I honor the
established practice, which is to proceed “crabwise” into the subject, for a
pedagogical strategy which places the (allegedly) “easy parts” (electrostatics,
potential theory, . . . ) first necessarily displaces the fundamentals . . .with the
result that Maxwell’s equations tend to get lost in the clutter, and relativity to
enter (as historically it did) only as an afterthought.

The design of this introductory chapter proceeds therefore from my desire
“to put first things first.” My goal, more specifically, is to proceed in all feasible
haste to a working understanding—however tentative—of what kind of a thing
electrodynamics is, of the physical and computational issues fundamental to the
subject . This will entail review of material to which you have already had some
exposure—the

• conceptual innovations and

• physical phenomenology

which historically led James Clerk Maxwell to the equations of motion of the
electromagnetic field. But we will also begin what will, as we proceed, become a
major activity—“looking under rocks:” conceptual rocks, computational rocks,
formal rocks. Our intent at this stage is more to formulate sharp questions that
to formulate sharp answers (the latter can wait). It is interesting to observe
that we will be led, even in this introductory survey, to aspects (both deep and
numerous) of electrodynamics of which Maxwell died ( November , at
age ) unaware.

1. Coulomb’s law. The phenomenology here goes back to antiquity, and involves
the curious behavior of macroscopic samples of certain biogenic substances
(amber, fur, silk, paper, pithballs) which are—except for our story—insignificant
constituents of the universe. This speculative tradition (to which an allusion
survives in the word “electron,” from ηλεκτρoν = amber) had by∼—owing
largely to the work of Benjamin Franklin (–)—led to the formulation
of a recognizable precorsor of the modern concept of electric charge. It is today
recognized that electric charge is—like mass—an attribute not merely of bulk
matter (pithballs) but of the elementary constituents of such matter .

Particles announce their charge by exerting forces (forces of a specific
yet-to-be-described structural type: “electromagnetic forces”) on each other;
i.e., by interacting—electromagnetically . . . and it is from study of how particles
respond to such (postulated) forces that we have learned all that we know
concerning the existence and properties of the electromagnetic field. The
question—the experimental question—therefore arises: How are we to make
structurally and quantitatively precise the force law latent in the preceding
remarks?

Prior to ∼ (when this question first moved to centerstage) the only
“universal force law” known to physics was Newton’s

F = GMm
r2



4 Physical & mathematical fundamentals

which describes the instantaneous gravitational interaction-at-a-distance of
mass points M and m. It was widely anticipated that the electrostatic
interaction of charged mass points would turn out to be governed by a law of
similar form. Experimental evidence in support of this conjecture was published
by Daniel Bernoulli in  and by Joseph Priestly in , but the issue was
instrumentally delicate, and was definatively resolved only in  by Charles
Coulomb (–), who used sensitive torsion balances and torsion pendula
of his own invention (similar to those used years later by Henry Cavendish to
measure G). Turning now to the concrete particulars . . .

FFF 21

q2

xxx2 rrr

q1

xxx1

FFF 12

Figure 1: Notation used to describe the relation of one charge to
another, and the Coulombic forces which each exerts upon the other.

Let xxx1 and xxx2 describe (relative to an inertial Cartesian frame) the positions
of a pair of structureless but electrically charged mass points, (m1, q1) and
(m2, q2). For conceptual convenience (i.e., to circumvent the troublesome
action-at-a-distance problem) we assume the point charges to be at rest . . .both
now and in the “relevant past.” Experimentally

FFF 12 = k
q1q2
r2

r̂rr = −FFF 21 (1)

where (see Figure 1) FFF 12 is the force exerted on charge #1 by charge #2, and
where

rrr ≡ rrr12 ≡ xxx1 − xxx2 = −(xxx2 − xxx1) ≡ −rrr21 : separation vector 1← 2

r2 ≡ rrr···rrr : squared separation
r̂rr ≡ rrr/r : unit separation vector 1← 2

The gravitational analog of Coulomb’s law (1) reads

FFF 12 = −Gm1m2

r2
r̂rr = −FFF 21 (2)
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These familiar results invite several (interconnected) lines of commentary:

1. In the context provided by the 2-body problem we lack the “principle
of choice” required to assign FFF 12 any direction other than that provided by the
“line of centers” (separation vector). The argument would, however, lose its
force if
• the point particles were endowed with directionality (spin);
• the forces of interation among n bodies (n � 3) were assembled more

complexly than by mere vectorial superposition

FFF = FFF 12 + FFF 13 + · · ·+ FFF 1n

Happily, complexities of the later type—but not the former!—are absent
from the electrodynamics of point charges (though they can be expected
to arise when one considers the interaction of—say—charged conductors:
why?).

2. Comparison of (2) with (1) suggests that we sould construem1 andm2 to
be measures not of intertial mass but of “gravitational charge.” It is, however, a
deep-reaching and surprising fact that to do so would be to make a “distinction
without a difference.” For measurements of high precision (performed by Baron
L. von Eötvös (–) and refined by R. H. Dicke) have established (to
within about one part in 1012) that

gravitational charge
inertial mass

= universal constant

where “universal” here means “the same for all samples and states of matter.”
This fact was foreshadowed already in Galileo’s alleged “Leaning Tower of Pisa
experiment” and in the m-independence of the frequency ω =

√
g/" of a

pendulum (why?). By appropriate adjustment of certain conventions (units)
we can arrange that

= 1± 10−12

Such invariable quantitative identity becomes intelligible only if it proceeds
from conceptual identity: “inertial mass” and “gravitational charge” must be
different names for the same thing . This fundamental insight is built into
the structure of (2), and entails that (relative to any prescribed system of
mechanical units: cgs, MKS, . . . ) G becomes an empirical constant of forced/
fixed dimensionality . Actually

G = 6.6732× 10−8 dyn · cm2/g2

For further discussion of the Eötvös–Dicke experiments and their significance
see C. W. Misner, K. S. Thorn & J. A. Wheeler, Gravitation (), pages
1050–1055.

3. Returning in this light to (1) the question arises: Is the value of electric
charge/mass invariable, the same for all charged bodies? The answer is an
emphatic “no:”
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• for macroscopic bodies q/m is highly variable;
• among elementary particles of a given species q/m is constant, but
• the numerical value of q/m varies from species to species.

So in the real (multi-species) world there is no electrical analog of the so-called
“equivalence principle.” This circumstance entails that we must confront the
question: What shall be the physical dimensionality [Q] of electric charge? The
answer is semi-conventional (there is dimensional trade-off between k and q2),
and presents some useful options:
• We might construe k (whatever its numerical value) to be dimensionless.

Such a convention forces

[Q2] = force · length2 = energy · length = action · velocity

whence
[Q] = M

1
2L

3
2T−1 : a “derived quantity”

If we set k = 1 and adopt cgs mechanical units we are led thus to the
“electrostatic unit” (esu or “statcoulomb”) of charge

esu = g
1
2 cm

3
2 sec −1

Evidently charges of one esu, if separated by one centimeter, exert upon
each other a force on one dyne. The “rationalized” (or Heaviside–Lorentz)
esu arises if—to avoid factors of 4π in the field equations—we set k = 1/4π.
• Since charges/currents/potentials are most conveniently measured by

operations/procedures which are alien to mechanics, we might construe
charge to be dimensionally antonomous: (M,L, T )→ (M,L, T,Q). Such
a convention forces

[k] = force · length2/charge2 = ML3T−2Q−2

and causes the numerical value of k to assume (like G) the status of an
emperical constant. If—following in the footsteps of Faraday—we adopt
an electrochemical procedure to define the

ampere ≡ coulomb/second

then we find by measurement that

k = 8.988× 109 newton ·meter2/coulomb2

Circumstances will emerge which make it natural to write

=
1

4πε0

and to call ε0 (= 8.854×10−12 C2/N·m2) the “permittivity of free space.”
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Theoretical physicists tend generally to prefer (rationalized) electrostatic units,
and engineers to prefer (rationalized MKS) or “practical” units. Interconversion
formulæ follow from

coulomb = 2.997930× 109 esu

From the fact that the

electronic charge e = 4.803250× 10−10 esu

= 1.602189× 10−19 coulomb

we see that the coulomb (also for that matter the esu) is, for most fundamental
purposes, an impractably large unit. Often it is preferable to measure charge
in multiples of e (as is standardly done in elementary particle physics, nuclear
physics, chemistry). For further informatrion concerning the notorious (and—in
theoretical contexts—usually irrelevant) “problem of units” see J. D. Jackson,
Classical Electrodynamics (), pages 611–621.1

Figure 2: The masses encountered in Nature are shown above,
the electric charges below: the former are invariably positive, but
are otherwise unconstrained; charges, on the other hand, can occur
with either sign, and are always multiples of a fundamental unit.

4. Gravitational forces are invariably attractive, while charged particles
repell or attract each other according as their charges are of the same or
opposite sign. These familiar facts trace, via the structure of (1) and (2), to the
observation that gravitational charge is invariably positive while electric charge
can be of either sign. The situation becomes somewhat more interesting when
phrased in the language of elementary particle physics, for in that context the
inergial mass concept is somewhat enlarged . . . and an interesting “graininess”
reveals itself. One has

m � 0 but q ≷ 0

as illustrated in Figure 2. Note that m � 0 applies (according to recent
experiments) even to antiparticles. And while “massless particles” exist
(photon, graviton, neutrino?), there are no charged massless particles: “charge
endows mass” (though not all mass arises—as was once supposed—by this
complex mechanism).

1 problems 1, 2 & 3
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5. In Coulomb’s law F = kQq/r2 the “2” is, of course, an experimental
number. How accurately can it be said that electrostatic forces (or, for that
matter, gravitational forces) “fall off as the square” of distance? If we write

F = kQq
1

r2+ε

then Coulomb himself knew that 0 < ε < 10−1. Cavendish (in some unpublished
work) showed that ε < 3 × 10−2 and Maxwell, by a refinement of Cavendish’s
technique, showed () that ε < 5 × 10−5. The most recent work known to
me (E. R. Williams, ) establishes that ε < 6 × 10−16. Interestingly, the
quantum mechanical version of our subject (QED) shows that we can expect to
have ε = 0 if the photon mass µ is precisely zero . . . and enables one to convert
the sharpest of the results quoted above into the statement that

µ � 2× 10−40 g ≈ (electron mass) · 10−20

For a beautiful discussion of this absorbing topic see A. S. Goldhaber &
M. M. Nieto, “Terrestrial and extraterrestrial limits on the photon mass,” Rev.
Mod. Phys. 43, 277 (1971).2 Note finally that the (massless) photon, though
it “mediates the electromagnetic interaction of electrically charged particles,”
is itself uncharged . . . and moves always “with the speed of light” only because
it is massless. I am, however, ahead of my story.

To describe the force FFF (xxx) experienced by a charge q if situated at a point
xxx in a region of space occupied (see Figure 3) by a static population of charges{
Q1, Q2, . . .

}
we invoke—but only because it is sanctioned by experience—the

principle of superposition to write

FFF (xxx) =
∑
i

FFFi (xxx) =
∑
i

kq Qi
1
r2i
r̂rri with rrri ≡ xxx− xxxi

= kq
∑
i

Qi
1
r3i
rrri

︸ ︷︷ ︸
|—defines the electrostatic field EEE(xxx) which

is established at xxx by the charges Qi

The EEE-field is a force field , which in electrostatic units (k dimensionless) has
the dimensionality

[EEE ] = force/charge

2 While writing this paragraph I chanced (one midnight at the watercooler)
to discuss its substance with Richard Crandall, with consequences that can be
read about in R. E. Crandall, “Photon mass experiment,” AJP 51, 698 (1983)
and R. E. Crandall & N. A. Wheeler, “Klein-Gordon radio and the problem
of photon mass,” Nuovo Cimento 84B, 231 (1984): also the splendid thesis of
Richard Leavitt, “A photon mass experiment: an experimental verification of
Gauss’ law” (1983)—on the basis of which Leavitt became Reed’s first Apker
Award finalist.
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q

xxx rrri

Qi

xxxi

Figure 3: A discrete population of charges acts electrostatically on
a test charge

and which is defined operationally by the dynamical response of the “test
charge” (m, q).3 Mathematically, EEE(xxx) is a vector-valued function of position
(which is to say: a “vector field”), given explicitly by

EEE(xxx) =
∑
i

Qi
xxx− xxxi
|xxx− xxxi|3

(3.1)

Passing to the continuous limit we obtain

=
∫∫∫

ρ(ξξξ)
xxx− ξξξ
|xxx− ξξξ|3 d

3ξ (3.2)

ρ(ξξξ) is the charge density at ξξξ

which gives back (3.1) in the special case

ρ(ξξξ) =
∑
i

Qi δ(ξξξ − xxxi) (4)

Though the rich physics of electrostatic fields is—in its entirety—latent in (3.2),
that equation is susceptible to the criticism that

i) it is, in most contexts, not computationally useful
ii) it tells us nothing about the general structural properties of EEE-fields.

Thus are we motivated to ask: What are the differential equations which, in
general, constrain/govern/describe the structure of (static) EEE-fields? That
question motivates the following

3 If the “field sources” Qi were constrained merely to reside on some
prescribed conductors then the presence of the test charge would cause them
to rearrange themselves. This effect is minimized by assuming q to become
arbitrarily small, though we are in fact constrained by Nature to have q � e (or
at least q � 1

3e).
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mathematical digression

For transformation-theoretic reasons which we shall be at pains later to
clarify, the differential operators available to us are all latent in the
vector-valued “del” operator

∇∇∇ ≡ iii ∂
∂x

+ jjj ∂
∂y

+ kkk ∂
∂z
≡


 ∂x
∂y
∂z




Readers will (I presume) recall that
1) ∇∇∇ applied to a scalar field ϕ(xxx) yields the vector-valued gradient of ϕ:
∇∇∇ϕ ≡ gradϕ,

2) ∇∇∇ dotted into a vector field AAA(xxx) yields the scalar-valued divergence of AAA:
∇∇∇···AAA ≡ divAAA, and

3) ∇∇∇ crossed into a vector field AAA(xxx) yields the vector-valued curl of AAA:
∇∇∇×AAA ≡ curlAAA .

And they should (now’s the time to practice!) be able to produce—“on demand”
as it were—identities such as the following:

grad(ϕψ) = ϕ gradψ + ψ gradϕ (5.1)

div(ϕAAA) = ϕ divAAA +AAA··· gradϕ (5.2)
curl(ϕAAA) = ϕ curlAAA−AAA× gradϕ (5.3)

div(AAA×BBB) = −AAA··· curlBBB +BBB ··· curlAAA (5.4)
curl(AAA×BBB) = AAA divBBB − (AAA···∇∇∇)BBB −BBB divAAA + (BBB ···∇∇∇)AAA (5.5)
grad(AAA···BBB) = AAA× curlBBB + (AAA···∇∇∇)BBB +BBB× curlAAA+ (BBB ···∇∇∇)AAA (5.6)

. . . all of which (though the last three become “easy” only in consequence of
some fairly sophisticated technique) are consequences basically of the “product
rule:” ∂(FG) = F∂G + G∂F . Differential expressions of second (and higher)
order are obtained from the above by composition. In particular, one has

div gradϕ = ∇∇∇···∇∇∇ϕ ≡ ∇2ϕ =
{(

∂
∂x

)2 +
(
∂
∂y

)2 +
(
∂
∂z

)2
}

︸ ︷︷ ︸ϕ
Laplacian operator

And by explicit calculation4 one establishes that

curl gradϕ = 000 for all scalar fields ϕ(xxx) (6.1)
div curlAAA = 0 for all vector fields AAA(xxx) (6.2)

4 problem 4



Coulomb’s law 11

Turning now from broad generalities to some of their more particular
consequences, of which we will soon have specific need . . . let

ϕ(xxx) = f(r)

r ≡ r(xxx) =
√
xxx···xxx =

√
x2 + y2 + z2

symbolize the assumption that x, y and z enter ϕ only via r; i.e., that ϕ is
constant-valued on spheres (radius r: 0 � r < ∞) which are concentric about
the origin in xxx-space (we assume more briefly that ϕ is rotationally-symmetric).
Immediately (by the chain rule)

∇∇∇ϕ = f
′
(r)∇∇∇r

where the prime signifies differentiation of f(•) with respect to its sole argument.
It is elementary5 that

∇∇∇r = x̂xx ≡ xxx
r (7.1)

and also that

divxxx = 3 (7.2)
curlxxx = 000 (7.3)

so
= 1
r f

′
(r)xxx (8)

From (5) and (7) it now follows that

∇2ϕ = 1
r f

′∇∇∇···xxx+ xxx···∇∇∇
(

1
r f

′
)

= 3
r f

′
+ (xxx···xxx)1

r

(
1
r f

′
)

′

︸ ︷︷ ︸
= r2

{
1
r2
f

′′ − 1
r3
f

′
}

giving

= f
′′

+ 21
r f

′
(9)

It is a notable consequence of this fact that6

If ∇2ϕ = 0 then f(r) = a
r + b : a and b are constants

and if, moreover, it is required that f(∞) = 0 then necessarily b = 0.

5 problem 5
6 problem 6
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We are in position now to state and prove the results we will need to carry
forward the discussion of (3). They are (some trivial generalizations of) the
following:

∇∇∇ 1
r = −xxx/r3 (10.1)

∇2 1
r = −4πδ(xxx) (10.2)

The former follows as an immediate corollary of (8). The presence of the Dirac
delta function δ(xxx) on the right side of the latter announces that (10.2) has only
a formal meaning—will be literally meaningful only when encountered in the
protective shade of an

∫
-sign—and promises that the proof will be somewhat

tricky. To avoid the fact that 1/r becomes singular at the origin we study the
ε-parameterized functions

g(r ; ε) ≡ 1
r + ε

. . . our plan being to “turn ε off” at some appropriate moment(s). Immediately

g
′
= − 1

(r + ε)2

g
′′

= +
2

(r + ε)3


 (11)

so by (9)

∇2g = 2
[ 1
(r + ε)3

− 1
r(r + ε)2

]
(12)

= −∞ at the origin (all ε), but elsewhere vanishes as ε ↓ 0

Next we notice that the result
∫∫∫
∇2g d3x of integrating ∇2g over all space

can (by spherical symmetry) be described

∫ ∞

0

∇2g 4πr2 dr = lim
R↑∞

8π
∫ R

0

[
r2

(r + ε)3
− r

(r + ε)2

]

= lim
R↑∞

8π
[

ε

(r + ε)
− ε2

2(r + ε)2

]R
0

according to Mathematica

= lim
R↑∞

4π
[
1−

( r

r + ε

)2
]R
0

= lim
R↑∞
−4π

( R

R+ ε

)2

︸ ︷︷ ︸ : ε > 0

|
—Remarkably, this becomes R-independent as ε ↓ 0

= −4π (13)

The function∇2g—see (12)—has, in other words, these seemingly contradictory
properties:
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dddSSS

AAA(xxx)

xxx

Figure 4: Geometrical context to which (14) refers. xxx identifies
a point on the boundary ∂R of the “bubble” R, dddSSS describes the
area and orientation of a surface element, and AAA(xxx) is an arbitrary
vector field.

• it is, for all ε (though the fact is masked when ε = 0) singular at the origin,
but elsewhere

• it vanishes as ε ↓ 0, yet does so in such a way that

• its integral over x-space remains constantly equal to −4π. Finally

• g itself approaches g(r ; 0) = 1/r as ε ↓ 0.

This is precisely the information which the formal equation (10.2) is intended
to convey. QED

I should mention that the preceding line of argument is non-standard , that
the texts argue invariably from the celebrated integral identity

∫∫∫
R
∇∇∇···AAAdV =

∫∫
∂R
AAA···dddSSS (14)

where (see Figure 4) R is a “bubble-like” region in 3-dimensional Euclidean
space, dV (otherwise denoted d3x) is an element of volume, ∂R refers to the
(orientable) surface of R, and dddSSS is an outward-directed surface element. That
strategy is unavailable to me, since I wish to postpone proof and discussion of
Gauß’ theorem (14) and its relatives. If, however, the reader is content (for the
moment) merely to accept (14) then we can

i) take R to be the sphere of radius R centered at the origin and

ii) take AAA = ∇∇∇g
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to obtain ∫∫∫
R
∇2g d3x =

∫∫
∂R
∇∇∇g···dddSSS

= −
∫∫
∂R

1
(r + ε)2

x̂xx···dddSSS by (8) and (9)

But x̂xx···dddSSS = dS since x̂xx and dddSSS are (for this R) parallel and x̂xx is a unit vector,
so

= − 4πR2

(R+ ε)2

—consistently with a result we obtained en route to (13). The surprising fact
that this result is (in the limit ε ↓ 0) R -independent is understood as follows:
∇2g is—see again (12)—singular at the origin but (in the limit) vanishes
elsewhere, so

∫∫∫
∇2g d3x acquires its entire value at/from the singularity

. . .which (again) is the upshot of (10.2). Note finally that by “displacement
of the origin” we have

xxx− aaa
|xxx− aaa|3 = −∇∇∇ 1

|xxx− aaa| (15.1)

and

∇2 1
|xxx− aaa| = −4πδ(xxx− aaa) (15.2)

as trivial generalizations of (10). Equations (15) are fundamental—the results
I have been at such pains to derive. end of digression

Returning now with (15.1) to (3.2) we have

EEE(xxx) = −
∫∫∫

ρ(ξξξ)∇∇∇ 1
|xxx− ξξξ|d

3ξ (16)

Here the operator ∇∇∇ looks only to the xxx-dependence of its operand, and since
xxx is not the variable of integration we can take the ∇∇∇ outside the

∫∫∫
, writing

= −∇∇∇ϕ(xxx) (17)

ϕ(xxx) ≡
∫∫∫

ρ(ξξξ) 1
|xxx− ξξξ|d

3ξ (18)

≡ electrostatic potential, a scalar field

Electrostatic EEE -fields are, according to (17), conservative (in the sense that
they admit of derivation from a scalar “potential,” namely the ϕ(xxx) of (18)).
The equation

∇∇∇×EEE = 000 (19)

—which follows from (17) by (6.1)—provides a compact formulation of the
same fundamental fact (and would motivate a hydrodynamicist to remark that
such EEE -fields are “irrotational”). Note, however, that (19)—which contains no
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reference at all to ρ(xxx)—imposes only a weak constraint upon the structure of
EEE(xxx); i.e., that it does not, of itself, enable one to compute EEE(xxx).

Next we take the divergence of (16) to obtain

∇∇∇···EEE(xxx) = −
∫∫∫

ρ(ξξξ)∇2 1
|xxx− ξξξ| d

3ξ

= 4π
∫∫∫

ρ(ξξξ)δ(xxx− ξξξ) d3ξ by (15.2)

= 4πρ(xxx) (20)

And from (20) it follows by (17) that

∇2ϕ(xxx) = −4πρ(xxx) (21)

Some comments are now in order:

1. Equations (19) and (20)—more specifically

∇∇∇···EEE = 4πρ , ∂
∂tρ = 0

∇∇∇×EEE = 000 , ∂
∂tEEE = 000

(22)

where ∂ρ/∂t = 0 and ∂EEE/∂t = 000 formalize the fact that we are here talking
about time-independent physics—provide a complete local characterization of
the laws of electrostatics . . .where “complete” means that the solution of (22)
is, for any prescribed boundary conditions, unique. From (22) one can, in
particular, recover the (non-local) statement (3.2) which provided our point
of departure.

2. As will be shown later in greater detail, ∇∇∇×EEE = 000 tells us in effect that
“there exists a (non-unique) ϕ such that EEE = −∇∇∇ϕ, while it is the upshot of
(21) that in charge-free regions of space ϕ satisfies Laplace’s equation

∇2ϕ = 0 (23)

In the discrete approximation

=
ϕ(x+ε,y,z)−ϕ(x,y,z)

ε − ϕ(x,y,z)−ϕ(x−ε,y,z)
ε

ε
+ y-analog + z-analog

= 6
ε2

{
ϕ(evaluated at 6 “near neighbors” of xxx)

6 − ϕ(xxx)
}

so (23) tells us that in the absence of charge ϕ “relaxes” until the value assumed
by ϕ at xxx is the average of the values assumed by ϕ at the “neighbors” of xxx.
This can be understood to be the “meaning” of Laplace’s equation whatever
the physical/mathematical context in which it is encountered. According to
Poisson’s equation

∇2ϕ = −4πρ (21)



16 Physical & mathematical fundamentals

the “role” of charge is “to keep ϕ from relaxing:” ϕ (locally) exceeds or falls
short of the average of neighboring values according as (locally) ρ ≷ 0. Note
that if I were to give you ϕ(xxx) then you could use (21) to compute the implied
structure of the charge distribution (or “source term”) ρ(xxx).

3. Comparison of (21) with (15.2) shows that we can interpret

G(xxx ; ξξξ) ≡ 1
|xxx− ξξξ|

↑
|
———The notation recalls the name of George Green, who (∼1824) was

the first to appreciate the power of the general ideas here at issue.

as a description of the electrostatic potential generated by a unit charge situated
at the point ξξξ in xxx-space. Now it is fundamental that (see again page 4)

Electrodynamics is—like quantum mechanics (but unlike classical
mechanics, fluid dynamics, gravitational field physics)—dominated
by the principle of superposition.

This is because the underlying (partial differential) equations are (see (22))
linear: solutions—when

• multiplied by constants and/or

• added to other solutions

—yield solutions. This “build-up principle” pertains, in particular, to (21).
Reading the identity

ρ(xxx) =
∫∫∫

ρ(ξξξ) δ(xxx− ξξξ) d3ξ

as a formalization of the remark that arbitrary (even continuous) charge
distributions can be synthesized by weighted superposition of point charges, we
infer (by linearity) that ρ(xxx) generates the potential

ϕ(xxx) =
∫∫∫

ρ(ξξξ)G(xxx ; ξξξ) d3ξ (25)

Equation (25) is but a notationally disguised re-write of (18), upon which it
sheds important new light. If we apply ∇2 to (25) and insist that the result
be—for all ρ(xxx)—in conformity with (21) then we are forced to the conclusion
that

∇2G(xxx ; ξξξ) = −4πδ(xxx− ξξξ) (26)

which (by (24)) is but a restatement of (15.2), but can be read as the equation
that defines the Green’s function appropriate to the Poisson equation (21).
Evidently

−∇∇∇G(xxx ; ξξξ) = Coulombic EEE-field generated by a unit point charge at ξξξ
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5. To place the preceding remarks in a larger context, and to lend substance
to the claim that the Green’s function technique pertains generally to “linear
physics” . . . consider the (inhomogeneous linear partial differential) equation

(∇2−λ2)ϕ(xxx) = −4πρ(xxx) (27)
λ is a constant with (evidently) the physical dimensions of

1
length

which gives back (21) in the limit λ2 ↓ 0. Equation (25) serves still to describe
the general solution ϕ of (27), but the Green’s function G(xxx ; ξξξ) is constrained
now to satisfy not (26) but

(∇2 − λ2)G(xxx ; ξξξ) = −4πδ(xxx− ξξξ)

which is readily shown7 to entail

G(xxx ; ξξξ) = 1
|xxx− ξξξ| e

−λ|xxx− ξξξ|

To reduce the notational clutter and better expose the essence of the matter,
write r ≡ |xxx− ξξξ| to obtain

(∇2 − λ2)G(r) = −4π δ(r) (28)
⇓

G(r) = 1
r · e
−λr (29)

Equation (29) describes what is sometimes called the “screened Coulomb
potential,” for reasons that arise from the observation that (28) can be written

∇2G(r) = −4π ρ(r)

ρ(r) ≡ δ(r)− λ2

4πr e
−λr


 (30)

By quick computation ∫ ∞

0

ρ(r)4πr2 dr = 1− 1 = 0

so (30) can be used to model the electrostatic environment of a neutral atom
(positively charged point-like nucleus that is “screened” by an exponentially
attenuated “electron cloud”—the whole being electrically neutral). A visiting
test charge feels an EEE-field given by

EEE = −∇∇∇G = −
(

1
r e
−λr)′x̂xx

= 1
r2

(1 + λr)e−λr︸ ︷︷ ︸ x̂xx (31)

attenuation factor

7 problem 7
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—the strength of which falls off faster than 1/r2 (which is to say: “faster than
geometrically”), with a “characteristic range” given by λ.

historical note : By  it was known that the so-called “strong
force” (the force which overcomes electrostatic repulsion to bind
nuclei) is of short range. Hideki Yukawa—then  years old—
saw the opportunity to give the λ-term an important physical job.
He recognized that classical physics—(e, c)-physics—contains no
“natural length”. Neither does its quantized analog ((e, c, �)-physics)
. . .but theories of the latter type would acquire a “natural length”—
given on dimensional grounds8 by

natural length ≡ λ–1 = �

µc (32)

—if the analog of the photon (Yukawa’s hypothetical—but by now
very well established—“meson”: the particle which mediates the
strong interaction) were assigned a non-zero mass µ. Yukawa was
led thus to postulate the existence of an elementary particle (it
turned out to be a small population of particles—the “π-mesons”)
with mass

µ = �

c ·
1

range of the strong force
∼ 265 electron masses

and to suggest that something like the “Yukawa force law” (31)
should (in leading approximation) describe the interaction of
nucleons. π-mesons were first observed (in nuclear emulsions by
Powell & Occhialini) in , and in  Yukawa received the
Nobel Prize.

Note finally that
• the “natural length” of (32) becomes infinite as µ ↓ 0;
• the preceding theory becomes “Coulombic” in that limit . . . and could,

in particular, be used to construct an alternative to our “non-Gaußian
proof” of (10.2);
• we might expect (21) to go over into (27) should it turn out that photons

do in fact have a (tiny) mass.

I look finally to the energetics of electrostatic fields; i.e., of static chrage
configurations. Readers will recall from prior study of elementary mechanics
that

1) if FFF (xxx) describes the forcy environment of a mass point m then the work
that you must perform to transport m along a prescribed path is given by

W [path] = −
∫

path

FFF (xxx)···dddxxx

8 problems 8 & 9.
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If the path is described parametrically xxx = xxx(λ): 0 � λ � 1 then we can
(more specifically) write

= −
∫ 1

0

FFF
(
xxx(λ)

)
··· dddxxx(λ)

dλ
dλ

2) if the force is “conservative” in the sense that it admits of description as
the gradient of a scalar potential

FFF (xxx) = −∇∇∇U(xxx)

then (by ∇∇∇U···dddxxx = dU)

W [path] =
∫ 1

0

dU(xxx(λ))
dλ

dλ

= U(xxx1)− U(xxx0)

Remarkably, the path-dependence of W has dropped away: W has become
(not a “path functional” but) a function of the endpoints of the path. A
simple argument shows, conversely, that path-independence implies the
existence of U .

We now ask: What is the work which you must perform to assemble the
constellation of charges Qi first contemplated on page 8? . . . the assumption
(mainly of convenience) being that the Qi reside initially—far from each other
and from us—“at infinity” (i.e., at the only generally available “standard
place”).

Evidently we can move the 1st charge Q1 into position “for free.” The 2nd

charge Q2 feels (when at xxx) the Coulombic force

FFF 12(xxx) = kQ1Q2
1
r3
1

rrr1 = −kQ2∇∇∇ϕ1(xxx)

ϕ1(xxx) ≡ Q1
1
r1

exerted by Q1, and from (33) we infer that to bring Q2 into position we must
do work given by

W2 = kQ2

{
ϕ1(xxx2)− ϕ1(∞∞∞)︸ ︷︷ ︸

}
= kQ2Q1

1
r21
≡W21

0 rrr21 ≡ xxx2 − xxx1

Since electrostatic forces conform to the principle of superposition, the force
experienced by Q3 can be described

FFF 3(xxx) = FFF 31(xxx) + FFF 32(xxx) = −kQ3∇∇∇
{
ϕ1(xxx) + ϕ2(xxx)

}
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. . . and, since FFF enters linearly into the equation W =
∫
FFF ···dddxxx, we infer that to

bring Q3 into position we must do work given by

W3 = kQ3

{
ϕ1(xxx3) + ϕ2(xxx3)

}
= kQ3Q1

1
r31

+ kQ3Q2
1
r32
≡W31 + W32

By extension of the same line of argument we obtain

Wi =
i−1∑
j=1

Wij

where
Wij ≡ kQiϕj(xxxi)

= kQiQj
1
rij

with rij ≡ |xxxi − xxxj |

=
{

work done by moving Qi against
the Coulombic force exerted by Qj




(34)

The energy which we must invest to assemble the entire population is given
therefore by

W = • •
W21 • •

+W31 + W32 • •
...

+Wn1 + Wn2 + · · ·+ Wn,n−1 •

=
∑
i>j

Wij (35.1)

but would have been given by

=
∑
i>j

Wij : note the reversed inequality (35.2)

had we reversed the order of assembly. Equations (35) are, of course, equivalent
(by Wij = Wji : see (34)) . . . and can be combined to give

= 1
2

∑
i

∑
j

′
Wij (36)

↑—the prime means that the self-energy terms
(terms with i = j) are to be omitted

which possesses a pleasing formal symmetry. One might be strontly tempted
to write

—note that the prime is now absent↓
W = 1

2

∑
i

∑
j

Wij −
∑
i

Wii (37)
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were it not for the important fact that each of the “self-energy terms” Wii

is numerically infinite. Equation (37) possesses, in other words, the latently
deceptive structure

= (W +∞)−∞

Computationally/conceptually more useful results can be obtained now by
appeal to (34): thus

W = 1
2k

∑
i

Qi

{∑
j

′
ϕj(xxxi)

}
︸ ︷︷ ︸

(38.1)

=
∑
j

′
Qj

1
rij

= potential at xxxi due to all other charges Qj

= 1
2k

∑
i

∑
j

′
QiQj

1
rij

(38.2)

In the continuous limit equations (38) go over semi-plausibly into

W = 1
2k

∫
ρ(xxx)ϕ(xxx) d3x (39.1)

↑—means
∫∫∫

, and extends over any region
R big enough to contain all points where
the charge distribution ρ 
= 0

= 1
2k

∫∫
ρ(xxx)ρ(ξξξ) 1

|xxx− ξξξ| d
3x d3ξ (39.2)

which are (by (18)) equivalent. I say “semi -plausibly” becuase equations (39)
contain no analogs of the primes which decorate (38). Indeed, if we set

ρ(ξξξ) =
∑
i

Qi δ(ξξξ − xxxi) (4)

we can perform the
∫∫

and obtain

= 1
2

∑
i

∑
j

Wij = W + self-energy terms

We confront therefore this fundamental question (which I must, for the moment,
leave dangling): For continuous charge distributions ρ(xxx) do “self-energy terms”
(ever? sometimes? always?) automatically vanish?

We are in position now to review some ideas which are as fundamental as
they are pretty. Introducing ρ = − 1

4π∇2ϕ into (39.1) we obtain

W = − 1
8πk

∫∫∫
ϕ∇2ϕd3x (40)
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which will strike some readers as reminiscent of the formula

〈E 〉 =
∫∫∫

ψ∗
{
− �

2

2m∇
2 + V

}
ψ d3x

by means of which one computes the expected value of the average of many
energy measurements if the quantum mechanical system with Hamiltonian
H = 1

2m p2 + V (x) is known to be in state ψ. Be that as it may . . . it follows
from (40) (more directly: introduce ρ = 1

4π∇∇∇···EEE into (39.1)) that

W = 1
8πk

∫∫∫
ϕ∇∇∇···EEE d3x

By (5.2)
ϕ∇∇∇···EEE = −EEE···∇∇∇ϕ +∇∇∇···(ϕEEE )

while by (17)
∇∇∇ϕ = −EEE

So—by what is in effect the 3-dimensional analog of an “integration by parts”—
we have

= 1
8πk

{ ∫∫∫
E2 d3x +

∫∫∫
∇∇∇···(ϕEEE ) d3x︸ ︷︷ ︸

}

=
∫∫

ϕEEE ···dddSSS by Gauß’ theorem (14)

We expect ϕEEE to fall off asymptotically as 1/r3. This is fast enough to cause
the later surface integral to vanish if the surface of integration is “removed to
infinity” . . . giving

= 1
8πk

∫∫∫
E2 d3x (41)

where E2 ≡ EEE ···EEE and where the
∫∫∫

ranges over all space (or at least over all
points where EEE(xxx) 
= 000). Several lines of commentary are now in order:

1. All that has been said concerning W pertains as well to the energetics of
gravitational (or at least to weak gravitostatic) fields as it does to electrostatic
fields. The space-curvature effects associated with very strong fields (whether
gravitational or electrostatic) can, of course, be expected to cause our (tacit)
Euclidean assumptions to break down . . .

2. More familiar to chemists than to physicists—and so general/powerful
that it is difficult to formulate except in words—is

le chatelier’s principle : When an external force is applied to
a system in equilibrium the system adjusts so as to minimize the
effect of the applied force.

Somewhat similar—in substance and spirit, in its abstract generality, and in its
ever-surprising power—is this
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namelesss principle : If the energy E of a system depends upon
an adjustable parameter α (of whatever nature) then an “abstract
force” F = −∂E/∂α will be associated with variation of that
parameter. If α refers to spatial position then F will have literally
the nature of a mechanical force.

Our electrostatic W is by nature a function of xxx1, Q1, xxx2, Q2, . . . ,xxxn, Qn (in
the discrete case, and a functional of ρ(xxx) in the continuous case). What is the
(literal) force associated with variation of xxxi? Bringing (34) to (36) we have9

−∇∇∇iW = −∇∇∇i 12k
∑
a,b

′
QaQb

1
rab

(42.1)

= − 1
2kQi∇∇∇i

{ ∑
a

′
Qa

1
rai

+
∑
b

′
Qb

1
rib︸ ︷︷ ︸

}

sums identical by rab = rba

= −kQi∇∇∇i
∑
j

′
Qj

1
rij

= kQi · (EEE -field at xxxi due to all other charges)
= force exerted on Qi by the other charges (42.2)

Note that there is a formal sense in which the prime can be dropped from (42.1):
Qi’s self-energy Wii—though infinite—does not change when Qi is moved . . . so
∇∇∇wii = 0:

A charge Q “carries its self-energy with it,” so does not exert an
electrostatic force upon itself.

Our “nameless principle” can be used to explain why dielectric fluids are lifted
into the space between charged capacitor plates, why magnets attract paper
clips, where the thermodynamic concepts of “pressure”and “chemical potential”
come from . . . and much, much else.

3. Where does W reside? The structure of (39)—in which the
∫

’s need
extend only over that portion of space which contains charge—tempts one
to respond “In the charge(s)” . . . or perhaps “In the ‘Coulombic springs’ by
which the charges are interconnected.” But those “springs” are spooky things,
which inhabit empty space. And one is, on the other hand, encouraged by
the structure of (41)—where the

∫
ranges over that portion of space which

contains (not charge but) EEE -field—to suppose that W resides “In the EEE -field;
i.e., in the empty space which envelops the charge.” The question therefore
arises: Which viewpoint is correct (= more useful)? The clear answer is “The
latter” . . .but only on grounds which emerge when one enlarges the conceptual
context to contain dynamical (i.e., t-dependent) elements:

It is most useful to consider W to reside “in the EEE-field.”

9 I use a and b as summation indices because i is now otherwise engaged.
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We are led thus to speak of field energy . . . and to begin to think of EEE-fields
(since they possess energy) as “mechanical objects in their own right.” Such
“objects” differ from (say) particles mainly in the fact that they (i.e., their
collective properties) are not localized but distributed . Equation (41) can in this
light be written

W =
∫∫∫

E(xxx) d3x

E(xxx) ≡ 1
8πk|EEE(xxx)|2 = electrostatic energy density


 (44)

4. It is obvious from (44) that electrostatic energy density E(xxx) is invariably
non-negative :

W = Winteraction + Wself � 0

The W described by equations (38) is, on the other hand, clearly of indefinite
sign. This slight paradox is resolved by the realization that (38)—which applies
only to discrete charges—pertains only to the interaction energy

Winteraction ≷ 0

while
Wself > 0

Were we to use (41 ≡ 44) in problems involving point charges we would
(automatically) be taking into explicit account the energy expended in the
assembly of those point charges . . .which since
• we are in fact physically unable to “assemble” electrons
• a result of the form W =∞ is not very useful

would be poor policy. In discrete problems it is essential that one use (38), not
(41/44). One begins to see why, for ∼ years, physicists have spoken balefully
of the “self-energy problem” . . .which quantum theory transforms, but does not
eliminate.10

5. According to (41 ≡ 44), W—irrespective of how self-energy terms are
handled—is a non-linear number-valued functional of EEE(xxx): if EEE1 and EEE2 give
rise to W1 and W2, then EEE = EEE1 + EEE2 gives rise not to W1 + W2 but to

W = W1 + W2 + 2 1
8πk

∫∫∫
EEE1(xxx)···EEE2(xxx) d3x (45)

I have on page 6 drawn attention to the conventional status of k, and
wish now (actually for practical reasons) to illustrate how that circumstance
might be exploited. If we think of the field equations (22) as fundamental, and
of Coulomb’s law as arising from a particular (spherically symmetric) solution
of those equations, then it becomes natural to suppose that all factors of 4π

10 problems 10 & 11
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should attach not to the field equations but to Coulomb’s law and its immediate
corollaries. Accordingly, we

set k = 1
4π : (dimensionless) (46.0)

so Coulomb’s law (1) reads
FFF = 1

4π
q1q2
r2

r̂rr (46.1)

. . .which serves, in effect to define our (“rationalized electrostatic”) unit of
charge. We can further—and quite independently—simplify life by absorbing
a k into the definition of EEE, writing

FFF (xxx) = qEEE(xxx) = force on the test charge q (46.2)

Equations (3) become

EEE(xxx) = 1
4π

∫∫∫
ρ(ξξξ)

xxx− ξξξ

|xxx− ξξξ|3 d3ξ (46.3)

and its discrete analog (which there is no need to write out). If we insist—
conventionally—upon retaining the simplicity of

= −∇∇∇ϕ(xxx) (17)

then (arguing as before from (15.1)) we obtain (compare (18))

ϕ(xxx) = 1
4π

∫∫∫
ρ(ξξξ)

1
|xxx− ξξξ| d

3ξ (46.4)

It is evident that in place of (20) and (21) we now have

∇∇∇···EEE = −∇2ϕ = ρ (46.5)

The 4π-factors, which formerly resided in the field equations, are not attached
only to expressions which are clearly and directly “Coulombic in character.” In
place of (39.1) we now have

W = 1
2

∫
ρ(xxx)ϕ(xxx) d3x

giving

= − 1
2

∫
ϕ∇2ϕd3x

= 1
2

∫
ϕ∇∇∇···EEE d3x = 1

2

∫
E2 d3x (46.6)

. . . all of which are conspicuously cleaner that their counterparts on pages 21/22,
and which suggest that cleanliness invested in the field equations tends to
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Figure 5: Spacetime diagrams of (on the left) the worldlines traced
by a static population of charges, and (on the right) by a dynamical
population. The time axis is indicated ↑.

persist: the best way to clean up a theory is to scour its most fundamental
statements. The exercise has involved a good deal of slip and slide: we have

1) assigned to k a conventional value;

2) conventionally adjusted the relationship between FFF and EEE ;

3) conventionally retained the relationship between EEE and ϕ .

The whole business admits obviously of many variations . . . and is never much
fun.

Our work thus far contains no reference to time, no reference to magnetism.
It turns out—surprisingly, and independently of whether one proceeds in the
laboratory or on paper—that to make provision foreither is (semi-automatically)
to make provison for the other: that

electrostatics −−−−−→ electrodynamics

is a program conceptually equivalent to

electrostatics −−−−−→ electromagnetism

Now, electrostatics has been seen to proceed from essentially three assumptions:

1) the field sources Qi don’t move; i.e., that they trace worldlines of the
form illustrated in the first of the following figures, and that within that
specialized context

2) they interact via Coulomb’s law; moreover

3) electrostatic forces compose by superposition.

Our forward progress requires that we relax the immobility assumption . . .
allowing the Qi to trace worldlines like those shown on the right side of Figure 5.
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Figure 6: Spacetime diagrams of (on the left) a static population
as it appears to O and (on the right) the same population as it
appears to us, who see O to be moving by with uniform velocity vvv.

How to proceed? How do charged particles interact when they are in relative
motion?

2. Bootstrapping our way to Maxwell’s equations. Since my ultimate intent is
simply to illuminate the formal/physical ramifications of the structural
properties of the electromagnetic field (and—as opportunities arise—to
illustrate some of the heuristic devices characteristic of modern theoretical
physics) . . . I need not apologize for the fact that the discussion which follows
is grossly ahistorical. The essential pattern of the argument is due to Julian
Schwinger (unpublished notes: ∼)11 . . .but several closely related lines of
argument have been around for decades, have been reinvented many times by
many people, and have been promoted in the classrooms of Reed College by
Dennis Hoffman.

What follows is by nature a “theoretical bootstrap” operation, which draws
heavily (if interestingly) upon “plausibility arguments” and which leads to
results which would remain merely plausible in the absence of supporting
observational data . . . of which, as it turns out, there is a great deal. The
success of the program can itself be read as evidence either of
• the power of hindsight or
• the extraordinary simplicity of electrodynamics.

Turning now from anticipatorty generalities to the curious details of our
argument . . . let O be an inertial observer

1) whom we see to be gliding by with constant velocity vvv ;

11 An edition of those notes was prepared posthumously by several of
Schwinger’s former associates, and was recently published: see J. Schwinger,
L. L. DeRaad, K. A. Milton & W. Tsai, Classical Electrodynamics ()—
especially Chapter 1—and also the review by Jagdish Mehra: AJP 68, 296
(2000).
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2) who possesses the usual “good clock and Cartesian frame” with the aid of
which he assigns coordinates (t, xxx) to points in spacetime; i.e., to “events”
in his inertial neighborhood;12

3) who possesses “complete knowledge of electrostatics,” as developed in §1
and summarized on page 25.

We, on the other hand, possess
1) our own “good clock and Cartesian frame”;
2) enough knowledge of physics to know that if O is inertial then so are

we . . . and (more specifically) enough knowledge of Galilean relativity
to “know” that the coordinates (t, xxx) which we assign to an event are
related to the coordinates (t, xxx) which O assigns to that same event by the
equations

t = t(t, xxx) = t

xxx = xxx(t, xxx) = xxx + vvv t

}
(47)

3) no prior knowledge of electrostatics.

Our simple goal—at least at the outset—is to translate O’s electrostatic
equations in to our variables. The circumstance which makes the enterprise
interesting is (see Figure 6) that while O’s charges are at rest with respect both to
O and to each other . . . they are in (uniform) motion with respect to us.13 We
confront therefore a situation intermediate between those depicted in Figure 5.
Though the figures refer (as a matter of graphic convenience) to point charges,
we shall find it analytically most convenient to work with continuous charge
distributions ρ—a convention which entails no essential loss of generality.

In 2-dimensional spacetime (to which I retreat for merely notational
convenience) it would follow from (47) that

∂
∂ t = ∂ t

∂ t
∂
∂t + ∂x

∂ t
∂
∂x = ∂

∂t + v ∂∂x
∂
∂x = ∂ t

∂x
∂
∂t + ∂x

∂x
∂
∂x = ∂

∂x

while from (47) itself it follows (similarly) that14

∂
∂ t = ∂

∂t + vvv···∇∇∇
∇∇∇ = ∇∇∇

}
(48)

12 The extent of such a neighborhood is set by curvature effects; i.e., by
the structure of the gravitational field. We shall eliminate such (typically quite
small) effects by supposing gravitation to have been “switched off” (G ↓ 0), so
all “neighborhoods” become infinite and coextensive: spacetime becomes (not
just locally but) globally flat .

13 From O’s point of view we are in effect asking: “How does an electrostatic
field look to a moving observer (namely: us)?

14 Here ∇∇∇ denotes “del with respect to xxx,” while ∇∇∇ denotes “del with respect
to xxx.”
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If we assume —plausibly?—that O’s charge density can by us be described

ρ(xxx, t) = ρ(xxx− vvv t) = ρ(xxx) (49)

—i.e., that (relative to the vvv -parameterized Galilean transformations (47))
ρ transforms as a scalar field—then O’s equation

∂
∂ tρ = 0 (22)

can by us (according to (48)) be written
∂
∂tρ + vvv ···∇∇∇ρ = 0

The xxx-independence of vvv entails ∇∇∇···vvv = 0 so (by (5.2))

vvv ···∇∇∇ρ = ∇∇∇···(ρvvv)
and if we define

jjj ≡ ρvvv ≡ (electric) current density (50)

we have
∂
∂tρ +∇∇∇···jjj = 0 (51)

Postponing (here and below) all physical/formal commentary, I can report that
(51) provides a local formulation of the principle of charge conservation.

If we assume —plausibly in view of (49) and what we know from mechanics
about the Galilean transform properties of force—that O’s EEE -field can by us
be described

EEE(xxx, t) = EEE(xxx− vvv t) = EEE(xxx)

—i.e., that the individual components of EEE respond to (47) like scalar fields—
then O’s equation

∂EEE
∂ t = 0 (22)

can by us be written

∂EEE
∂t + (vvv···∇∇∇)EEE = 0

Expressions of the form (vvv···∇∇∇)EEE are—since ∇∇∇ is neither dotted nor crossed into
EEE—“funny,” but they are in fact familiar already from (5). It follows in fact
from (5.5) that

(vvv···∇∇∇)EEE = vvv(∇∇∇···EEE)−∇∇∇×(vvv×EEE)
−EEE(∇∇∇···vvv) + (EEE···∇∇∇)vvv︸ ︷︷ ︸

0 by xxx-independence of vvv

O’s equation
∇∇∇···EEE = ρ

can by us (and without the assistance of any additional assumptions) be written

∇∇∇···EEE = ρ (53)

It follows therefore by (50) that

= jjj −∇∇∇×(vvv×EEE)
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So we have

∇∇∇×BBB = 1
c jjj + 1

c
∂EEE
∂t

(54)
where now

BBB ≡ 1
c (vvv×EEE) (55)

Here c—a constant with the dimensions of velocity (it turns out in a moment
to be associated with the speed of light)—has been introduced for no more
fundamental purpose than to insure that EEE and BBB are dimensionally identical:
[EEE ] = [BBB ]. BBB(xxx, t) itself is a vector field which turns out to be associated with
the phenomenology of magnetism.15

In view of the structure of (54) it becomes natural to inquire after the value
of ∇∇∇···BBB. Drawing upon (5.4) we have

∇∇∇···BBB = 1
c∇∇∇···(vvv×EEE)

= − 1
cvvv ···(∇∇∇×EEE) + 1

cEEE ···(∇∇∇×vvv)︸ ︷︷ ︸
0 by xxx-independence of vvv

But O’s equation
∇∇∇×EEE = 0 (22)

can by us (and again without the assistance of any additional assumptions) be
written

∇∇∇×EEE = 0 (56)

So we have

∇∇∇···BBB = 0 (57)

It is a striking fact that the preceding boxed equations contain no reference
to ∂BBB

∂t . But it follows from (55) by differentiation that

∂BBB
∂t = 1

c
(
vvv× ∂EEE

∂t

)
which by (54) becomes

= vvv×(∇∇∇×BBB)− 1
c (vvv×jjj)︸ ︷︷ ︸

0 because vvv and jjj are, by (50) parallel

Reading from (5.6) we have

vvv×(∇∇∇×BBB) = ∇∇∇(vvv···BBB)− (vvv···∇∇∇)BBB −BBB×(∇∇∇×vvv)− (BBB···∇∇∇)vvv

15 problem 12.
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The leading term on the right presents (vvv···BBB) = 1
cvvv···(vvv×BBB), which vanishes

because vvv ⊥ (vvv×BBB). And the two final terms vanish because vvv is xxx-independent.
The surviving term can be developed

−(vvv···∇∇∇)BBB = −vvv∇∇∇···BBB +∇∇∇× (vvv×BBB) + BBB∇∇∇···vvv − (BBB···∇∇∇)vvv

The leading term on the right vanishes by (57): ∇∇∇···BBB = 0. And again: the two
final terms vanish because vvv is xxx-independent. So we have

∂BBB
∂t = ∇∇∇× (vvv×BBB) (58)

of which, as we saw en route,

∂BBB
∂t + (vvv···∇∇∇)BBB = 000 (59)

provides an alternative formulation.16,17

Reviewing our progress . . .we note that equations structurally similar to
ours would be written by each of our inertial colleauges (our relation to O being
entirely “typical”). Since we are related to O by a Galilean transformation
(more specifically: by a Galilean boost , as rotation-free transformations of
the form (47) are standardly called), and since the compose of two (or more)
Galilean transformations is itself Galilean,18 what we have in effect constructed
is a Galilean-covariant formulation of electrostatics— a theory which gives back
the standard theory (O’s theory, as summarized on page 25) when vvv (whence
also jjj and BBB, by (50) and (55)) vanishes.

But the theory we seek is more ambitious. We seek a theory capable of
describing the electromagnetic interaction of charged mass points Qi which are
free to experience arbitrarily complex relative motions. Looking in this light to
the theory in hand, we note that

1) the vvv which enters into the definition (50) of jjj may be interpreted as
referring to our perception of the velocity of an existential thing (a charged
mass point), but that

2) every other reference to vvv is a source of acute embarrassment, for it is a
reference to our perception of the velocity of a non-entity: an observer
who sees all charges to be at rest. The inertial observers who perceive
any particular Qi to be momentarily at rest are easily discovered. But an
observer O who sees all Qi to be constantly at rest does (in the general
case) not exist !

How to get along without the assistance of our “preferred observer”? How—
with minimal formal damage—to eliminate the embarrassing vvv -terms from our
theory?

16 If we apply ∇∇∇··· to (58) we obtain ∂
∂t∇∇∇···BBB = 0 which, while it does not imply,

is certainly consistent with (57): ∇∇∇···BBB = 0.
17 All that has been said thus far pertains as accurately to our perception of

O’s gravitostatics as to our perception of his electrostatics.
18 problem 13.
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It is here that we have recourse to the “bootstrap”
mentioned on page 27. And here, by the way, that
we take leave of Newtonian gravitostatics.

We seem to be forced—both formally (at (55)) and phenomenologically (of
which more later)—to retain something like BBB in our theory. But we eliminate
one embarrassing vvv if

1) we deny the invariable/general validity of BBB ≡ 1
c (vvv×EEE). This has the

effect of promoting BBB(xxx, t) to the status of an autonomous (if—at the
moment—operatonally undefined) field . . . entitled to all the privileges and
respect that we are in the habit of according to EEE(xxx, t).

The proof of (57) now breaks down, but (note that (57) contains no vvv -term,
and must retain at least its electrostatic validity) the situation is saved if

2) we promote ∇∇∇···BBB = 0 to the status of a law .
3) We have every reason to retain∇∇∇···EEE = ρ as it stands. Noting that (53) and

(54) conjointly imply charge conservation (which we wish to retain) and
that (54) contains as it stands no vvv -term, it seems to make conservative
good sense if (tentatively)

4) we promote ∇∇∇×BBB = 1
c jjj + 1

c
∂EEE
∂t to the status of a law .

Our problem assumes at last its full force in this question:

What to do with (58): ∂BBB
∂t = ∇∇∇× (vvv×BBB)?

It was at just such a juncture that we were motivated at (55) to define BBB. One
is therefore tempted to write

CCC ≡ 1
c (vvv×BBB)

= 1
c2 (vvv×(vvv×EEE)) = 1

c2

[
(vvv···EEE)vvv − (vvv···vvv)EEE

]
(60)

and then to declare CCC(xxx, t) “autonomous.” But such a program (which would
amount to sweeping the dirt under the carpet) must—because of its allusion
to vvv—now be dismissed as conceptually unattractive. Besides, it would oblige
us to search (by the methods of Galilean electrostatics?) for the field equations
satisfied by CCC. Such activity would certainly lead us to the field vvv×CCC, and thus
oblige us to keep on introducing such fields . . . a process which would terminate
if and only if it were to turn out that at some stage the resulting “ZZZ-field” were
a (vvv -independent) linear combination of fields previously introduced, which is
unlikely/impossible. How, therefore, to proceed?

When in a theoretical jam, it is never unfair to ask Nature for assistance.
In this spirit (following Schwinger) we observe that

There is abundant observational evidence—none of which was
known to Maxwell!—that light is an electromagnetic phenomenon,
that charge-motion can give rise to radiation, that in charge-free
regions of spacetime the electromagnetic field equations must possess
wave-like solutions.
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where the wave equation, is, we recall, a 2nd-order partial differential equation
of the form {

1
c2

∂2

∂t2 −∇
2
}

︸ ︷︷ ︸ f(xxx, t) = 0

|—the “wave operator,” sometimes called
the d’Alembertian and denoted 2.

In charge-free regions of spacetime the equations in hand (set ρ = 0 and jjj = 000)
read

∇∇∇···EEE = 0 (61.1)
∇∇∇···BBB = 0 (61.2)

1
c
∂
∂tEEE −∇∇∇×BBB = 000 (61.3)

1
c
∂
∂tBBB −∇∇∇×

(vvv
c×BBB

)
︸ ︷︷ ︸ = 000 (61.4)

problematic term

Application of 1
c
∂
∂t to (61.3) gives

1
c2

∂2

∂t2EEE −∇∇∇× 1
c
∂BBB
∂t = 000

which by (61.4) becomes

1
c2

∂2

∂t2EEE −∇∇∇×
(
∇∇∇×

(vvv
c×BBB

))
= 000

Drawing now upon the general identity19

∇∇∇×(∇∇∇×AAA) = ∇∇∇(∇∇∇···AAA)−∇2AAA︸︷︷︸ (62)
|—means that ∇2 acts separately

on each of the components of AAA

we obtain

1
c2

∂2

∂t2EEE −∇∇∇
{
∇∇∇···

(vvv
c×BBB

)}
+∇2

(vvv
c×BBB

)
= 000

This would (by (61.1)) go over into the vectorial wave equation{
1
c2

∂2

∂t2 −∇
2
}
EEE = 000 (63)

provided we set
EEE = − 1

c (vvv×BBB) (64)

Equation (64) is, however, unacceptable: it contains—as did the rejected
equation (55)—an objectionable allusion to vvv (and would, moreover, imply
EEE → 000 as vvv → 0: we would be out of business!). But our objective—(63)—
would in fact be realized if we assumed (64) to hold in the specific context
afforded by (61.4). Thus are we led—tentatively—

19 problem 14.
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5) to write ∇∇∇×EEE = − 1
c
∂
∂tBBB in place of (61.4)≡ (58).

By this strategy we have, in effect, short-circuited at first opportunity the
“infinite regress problem” which (in connection with the CCC-field) was discussed
earlier. But in so doing we have (as will emerge) also done much else.20

The field equations that emerge from the heuristic arguments just outlined
are precisely Maxwell’s equations

∇∇∇···EEE = ρ

∇∇∇···BBB = 0
∇∇∇×BBB = 1

c
(
jjj + ∂

∂tEEE
)

∇∇∇×EEE = 1
c
(
000− ∂

∂tBBB
)

(65.1)
(65.2)
(65.3)
(65.4)

Here as always, heuristically generated statements could be dismissed out of
hand if it could be shown that they were internally inconsistent. Once that test
is passed, we acquire the obligation to to show that our statements conform to
physical experience. It is those two complementary lines of activity—especially
the latter—that will absorb our energy in all the pages which follow.

It is—on methodological grounds, and in view of the preceding allusion to
“physical experience”—interesting to notice that the heuristic arguments which
led us from

electrostatics −−−−−→ Maxwellian electrodynamics

give rise to observationally incorrect physics when applied to Newtonian
gravitostatics. Electrodynamics and gravitodynamics “share Coulomb’s law
in the static approximation” but otherwise differ profoundly. Owing to the
equivalence principle, the gravitational field acts as its own source—i.e., is “self-
coupled”—and so must be governed by non-linear partial differential equations
. . .but Maxwell’s equations are linear partial differential equations. The
circumstance force to this obvious—but sometimes overlooked—point: heuristic
arguments cannot in general be promoted convincingly to the status of “proof;”
by bootstrapping one may infer but cannot expect to demonstrate the “unique
and necessary structure” of the enveloping theory .

Maxwell’s equations (+ boundary & initial data) enaable us in principle
to compute the (generally dynamical) electromagnetic (EEE,BBB)-fields which are
generated by prescribed source activity (the latter described by ρ and jjj), but tell
us nothing about the converse problem: How do charged mass points move in
response to prescribed ambient electromagnetic fields? More sharply: What—
given EEE(xxx, t) and BBB(xxx, t) is the force FFF experienced by a test charge q situated
at (xxx, t)? If we see q to be at rest then—by definition!—

FFF = qEEE : note the BBB -independence (66)

20 In particular we have denied the universal validity of (56): ∇∇∇×EEE = 000.
Note, however, that we recover (56) when BBB is t-independent: ∂BBB/∂t = 000.
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. . .but What if we see q to be in motion? An inertial observer O
′ who sees q to

be momentarily at rest would—since (66) is “shared physics”—write FFF
′ = q

′
EEE

′.
The question therefore arises:

How do the quantities (EEE ′
,BBB

′
, . . .) seen by O

′ relate to the
quantities (EEE,BBB, . . .) seen by another inertial observer O?

The surprising answer to this question shows that we should in the general case
write

FFF = q
(
EEE + 1

cvvv×BBB
)

(67)
↑—refers to our perception of q’s instantaneous velocity

The Lorentz force law (67) is of importance partly because it removes a problem
which has been a source of embarrassment ever since we declared the BBB -field
to be “autonomous:” it makes possible an operational definition of BBB.

The resolution of the transformation-theoretic question

(EEE ′
,BBB

′
, . . .) ?−−−−−−−−−−−−→ (EEE,BBB, . . .)

posed above turns out to be “surprising” in this profoundly consequential sense:
The heuristic arguments which led us to Maxwell’s equations (65) drew strongly
upon the Galilean transformation (47). But the Maxwell equations themselves
are (as will be shown, and the statements (49) and (52) notwithstanding) not
Galilean covariant; i.e., they do not preserve their form under tha action of
(47/48). It is attention to this critical point which will lead us—as historically
it led Lorentz and Einstein—to the formulation of special relativity. One need
only glance at the history of 20th Century physics (t � )—indeed: of
20th Century civilization—to get a sense of how incredibly consequential a
formal subtlety can be!21

My objective in the next few sections will be to describe, if only in the
most preliminary terms, some of the most characteristic phenomenological
consequences of Maxwell’s equations. Note in this connection that if in (65)
we set jjj = BBB = 000 we obtain (as remarked already on page 31) the equations

∇∇∇···EEE = ρ

∂EEE
∂t = ∇∇∇×EEE = 000

∴ ∂ρ
∂t = 0


 (69)

which were seen at (22) to be fundamental to electrostatics, and of which the
phenomenological consequences were discussed in some (byno means exhaustive)
detail already in §1.

21 problems 15 & 16
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3. Current, and the principle of charge conservation. We begin by discussing a
simple corollary of Maxwell’s equations. If (recall problem 12) we construct
∂
∂t (65.1) + c∇∇∇···(65.3)(65.3)(65.3) we obtain

∂
∂tρ +∇∇∇···jjj = 0 (70 ≡ 51)

Equations of this particular structure are (for reasons which will emerge) called
“continuity equations:” it is because we attach specific interpretations to ρ and
jjj that (70) becomes the “charge conservation equation.”

Important insight into the meaning of (70)—and of continuity equations
generally—can be obtained as follows: Let R be a t -independent “bubble”
in xxx-space, and let ρ(xxx, t) and jjj(xxx, t)—fields which we shall assume to be in
conformity with (70)—be given. The total charge Q(t) contained within R can
be described

Q(t) =
∫∫∫

R
ρ(xxx, t) d3x

Looking now to the rate of temporal variation of Q we have (see Figure 7)

Q̇ =
∫∫∫

R

∂ρ(xxx, t)
∂t

d3x

note: An additional term—describing the “rate at
which R gobbles up charge”—would be required had
we allowed R to be t-dependent.

= −
∫∫∫

R
∇∇∇···jjj d3x by (70)

= −
∫∫
∂R

jjj···dddSSS︸ ︷︷ ︸ by Gauß’ theorem: (14)
|—charge flux through the surface element dddSSS.

Since dddSSS is “outward directed,” we have
= −

{
total flux outward through the surface ∂R of R

}

The implication is that no “birth” or “death” processes contribute to Q̇ . . .which
is what we mean when we say that “charge is conserved.” The generality of the
argument follows from the observation that it works whenever
• ρ is a density and
• jjj is the corresponding flux density .

We see that
d
dt

∫∫∫
R
ρ(xxx, t) d3x +

∫∫
∂R

jjj(xxx, t)···dddSSS = 0 (71)

expresses globally the information which (70) expresses locally. From the
requirement that (71) hold for all t-independent bubbles R one can in fact
recover (70).
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Figure 7: In a spatial region occupied by a drifting charge cloud
jjj(xxx, t)—represented here by the fat blue arrow—the argument on the
preceding page asks us to designate a “bubble” R, and to identify the
rate of change of enclosed charge with the rate at which charge is
transported into R through its surface ∂R.

What, specifically, is the meaning of the statement that jjj is by nature a
measure of (electric) “flux density”? It follows from (70)—whence ultimately
from (65)—that

[ jjj ] = [ρ ] · velocity = charge · velocity/volume
= charge/area · time

We infer that

jjj(xxx, t)···dddSSS =




instantaneous rate (at time t) at which
charge is being transported through a
little “window” dddSSS situated at position xxx

Recalling the definition of “···” we have

= j · dS · cos θ
θ ≡ angle between ĵjj and SSS ; i.e., the

window’s “presentation angle”

It is important to appreciate that the jjj here under consideration is a more
general conception than the jjj ≡ ρvvv contemplated at (50) . The latter is literally
appropriate only if the charge which flows through the window dddSSS does so
coherently—as a unitary entity endowed with a single, well-defined velocity—
while the jjj contemplated in (70) refers only to the effective mean drift of the
charge at (xxx, t). The distinction is illustrated in Figure 8.
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Figure 8: Charges q stream through an inspection window with
identical velocities (or “coherently”) at left, and with statistically
distributed velocities (“incoherently”) at right.

The fields ρ and jjj pertain most naturally to “continuum physics,” and have
to strain a bit to accommodate the microscopic physical fact that charge always
rides around on localized bits of matter. Let xxx(t) and vvv(t) ≡ ẋxx(t) describe the
motion of a charged mass point (m, q). To describe the associated ρ and jjj we
might write

ρ(xxx, t) = q δ(xxx− xxx(t))
jjj(xxx, t) = q δ(xxx− xxx(t))vvv(xxx, t)

(72)

These singular fields—can you show that they satisfy (70)?—acquire the correct
physical dimensionality from the circumstance that

[δ(xxx)] = (volume)–1

The restrictive equation
∂
∂tρ = 0 (73)

is familiar from §1, where it was interpreted as referring to “charges that don’t
move.” If, however, we reflect upon the meaning of its mate

∂
∂tjjj = 000 (74)

we see that (73) admits of a more relaxed interpretation. For (74) requires that
the charges move, but in such a stereotyped manner that they keep replacing
each other . Phrased another way: ∂

∂tρ = 0 ⇒ ∇∇∇···jjj = 0 (by (70)), but does
not, of itself, require jjj = 000. Equations (73/74) may be satisfied momentarily,
“accidentally,” at isolated spacetime points, but tend to be of practical
importance only when they hold globally . Source fields ρ(xxx) and jjj(xxx) are—for
the reason just mentioned—best described not as “static” but as t -independent
or steady . In view of the fact that it is so easy to build steady ρ -fields with an
isolated point charge, it becomes interesting to note that (except in the trivial
sense jjj = 000) one cannot build a steady jjj-field with a single charge. Interesting
to note also that the reason appears to be not logical, not electrodynamical
. . .but (see Figure 9) mechanical : one runner can’t (in the continuous limit)
“keep running by with velocity vvv”—even if the racetrack is infinitely short. The
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Figure 9: At left, a single charge attempts in vain to “keep running
past” an inspection point. At right, entrained charges achieve the
intended effect (production of a steady jjj) by serially replacing one
another. But even with the latter arrangement we cannot produce
a steady jjj which vanishes everywhere except at a point.

problem would disappear if Nature provided not only point charges but true
line charges (charged strings). Absent those, we are forced to build our steady
jjj-fields with the aid of entrained point charges: we “glue charges on a string,
pull the string . . . and pretend not to notice the microscopic granularity.” The
operation (see again the preceding figure) is most commonly called “sending a
current through a wire.”

In manypractical contexts—particularly those which arise from engineering
—it is more common to speak of the current I than of the current density jjj.
These concepts are related as follows: Let D be (topologically equivalent—see
Figure 10—to) a “disk,” and let ∂D denote its boundary (a closed curve). Given
jjj(xxx, t), we form

I(t;D) ≡
∫∫
D

jjj···dddSSS (75)

to obtain a measure of the instantaneous rate at which charge is (at time t)
being transported through D, i.e., of the total charge flux through D. Evidently

[ I ] = [ jjj ] · area = charge/time

Engineers perefer to measure currents I in Amperes ≡ Coulombs/second . Note
that on a disk dddSSS is sign-ambiguous (“outside” being undefined). A disk D

endowed with a sign convention is said to be “oriented.” Evidently we are, for
the purposes of (75), obliged to require that D be orientable: no Möbius strips
allowed! For a given jjj -field one expects to have

I(t;D1) �= I(t;D2) even when ∂D1 ≡ ∂D2

It is therefore of some interest that one can show without difficulty22 that if
ρ is steady and if, moreover, D1 and D2 share the same boundary (∂D1 ≡ ∂D2),

22 problem 17.
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Figure 10: The net current through a hypothetical cap D is,
according to (75), found by integrating jjj⊥—the normal component
of current density, the vector field represented here by (blue) directed
curves.

then I(t;D1) = I(t;D2). In such (frequently encountered) contexts there is no
reason to retain any explicit allusion either to t or to D: it becomes more natural
to write I(∂D), and then to drop the ∂D as “obviouis from the context.” Thus
does one acquire the privilege of referring simply to “the current I.”

To describe the current I in a wire23 we have only to suppose (see Figure11)
that ∂D circumscribes the wire. Phenomenologically, the current I in a wire of
cross-sectiuonal area A can be described

I = nevA

{
n is the number of charge carriers per unit volume
e is the charge per carrier (= elecronic charge)
v is the mean drift velocity of the charge carriers

People are often surprised to discover that (because n is typically quite large) v
is typically quite small. If in (76) we assign I, n, e and A the values appropriate
to a 1 amp current in a 14-gauge copper wire (radius R = 0.0814 cm) we find
that the drift velocity v = 3.55×10−3 cm/sec: evidently the physics of electrical
signal propagation has very little to do with the physics of charge carrier drift .

It will be appreciated that the currents encountered in Nature, and of
fundamental interst to physicists, are for the most part not confined to wires

23 We agree here to overlook the “charge accumulation effects” which may
arise at high frequencies: we agree, in other words, to “think DC.”
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Figure 11: Variant of the preceding figure, adapted to the problem
of evaluating the current in a wire. The “cap” has in this instance
become simply a cross-section of the wire. The presumption in the
figure is that jjj is axially symmetric but non-uniform, being strongest
near the “skin” of the wire.

. . .wires—and nerves—being “rare objects” in the universe. “Unconfined
currents” are found in (for example) lightning bolts and throughout the natural
world, and in some engineering applications (arcs welders, vacuum tubes,
electrochemical process vats, particle accelerators).

Returning now to more theoretical matters . . . the interests of symmetry
would clearly be served if in place of (65) one had

∇∇∇···EEE = ρ , ∇∇∇×BBB = + 1
c
(
jjj + ∂EEE

∂ t

)
(77.1)

∇∇∇···BBB = ρm , ∇∇∇×EEE = − 1
c
(
jjjm + ∂BBB

∂ t

)
(77.2)

where the subscript m means “magnetic.” Then the argument which when
applied to (77.1) gave

∂
∂tρ +∇∇∇···jjj = 0 (70)

would when applied to (77.2) give

∂
∂tρm +∇∇∇···jjjm = 0

We would, in charge-free regions, still have 2EEE = 2BBB = 000, etc. and all would
be well. From this point of view the actual structure of Maxwell’s equations
(65) is seen to contain an informative surprise: (65.2)—∇∇∇···BBB = 0 —states in
effect that “point magnetic charges” or (as they are called)

“magnetic monopoles” . . .do not exist (78)

It is, therefore, not at all surprising that the jjjm term is absent from (65.4); i.e.,
that “neither do magnetic currents exist.” Several questions—particularly since
Maxwell’s equations seem in this respect to be so “permissive”—now arise:
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1. Is (78) factually true? The answer must come from the laboratory. Many
sophisticated searches have thus far failed to detect a single magnetic monopole.
Such activity continues (if as a fairly low-priority item), and reports of the
results are always received with interest by the international community of
physicists.24

2. Is it possible that magnetic monopoles exist but cannot be observed? A weak
instance of such a situation would arise if monopoles were bound to oppositely
charged monopoles by forces so strong that they cannot be feasibly dislodged
and studied in isolation. The “strong” interpretation—that “monopoles exist
but cannot be observed in principle—would appear to strike at the philosophical
foundations of science, to be latently “unscientific” . . .unless it were argued that
monopoles (like quarks?) announce themselves not in isolation but indirectly—
by their effects.

3. Physicists have come to adhere generally—if informally—to the view that

“all which is not forbidden is mandatory”

This heuristic principle suggests that monopoles—if not forbidden (by some
yet-undiscovered conservation law?)—will eventually (by their direct or indirect
effects) be detected, and in the contrary case gives rise to this sharp question:
What (presently unknown) principle effectively “forbids” the existence of
magnetic monopoles?

There is (as will emerge in a subsequent chapter) an interesting—if but
little-known—sense in which (78) misrepresents the physical situation: (78)
expresses not a fact (?) but a “fact wrapped in a convention.” If the (elementary)
particles found in Nature carried magnet charge p as well as electric charge q,
then to describe the compound charge structure (q, p) of a particle population
one might present something like the topmost of the following figures. It is,
however, a surprising fact of Nature that (central figure) the observed points
lie on a line; i.e., that

p/q ≡ tan θ

has a value shared by all known elementary particles. This is the elemental fact
which awaits explanation. It is by (seldom remarked) operational convention

24 . . .Particularly since, in the two decades since this paragraph was written,
it has become the clear tendency of theoretical developments (in elementary
particle physics, cosmology) to demand the physical existence of magnetic
monopoles!
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p
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p

q
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q

θ

Figure 12: At top: the kind of (q, p)-distribution that one naively
might expect to encounter in Nature. In the center: the distribution
one in fact encounters. At bottom: θ-rotational invariance has been
used to eliminate the magnetic components from all (q, p)-pairs.
The surprising fact is that the same rotation works in all cases.

that we have—essentially by (67): FFF = q
(
EEE + 1

c vvv×BBB
)
—set θ = 0 (bottom

figure). It is, in other words, by convention that we have associated the observed
“(q, p)-line” with the “electric axis” in “charge space.” Later I will have occasion
to discuss the deep formal symmetry (θ-rotational invariance) of Maxwell’s
equations which permits one to exercise such an option.

I turn finally to some historical points. It is roughly—but only roughly—
correct to state that at some point in the later developmental stages of his
electrodynamical work Maxwell realized that
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• gauss’ law (of which Coulomb’s law is a corollary, and which is not to
be confused with Gauß’ theorem) can be rendered

∇∇∇···EEE = 1
ε0 ρ (79.1)

• The non-existence of magnetic monopoles can be rendered

∇∇∇···BBB = 0 (79.2)

• ampere’s law25 can be rendered

∇∇∇×BBB = µ0jjj (79.3)

• faraday’s law26 can be rendered

∇∇∇×EEE = −∂BBB∂ t (79.4)

Here ε0 and µ0 are empirical constants made necessary by the fact that Maxwell
—working close to laboratory experience—used practical units to quantify
electromagnetic variables . . .while the subscript 0 reflects his tendency (born of
the same circumstance) to view the vacuum as “degenerate matter.” Maxwell
realized more particularly that equations (79), while they account for most
of the phenomenology known to him, cannot be correct . . . for it follows from
(79.3) that ∇∇∇···jjj = 0, which conforms to (70), i.e., to the principle of charge
conservation, only in the steady case.27 Thus was Maxwell led at length to
propose—on no direct observational evidence!—that in place of (79.3) one
should write28

∇∇∇×BBB = µ0

(
jjj + ε0

∂EEE
∂ t

)
(80)

remark: The new term ε0
∂EEE
∂ t —because it enters as a kind of

companion to jjj—was called by Maxwell the“displacement current.”
It’s introduction represents a somewhat spooky modification of
(79.3), for it involves no charge motion. Oddly, Maxwell felt no
obligation to attach a similar name/interpretation to the ∂BBB

∂ t -term
in Faraday’s law (79.4).

The first writing of (80) was, in my view, one of the most seminal events in
19th Century physics: indeed, in the entire history of physics. For it gave rise
—automatically—to a fully detailed electromagnetic theory of light . . . and thus
by implication to relativity, quantum mechanics and all that follows therefore.
How did this come about?

25 Describes the BBB -fields generated by steady currents . . .of which more later.
26 Describes the EEE -fields generated by changing BBB -fields . . .of which again:

more later.
27 This is hardly surprising in view of the fact that Ampere’s law was

abstracted from steady-case observations.
28 problem 20.
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In charge-free regions of space Maxwell’s own equations (79)—as modified
—read29

∇∇∇···EEE = 0 (81.1)

∇∇∇···BBB = 0 (81.2)

∇∇∇×BBB = µ0ε0
∂EEE
∂ t (81.3)

∇∇∇×EEE = −∂BBB∂ t (81.4)

remark: From (81.4) we see that in Maxwell’s units

[EEE ] = velocity · [BBB ]

It follows therefore from (81.3) that

[µ0ε0 ] = (velocity)−2

Equations (81) can be “separated by differentiation,”30 giving(
µ0ε0

∂2

∂t2 −∇
2
)
EEE =

(
µ0ε0

∂2

∂t2 −∇
2
)
BBB = 000

It was the observation that the measured values of µ0 and ε0 entail
1√
µ0ε0

≈ 3× 1010 cm/sec

which led Maxwell () to write that “we can scarcely avoid the inference
that light consists of undulations in the medium which is the cause of electric
and magnetic phenomena” [his italics]. This was an idea which had fallen out
of the blue into Maxwell’s lap, but in which he obviously had great confidence31

. . . though it remained merely an idea at his death, and for eight years thereafter:
electromagnetic radiation was first generated/detected by H. Hertz in .

historical remark: The excitement of discovery experienced by
Maxwell would today be impossible . . .because the upshot of his
discovery has—by recent international convention—been made a
cornerstone of physical metrology:

µ0 = 4π × 10−7 = 12.566370614 . . . N A–1

and c = 299792458 m s–1

are both now held to be exact , and

ε0 = (µ0c
2)–1 by modern definition!

29 Note that the right side of (81.3) was introduced by Maxwell to salvage an
equation—(70)—which is not even relevant in charge-free space!

30 The procedure was encountered already in problem 15.
31 See Maxwell’s curiously understated discussion in Chapter XX of his

Treatise on Electricity & Magnetism. C. W. F. Everitt, in his James Clerk
Maxwell: Physicist & Natural Philosopher (), provides a good brief account
of the history of Maxwell’s discovery, and on page 101 reports that in 
Maxwell “. . . in a rare moment of unveiled exuberance to wrote to [a friend
that] ‘I have also a paper afloat, containing an electromagnetic theory of light,
which, till I am convinced to the contrary, I hold to be great guns.’ ”
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I draw attention finally to one formal point which was only recently brought
to light,32 but which I find to be of deep interest. If in (81.3) we set µ0ε0 = 1/c2

and then proceed to the limit c ↑ ∞ we find that one and only one thing
happens: the ∂EEE

∂ t -term, which Maxwell was at such pains to introduce, is
extinguished ! We recover precisely the charge-free version of (79). What
Jean-Marc Lévy-Leblond was evidently the first to notice () is that (as
the reader may verify) the equations

∇∇∇···EEE = 0

∇∇∇···BBB = 0

∇∇∇×BBB = 000

∇∇∇×EEE = −∂BBB∂ t

are covariant with respect to33 the following extension

t �−→ t′ = t

xxx �−→ xxx
′ = xxx− vvv t

∂
∂t �−→ ∂

∂t′ = ∂
∂t + vvv···∇∇∇

∇∇∇ �−→ ∇∇∇ ′ = ∇∇∇
EEE �−→ EEE ′ = EEE + vvv×BBB

BBB �−→ BBB ′ = BBB




(82)

of what at (47/48) we meant by a “Galilean boost.” We conclude that—though
the point was not appreciated by Maxwell himself—“Maxwell’s trick” enforced
the abandonment of Galilean relativity, & the adoption of Einsteinian relativity.

I hope readers will by now understand why it seems to me not entirely
frivolous to suggest that “20th Century physics is a grandchild of the principle
of charge conservation” . . . or, more precisely, of the symmetry principle of
which charge conservation is the physical manifestation.

4. Generation of B-fields: Ampere’s law. Having reviewed already the “physical
upshot” of ∇∇∇···EEE = ρ, ∇∇∇···BBB = 0 and ∂ρ/∂t +∇∇∇···jjj = 0 we turn now to a similarly
preliminary discussion of the physical significance of the statement

∇∇∇×BBB = 1
c
(
jjj+∂EEE

∂ t

)
(65.3 ≡ 80 ≡ 83)

↑—Maxwell’s stroke of genius

. . .which is, unlike the statements studied previously, vector -valued.

32 See Section V, §C.1 (page 267) of J-M. Lévy-Leblond’s “Group theory and
Galilean invariance” in E. M. Loebl (ed.), Group Theory and Its Applications II
(). Also §2 in P. G. Bergmann, “The special theory of relativity” in
Volume IV of Handbüch der Physik ().

33 Compare (48).
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Hans Christian Oersted had expressed his intuitive conviction that
“electricity & magnetism must be interrelated” already in  (in his View
of Chemical Laws), but it was during (!) a lecture in the spring of 
that he discovered “electromagnetism;” i.e., that electric currents give rise to
magnetic fields. Oersted’s discovery immediately engaged the excited attention
of the leading scientists of the day (J. B. Biot, F. Savant, H. Davy, the young
M. Faraday, . . . ), and when ( September ) Oersted repeated his lecture/
demonstration before members of the Académie des Sciences it came to the
attention of André Marie Ampere (–). I mention these facts partly
in order to suggest that it is somewhat inappropriate that we associate with
(83) the name of Ampere, rather than that of Oersted. Since Ampere’s own
work was concerned mainly with the magnetic interaction of currents (i.e., of
current-carrying wires), it might more appropriately be attached to what we
now call the “Biot-Savart law” (see below).

The experimental work to which I have just referred involved steady
currents—made possible by Volta’s then-recent invention () of the voltaic
cell .34 When the sources (whence also their associated fields) are steady the
∂EEE
∂ t -term drops away from (83) and we obtain

∇∇∇×BBB = 1
c jjj (84)

It is with the phenomenological implications (not of (83) but) of (84) that will
mainly concern us in the paragraphs which follow. And it is the analytical
problem posed by equations of the form (84) that motivates the following

mathematical digression

A population of elementary theorems of exceptional beauty and power (which
could, until rather recently, have been described as “well known to every student
of analytical geometry”) follows from the idea developed in

Problem 21. Show that the area A of a triangle (012), which is
oriented and coordinatized as indicated in the following Figure 13,
can be described

A(012) = 1
2

∣∣∣∣∣∣
1 x0 y0

1 x1 y1

1 x2 y2

∣∣∣∣∣∣ (85)

This can be accomplished in many ways: you might, for example,
try assembling the triangle from simpler triangles, then drawing
upon elementary propeties of determinants. Note that (85) refers

34 Alessandro Volta’ work in this area was stimulated by Luigi Galvani’s
famous chance observation () that electrical discharges caused the legs of
dead frogs, laid out for dissection, to twitch. We may therefore add a frog to the
items which already repose in (page 3) our little “museum of biogenic relics.”
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implicitly to an orientation convention, which supplies

A(012) = A(120) = A(201)
= −A(021) = −A(210) = −A(102)

and tells us that A ≷ 0 according as the triangle is right or left
handed (� or �).

x

y

 

1

2

0

x x

y

y







Figure 13: Labeled geometrical construction used in problem 21
to establish the the determinantal description of area.

Drawing now upon (85) we infer that the area A(D) of an arbitrary plane
region D (see Figure 14) can be described either

A(D) =
∫∫

D
dxdy (86.1)

or

= limit of sum of areas 1
2

∣∣∣∣∣∣
1 0 0
1 x y
1 x + dx y + dy

∣∣∣∣∣∣︸ ︷︷ ︸
of triangular slivers

But
= 1

2 (x dy − y dx)

so

= 1
2

∮
∂D

(x dy − y dx) (86.2)

According to (86.2) one can compute area by operations that are restricted to
the boundary ∂D of the region D in question. This surprising fact provides the
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0

d+ yx ,x +dy( )

( )yx,

Figure 14: Computing areas by adding triangular slivers—the
geometrical basis of (86.2).

operating principle of the polar planimeter—a wonderful device used mainly by
architects and engineers.35

Let the preceding construction be considered now to be inscribed on the
xy-plane in Euclidean 3-space, and let us agree that x, y and z refer henceforth
to a right -handed frame. Readers will find it very easy to verify that (86)—thus
situated—can be formulated∫∫

D
(∇∇∇×AAA)···dddSSS =

∮
∂D

AAA···ddd*** (87)

provided we set

ddd*** =


 dx

dy
0




AAA =


−y

+x
0




dddSSS =


 0

0
dxdy




This result provides an instance—and its derivation provides some insight into
the proof—of Stokes’ theorem, according to which (87) holds generally . . . for
all (even non-flat) disks D in 3-space, and for all vector fields A(x, y, z).

35 For a masterful discussion of this pretty topic see Felix Klein’s Elementary
Mathematics from an Advanced Standpoint: Geometry (), pages 11–15.
The subject is treated also on pages 57–65 of Chapter I in my quantum topics
().
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It is evident that (see again pages 13 & 19) the following statements

Gauss :
∫∫∫

R
divAAA d3x =

∫∫
∂R

AAA···dddSSS

Stokes :
∫∫

D
curlAAA···dddSSS =

∮
∂D

AAA···ddd***

Newton :
∫

C
gradϕ ···ddd*** = ϕ

∣∣∣∣
endpoints of C

are “of a type.” They originate in the work of many 19th Century physicist-
mathematicians (Gauß, Green, Kelvin, Tait, Maxwell, Cauchy, Stokes, . . . ), and
have come to bear collectively the name of George Gabriel Stokes (–)
for curious reasons that are explained on page viii of M. Spivak’s Calculus on
Manifolds (: see particularly the cover illustration!). Such identities were
first studied in unified generality by H. Poincaré (), whose work was
deepened and given its modern formulation—of which more later—mainly by
Élie Cartan (∼).36 “Stokes’ theorems” are available even on n-dimensional
non-Euclidean manifolds (where there are n such things), and all share the
design∫

region

differentiated object =
∫

boundary of region

undifferentiated object

foreshadowed already in the

fundamental theorem of the calculus :
∫ b

a

f
′
x dx = f(b)− f(a)

end of digression

Just as
∇∇∇···EEE = ρ (65.1)

and
∇∇∇···BBB = 0 (65.2)

give rise by Gauß’ theorem (14) to∫∫
∂R

EEE ···dddSSS =
∫∫∫

R
ρ d3x (90.1)

�
total “electric flux” through ∂R = total charge interior to R

and ∫∫
∂R

BBB ···dddSSS = 0 (90.2)

36 problems 22, 23 & 24. Equations (88) and (89)—absent from the text—
appear in the first two of those exercises.
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so do

∇∇∇×BBB = 1
c
(
jjj + ∂EEE

∂ t

)
(65.3)

and ∇∇∇×EEE = 1
c
(
000− ∂BBB

∂ t

)
(65.4)

give rise by Stokes’ theorem (87) to

∫
∂D

BBB ···ddd��� = 1
c

∫∫
D

(
jjj + ∂EEE

∂ t

)
···dddSSS

= 1
c

{
I + Id

}
(90.3)

and
∫
∂D

EEE ···ddd��� = − 1
c

∫∫
D

∂BBB
∂ t ···dddSSS (90.4)

where

I ≡
∫∫

D
jjj ···dddSSS

is the conduction current through D, and

Id ≡
∫∫

D

∂EEE
∂ t ···dddSSS

= ∂
∂t

∫∫
D
EEE ···dddSSS︸ ︷︷ ︸ if D is not itself moving

“electric flux”

is the displacement current .37

Equations (90) comprise the so-called “integral formulation of Maxwell’s
equations,” and in some conceptual/computational contexts—particularly those
which possess a high degree of symmetry—prove more directly informative than
their differential counterparts (65).

Example. What is the EEE-field generated by a static point charge q?
Let the “Gaussian pillbox” R be spherical, or radius r and centered
on q. A familiar symmetry argument implies EEE = E(r) r̂rr, so the

∫∫
37 “Displacement current” is standardly given that name but not a symbol;

I have borrowed my d convention from E. M. Purcell, Electricity & Magnetism:
Berkeley Physics Course, Volume 2 (), page 261. Its magnetic analog

∫∫
D

∂BBB
∂ t ···dddSSS = ∂

∂t

∫∫
D
BBB ···dddSSS︸ ︷︷ ︸ if D is not itself moving

“magnetic flux”

is standardly given neither a name nor a symbol.
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on the left side of (90.1) acquires immediately the value E(r)4πr2.
From (90.1) we are led thus back again to Coulomb’s force law

EEE = E(r) r̂rr with E(r) = q/4πr2

The EEE-field generated by an arbitrtary charge distribution ρ could
now be assembled by superposition.

Example. What is the BBB-field generated by a steady current I in
an infinitely long straight wire? Resolve BBB into parallel, radial and
tangential components

BBB = BBB‖ +BBBr +BBBt

as indicated in the figure. By symmetry, the magnitude of each can

r

B

rB tB

Figure 15: Cylindrical pillbox concentric about a straight
wire carrying a steady current. The box has radius r and
height h.

depend only upon r. Equation (90.2) supplies∫∫
R
BBB ···dddSSS = Br(r)2πrh = 0 ⇒ BBBr = 000

while by (90.3) we have∮
red rectangle

BBB ···ddd��� = h
[
B‖(r2)−B‖(r1)

]
= 0 ⇒ BBB‖ = constant

and since we expect to have BBB(∞) = 000 this entails BBB‖ = 000. Finally
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∮
circular cap

BBB ···ddd��� = Bt(r)2πr = 1
cI (91)

The implication that the magnetic field “wraps around” the wire,
and has a strength that falls off as 1/r (i.e., “geometrically,” since
the system is effectively 2-dimensional). Whether the BBB-field
generated by an arbitrary steady jjj could now “be assembled by
superposition” (of current-carrying straight wires) remains an
interesting open question.38

We are in position now to confront the generality of this fundamental
question: What is the BBB-field generated by an arbitrary steady current? It
proves most efficient to proceed not from the integral formulation (90) but
from the differential formulation (65) of Maxwell’s equations. Just as

the equations →the equations

∇∇∇×EEE = 000 ∇∇∇···BBB = 0

and ∇∇∇···EEE = ρ and ∇∇∇×BBB = 1
c jjj

give rise to electrostatics, so do give rise to magnetostatics,

the conditions ∂ρ/∂t = ∇∇∇···jjj = 0 being shared by the two
subjects in question.

The equation ∇∇∇×EEE = 000 can, by (6.1), →the equation ∇∇∇···BBB = 0 can, by (6.2),
be read as stating that there exists a be read as stating that there exists a
scalar potential ϕ such that vector potential AAA such that

EEE = −∇∇∇ϕ BBB = ∇∇∇×AAA (92)

We note that ϕ is determined only to We note that AAA is determined only to
within a gauge transformation within a gauge transformation

ϕ→ ϕ
′ = ϕ + constant AAA→ AAA

′
= AAA + gradχ

and that one can thus arrange that ϕ and that one can thus arrange that AAA
vanishes at some given “reference shall in particular satisfy
point.” Similarly

∇∇∇···AAA = 0 (93)

38 See page 193 in Purcell’s celebrated textbook.37
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The field equation ∇∇∇×EEE = 000 follows →The field equation ∇∇∇···BBB = 0 follows
automatically from EEE = −∇∇∇ϕ, while automatically from BBB = ∇∇∇×AAA, while
∇∇∇···EEE = ρ becomes ∇∇∇×BBB = 1

c jjj becomes

∇∇∇×(∇∇∇×AAA) = 1
c jjj

But ∇∇∇×(∇∇∇×AAA) = ∇∇∇(∇∇∇···AAA)−∇2AAA

so if we install the gauge condition
∇∇∇···AAA = 0 we obtain

∇2ϕ = −ρ ∇2AAA = 1
c jjj (94)

This is an inhomogeneous linear This is a trio of inhomogeneous
equation, the solution of which can, linear equations, the solutions of
as we have seen (page 16) be described which can evidently be described

ϕ(xxx) =
∫∫∫

G(xxx− ξξξ)ρ(ξξξ) d3ξ AAA(xxx) = 1
c

∫∫∫
G(xxx− ξξξ)jjj(ξξξ) d3ξ (95)

where where

∇2G(xxx− ξξξ) = −δ(xxx− ξξξ) ∇2G(xxx− ξξξ) = −δ(xxx− ξξξ)

entails entails

G(xxx− ξξξ) = 1
4π|xxx− ξξξ| G(xxx− ξξξ) = 1

4π|xxx− ξξξ|

The EEE -field itself is given therefore by The BBB -field itself is given therefore by

EEE(xxx) =
∫∫∫
−∇∇∇G(xxx− ξξξ)ρ(ξξξ) d3ξ

where −∇∇∇G(xxx− ξξξ) = xxx− ξξξ

4π|xxx− ξξξ|3

Similarly

BBB(xxx) = 1
c

∫∫∫ 
 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0


G(xxx− ξξξ ) jjj(ξξξ) d3ξ

By straightforward calculation39 we are led thus to

= 1
4πc

∫∫∫
jjj(ξξξ)× r̂rr

r2
d3ξ (96)

with rrr ≡ rrr(xxx, ξξξ ) ≡ xxx− ξξξ.

39 problem 25.
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rrr dddBBB

jjj

d3ξ

ξξξ

Figure 16: Geometrical meaning of the notations used at (97) to
describe the differential contribution dddBBB to the magnetic field BBB(xxx) at
a typical field-point xxx arising from the current differential jjj(ξξξ)d3ξ at a
typical source-point ξξξ.

Equation (96)—though analytically a corollary of Ampere’s law (84)—is
known standardly (and with more historical justice) as the Biot–Savart law . It
describes the BBB -field generated by an arbitrary steady current distribution jjj,
and invites “interpretation-by-superposition” along lines which emerge if (see
the figure) we write

BBB(xxx) =
∫

dddBBB(xxx, ξξξ )

dddBBB(xxx, ξξξ ) = 1
4πc

[jjj(ξξξ)d3ξ ]× r̂rr

r2

(97)

The interpretation of jjj(ξξξ)d3ξ is, however, a little bit odd. The object in question
is perfectly meaningful in context (i.e., under the

∫
), but—for the reasons

remarked already on page 38—could not be realized in isolation.

Later we shall have occasion to study illustrative applications of (96), but
for the moment must rest content with a single

Example. What—according to (96)—is the BBB-field generated by a
steady current I in an infinitely long straight wire? Taking our
notation from the following figure, it is immediate that
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R

r
z

ϑ

B

Figure 17: Notation employed in computing the magnetic field BBB
generated by current in an infinitely long straight wire.

B(R) = 1
4πcI

∫ +∞

−∞
1
r2 sinϑ dz

= 1
4πcI

∫ +∞

−∞

R

(R2 + z2)
3
2
dz

︸ ︷︷ ︸
= z

R
√
R2 + z2

∣∣∣∣
+∞

−∞
= 2

R

= I
2πcR

—which agrees precisely with the result (91) obtained previously
by other means.

It should be noticed that if the Biot-Savart law were postulated (i.e.),
abstracted from laboratory experience then the equations ∇∇∇···BBB = 0 and
∇∇∇×BBB = 1

c jjj—our starting point—could have been recovered as corollaries of
(96).

I turn now to discussion of the question which was central to Ampere’s
own work in this area: What is the force which (steady) currents exert upon
one another by virtue of the magnetic fields which they generate? Suppose, by
way of preparation, that

1) impressed fields EEE and BBB

2) source functions ρ and jjj
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are defined on the neighborhood d3x of a representative point xxx. From the
Lorentz force law (67)

FFF = q(EEE + 1
c vvv×BBB)

we infer that the total force experienced by the charges which momentarily
occupy d3x can be described

dddFFF = FFF(xxx)d3x

FFF = ρEEE + 1
c jjj×BBB ≡ force density

If we look more specifically to the situation typical of wires (where “charge
carriers” drift through a population of oppositely charges) we have ρ = 0 whence

= 1
c jjj×BBB (98)

Wires—even wires carrying current—are standardly
uncharged, and therefore don’t feel ambient EEE -fields.

If (see the first of the following figures) we integrate (98) over a snippet ddd��� of
wire we obtain

dddfff =
∫

snippet

dddFFF = 1
cIddd���×BBB (99)

Suppose now that I ≡ I1 and ddd��� ≡ ddd���1 refer (see the second of the following
figures) to a closed loop L1 of wire, and that BBB arises from a (steady) current I2
in a second loop L2. From (97) and (99) we conclude that the force fff12 exerted
on L1 by L2 can be described

fff12 = 1

4πc2 I1I2

∮
L1

∮
L2

ddd���1× (ddd���2× r̂rr12)
r2
12

(100)

It is to this implausible, non-local (i.e., distributed,whence geometry-dependent)
result that the name of Ampere is most properly attached. Looking now to some
of the implications of (100) . . . from aaa× (bbb× ccc) = (aaa···ccc)bbb− (aaa···bbb)ccc we have

= 1

4πc2 I1I2

{ ∮
L1

[ ∮
L2

rrr12···ddd���1
r3
12

]
ddd�2 −

∮
L1

∮
L2

rrr12

r3
12

(ddd���1···ddd���2)
}

But (recall (15.1)) rrr12/r
3
12 = −∇∇∇1(1/r12) so we have

[
etc.

]
= − 1

r12

∣∣∣endpoint

starting point
= 0 for a loop

giving

fff12 = − 1

4πc2 I1I2

∮
L1

∮
L2

rrr12

r3
12

(ddd���1···ddd���2) (101)

=
{

net force on circuit L1 due to interaction with
magnetic field generated by current in circuit L2
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B

ddd���

Figure 18: Snippet ddd��� of wire carrying a current I in the presence of
an ambient magnetic field BBB.

ddd���1 L2

L1 rrr12

ddd���2

Figure 19: Interaction of current I1 in snippet ddd���1 with magnetic
generated by current I2 in snippet ddd���2.

From rrr12 = −rrr21 we conclude that the forces of interaction between steady
current loops conform to Newton’s 3rd law :

fff12 = −fff21 (102)

The structure of (100) encourages one to suppose that the equation in question
arises by superposition from a statement of the form

force on I1ddd���1 by I2ddd���2 = 1

4πc2

I1ddd���1 × (I2ddd���2 × r̂rr12)
r3
12

(103.1)

Observing that the vector on the right lies in the plane spanned by I2ddd���2 and
rrr12, we conclude that

�= −force on I2ddd���2 by I1ddd���1 (103.2)
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i.e., that the element-element interaction which purportedly lies at the root of
(101) does not conform to Newton’s 3rd law .

People frequently proceed from this fact to the (in my view)
profoundly misguided conclusion that Newton’s 3rd law is “soft
. . .that it holds except when it doesn’t.” The correct conclusion,
it seems to me, is that the isolated current element Iddd��� is a
hazardous abstraction.

This surprising result is illustrated in the following figure. The figure suggests
also that an unknotted current-carrying loop will tend (by magnetic self-
interaction) to deform until circular . . .which for a closed loop means “as nearly

Figure 20: Red arrows in the figure at left refer to the interaction
(103) of two current elements in a filamentary circuit. If the filament is
flexible we expect it to assume the circular form shown at right.

straight as possible.” From (103) we see that current elements in a straight wire
do not interact at all—whence again the inference: “current-carrying wires like,
for magnetic reasons, to be as straight as possible.” We come away with the
impression that electrical devices in which the

1) geometry and/or
2) operative I-values

favor the production of substantial BBB-fields . . .must be strongly constructed,
for they will be subjected generally to a tendency to explode!40

Since wires and electrical devices are “unnatural/artificial” in the sense
that they more often the work of engineers than of Nature, it is attractive to
suppose that (103) arises as a corollary from

force on jjj(xxx1)d3x1 by jjj(xxx2)d3x2 = 1

4πc2

jjj(xxx1)×
(
jjj(xxx2)×r̂rr12

)
r3
12

d3x1d
3x2 (104)

and to view (104) as the magnetic analog of Coulomb’s law .

40 problem 26.
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The pattern provided by our prior discussion of electrostatics (see especially
pages 19–24) makes it natural to inquire finally into the energetics of
magnetostatic fields. But we encounter at once some unexpected conceptual
difficulties: it is unnatural (taking the argument of pages 19–20 as our model)
to attempt to position the current elements jjj(xxx)d3x “one at a time” because

1) “isolated point currents” do not exist ;

2) we would stand in violation of charge conservation (i.e., of ∇∇∇···jjj = 0) until
the assembly is complete;

3) the assembly process entails that we work against forces which violate
Newton’s 3rd law .

It is better practice to build the jjj-field by slowly turning it on . . .but this, by
(65.4), involves “Faraday emf effects” which we are not presently in position to
calculate. My plan, therefore, will be simply to present the formula in question
(several lines of supporting argument will be reviewed later) and to develop its
formal relationship to its electrostatic counterpart:

In electrostatics we obtained → in magnetostatics we write

W =
∫

E(xxx) d3x W =
∫

B(xxx) d3x

where E ≡ 1
2EEE ···EEE defines the where B ≡ 1

2BBB ···BBB defines the
electrostatic energy density. Thus magnetostatic energy density . Thus

W = 1
2

∫
EEE ···EEE d3x W = 1

2

∫
BBB ···BBB d3x (105)

which arose (at page 22) from giving

W = − 1
2

∫
EEE ···∇∇∇ϕ︸ ︷︷ ︸ d3x W = 1

2

∫
BBB ···(∇∇∇×AAA)︸ ︷︷ ︸ d3x

This in turn came—use But

≡ −ϕ∇∇∇···EEE +∇∇∇(ϕEEE ) ≡ AAA···(∇∇∇×BBB)+∇∇∇···(AAA×BBB)
and discard the surface term—from so—discarding the surface term—

W = 1
2

∫
ϕ∇∇∇···EEE d3x W = 1

2

∫
AAA···(∇∇∇×BBB) d3x

which we got (by EEE = −∇∇∇ϕ) from From BBB = ∇∇∇×AAA and the gauge
condition ∇∇∇···AAA = 0 it now follows
that

= − 1
2

∫
ϕ∇2ϕd3x = − 1

2

∫
AAA···∇2AAAd3x

= 1
2

∫
ρϕ d3x = − 1

2c

∫
jjj···AAAd3x

= 1
8π

∫∫
ρ(xxx)ρ(ξξξ) 1

|xxx−ξξξ|
d3xd3ξ = 1

8πc2

∫∫
jjj(xxx)···jjj(ξξξ) 1

|xxx−ξξξ|
d3xd3ξ

Proceeding similarly (but in reverse), (106)
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We note that the formal parallel is perfect. Also
1) that the

∫
in (105) ranges over the field, while the

∫
in (106) ranges only

over its source;
2) that the W of (105) is a non-negative & non-linear number-valued

functional of BBB;
3) that true line currents give rise to a variant of the familiar self-energy

problem, and that so (for other reasons) do currents which have their
termini at ∞.

The previously-remarked tendency of current-carrying wires to move around
can be considered now to follow—by the “nameless principle” of page 23—from
the fact that in so doing they may reduce the energy stored in the associated
BBB-field.41

To conclude: the discussion in recent pages derives mainly from Ampere’s
law

∇∇∇×BBB = 1
c jjj (84)

—the phenomenological consequences of which have been seen to conform to the
diverse physical facts, and to come to this: currents generate and respond to
magnetic fields. Maxwell’s modification

∇∇∇×BBB = 1
c
(
jjj + ∂EEE

∂t

)
implies that BBB-fields are generated also by temporal variation of EEE . . . of which
more later.

5. Faraday’s law. Coulomb had argued (from evidence) that “electrical and
magnetic phenomena are unrelated.” It is because Coulomb’s view had come
to be widely shared that news of Oersted’s discovery (of “electromagnetism:”
) produced such perplexed excitement among French physicists . . . and
generated the developments reported in the preceding seciton of these notes.
Across the Channel, Sir Humphry Davy (–) was receiving regular
reports—jumbled and contradictory as they at the time seemed—of the work
of his French colleagues. His assistant (Michael Faraday) repeated the basic
experiments and entered into correspondence with Ampere, whose work had
earned him a position of acknowledged leadership among the French. Faraday
confessed openly that he could not understand the mathematical aspects of
Ampere’s work . . .but took intuitive exception to some of Ampere’s
interpretive comments/ideas, particularly those concerning the microscopic
meaning of “current.” Absent the observational data required to settle the
issue, Ampere and Faraday “agreed to disagree,” and Faraday turnjed to other
matters.

By , Faraday (under the influence of Charles Wheatstone: –)
had developed an interest in physical acoustics . . . and particularly in the
Chladni patterns which are set up on one membrane when another (distant)

41 problem 27.
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GS

Figure 21: At top, the experimental set-up used by Faraday. The idea
of using a soft iron ring to link the primary and secondary coils was
borrowed from Joseph Henry; without it the induced current would have
been undetectably small. The middle figure shows the current in the
primary that results from closing/opening the switch S. The graph of
the induced current (lower figure) does not mimic the primary current,
but shows spikes synchronized with the switch activity; i.e., with the
moments when d

dtIprimary �= 0. Jacque d’Arsonval’s dates, by the way,
are –; the question therefore arises: What kind of ballistic
galvinometer was available to Faraday in ?

membrane is stimulated. Faraday’s interest in this topic was reenforced by his
reading of an essay by John Herschel (“A preliminary discourse on the study of
natural philosophy;” ) in which it was argued that the physics of light and
the physics of sound must be similar . . . in the sense that both must have root
in the vibratory motion of an elastic medium. Faraday speculated that such an
analogy might pertain also to electrical and magnetic phenomena. Faraday was
aware that such a view—though out of fashion among the French—had been
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advanced already in  by Oersted (who had himself cited Chladni patterns
as “analogs of electrical action”), and reasoned that electrical/magnetic effects
(if such a view were correct)

1) could be understoodonly in terms of the dynamics of the“elastic medium;”
i.e., in the language of a field theory

2) entailed delayed action-at-a-distance.

Thus did time t become for Faraday a relevant dynamical variable. Faraday’s
problem was to discover observational evidence which would support or
contradict the weight of his intuition.

It was at about this point () that Faraday learned of the strong
electromagnets which Joseph Henry (of Albany, New York, and later first
director of the Smithsonian Institution: –) had achieved by replacing
the traditional air core with a soft iron core. Faraday knew that

1) currents give rise to (and feel) BBB -fields, and anticipated (with an intuition
rooted partly in his religious convictions) that

2) BBB-fields should give rise (after some brief delay?) to currents.

More or less thus42 was Faraday led (September & October, ) to the
experimental arrangement and discovery outlined in Figure 21. Previous efforts
to detect “the currents generated by BBB -fields” had always yielded a negative
result. What Faraday had in effect discovered was that currents arise not
from BBB but from ∂BBB/∂t. The qualitative/quantitative upshot of Faraday’s
experiments—which were many and diverse, and were in some respects
anticipated () by Henry (who, however, was slow to publish his findings)—
can be summarized

∇∇∇×EEE = − 1
c
∂BBB
∂t (107)

which was encountered already at (65.4) and (81.4), and is an expression of
Faraday’s law of electromagnetic induction. Several comments are now in order:

1. Comparison of (107) with

∇∇∇×BBB =
{ 1
c jjj : steady case
1
c
(
jjj + ∂EEE

∂t

)
: general case

(83)

shows that the geometry of the EEE -field generated by ∂BBB/∂t resembles the
geometry of the BBB -field generated (in the steady case) by jjj. We see also that
the structure of Faraday’s law (107) provides formal precedent for Maxwell’s
∂EEE/∂t -term.

2. Faraday’s law (107) presents—Lenz’ law—a “stabilizing minus sign” which
is absent from the Ampere-Maxwell law (83) . . . of which more later.

42 The ture history of his thought is not known, and I have provided only the
grossest outline of what is known: see Chapter 4 in L. P. Williams, Michael
Faraday () or Chapter 3 in R. A. R. Tricker, The Contributions of Faraday
& Maxwell to Electrical Science () for further details.
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x

y

Figure 22: The EEE-field encountered in the following example. The field
is divergenceless, but has obvious circulation (or “curl”). Such fields
cannot be produced electrostatically, but are typical of the fields produced
by time-dependent magnetic fields.

3. Equation (107)—surprisingly, in view of Faraday’s intent (and the nature of
his observationss)—contains no direct reference to current . It says that ∂BBB/∂t
generates an EEE -field, which in the presence of charge may give rise to charge
flow. Suppose, for example, that BBB(xxx, t) has the (physically implausible) form

BBB =


 0

0
−cβt


 :




uniformly ramped,
xxx-independent,
everywhere ‖ to the z-axis

It then follows from (107) that

EEE(xxx, t) =


−

1
2βy

+ 1
2βx

0


 + gradϕ

= EEE faraday +EEE electrostatic

where—by (6)—EEE faraday is divergenceless , but EEE electrostatic is curlless (and is
fixed not by (107) but by ∇∇∇···EEE = ρ and the physically appropriate boundary
conditions). The structure of the induced field EEE faraday (which, it is important
to notice, is not conservative: ∇∇∇×EEE faraday �= 000) is indicated in Figure 22.

If a charge—let us, for simplicity, say a solitary charge—q were released it
would move off initially in response to the EEE -field, but after it had gained some
velocity it would—by

FFF = q
(
EEE + 1

c vvv×BBB
)

(67)
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—also feel the BBB -field. We would, therefore, expect the trajectory of q to be
in general quite complicated . . . and even more so if (instead of being solitary)
q has companions. Faraday was himself protected from the full force of the
complications just mentioned by two experimental circumstances:
• his currents were confined to wires
• his wires were mechanically constrained to resist Amperean forces.

But how—in detail—do the circumstances just noted serve to “simplify” the
implications of the Maxwellian field equations (65) and of the Lorentzian force
law (67)? To resolve this important question we must digress to acquire some
familiarity with

1) a phenomenological law (Ohm’s law) and
2) a poorly named but useful concept (“electromotive force”).

theoretical status of ohm’s law It is to Georg Simon Ohm (–)
that we owe the experimental discovery () that for samples of the most
commonly encountered conductive materials

impressed voltage
resulting current

= constant

i.e.,
V/I = R ≡ sample resistance

—resistance between those particular contact points (see upper Figure 23). To
formulate this result in geometry-independent terms specific to the material in
question let the sample be of “standard shape” (i.e., cylindrical, of length L
and cross-sectional area A). Using V = EL and I = JA we have

E = ρJ

ρ ≡ RA/L ≡ resistivity of the material

which is more usefully43 notated

jjj = σEEE (108)

σ ≡ conductivity =
1

resistivity

ohm’s law (108) provides our first instance of what is called a “constitutive
relation.” Such relations are denied “fundamental” status not because they
are approximate (even Maxwell’s field equations44 are, strictly speaking, only
approximate) but because they are subject in (in)appropriately chosen materials

43 And at less risk of confusing ρ with “charge density”!
44 What we call “Maxwell’s equations” were abstracted from Maxwells’ work

by Heaviside, Lorentz and others over a period of nearly twenty years. I was
surprised to discover that the equations proposed by Maxwell himself included
Ohm’s law as a full-fledged partner ; see “Theories of Maxwellian design” ().
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V

A

V

A

Figure 23: Above: the arrangement used to measure the resistance
R between two specified points on the surface of an arbitrary material
blob. Below: the standardized sample of homogeneous material used to
measure “resistivity” (or “conductivity”), which is an intrinsic property
of that material.

to gross violation. Constitutive relations have always—sooner or later—to be
derived from first principles: the task is seldom easy, and entails that such
relations have always the character of macroscopic averages over microscopic
complexities. For anisotropic materials (108) assumes the form

jjj =σσ�� EEE (109)

σσ�� ≡


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 ≡ conductivity matrix

Equations (109) look like a truncated version of the still more general relation

jn =
∑
a

σnaEa+ 1
2

∑
a,b

σnabEaEb + 1
3!

∑
a,b,c

σnabcEaEbEc + · · ·
︸ ︷︷ ︸

important in specialized materials, or

when the EEE-field is sufficiently strong



Faraday’s law 67

Evidently Ohm’s law refers merely45 to the “tip of a phenomenological iceberg.”
The surprising fact, from this point of view, is that (108) contains no reference
at all to BBB . . . for reasons which have evidently to do with the fact that the drift
velocity v is typically so small that the (vvv×BBB)-forces experienced by individual
charge carriers are negligible . . . though the facts are, as will emerge, somewhat
more subtle. Bringing (76) to (108) we obtain nev = σE or

eEEE = ne2

σ vvv (110)

. . . according to which the impressed force eEEE is proportional not to the
acceleration but to the (mean) velocity of the charge carriers. The situation is
(roughly) this: the charge carriers keep trying to accelerate, but keep running
into things and getting stopped (releasing their recently acquired kinetic energy
to the obstacle-matrix, which gets hot). The situation can be modeled (Drude,
) by writing

eEEE − b vvv︸︷︷︸ = maaa (111)
|—damping force: models the effect of collisions

and supposing that the (mean) acceleration aaa = 000. The drift velocity acquires
thus the status of a kind of “terminal velocity,” and it follows in fact from
(110/111) that

σ = ne2

b

The implication is that charge carriers keep moving because the ambient EEE-field
keeps doing work on them. How about the BBB -field? It does work at the
temporal rate given by

Pmagnetic = vvv··· ec (vvv×BBB) = 0 (112)

Magnetic fields do no work on moving charges and so cannot assist in the
transport of charge carriers through a wire . . . except perhaps indirectly: one can
imagine far-fetched circumstances in which BBB -fields (by deforming the carrier
trajectories) might cause charge carriers to hit/miss appropriately deployed
obstacles. This would lend BBB-dependence to σ, but would not cause an additive
σmagBBB -term to appear on the right side of Ohm’s law (108).

electromotive force Given, therefore, that charge carriers
flow through material wires because constantly worked on by EEE -fields, the
question arises: How much work (per unit charge) do the EEE -fields do? Let
the circuit in question be modeled by a closed curve (of loop) C. Immediately

q

∮
C
EEE ···ddd--- = work done in transporting q virtually around C

45 . . .but importantly: the conductivities of common materials range over at
least 23 orders of magnitude. Few indeed are the “laws of Nature” that can
claim such dynamic range.
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E
C

Figure 24: The physical EEE-field and “mental loop” C that enter at
(113) into the definition of “ emf.” In practical applications it is often
natural to identify the “mental loop” with a metal loop (wire).

where the “virtually” means that the pransport takes place “mentally,” not
physically (i.e., not in real time, with the attendant accelerations, etc.). The∮

defines what is called the “electromotive force” associated with the given
circuit and field. It is standardly denoted E ≡ E(C,EEE ), and has actually not
the dimensions of “force” but of “work/charge.” I prefer therefore to call

E ≡
∮

C
EEE ···ddd--- (113)

the “emf” of the circuit/field in question (and to put out of mind the fact that
“emf” came into the world as an acronym). What is theEEE -field contemplated at
(113)? It is the “field experienced by the virtually transported test charge”—
a field which (since the interior of matter is a complicated place) is actually
unknown. Happily, the complication just noted is—to the (substantial) extent
that it is microelectrostatic in origin—irrelevant . . . for this simple reason:
electrostatic fields are curlless

∇∇∇×EEEelectrostatic = 000

. . . from which it follows by Stokes’ theorem (87) that (for all circuits C)

Eelectrostatic = 0 (114)

This means that the (generally unknown) electrostatic component of the “fields
experienced by the transported charge q”can be dropped from all emf-calculations.
To make the same point another way: purely electrostatic EEE -fields cannot be
used to drive currents in circuits.46 But while ∇∇∇×EEE = 000 pertains universally
to electrostatic fields, it does not pertain
• to the EEE -fields generated by chemical action in batteries;

46 What, in this light, do you make of the physics of lightening bolts?
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• to the EEE -fields produced by thermal/optical/mechanical action in diverse
solid-state devices;

. . . and in particular it does not pertain
• to the Faraday EEE -fields which, according to (107), are induced by time-

dependent BBB -fields.
So non-zero values of E are certainly attainable.47 Drawing finally upon Ohm’s
law, we have

E ≡
∮

C
EEE ···ddd--- =

∮
C
ρjjj ···ddd---

= ρ IAL for wires of uniform cross section
↓

giving E = IR (115)

It should, in view of (115), not be necessary to belabor the claim that E is—at
least for the purposes of practical/applied physics—a “useful48 concept.”

The question posed near the top of page 65 now “answers itself.” The
integral formulation ∫

∂D
EEE ···ddd--- = − 1

c

∫∫
D

∂BBB
∂ t ···dddSSS (90.4)

of Faraday’s law (107) can now be formulated

Efaraday = − 1
c Φ̇ (116)

Φ ≡
∫∫

D
BBB···dddSSS ≡ magnetic flux through D

remark: Let D1 and D2 be distinct caps that share the same
boundary C = ∂D1 = ∂D2. It is (recall the formal upshot of
problem 17) a consequence of ∇∇∇···BBB = 0 that

magnetic flux through D1 = magnetic flux through D2

and better, therefore, to speak of the “magnetic flux entrapped
by C.”

If the loop C is realized physically by a wire of resistanc R then the so-called
“flux theorem” (116) states that Φ(t) and the induced current I(t) stand in the
following relationship:

IR = − 1
c Φ̇(t) (117)

This is the physics to which Faraday’s induction experiments directly speak.
One does not deny the utility of (117)—but does gain a more vivid sense of

47 They arise from non-conservative EEE -fields.
48 For “useful” read “indispensable”!
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Maxwell’s physics/formal genius—when one stresses that ∇∇∇×EEE = − 1
cḂBB is a

much deeper statement than (117): it is independent of the dirty physics which
underlies Ohm’s law, and it tells us “what is going on” even in the absence of
mobile charge. Equation (117) is susceptible also to the criticism that it does
not quite represent the facts . . . for reasons which emerge from the following

example : Let an impressedBBB-field have the spatially uniform
and temporally ramped structure

BBB =


 0

0
−cβt




encountered already on page 64, and let C refer to a circular
wire ring of radius r and resistance R, oriented as shown in

x

y

z

r

I

B

Figure 25: Asurging magnetic field stimulates current
in the conductive ring, which generates an oppositely
oriented time-dependent toroidal field, which . . .

the figure. Time-dependent flux Φ(t) = πr2B(t) = −πr2cβ t
is encircled by the wire, which by (117) induces a current
I = −(cR)–1Φ̇ = πr2β/R. That current itself generates a
toroidal magnetic field BBB

′ and an associated Φ
′ . In general,

we must take into account the so-called

“back emf ” E
′ = − 1

c Φ̇
′

when computing I(t). We are here released from that infinite
regress only because in the present (highly artificial) context
Φ̇

′ = 0. Generally, however, we confront this question: How
to describe the quantitative physics of the self-interactive effect
just noted?
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It is to get a handle on that issue that we digress now to acquire familiarity
with the concept of

inductance Let it be arranged/assumed that steady (!) currents
I1, I2, . . . , IN circulate in material loops C1,C2, . . . ,CN :

In

Figure 26: Current-carrying loops interact magnetically. We are not
concerned at the moment with the mechanism (batteries?) that in reality
would be required to maintain the steady currents In.

the figure. The BBB-field at any point xxx (if we dismiss as irrelevant any BBB-field
of extrinsic origin) can be described

BBB = BBB1 +BBB2 + · · ·+BBBn + · · ·+BBBN

BBBn ≡ BBB -field generated by current In

From the Biot-Savart law (96) it follows in parlticular that

= In · 1
4πc

∮
Cn

ddd---× r̂rr
r2︸ ︷︷ ︸

(118)

|—vector-valued factor which relates
xxx to the geometry of Cn

Let

Φmn ≡ magnetic flux through Cm due to field generated by In

=
∫∫

Dm

BBBn···dddSSSm : Dm is any cap with ∂Dm = C (119)

Introducing (118) into (119) we conclude that Φmn is proportional to In through
a factor which depends mutually and exclusively upon the geometries of the
loops Cm and Cn:

Φmn = MmnIn (120)

The analytical evaluation of Mmn is—even in simple cases—typically quite
difficult49 . . .but some formal progress is possible. Appealing to (92) we have

BBBn = ∇∇∇×AAAn

49 See Richard Verbeck, “S & M Induction Formulæ” (Reed College ).
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so

Φmn =
∫∫

Dm

(∇∇∇×AAAn)···dddSSSm =
∮

Cm

AAAn···ddd---m

But it follows from (95)50 that

AAAn = 1
4πc

∮
Cn

1
rddd---n · In (121)

Thus do we obtain

Mmn = 1
4πc

∮
Cm

∮
Cn

1
r ddd---m···ddd---n (122)

r ≡ distance between ddd---m and ddd---n

This pretty result (subject, however, to an alternative interpretation) was first
achieved (∼) by Franz Neumann51 (–). It is known as “Neumann’s
formula,” and carries with it the important implication that

Mmn = Mnm (123)

The real numbers Mmn—which, though electrodynamically important, refer
exclusively to the geometry and relative placement of the loops C1,C2, . . . ,CN

—are called coefficients of mutual inductance when m �= n, and coefficients of
self-inductance when m = n. In the latter case it is standard to adjust the
notation:

Mmm 
−→ Lm ≡ self-inductance of the mth loop

From the fact (see again page 61) that BBB → 000 near a “filamentary current”
(current in a wire of zero radius) we conclude—the associated “self-fluxes” being
anavoidably infinite—that

The self-inductance of a filamentary loop is (124)—irrespective of the loop’s geometry—infinite.

. . .which I take to be Nature’s way of reminding us that “filamentary currents”
are a (physical unrealizable and) latently dangerous abstraction.

50 The
∫∫∫

ranges only over the volume of the wire, since the integrand
vanishes elsewhere. Integration over cross-sections converts current density to
current. The surviving integral is a

∮
along the length of the wire.

51 Neumann was the inventor of the vector potential AAA (and of much else), but
how he obtained (122) at such an early date—and without knowledge of Stokes’
theorem—is beyond my understanding! Notice that in (122) all reference to AAA
has dropped away.
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rh

a

a

ψ

ψ

Figure 27: Coaxial filamentary rings. In the text we compute the
mutual inductance M—an arduous task made (barely) feasible by the
high symmetry of the system.

I turn now to review of a line of argument which leads to a description of
the mutual inductance M ≡M12 = M21 of a pair of coaxial filamentary rings.52

First we establish by geometrical argument that the distance between point ψ1

on C1 and point ψ2 on C2 can be described

r =
√
h2 + a2

1 + a2
2 − 2a1a2 cos(ψ1 − ψ2)

so (122) supplies

M = 1
4πc

∫ 2π

0

∫ 2π

0

a1a2 cos(ψ2 − ψ1)√
h2 + a2

1 + a2
2 − 2a1a2 cos(ψ2 − ψ1)

dψ1dψ2

= 1
2c

∫ 2π

0

a1a2 cos θ√
h2 + a2

1 + a2
2 − 2a1a2 cos θ

dθ

= −kc
√
a1a2

∫ 1
2π

0

cos 2φ√
1− k2 sin2 φ

dφ

52 See problem 28, where you are asked to work out the details of the
individual steps.
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where φ ≡ 1
2 (θ − π) and

k2 ≡ 4a1a2

h2 + (a1 + a2)2

The integral is tabulated, and supplies

M = 1
c
√
a1a2

{(
2
k − k

)
K(k)− 2

kE(k)
}

(125.1)

where

K(k) ≡
∫ 1

2π

0

1√
1− k2 sin2 φ

dφ

E(k) ≡
∫ 1

2π

0

√
1− k2 sin2 φdφ

define the “complete elliptic integrals of 1st and 2nd kinds.53 Writing

k2 =
4a1a2

h2
·
[
1 +

(a1 + a2)2

h2

]–1

=
4a1a2

h2

{
1− (a1 + a2)2

h2
+ · · ·

}

we see that k2 ∼ 0 corresponds physically to the case in which the rings are
widely separated (h�

√
4a1a2 ). But for k2 small the handbooks supply54

K = 2
π

[
1 + 2k

2

8 + 9
(
k2

8

)2 + · · ·
]

E = 2
π

[
1− 2k

2

8 − 3
(
k2

8

)2 + · · ·
] : k2 just greater than 0

From these facts it follows that for loosely coupled coaxial rings

M ≈ π
16c
√
a1a2 k

3 with k =
√

4a1a2/h (125.2)

On the other hand . . .we observe that

1− k2 =
h2 + (a1 − a2)2

h2 + (a1 + a2)2

which shows that k2 ∼ 1 corresponds physically to the case in which the rings
are very close together (h ∼ 0 and a1 ∼ a2). The handbooks now supply54

K = Λ + 1
4 (Λ− 1)κ2 + 9

64 (Λ− 7
6 )κ4 + · · ·

E = 1 + 1
2 (Λ− 1

2 )κ2 + 3
16 (Λ− 13

12 )κ4 + · · ·
: k2 just less than 1

with κ ≡
√

1− k2 and Λ ≡ log(4/κ). From these (more intricate) facts it follows

53 For discussion of the properties of these famous functions see, for example,
E. Jahnke & F. Emde, Tables of Functions (), pages 73–85 or J. Spanier
& K. B. Oldham, An Atlas of Functions (), Chapter 61.

54 See Jahnke & Emde, page 73.



Faraday’s law 75

that for tightly coupled coaxial rings

M ≈ 1
c
√
a1a2

(
Λ− 2

)
Λ = log

4√
1− k2

and that this (by 0 ∼ h� a1 ∼ a2 ∼ a) can be formulated

≈ 1
ca

(
log 8a

b − 2
)

(125.3)

where b = rmin =
√
h2 + (a1 − a2)2 is the shortest distance between the two

rings.

Inductance calculations can sometimes (i.e., in a few favorable cases) be
accomplished by more elementary means. Suppose, for example, that in the
“coaxial 2-ring problem”one ring is very much smaller than the other: a1�a2.
The small ring lies then in the “axial region,” where the magnetic field BBB2

generated by current I2 in the large ring is easy to calculate:55 one finds thatBBB2

runs parallel to the axis (in the sense given by the �-rule) and is of magnitude

B2(h) =
I2
2c

a2
2

(h2 + a2
2)3/2

I2

=




I2
2ca2

[
1− 3

2

(
h
a2

)2 + 15
8

(
h
a2

)4 + · · ·
]

: h� a2

I2
2ch

(
a2
h

)2
[
1− 3

2

(
a2
h

)2 + 15
8

(
a2
h

)4 + · · ·
]

: h� a2

(126.1)

(126.2)

If we conceptualize the present 2-ring problem as indicated in Figure 28 then
it follows immediately from (126.2) that in leading approximation

Φ12 = πa2
1 ·

I2a
2
2

2ch3

whence
M12 = πa2

1a
2
2/2ch

3

which agrees precisely with (125.2). It is instructive to note that the problem
would not have seemed easy had we on the other hand tried to evaluate M21 ,
for while
• the field BBB2 intercepted by the small ring C1 is nearly uniform
• the same cannot be said of the BBB1 intercepted by the large ring C2.

Nevertheless—and from this point of view somewhat surprisingly—we know on
general grounds that M12 = M21. I turn now from the calculation of mutual
inductances to the calculation of self-inductances—a problem which (because
bedeviled by ∞’s) tends to be rather more difficult.

55 problem 29.
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Figure 28: Coaxial ring system, made exceptionally tractable by the
circumstance that the small ring intercepts an essentially uniform sample
of the BBB-field generated by the large ring.

interlude: It is useful—pedagogically, and because it will gain
me a result of which I will have need—to rise for a moment above
the details of battle to ask: Why are we studying inductance?
The answer” So that we can deal effectively with the magnetic
interactions of currents confined to wires—with one another, and
with themselves.56 And it is the self -interaction problem which
has just moved to center stage. How are we doing? We are in
position now to state that a t -dependent current In in Cn produces
in Cm an emf given (return with (120) to (116)) by

Emn = − 1
cMmn

d
dtIn (127)

Setting m = n, we expect the “back emf” to be given by an
equation of the form

back emf = − 1
cL

d
dtI (128)

and it is L which we desire now to compute. We proceed, as
before, in terms of particular examples.

56 We take no embarrassment from the fact that “currents confined to
wires” are of more importance to people than to God and other physicists. It
is, after all, by the activities of men (Faraday) that we learn the ways of God:
our real intent at the moment is to understand Faraday’s laboratory experience.



Faraday’s law 77

w

a

r

θ

Figure 29: Variables used to describe the gross form and cross-sectional
elements of a conductive ring. Our objective is to compute the self-
inductance of such a ring.

Let a ring of radius a be formed from wire of radius w (w � a). We will
assume w > 0 (i.e., we exclude the filamentary idealization w = 0) in order

1) to avoid the ∞ mentioned at (124), and

2) the better to model engineering reality

but have purchased thus a conceptual problem: How to model such a wire?
This we do as follows: we agree (tentatively) to . . .

Think of the ring as a “cable” made up of filamentary sub-rings,
each of cross-sectional area dA = rdrdθ. The current carried by
the filament with coordinates (r, θ) can be described

dI = j(r, θ)rdrdθ (129)

and we will assume that the ratio of the currents carried by any
pair of filaments is time-independent; i.e., that they fluctuate
in concert. This entails

j(r, t) = J(r) ·K(t) (130)

remark: Though it makes physical sense, it is really only for
analytical convenience that I have assume the current density j
to be θ-independent. In that same spirit one could—though I for
the moment won’t—assume further that J(r) is r -independent.
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Now it follows from (130) that

I(t) = K(t) ·
∫ 2π

0

∫ w

0

J(r)r drdθ︸ ︷︷ ︸
|—It is convenient to scale J(r) so this factor
equals unity . This is in effect to write

j(r, t) = I(t) ·J(r) (131)

and to interpret J(r)rdrdθ as the fraction of
the total current I which circulates in the
filament with coordinates (r, θ).

The magnetic flux Φ(r, θ) through the (r, θ)-filament—produced by the currents
circulating in all the other filaments—can be described

Φ(r, θ) =
∫

M(r, θ; r′, θ′)︸ ︷︷ ︸ dI ′

|—This function has (see below) the structure
implied by (125.2).

note: In the discrete approximation we would
have to write

∑ ′, signaling our intention to
omit the infinite self-fields that arise when
“filaments of zero cross-section” are imagined
to carry finite currents. That problem does
not arise in the present context because our
filaments carry currents proportional to their
cross-sections.

=
{∫ 2π

0

∫ w

0

M(r, θ; r′, θ′)J(r′) r′ dr′dθ′
}
·I(t)

≡W (r, θ)I(t) (132)

Next—looking to (127/128) for guidance—we note that temporal variation of
the current I produces in the (r, θ)-filament an emf

E(r, θ) = − 1
c Φ̇(r, θ)

= − 1
cW (r, θ)İ(t) by (132) (133)

which would stimulate a current
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dI(r, θ) = 1
R(r, θ)

E(r, θ)

where

R(r, θ) ≡ resistance of the (r, θ)-filament

= ρ
1

rdrdθ
2π(a+ r cos θ︸ ︷︷ ︸)

|—neglect because r � w � a

can be used to give

dI(r, θ) = 1
2πρa︸ ︷︷ ︸ ·E(r, θ) rdrdθ

|= 1
R · πw2

where R ≡ total ring resistance

So we do have

I =
∫

dI = 1
R · πw2

∫∫
E(r, θ) rdrdθ

= − 1
R

{ 1
πw2c

∫∫
W (r, θ) rdrdθ

}
İ by (133)

but by the effective definition (128) of self-inductance expect to have

= − 1
Rc

Lİ

Comparison gives

L = 1
πw2

∫∫
W (r, θ; ) rdrdθ

= 1
πw2

∫∫∫∫
M(r, θ; r′, θ′)J(r′) r′rdr′dθ′drdθ (134.1)

where according to (125.3)

M(r, θ; r′, θ′) = a
c
(
log 8a

s − 2
)

(134.2)

s ≡ distance between (r, θ) and (r′, θ′)

=
√
r2 + r′2 − 2rr′ cos(θ′ − θ) (134.3)

Equation (134.1) is susceptible to some simplificaiton. From
∫∫

rdrdθ = πw2

and
∫∫

J(r′) r′dr′dθ′ = 1 it follows almost immediately that

L = a
c

{
log 8a− 2− 1

w2

∫∫∫
J(r′) r′r log

[
r2 + r′2 − 2rr′ cos θ

]
dr′drdθ

}
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but to obtain a more concrete result let us now assume the current to be
uniformly distributed: J(r′) = 1/πw2. Then

L = a
c

{
log 8a− 2−Q(w)

}

Q(w) ≡ 1
πw4

∫ w

0

∫ w

0

∫ 2π

0

r′r log
[
r′2 + r2 − 2rr′ cos θ

]
dr′drdθ

and by interesting calculation57 we obtain

= logw − 1
4

We are brought thus to the conclusion that the self-inductance of a homogeneous
ring can—in the approximation

wire radius� ring radius

—be described
L = a

c
(
log 8a

w − 7
4

)
(135)

I apologize for the analytical tedium which has attended the derivation of (135),
but in real physics one frequently encounters points of principle which can be
clarified in no other way than by computational labor.58 What have we learned?

1. Just as the electrostatic self-energy problem disappears when charged
particles are modeled not as “points” but as “pithballs of finite radius,”
so does the magnetic self-energy problem disappear when currents are
imagined to be carried not by idealized “filaments” but by more realistic
“wires of non-zero cross-section.”

2. Such realistic models serve to display self-inductance as integrated mutual
inductance.

3. Our progress hinged on our willingness to make certain approximations,
of which the physically most interesting was that the r-dependence of j(r)
could be neglected. This (in the language of Figure 11) amounts to an
assumption that

skin depth� wire radius (136)

In point of physical fact, skin depth decreases as frequency increases; we
should therefore look upon (135) as the low-frequency approximation to
a function L(ω) . . . except that at very high frequencies—frequencies so
high that

period < optical transit time across the circuit

we expect the very concept of mutual/self-inductance to lose its utility.

57 problem 30.
58 The formal simplicity of (135) suggests the possibility of a “simple

derivation”. . .which—if it exists—is unknown to me.
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4. Equation (135) provides a sharpened version of (124). It states that L
diverges only logarithmically as the wire becomes filamentary (w → 0).
This can be understood as reflecting the fact that logarithmic potentials
give 1/r force laws, which correspond to “geometrical fall-off in a two-
dimensional world”—the “world” defined by a linear source in 3-space.We
may expect the logarithmic divergence of L to pertain (not just to rings
but) generally. to loops of every figure.

5. (Self)-inductance calculations are essentially geometrical in nature. They
stand prior to electrodynamical calculation just as (say) moment of inertia
calculations stand prior to the dynamics of rigid bodies. The question
arises: Does the self-inductance of a loop stand in any invariable
relationship to any other physically important “shape-sensitive”
parameters (for example: the least area and/or fundamental frequency of
a spanning membrane, the moments of inertia, etc.)? Can one
anticipate on general grounds what happens to L(C) when C is deformed?
Or—see again Figure 20—what C will minimize L(C)?59

A surprisingly limited population of analytical induction formulæ can be found
scattered (sparcely) throughout the literature—particularly the older electrical
engineering literature.49 Experimentally inclined readers may ask: If physically
reliable analytical inductance formulæ are so difficult to obtain . . .why bother?
Why not must measure the inductance? I would remind such readers of our
primary goal, which is review the classical basis of the claim that Maxwell’s
equations do in fact provided a representation of electromagnetic reality . . . and
for that we must be in position to compare theory with experiment . Returning
now to the physical question which precipated this digression . . .

Figure 30 presents a schematic diagram of Faraday’s experimental set-up
(see again Figure 21). Working from the diagram, we have

V (t)− 1
cL1İ1 − 1

cM İ2 = R1I1

− 1
cM İ1 − 1

cL2İ2 = R2I2

}
(137)

and have interest in the currents I1(t) and I2(t) that result when the battery is
switched on at time t = 0:

I1(0) = I2(0) = 0 and V (t) =
{ 0 : t < 0
V : t � 0

We confront at this point the (purely mathematical) problem of solving a
coupled system of 1st-order ordinary differential equations, which can be notated

L
d
dtIII + R III = VVV (t)

with

VVV (t) ≡
(
V (t)

0

)
, III(t) ≡

(
I1(t)
I2(t)

)
, L ≡ 1

c

(
L1 M
M L2

)
, R ≡

(
R1 0
0 R2

)

59 Questions of precisely this nature are explored in G. Polya & G. Szegö,
Isoperimetric Inequalities in Mathematical Physics ()—an extraordinary
monograph which I recommend very highly to your attention.
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Figure 30: Schematic representaion of Faraday’s experimental set-up.
The switch S premits one to insert/remove the battery from the primary
circuit. The principal effect of the soft iron core was to increase the value
of the mutual inductanceM , which serves to couple the two circuits. The
green shading represents magnetic field. A (usually tacit) presumption—
here as always in circuit analysis—arises from the circumstance that
“electromagnetic news is propagated with finite speed,” that a charge
will not be instantly aware of non-local field variations: we assume that
all characteristic circuit times are much greater than the time required
for light to transit the circuit. This, by the way, is the reason ultrahigh
frequency devices must be physically small.

Multiplication by L
–1 is possible provided

det L = 1
c2

{
L1L2 −M2

}
�= 0

which will later be shown on very general grounds to be invariably the case.
We are led thus to

(D + W)III(t) = FFF (t) : inhomogeneous differential equation (138)
⇓

III(t) = (D + W)–1FFF (t)

(D + W)III(t) = 000 : homogeneous companion of (138)

Here FFF (t) ≡ L
–1 VVV (t) and

D ≡
(
∂t 0
0 ∂t

)
, W ≡ L

–1
R = c(L1L2 −M2)–1 ·

(
L2R1 MR2

MR1 L1R2

)
︸ ︷︷ ︸
elements have dimensionality of “frequency”
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What meaning are we to assign to (D + W)–1? From the identity

d
dte

Wtf = eWt( ddt +W )f : all f(t)

one obtains the “shift rule”

(
d
dt +W

)
• = e−Wt d

dte
Wt • : to be read as an operator identity

of which (
d
dt +W

)n• = e−Wt
(
d
dt

)n
eWt •

is a corollary and (in the case n = −1)

(D + W)–1 • = e−W t

∫ t

eWs • ds (139)

the matrix analog.60 The theory of linear differential equations supplies this
general proposition:

general solution of inhomogeneous equation
= any particular solution of inhomogeneous equation

+ general solution of associated homogeneous equation

Bringing these remarks together, we conclude that the general solution of (138)
can be described

III(t) = e−W t

∫ t

0

eWsFFF (s)ds+ e−W tIII(0)

In the present instance III(0) = 000 and FFF (t) is (for t > 0) a constant vector, so
we can perform the integration, and obtain61

=
I− e−Wt

W
FFF =

(
I− e−Wt

)
R

–1 VVV (140)

Our analytical task reduces therefore to the evaluation of (I− e−Wt )/W. This
can be accomplished in a great variety of ways, two of which are described on
pages 124–129 of the / edition of these notes. The details are amusing,
and of some methodological interest . . .but distract from the physical points at
issue: here I will be content to
• assign representative values to the circuit parameters (you are encouraged

to try other values) and
• entrust the computational labor to Mathematica.

60 In preceding equations the •’s are placeholders for the “operands”—i.e.,
for unspecified functions of t

61 problem 31.
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Figure 31: At time t = 0 the battery is switched on and the current
I1 in the primary circuit rises (as the sum to two exponentials, one
“fast” and the other “slow”) to the steady value V/R1. The current
I2 induced in the secondary circuit is dipping transcient, present
only while d

dtI1 �= 0.

Specifically, I (semi-randomly) set

VVV =
(

1
0

)
, unit =

(
1 0
0 1

)
, L =

(
5 2
2 1

)
, R =

(
2 0
0 1

)

which entail

W =
(

2 −2
−4 5

)
: det W �= 0

The command (unit - MatrixExp[-t W]).Inverse[R].V instantaneously
supplies

I1(t) = 1
2

{
1−

√
41−3

2
√

41
e−ω1t −

√
41+3

2
√

41
e−ω2t

}
I2(t) = 1

2

{
4√
41
e−ω1t − 4√

41
e−ω2t

}

 (141.1)

where
ω1 = 7+

√
41

2 = 6.70156

ω2 = 7−
√

41
2 = 0.29844

are observed to be precisely the eigenvalues of W (of which more later). The
“primary” and “secondary” currents I1(t) and I2(t) are plotted in Figure 31.
Asymtotically the system approaches a steady state, with (as is obvious already
from (137))

I1(∞) = V/R1 and I2(∞) = 0

That state having been achieved, let us stitch the battery off (and at the
same time restart the clock). We then have III(t) = e−WtIIIsteady, which in our
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Figure 32: At time t = 0 the battery is switched off and the
previously steady current in the primary circuit drops exponentially
back to zero. The current I2 induced in the secondary circuit is now
a rising transcient—again present only while d

dtI1 �= 0.

numerical example supplies

I1(t) = 1
2

{ √
41−3

2
√

41
e−ω1t +

√
41+3

2
√

41
e−ω2t

}
I2(t) = 1

2

{
− 4√

41
e−ω1t + 4√

41
e−ω2t

}

 (141.2)

These functions are displayed in Figure 32. It is the contrary transcience of
the induced current (see again Figure 21) that lies at the heart of Faraday’s
surprising experimental discovery, and a wonder that Maxwell was able in

∇∇∇×EEE = − 1
c
∂BBB
∂t (107)

to capture its formal essence. Several remarks are now in order:

1. The diagonal elementsW11 andW22 of W arise from self -inductance, and
are therefore invariably positive. But the off-diagonal elementsW12 = W21

refer to mutual -inductance, and reverse sign when we reverse either of the
sign conventions attached to C1 and C2:

Mutual inductance is, in other words, sign-indefinite and convention-
dependent.
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2. The temporal aspects of Faraday induction are evidently under the control
of the eigenvalues of W, which in the general case62 read

ω± =
R1L2 +R2L1 ±

√
(R1L2 +R2L1)2 − 4R1R2(L1L2 −M2)

L1L2 −M2

=
R1L2 +R2L1 ±

√
(R1L2 −R2L1)2 + 4R1R2M2

L1L2 −M2

These are clearly real in all cases, but will both be positive—as is required
if neither of the factors e−ω±t is to blow up catastrophically—if and only
if

L1L2 −M2 > 0 (142)

Soon we will be in position to show that the inequality (142)—though not
at all an obvious implication of (122)!—follows with elegant simplicity
from first principles. Note that “catastrophic blow-up” would result also
if the minus sign were dropped from (107): it was with that point in mind
that I referred on page 63 to the “stabilizing minus sign.” It is a common
practice—but, as I will argue, misleading—to point to that minus sign and
say “That is Lenz’ law.” For the minus sign is always correct, while Lenz’
law (which might better be called “Lenz’ rule of thumb”) is sometimes
violated.

3. Recall the statement of

lenz’ law: The directionality of Iinduced tends to be such
that the resulting magnetic flux Φinduced counteracts the
Φ̇impressed from which the induced current itself derives.

The word “tends”—though as sharp as it gets in some fields—tells a
physicist next to nothing. Where does it come from, and what does it
mean? Replace the battery with a signal generator designed to produce
some/any prescribed I1(t). Reading from (137) we see that the induced
current I2(t) satisfies 1

cL2İ2 +R2I2 = − 1
cMİ1 which we may write

(
d
dt + Ω

)
I2(t) = −f(t), some prescribed function

with Ω ≡ cR2/L2 and f(t) ≡ (M/L2)İ1(t). Arguing as on page 83 we
have

I2(t) = −
∫ t

0

e−Ω(t−s)f(s) ds+ e−ΩtI2(0)

= −
(

weighted summary of the
recent history of f(t)

)
+

(
start-up transcient

that soon dies

)

Evidently Lenz’ law speaks to the minus sign, and is made fuzzy by the
allusion to “recent history,” since the “weighted summary” can be of

62 Use the Mathematica command Eigenvalues[W].



Technological / theoretical ramifications of Faraday’s law 87

either sign, depending upon details of that history. The induced current
might, in particular, be found to be flowing momentarily in the “wrong”
(anti-Lenzian) direction as a kind of “inertial” effect. Arguing now in
somewhat finer detail, we have

I2(t) = −(M/L2)
∫ t

0

e−Ω(t−s)İ1(s) ds+ e−ΩtI2(0)

which upon integration-by-parts becomes

= −(M/L2)
{
I1(t)− Ω

∫ t

0

e−Ω(t−s)I1(s) ds
}

↓
= −(M/L2)I1(t) as the “recall time” Ω–1 → 0

In that limit we have L2I2 = −MI1 or (to say the same thing another
way) Φinduced = −Φimpressed. This we might call “Lenz’ exaggeration,”
because “short recall time” means large Ω means small L2, and by (142)
there is a limit to how small L2 can be: L2 > M

2/L1.

The preceding discussion—which began on page 61, and has involved
digressive looks at several important subtopics
• the physics of Ohmic materials
• emf
• mutual and self-inductance
• techniques for solving coupled circuit equations
• Lenz’ rule of thumb

—shows that Maxwell’s equations do indeed account for Faraday’s experimental
results. We have proceeded deductively, but the historic route was (no pun
intended) inductive (experiment−→∇∇∇×EEE = − 1

c∂BBB/∂t) . . . and clearly required
genious of an exceptionally high order. Faraday’s work—as experimentalist and
as intuitive father of the field concept63—was clearly critical to the development
of Maxwellian electrodynamics. Remarkably, it opened also some doors which
I have not yet mentioned.

6. Some technological & theoretical ramifications of Faraday’s law. Faraday was
perfectly well aware from the outset that he had discovered a point of
fundamental physical principle. He was obliged, however, to leave the theoretical
elaboration of his discovery to others (namely to Maxwell, who was his junior
by nearly 40 years: Maxwell was, in fact, only three months old when Faraday
performed his famous experiements) . . . for while Ampere was celebrated for his
mathematical virtuosity, Faraday was, by his own admission, a mathematical
ignoramus. The technological ramifications of his discovery—that one might

63 For a good discussion, see Mary B. Hesse, Forces & Fields: A Study of
Action at a Distance in the History of Physics ().



88 Physical & mathematical fundamentals

S

A

N

N

A

Figure 33: Simple dynamos. At top: an infinite train of “staples” is
dragged through the field of a permanent magnet. The magnetic flux
enveloped by the circuit (shown in blue) is time-dependent, so an emf
is developed, which produces a current. The rotational variant of the
same device (below) presents no such absurdity as an “infinite train,”
and could actually be constructed. The placement of the magnet is, in
both figures, schematic: in practice one would want to slide the magnet
back until the maximal field is positioned to have the maximal effect.
Notice that both devices involve sliding contacts—realized in practice
by “brushes,” which are a source of wear and of electrical noise. For
description of a wonderfully ingenious escape from that limitation, see
the Reed College thesis “A dynamo without slip rings” by Evan Wedell
().

expect to be able to use not Voltaic cells but changing magnetic fields to
generate practical currents—was, on the other hand, instantly apparent to
Faraday (who, however, did not immediately foresee that his idea was to have
profound ramifications outside the laboratory: he did not imagine rivers
strangled by hydroelectric stations, forests dissected by power lines). The
invention of the dynamo was essentially simultaneous with the discovery of
electromagnetic induction, and was followed very swiftly by the first steps
toward the “electrification” of the world.

In the figure I show an imagined early chapter in the history of the invention
of the dynamo. The second (rotational) design is conceptually so simple that it
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Figure 34: “Homopolar disk dynamos.” The design at the top can be
looked upon as the “continuous limit” of the design shown at the bottom
in Figure 33. Here the lower figure illustrates the operating principle of
the “self-excited homopolar dynamo:” the permanent magnet has been
replaced by an electromagnet that draws its current from the dynamo
itself.

almost “invents itself.” But I think most physicists would, on intuitive grounds,
be somewhat doubtful that the “homopolar disk dynamos” shown in Figure 34
—evolved from the previous design by proceeding “to the limit of infinitely
many fins”—would even work, for they involve currents which are not confined
to moving wires.64 They depend, to be more precise, upon the (evidently
quite complex) physics of eddy currents (interior to the rotating conductive
disk). Actually, Faraday was led almost at once to the homopolar design
(which works!), and for interesting reasons. In  Dominique F. J. Arago had
discovered that a rotating copper disk exerts torque upon a suspended magnet ,
and (see Figure 35) conversely. It seemed clear that some kind of “induced

64 That circumstance makes it awkward to argue—at least on the geometrical
face of the matter—that Φ̇ �= 0.
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Figure 35: Arago’s apparatus. The copper disk is suspended by a
torsion fiber. The spinning magnet is found to exert torque on the disk,
but the effect is reduced/extinguished when radial slots perforate the disk.
The first satisfactory account of the phenomenon was given by Faraday.

magnetism” was involved, but this mode of explanation could not account for
the observation that when radial slots are cut in the disk the Arago effect is
extinguished . “Arago’s extraordinary experiment” was much on the minds of
physicists in the late ’s, and was very well known to Faraday (to whom we
owe the correct explanation: the “induced magnetism” arises from induced eddy
currents, which Faraday called “whirl currents,” and which the slots served to
inhibit by “opening the circuits”). So Faraday had “disks on the brain.” His
homopolar disk dynamo can be understood as a variant of Arago’s experimental
configuration.

The self-excited homopolar disk-dynamo is a device of such elemental
simplicity that it becomes natural to inquire whether it occurs spontaneously
in Nature. I do not know enough about “biomotors” (such as twirl flagella) to
know whether they provide examples, but a magnetohydrodynamic analog is
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ω

Figure 36: Schematic representation of a self-exciting homopolar disk
dynamo, abstracted from the device shown at the bottom of Figure 34.

believed to be responsible for the geomagnetic field and for the magnetic fields
of certain classes of stars.65 Similar principles may operate at a galactic level. I
would like therefore to consider briefly how the physics of such a device might be
formalized. Proceeding in reference to Figure 36 . . . let an external mechanical
agency maintain the constant angular velocity ω of a conductive disk. Evidently

1
cLİ +RI = E (143)

where L and R refer to the self-inducatance and resistance of the electrical
circuit, and where

E ≡ dynamo emf

We expect66 E to be proportional to the rate (set by ω) at which “filamentary
constituents of the eddy current cut field lines” of the BBB -field generated by the
solenoid. Since BBB is proportional to I, we expect to have E ∼ ωI. This we will
express

= 1
cMωI (144)

where M is dimensionally some kind of “mutual inductance.” We are in no
position to compute M since

• we don’t know how current is distributed in the disk (i.e., we lack a “theory
of eddy currents”) and

• we don’t know anything about the BBB -field interior to the disk.

65 See W. M. Elsasser, “Hydromagnetism,” AJP 23, 590 (1955) & 24, 85
(1956) and “Hydromagnetic dynamo theory,” Rev. Mod. Phys. 28, 135 (1956).
For a good and very detailed review of more recent work see H. K. Moffatt,
Magnetic Fields Generation in Electrically Conducting Fluids ().

66 This is clearest if one argues from the second figure on page 88.
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If, however, we assume (144) to be qualitatively correct, then (143) becomes

1
cLİ +RI = 1

cMωI

—the solution of which

I(t) = I0 e
Mω−cR

L t :
{

grows exponentially if ω > cR/M
dies if ω < cR/M

(Physically, exponential growth would proceed only until the rate I2R of Joule
dissipation becomes equal to the power of the external agency which drives the
disk.) We conclude that the homopolar dynamo becomes self-excited only if
spun fast enough . . . and not at all if spun in the wrong direction.

There is general agreement among geophysicists that some kind of “dynamo
action” (slow convection within the earth’s electrically conductive core) must be
responsible for the principal component of the geomagnetic field, though details
of the mechanism remain inaccessible. Suggestive insight into a characteristic
feature of the phenomenon—aperiodic polarity reversal—was obtained by
T. Rikitake,67 who studied the system of coupled disk dynamos shown in
Figure 37. The two circuits are assumed to have identical resistances R and
self-inductances L. The “external agency” is asked not to maintain constant
angular velocity but to apply constant and identical torques N to the two
disks, which are assumed to have (relative to their spin axes) identical moments
of inertia A: ω1(t) and ω2(t) have joined I1(t) and I1(t) as functions to be
determined. With these simplifying assumptions one has

1
cLİ1 +RI1 = 1

cMω1I2
1
cLİ2 +RI2 = 1

cMω2I1

}
(145.1)

which describe the electrical properties of the system, and

Aω̇1 = N − 1
cMI1I2

Aω̇2 = N − 1
cMI2I1

}
(145.2)

which describe its mechanical properties: here − 1
cMI2I1 describes the torque

which arises from the Lorentz forces experienced by the eddy current in one
disk due to the magnetic field generated by the other . . . and vice versa. The
constant M quantifies the strength of that effect, and acquires its name from
the circumstance that dimensionally [M ] = “inductance.” With Rikitaki, we

67 “Oscillations of a system of disk dynamos,” Proc. Camb. Phil. Soc. 54, 89
(1958). See also A. E. Cook & P. H. Roberts, “The Rikitake two-disk synamo
system,” Proc. Camb. Phil. Soc. 68, 547 (1970) and the final pages of Moffatt’s
monograph.65
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ω ω

I

I

Figure 37: Rikitake’s system of cross-coupled disk dynamos, in which
the magnetic field experienced by each results from current generated
by the other. The external agency, instead of controlling the angular
velocities ω1 and ω2 of the disks, now applies to each the same constant
torque N . Simple though the system is, its behavior is shown in the text
to be sometimes chaotic.

introduce dimensionless variables

τ ≡
√
NM/AL · t : dimensionless time

U ≡
√
AM/NL · ω1

: dimensionless angular velocities
V ≡

√
AM/NL · ω2

X ≡
√
M/cN · I1

: dimensionless currents
Y ≡

√
M/cN · I2

and find that equations (145) can be written

Ẋ = −µX + UY

Ẏ = −µY + V X

U̇ = 1−XY
V̇ = 1−XY




(146)

where µ ≡ cR
√
A/LMN is a solitary adjustable parameter, and where the dot

now signifies differentiation with respect to τ . Trivially U − V = α, where α is
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Figure 38: Graph of X(τ), derived from (147) in the case µ = 1.0,
µ = 2.7 with initial conditions X(0) = 1.0, Y (0) = 0, U(0) = 0.5.
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Figure 39: 3-dimensional parametric plot of
{
X(τ), Y (τ), U(τ)

}
under those same assumptions.
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a constant which we may without loss of generality assume to be non-negative.
Returning with this information to (146) we obtain

Ẋ = − µX + U Y

Ẏ = −αX − µY + UX

U̇ = 1 −XY


 (147)

which is a triplet of coupled non-linear 1st-order differential equations. They
defy analytical solution, must be solved numerically . . .which in  was a
highly non-trivial undertaking, but today lies within the capability of every
sophomore. In “Physicist’s Introduction to Mathematica” () I describe68

how the resources of Mathematica can be brought to bear on the problem, and
produce Figures 38 & 39. The point to which Rikitaki drew the attention of
his geophysical colleagues was the surprising aperiodicity of the sign reversals
evident in Figure 38.69

I mention finally H. Gruenberg’s accidental discovery70 of a “motor” of
astounding simple design. The device can be thought of as a disk dynamo run
“backwards—in motor mode.”71

Returning our “curious devices” to the shelves from which they came, I
return now to the theoretical mainline of our subject . . . looking specifically to
the description of the energy which resides in a magnetostatic field. We saw
(pages 18–22) that the analogous electrostatic problem could be formulated
as a study of the energetic details of the “source assembly process.” But we
have seen also (page 60) the source jjj(xxx) of an magnetostatic field cannot be
“assembled”: it must be turned on. This is a process the energetic details of
which we are only now—thanks to Faraday—in position to examine. By way
of preparation . . .

68 See Laboratory 6, Part A
69 Rikitaki’s work did not engage the attention of the broader population

of applied mathematicians. But several years later the meterological work of
E. N. Lorenz led him (in “Deterministic nonperiodic flow,” J. Atmos. Sci. 20,
130 (1963)) to a triplet of equations

ẋ− σx + σy

ẏ = rx− y − rxz : σ > 0, r and b > 0 are parameters
ż = xy − bz

which is structurally quite similar to (147), and which yield qualitatively similar
solution curves. Lorenz’ discovery contributed importantly to the development
of the modern theory of chaotic systems, but Rikitaki’s remains—even today—
largely unknown.

70 “The ball bearing as a motor,” AJP 46, 1213 (1978).
71 See the Reed College thesis of Peter Miller: “The ball bearing motor:

strange torques in spinning conductors” ().
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V t( )

Figure 40: A power supply—drawing is power from some external
source (the wall socket, not shown) is used to create and maintain current
in a wire loop of resistance R and self-inductance L. V (t) is under the
control of the experimenter.

We have already remarked (page 67) that magnetic fields do no work on moving
charges. Time-dependent BBB -fields give rise, however, (by Faraday’s law) to
EEE -fields, and EEE -fields (of whatever origin) do work at a temporal rate given
locally by

P = EEE···jjj (148)

Suppose that jjj(xxx) refers to the steady current I which circulates in a loop of
wire. We then have

P ≡
∫∫∫

volume of wire

P d3x

=
∮

loop

{ ∫∫
cross section

EEE···jjj dA
}

d�

= I

∮
EEE···ddd���

= IE (149)

as a description of the temporal rate at which EEE does work on the charge carriers
that comprise the current I. In the steady case the power invested by the EEE -field
is dissipated (Joule heating) at the familiar rate

= I2R

but in the non-steady case some fraction of P may be invested in the EEE and
BBB fields which are associated with the capacitive and inductive features of the
circuit (while another fraction may be dispatched as electromagnetic radiation).
Which brings us back to the problem at hand:

Consider (Figure 40) a loop of wire (resistance R, self-inductance L) into
which we have introduced an adjustable DC power supply, and let V (t) denote
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V t( ) V t( ) nV t( )

Figure 41: A system of magnetically interactive circuits, each with its
own power supply.

the power supply’s output voltage at time t (which is under our control). The
current I(t) can be computed from

V (t) = RI + 1
cLİ

and the specified value of I(0). The power supply is doing work at a rate given
instantaneously by

d
dtW = V I

= RI2 + d
dt

(
1
2cLI2

)
so the total energy delivered by the power supply since t = 0 becomes

W ≡
∫ t

0

Ẇ dt =
∫ t

0

RI2 dt + 1
2cLI2(t)

= (heat dissipated in R)+(energy stored in the magnetic field)

Note that the latter term (but not the former) represents an investment which
the power supply recovers when V is turned down/off . Note also that if the
wire were replaced by an idealized “filament” then (since for a filament L =∞)
the latter term would become infinite (which is to say: the powerless supply
would find itself “powerless to drive a current”): this again is the magnetic
version of the self-energy problem.

Consider now a system of wire loops, each with its own adjustable power
supply (Figure 41). The currents at time t can be computed from

V1 = R1 I1 + 1
c
{

L1İ1 + M12İ2 + · · ·+ M1nİn
}

V2 = R2 I2 + 1
c
{
M21İ1 + L2İ2 + · · ·+ M1nİn

}
...

Vn = RnIn + 1
c
{
Mn1İ1 + Mn2İ2 + · · ·+ Lnİn

}
of which

VVV = R III + 1
cM İII



98 Physical & mathematical fundamentals

is a handy abbreviation. The power supplies are (collectively) doing work at
the rate

Ẇ = Ẇ1 + Ẇ2 + · · ·+ Ẇn

= I1V1 + I2V2 + · · ·+ InVn ≡ III TVVV

= III T
R III + 1

cIII
T
M İII

= III T
R III + d

dt

(
1
2cIII

T
M III

)
by M

T = M

so (if we assume that III(0) = 000)

W =
∫ t

0

Ẇ dt =
∫ t

0

III T
R III dt + 1

2cIII
T
M III

= (heat) + (recoverable magnetic field energy)

The Joule dissipation term is (though physically important) for our present
purposes uninteresting. Accordingly . . .

We restrict our attention henceforth to the term

Wmagnetic = 1
2cIII

T
M III (150)

This is work which our power supplies would have to perform even if the wires
were non-resistive. Physically, it records our effort to overcome the emf which
results from Faraday induction. It is (to reemphasize a point already on page 96)
the effects not of BBB (which does no work) but of ḂBB which lie at the foundation
of (150). The question arises:

What—if any—is the relationship between(150) and the formulæ developed
(on merely analogical grounds) on page 60? Returning with Neuman’s formula
(122) to (150) we obtain

Wmagnetic = 1
8πc2

∑
m

∑
n

∮ ∮
Imddd���m ···Inddd���n

rmn

Evidently

= 1
8πc2

∫∫
jjj(xxx)···jjj(ξξξ) 1

|xxx− ξξξ| d
3x d3ξ (151)

when the jjj-field is not confined to the interior of wires. But this is precisely
(106) and, by the arguments of page 60 (traced in reverse), is known to entail

=
∫

B(xxx) d3x

B ≡ 1
2BBB ···BBB : magnetic energy density

It is on this formal basis that we allow ourselves to state (as we did on the
preceding page) that Wmagnetic describes “energy stored in the magnetic field .”
Several comments are now in order:
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1. It was emphasized on page 71 and again on page 81 that the
components Mmn of M are “geometrical in nature.” They summarize
all that is “magnetically relevant” about the current configuration. First
encountered in the description

Φmn = MmnIn (120)

of the magnetic flux which interlinks a population of current loops, their
occurrence in

Wmagnetic = 1
2c

∑
m,n

ImMmnIn (150)

is equally fundamental . . . and provides in fact an efficient framework
within which to address questions such as those posed on page 81.

2. Mmn refers more particularly to the magnetostatics of steady current
loops. Since not every jjj-field admits of conceptualization as a “bundle of
filamentary loops (∇∇∇···jjj = 0 states that “jjj-lines do not have ends,” but that
does not of itself entail loop-structure), the concept of inductance would
appear to have only limited relevance to the magnetostatics of distributed
currents (such as eddy currents).72

3. From results already in hand we have

Wmagnetic = 1
2cIII

T
M III = 1

2

∫∫∫
BBB···BBB d3x � 0

from which we conclude that

III T
M III is a positive definite quadratic form

i.e., that the inductance matrix M is positive definite. This amounts to
a statement that the roots λ1, λ2, . . . , λn of the characteristic equation

det(M− λI) = 0

(which are the “eigenvalues” of M , and which are—by the reality and
symmetry of M—necessarily real) are necessarily all positive: λi > 0. An
equivalent (and—since they do not require that we solve the characteristic
equation—more useful) set of “positivity conditions” are73 the following:

L1 > 0 ,

∣∣∣∣ L1 M12

M12 L2

∣∣∣∣ > 0 ,

∣∣∣∣∣∣
L1 M12 M13

M13 L2 M23

M13 M23 L3

∣∣∣∣∣∣ > 0 , . . . , det M > 0

Equivalent inequalities can be obtained by permuting the indices. Thus
does

L1L2 −M2 > 0 (142)

72 problem 32.
73 See G. E. Shilov, Linear Algebra (), page 209. For a particularly clear

discussion of this classic result see (of all people!) Paul Samuelson, Foundations
of Economic Analysis (), pages 365–375.
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—seen now to be one of a large set of inequalities—follow “with elegant
simplicity from first principles,” as was asserted on page 86.74 From this
general proposition

arithmetic mean � geometric mean

it now follows, by the way, that

1
2 (L1 + L2) �

√
L1L2 � |M |

4. Equation (150) can sometimes be used “backwards” to compute the
elements of M without confronting the

∮∮
-complexities of (122): one

uses 1
2

∫∫∫
B2 d3x to compute Wmagnetic and then infers the values of the

desired coefficients Mmn.75

Let currents I1 and I2 flow in a pair of loops. The energy which resides in
the associated BBB -field can, by (150), be described

W = 1
2c

{
L1I

2
1 + 2MI1I2 + L2I

2
2

}
(152)

Suppose we work to displace of one loop with respect to the other, bringing
about (let us for convenience say) of a rotation-free translation of C1, as
illustrated in Figure 42. Our effort has two effects:
• it modifies the value of M (but not of L1 and L2) and
• it produces Faraday emf’s which, if uncompensated, would serve to modify

the values of I1 and I2.
We accept as a condition of the problem that I1 and I2 are to be held constant,
and it is to realize that constraint (also to compensate for I2R -losses) that we
have inserted smart power supplies into the circuits. From the conditions just
stipulated and (152) it follows that

dW = 1
cI1I2dM (153)

Working from Neumann’s formula (122) we have

dM = 1
4πc

{ ∮ ∮
1

|rrr12+dddxxx|
ddd���1···ddd���2 −

∮ ∮
1

r12
ddd���1···ddd���2

}

and it was established already at (10.1) that by Taylor’s theorem

1

|rrr12+dddxxx|
= 1

r12
− rrr12

r3
12

···dddxxx + · · ·

so

=
{
− 1

4πc

∮ ∮
rrr12

r3
12

ddd���1···ddd���2
}
···dddxxx (154)

74 problem 33.
75 problem 34.



Technological / theoretical ramifications of Faraday’s law 101

I

I

V t( )

V t( )

rrr12

rrr12+dddxxx

Figure 42: Currents I1 and I2 circulate in a pair of loops. We ask :
How is the magnetic field energy altered when one of the loops is
displaced with respect to the other? Resolution of the question leads
back—by a tricky argument—to Ampere’s description of the mechanical
force which one loop exerts upon the other.

But we have encountered
{
etc.

}
before—in Ampere’s description (101) of the

force

fff12 = I1I2

{
− 1

4πc2

∮ ∮
rrr12

r3
12

ddd���1···ddd���2
}

that circuit C2 exerts on circuit C1. Returning with this information to (154),
we find that (153) can be expressed

dW = fff12 ···dddxxx (155)

and appear to have encounted a sign problem76 . . . for the work which we do,
struggling against that Amperean force—the energy which we inject into the
magnetic field—is given by

dWperformed by us = −fff12 ···dddxxx (156)

Ah! But we are not the sole workers in this story! The power supplies (over
and above their obligations to pay the costs of I2R -losses) have been working
to maintain the constancy of the currents; i.e., to compensate for the Faraday

76 To be a physicist is to spend much of a lifetime chasing signs and errant
factors of 1

2 , and we have encountered here a classic instance.
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inductive effects that arise from the circumstance that the displacement of C1

takes place (not “virtually” but) in real time. Specifically

V1(t) = I1R1 + I1Φ̇12 = I1R1 + 1
cṀ12I2

V2(t) = I2R2 + I2Φ̇21 = I2R2 + 1
cṀ21I1

The power supplies are delivering energy at instantaneous rates given by

P1(t) = I1V1(t) = I2
1R1 + 1

cI1Ṁ12I2

P2(t) = I2V2(t) = I2
2R2 + 1

cI2Ṁ21I1

The I2R terms will be dismissed as irrelevant to the present discussion: they
describe energy dissipated as heat, the unrecoverable “cost of doing business.”
We are left with

rate at which the power supplies are collectively
investing energy in redesign of the magnetic field

}
= 2 · I1I2 1

cṀ

where use has been made of M = M12 = M21. Clearly, the argument that gave
(154) gives

Ṁ =
{
− 1

4πc

∮ ∮
rrr12

r3
12

ddd���1···ddd���2
}
··· dddxxx
dt

The energy that the power supplies collectively/recoverably invest in time dt is
given therefore by

dWperformed by power supplies = 2 · I1I2 1
cdM

= 2 · fff12 ···dddxxx
= 2 dW by (155)

In short: the power supplies collectively invest twice the energy dW that shows
up in the redesigned magnetic field. But

dW = dWperformed by us + dWperformed by power supplies

= dWperformed by us + 2 dW

from which we immediately recover the desired statement (156).

The preceding argument exposes the sense in Ampere’s formula (101) and
Neumann’s formula (122) make equivalent statements. We have used the latter
to recover the former. Proceeding similarly, we could study the response dW
of the field energy to differential rotation of C1 to obtain a description of the
torque τττ12 which C2 exerts upon C1.

The argument shows that we can expect to recover

Wmagnetostatic = 1
2c

∑
i, j

′
IiMijIj = 1

2

∫
BBB ···BBB d3x
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(not by “turning on” the currents in the already-positioned loops, but) by
assembly of the loop system if we take sufficiently careful account of the work
done against Amperean inter-loop forces . . . just as (on pages 19 et seq) we
achieved

Welectrostatic = 1
8π

∑
i, j

′
Qi

1
rij Qj = 1

2

∫
EEE ···EEE d3x

by taking account of the work done against Coulombic forces. The idea is
1) to fabricate the loops “at infinity” and
2) there to invest the self-energy Wself = 1

2c
∑
i LiI

2
i (infinite, if the loops

are “filamentary”) required to “switch on” the currents
3) then—quasistatically—to bring the pre-assembled current-carrying loops

into their desired local configuration.
It is by “pre-assembly” that we escape the absurdities (both physical and
formal: see again pages 58 & 59) that would attend “snippet by snippet”
assembly. If the assembly process were “brisk” rather than quasistatic then
radiative effects would complicate the energetic analysis: a similar restriction
pertains to the electrostatic assembly process, since accelerated charges radiate.

7. Recapitulation . . .and a glance ahead. We have—by Schwingerean bootstrap
—“derived” Maxwell’s equations, and have shown that those equations do
account correctly for the experimental discoveries of Coulomb, Oersted,
Ampere, Faraday . . . and for some related phenomenology. The foundations
of our subject are now in our possession, and many/most of the major formal/
phenomenological ramifications have been hinted at, if only hinted at. We have
now to examine the details . . .which is quite an assignment, for in terms of
• the subtlety and variety of the relevant points of principle
• its power to inspire mathematical invention
• the diversity and importance of its physical applications

classical electrodynamics stands apart from virtually every other branch of
physics.

Here follows—for purposes of orientation—a list of some of the specialized
topics into which one might want to inquire. Looking first to formal matters . . .

1. We will want to understand the sense and ramifications of the statement
that electrodynamics is a relativistic classical field theory . Exploration of
this topic leads to certain reformulations of the standard theory, which
in specialized contexts sometimes prove useful.It leads also to sharpened
perception of some fundamental points of principle. And it motivates
study of some aspects of tensor analysis.

So far as concerns mathematical technique
2. We will want to sharpen our ability actually to solve Maxwell’s equations.

In t -independent contexts (electrostatics, magnetostatics) this objective
motivates study of potential theory (and of associated mathematics:
partial differential equations, higher functions, . . .). In dynamical contexts
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the theory of potentials gives rise to the theory of Green’s functions—a
topic of practical but also of deep theoretical importance. The solution
of Maxwell’s equations has in recent decades acquired also an obvious
numerical aspect.

The physical ramifications of Maxwellean electrodynamics are so diverse as to
require discussion under several headings:

3. We have preferred thus far to work in vacuum, and have alluded to “stuff”
only in begrudging recognition of the circumstance that the currents
encountered in laboratories tend generally to be confined to wires. That
bulk matter is held together by electromagnetic forces (wearing quantum
mechanical hats)—and so is inevitably “electromagnetically active”—is,
however, a fact of Nature which we cannot forever ignore. We are obliged,
therefore, to develop an electromagnetics of media. This is a highly
model-dependent topic, which fragments into a great variety of subtopics:
the solid state physics of dielectrics, of dia/para/ferromagnetic materials,
magnetohydrodynamics, . . . the list goes on and on, and each subtopic
can be approach in various levels of depth.

4. On the other hand . . . the electromagnetic field is a highly structured and
very “busy” object even in source-free regions of space. We would like to
acquire detailed knowledge of the electrodynamics of light (physical optics,
geometrical optics) . . . and of the important “mathematical technology”
to which this subject has given rise. We note in particular that it was upon
some thermodynamic aspects of this subject that Planck based the theory
of blackbody radiation which gave rise to quantum mechanics. Also that
“optics” must be understood in a sense broad enough to include radio.
In this connection . . .

5. We would like also to study details of the radiation production/detection
process and of related topics (scattering theory, antenna theory). At issue
here is the physics of fields and sources in dynamic interaction . . .which
is electrodynamics in its purest/deepest form. It is at this level that
the conceptual limitations of classical electrodynamics come most sharply
into focus. The subject exhibits a marked “proto-quantum mechanical”
tendency, and inspires some of the imagery fundamental to the physics of
elementary particles.

6. If we consider (not the sources but) the field to be prescribed then we
confront the question: “What is the motion of a charged particle in an
impressed field (electron optics, accelerator design)?” And what, more
generally, can be said concerning the motion of bulk samples (solid/liquid/
gas) of “electromagnetically active” matter?

What I have been describing are some of the principal limbs of a large tree,
that dominates its central place in a dense forest. We are not surprised that
the limbs, on closer scrutiny, resolve into branches, the branches into twigs
. . . that intricately intertwine, forming shifting patterns . . .which, however, will
remain impossible even to begin to describe until we acquire a command of
some of the details.



2
From Electrodynamics to

SPECIAL RELATIVITY

Introduction. We have already had occasion to note that “Maxwell’s trick”
implied—tacitly but inevitably—the abandonment of Galilean relativity . We
have seen how this development came about (it was born of Maxwell’s desire
to preserve charge conservation), and can readily appreciate its revolutionary
significance, for

To the extent that Maxwellean electrodynamics is physically
correct, Newtonian dynamics—which is Galilean covariant—
must be physically in error.

. . .but have now to examine the more detailed ramifications of this formal
development. The issue leads, of course, to special relativity .

That special relativity is—though born of electrodynamics—“bigger” than
electrodynamics (i.e., that it has non-electrodynamic implications, applications
—and roots) is a point clearly appreciated by Einstein himself (). Readers
should understand, therefore, that my intent here is a limited one: my goal
is not to produce a “complete account of the special theory of relativity” but
only to develop those aspects of special relativity which are specifically relevant
to our electrodynamical needs . . . and, conversely, to underscore those aspects
of electrodynamics which are of a peculiarly “relativistic” nature.

In relativistic physics c —born of electrodynamics and called (not quite
appropriately) the “velocity of light”—is recognized for what it is: a constant
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of Nature which would retain its relevance and more fundamental meaning
“even if electrodynamics—light—did not exist.” From

[ c ] = velocity = LT –1

we see that in “c-physics” we can, if we wish, measure temporal intervals in the
units of spatial length. It is in this spirit—and because it proves formally to be
very convenient—that we agree henceforth to write

x0 ≡ ct and

{
x1 ≡ x
x2 ≡ y
x3 ≡ z

To indicate that he has used his “good clock and Cartesian frame” to assign
coordinates to an “event” (i.e., to a point in space at a moment in time:
briefly, to a point in spacetime) an inertial observer O may write xµ with
µ ∈

{
0, 1, 2, 3

}
. Or he may (responding to the convenience of the moment)

write one of the following:

x ≡
(
x0

xxx

)
≡




x0

x1

x2

x3




We agree also to write

∂µ ≡ ∂
∂xµ

, and also ∂ ≡
(
∂0

∇∇∇

)
≡




∂0

∂1

∂2

∂3




Note particularly that ∂0 = 1
c∂t. We superscript x’s but subscript ∂’s in

anticipation of a fundamental transformation-theoretic distinction that will be
discussed in §2.

It is upon this notational base—simple though it is—that we will build.

1. Notational reexpression of Maxwell’s equations. Even simple thoughts can be
rendered unintelligible if awkwardly expressed . . . and Maxwell’s was hardly a
“simple thought.” It took physicists the better part of 40 years to gain a
clear sense of the essentials of the theory that Maxwell had brought into being
(and which he himself imagined to be descriptive of the mechanical properties
of an imagined but elusive “æther”). Running parallel to the ever-deepening
physical insight were certain notational adjustments/simplifications inspired by
developments in the world of pure mathematics.77

During the last decade of that formative era increasing urgency attached
to a question

77 See “Theories of Maxwellian design” ().
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What are the (evidently non-Galilean) transformations
which preserve the form of Maxwell’s equations?

was first posed () and resolved () by H. A. Lorentz (–), who
was motivated by a desire to avoid the ad hoc character of previous attempts
to account for the results of the Michelson–Morley, Trouton–Noble and related
experiments. Lorentz’ original discussion78 strikes the modern eye as excessively
complex. The discussion which follows owes much to the mathematical insight
of H. Minkowski (–),79 whose work in this field was inspired by the
accomplishments of one of his former students (A. Einstein), but which has
roots also in Minkowski’s youthful association with H. Hertz (–), and
is distinguished by its notational modernism.

Here we look to the notational aspects of Minkowski’s contribution, drawing
tacitly (where Minkowski drew explicitly) upon the notational conventions and
conceptual resources of tensor analysis. In a reversal of the historical order,
I will in §2 let the pattern of our results serve to motivate a review of tensor
algebra and calculus. We will be placed then in position to observe (in §3) the
sense in which special relativity almost “invents itself.” Now to work:

Let Maxwell’s equations (65) be notated

∇∇∇···EEE = ρ

∇∇∇×BBB − 1
c
∂
∂tEEE = 1

c jjj

∇∇∇···BBB = 0
∇∇∇×EEE + 1

c
∂
∂tBBB = 000

where, after placing all fields on the left and sources on the right, we have
grouped together the “sourcy” equations (Coulomb, Ampere), and formed a
second quartet from their sourceless counterparts. Drawing now upon the
notational conventions introduced on the preceding page we have

∂1E1 + ∂2E2 + ∂3E3 = 1
cj

0 ≡ ρ

−∂0E1 + ∂2B3 − ∂3B2 = 1
cj

1

−∂0E2 − ∂1B3 + ∂3B1 = 1
cj

2

−∂0E3 + ∂1B2 − ∂2B1 = 1
cj

3




(157.1)

78 Reprinted in English translation under the title “Electromagnetic
phenomena in a system moving with any velocity less than that of light” in
The Principle of Relativity (), a valuable collection reprinted classic papers
which is still available in paperback (published by Dover).

79 See §7 of “Die Grundgleichungen für die elektromagnetischen Vorgänge in
bewegten Körpen” () in Minkowski’s Collected Works.
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−∂1B1 − ∂2B2 − ∂3B3 = 0
+∂0B1 + ∂2E3 − ∂3E2 = 0
+∂0B2 − ∂1E3 + ∂3E1 = 0
+∂0B3 + ∂1E2 − ∂2E1 = 0




(157.2)

where we have found it formally convenient to write

j ≡
(
j0

jjj

)
=




j0

j1

j2

j3


 with j0 ≡ cρ (158)

It is evident that (157.1) could be written in the following remarkably compact
and simple form

∂µF
µν = 1

cj
ν

↑ ↑———note : Here as always, summation
3∑
0

on
the repeated index is understood .

provided the Fµν are defined by the following scheme:

F ≡




F 00 F 01 F 02 F 03

F 10 F 11 F 12 F 13

F 20 F 21 F 22 F 23

F 30 F 31 F 32 F 33


 =




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0




≡ A(EEE,BBB) (159)

Here the A-notation is intended to emphasize that the 4×4 matrix in question
is antisymmetric; as such, it has

� � �� �� or 6 independently-specifiable components,
which at (159) we have been motivated to identify in a specific way with the
six components of a pair of 3-vectors. The statement

F νµ = −Fµν : more compactly F
T = −F (160)

evidently holds at every spacetime point , and will play a central role in our work
henceforth.

It follows by inspection from results now in hand that the sourceless field
equations (157.2) can be formulated

∂µG
µν = 0

with

G ≡ ‖Gµν‖ = A(−BBB,EEE) =




0 B1 B2 B3

−B1 0 −E3 E2

−B2 E3 0 −E1

−B3 −E2 E1 0


 (161)
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. . .but with this step we have acquired an obligation to develop the sense in
which G is a “natural companion” of F. To that end:

Let the Levi-Civita symbol εµνρσ be defined

εµνρσ ≡
{

+1 if (µνρσ) is an even permutation of (0123)
−1 if (µνρσ) is an odd permutation of (0123)

0 otherwise

and let quantities F �
µν be constructed with its aid:

F �
µν ≡ 1

2εµναβF
αβ where

∑
ρ,σ

is understood (162)

By computation we readily establish that

F
� ≡ ‖F �

µν‖ =




0 F 23 −F 13 F 12

0 F 03 −F 02

(−) 0 F 01

0




=




0 −B1 −B2 −B3

B1 0 −E3 E2

B2 E3 0 −E1

B3 −E2 E1 0


 = A(BBB,EEE)

which would become G if we could change the sign of the B-entries, and this
is readily accomplished: multiply A(BBB,EEE) by

j
���g ≡




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (163)

on the right (this leaves the 0th column unchanged, but changes the sign of the
1st, 2nd and 3rd columns), and again by another factor of j

���g on the left (this
leaves the 0th row unchanged, but changes the sign of the 1st, 2nd and 3rd rows,
the 1st, 2nd and 3rd elements of which have now been restored to their original
signs). We are led thus to j

���g A(BBB,EEE) j
���g = A(−BBB,EEE) which—because

j
���g =




j
���g T : j

���g is its own transpose (i.e., is symmetric)
j
���g –1 : j

���g is its own inverse (164)

—can also be expressed A(BBB,EEE) = j
���g A(−BBB,EEE) j

���g . In short,80

F
� = j

���g G j
���g T equivalently G = j

���g –1
F

�( j
���g –1)T (165)

80 problem 35.
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Let the elements of j
���g be called gµν , and the elements of j

���g –1 (though they
happen to be numerically identical to the elements of j

���g ) be called gµν :

j
���g ≡ ‖gµν‖ and j

���g –1 ≡ ‖gµν‖ ⇒ gµαgαν = δµν ≡
{

1 if µ = ν
0 if µ �= ν

We then have

F �
µν = gµαgνβG

αβ or equivalently Gµν = gµαgνβF �
αβ

To summarize: we have

Fµν −−−−−−−−−−−−−−→
�

F �
µν

lift indices with j
���g –1

−−−−−−−−−−−−−−→ F �µν = Gµν

which in (EEE,BBB)-notation reads

F = A(EEE,BBB) −→ A(BBB,EEE) −→ A(−BBB,EEE) = G

Repetition of the process gives

G = A(−BBB,EEE) −→ A(EEE,−BBB) −→ A(−EEE,−BBB) = −F

Gµν is said to be the “dual” of Fµν , and the process Fµν −→ Gµν is called
“dualization;” it amounts to a kind of “rotation in (EEE,BBB)-space,” in the sense
illustrated below:

E

B E

B

Figure 45: The “rotational” effect of “dualization” on EEE and BBB.

Preceding remarks lend precise support and meaning to the claim that Fµν and
Gµν are “natural companions,” and very closely related.

We shall—as above, but more generally (and for the good tensor-theoretic
reasons that will soon emerge) use gµν and gµν to raise and lower—in short,
to “manipulate”—indices, writing (for example)81

∂µ = gµα∂α , ∂µ = gµα∂
α

jµ = gµαjα , jµ = gµαj
α

Fµν = gµαF
α
ν = gµαgνβF

αβ

81 problem 36.
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We are placed thus in position to notice that the sourceless Maxwell equations
(157.2) can be formulated82

∂1F23 + ∂2F31 + ∂3F12 = 0
∂0F23 + ∂2F30 + ∂3F02 = 0
∂0F13 + ∂1F30 + ∂3F01 = 0
∂0F12 + ∂1F20 + ∂2F01 = 0




(166.1)

where the sums over cyclic permutations are sometimes called “windmill sums.”
More compactly, we have83

εµαρσ∂
αF ρσ = 0 (166.2)

There is no new physics in the material presented thus far: our work has
been merely reformulational, notational—old wine in new bottles. Proceeding
in response mainly to the linearity of Maxwell’s equations, we have allowed
ourselves to play linear-algebraic and notational games intended to maximize
the formal symmetry/simplicity of Maxwell’s equations . . . so that the
transformation-theoretic problem which is our real concern can be posed in
the simplest possible terms. Maxwell himself84 construed the electromagnetic
field to involve a pair of 3-vector fields: EEE and BBB. We have seen, however, that
• one can construe the components of EEE and BBB to be the accidentally

distinguished names given to the six independently-specifiable non-zero
components of an antisymmetric tensor85field Fµν . The field equations
then read

∂µF
µν = 1

cj
ν and εµαρσ∂

αF ρσ = 0 (167)

provided the gαβ that enter into the definition ∂α ≡ gαβ∂β are given by
(163). Alternatively . . .

• one can adopt the view that the electromagnetic field to involves a pair of
antisymmetric tensor fields Fµν and Gµν which are constrained to satisfy
not only the field equations

∂µF
µν = 1

cj
ν and ∂µG

µν = 0 (168.1)

but also the algebraic condition

Gµν = 1
2g
µαgνβεαβρσF

ρσ (168.2)

Here again, the “index manipulators” gµν and gµν must be assigned the
specific meanings implicit in (163).

82 problem 37.
83 problem 38.
84 Here I take some liberty with the complicated historical facts of the matter:

see again the fragmentary essay77 cited earlier.
85 For the moment “tensor” simply means “doubly indexed.”
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It will emerge that Lorentz’ question (page 107), if phrased in the terms natural
to either of those descriptions of Maxwellian electrodynamics, virtually “answers
itself.” But to see how this comes about one must possess a command of the
basic elements of tensor analysis—a subject with which Minkowski
(mathematician that he was) enjoyed a familiarity not shared by any of his
electrodynamical predecessors or contemporaries.86

2. Introduction to the algebra and calculus of tensors. Let P be a point in an
N-dimensional manifold M.87 Let (x1, x2, . . . , xN) be coordinates assigned to
P by a coordinate system X inscribed on a neighborhood88 containing P , and

86 Though (167) and (168) serve optimally my immediate purposes, the reader
should be aware that there exist also many alternative formulations of the
Maxwellian theory, and that these may afford advantages in specialized contexts.
We will have much to say about the formalism that proceeds from writing

Fµν = ∂µAν − ∂νAµ

and considering the fundamental object of electrodynamic analysis to be a single
4-vector field . Alternatively, one might construct and study the “6-vector”

f =




f1

f2

f3

f4

f5

f6


 ≡




E1

E2

E3

B1

B2

B3




(see §26 in Arnold Sommerfeld’s Electrodynamics ( English translation ) or
my Classical Field Theory (), Chapter 2, pages 4–6). Or one might consider
electrodynamics to be concerned with the properties of a single complex 3-vector

VVV ≡ EEE + iBBB

(see Appendix B in my “On some recent electrodynamical work by Thomas
Wieting” ()). And there exist yet many other formalisms. Maxwell himself
gave passing attention to a “quaternionic” formulation of his theory.

87 Think “surface of a sphere,” “surface of a torus,” etc. or of their higher-
dimensional counterparts. Or of N-dimensional Euclidean space itself. Or—as
soon as you can—4-dimensional spacetime. I intend to proceed quite informally,
and to defer questions of the nature “What is a manifold?” until such time
as we are able to look back and ask “What properties should we fold into our
definitions? What did we need to make our arguments work?”

88 I say “neighborhood” because it may happen that every coordinate system
inscribed on M necessarily displays one or more singularities (think of the
longitude of the North Pole). It is our announced intention to stay away from
such points.
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let (x1, x2, . . . , xN) be the coordinates assigned to that same point by a second
coordinate system X. We seek to develop rules according to which objects
defined in the neighborhood of P respond to coordinate transformations: X→X.

The statement that “φ(x) transforms as a scalar field ” carries this familiar
meaning:

φ(x) −→ φ(x) ≡ φ(x(x)) (169)

Here and henceforth: x(x) alludes to the functional statements

xm = xm(x1, x2, . . . , xN) : m = 1, 2, . . . N (170)

that describe how X and X are, in the instance at hand, specifically related.
How do the partial derivatives of φ transform? By calculus

∂φ

∂xm
=

∂xa

∂xm
∂φ

∂xa
(171.1)

where (as always)
∑
a

is understood. Looking to the 2nd derivatives, we have

∂2φ

∂xm∂xn
=

∂xa

∂xm
∂xb

∂xn
∂2φ

∂xa∂xb
+

∂2xa

∂xm∂xn
∂φ

∂xa
(171.2)

Et cetera. Such are the “objects” we encounter in routine work, and the
transformation rules which we want to be able to manipulate in a simple
manner.

The quantities ∂xa/∂xm arise directly and exclusively from the equations
(170) that describe X← X. They constitute the elements of the “transformation
matrix”

W ≡ ‖Wn
m‖

Wn
m ≡ ∂xn/∂xm (172.1)

—the value of which will in general vary from point to point. Function theory
teaches us that the coordinate transformation will be invertible (i.e., that we
can proceed from xn = xn(x) to equations of the form xn = xn(x)) if and only
if W is non-singular: det W �= 0, which we always assume to be the case (in the
neighborhood of P ). The inverse X→ X of X← X gives rise to

M ≡ ‖Mm
n‖

Mm
n ≡ ∂xm/∂xn (172.2)

It is important to notice that

WM =
∥∥∥∑

a

∂xn

∂xa
∂xa

∂xm

∥∥∥ =
∥∥∥ ∂xn

∂xm

∥∥∥ =
∥∥∥δnm∥∥∥ = I (173)
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i.e., that the matrices M and W are inverses of each other.

Objects Xm1...mr
n1...ns

are said to comprise the “components of a (mixed)
tensor of contravariant rank r and covariant rank s if and only if they respond
to X→ X by the following multilinear rule:

Xm1...mr
n1...ns

↓ (174)
Xm1...mr

n1...ns = Mm1
a1 · · ·Mmr

arW
b1
n1 · · ·W bs

nsX
a1...ar

b1...bs

All indices range on
{
1, 2, . . . , N

}
, N is called the “dimension” of the tensor, and

summation on repeated indices is (by the “Einstein summation convention”)
understood. The covariant/contravariant distinction is signaled notationally as
a subscript/superscript distinction, and alludes to whether it is W or M that
transports the components in question “across the street, from the X-side to
the X-side.”

If
Xm −→ Xm = Mm

aX
a

then the Xm are said to be “components of a contravariant vector .” Coordinate
differentials provide the classic prototype:

dxm −→ dxm =
∑
a

∂xm

∂xa
dxa (175)

If, on the other hand,

Xn −→ Xn = W b
nXb

then the Xn are said to be “components of a covariant vector.” Here the first
partials φ,n ≡ ∂nφ of a scalar field (components of the gradient) provide the
classic prototype:

φ,n −→ φ,n =
∑
b

φ,b
∂xb

∂xn
(176)

That was the lesson of (171.1).

Look, however, to the lesson of (171.2), where we found that

φ,mn −→ φ,mn =
∑
b

φ,ab
∂xa

∂xm
∂xb

∂xn
+ extraneous term

The intrusion of the “extraneous term” is typical of the differential calculus of
tensors, and arises from an elementary circumstance: hitting

Xm
n = Mm

aW
b
nX

a
b (say)
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with ∂p = W q
p∂q gives

Xm
n,p = Mm

aW
b
nX

a
b,qW

q
p + W q

p
∂(Mm

aW
b
n)

∂xq
Xa

b

= (term with covariant rank increased by one)
+ (extraneous term)

The “extraneous term” vanishes if the M ’s and W ’s are constant ; i.e., if the
functions xn(x) depend at most linearly upon their arguments xn = Mn

ax
a+ξa.

And in a small number of (electrodynamically important!) cases the extraneous
terms cancel when derivatives are combined in certain ways . . . as we will soon
have occasion to see. But in general, effective management of the extraneous
term must await the introduction of some powerful new ideas—ideas that belong
not to the algebra of tensors (my present concern) but to the calculus of tensors.
For the moment I must be content to emphasize that, on the basis of evidence
now in hand,

Not every multiply-indexed object transforms tensorially!

In particular, the xn themselves do not transform tensorially except in the linear
case xn = Mn

ax
a.

A conceptual point of major importance: the Xm1...mr
n1...ns

refer to a
tensor, but do not themselves comprise the tensor: they are the components
of the tensor X with respect to the coordinate system X, and collectively serve
to describe X. Similarly Xm1...mr

n1...ns
with respect to X. The tensor itself is a

coordinate-independent object that lives “behind the scene.” The situation is
illustrated in Figure 46.

To lend substance to a remark made near the top of the page: Let Xm

transform as a covariant vector. Look to the transformation properties of Xm,n

and obtain

Xm,n = W a
mW b

nXa,b + ∂2xa

∂xn∂xm
Xa︸ ︷︷ ︸

extraneous term, therefore non-tensorial

Now construct Amn ≡ Xm,n −Xn,m = −Anm and obtain

Amn = W a
mW b

nAab because the extraneous terms cancel

We conclude that the antisymmetric construction Amn (which we might call
the curl of the covariant vector field Xm(x)) does—“accidentally”—transform
tensorially.
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X

X

X

X

Figure 46: The Xm serve to describe the blue arrow with respect to
the black coordinate system X, as the Xm serve to describe the blue
arrow with respect to the red coordinate system X. But neither Xm

nor Xm will be confused with the blue arrow itself: to do so would be
to confuse descriptors with the thing described. So it is with tensors
in general. Tensor analysis is concerned with relationships among
alternative descriptors, not with “things in themselves.”

The following points are elementary, but fundamental to applications of
the tensor concept:

1) If the components X ···
... of a tensor (all) vanish one coordinate system,

then they vanish in all coordinate systems—this by the homogeneity of
the defining statement (174).

2) Tensors can be added/subtracted if and only if X ···
... and Y ···

... are of
the same covariant/contravariant rank and dimension. Constructions of
(say) the form Am + Bm “come unstuck” when transformed; for that same
reason, statements of (say) the form Am = Bm—while they may be valid
in some given coordinate system—do not entail Am = Bm. But . . .

3) If X ···
... and Y ···

... are of the same rank and dimension, then

X ···
... = Y ···

... =⇒ X ···
... = Y ···

...

It is, in fact, because of the remarkable transformational stability of
tensorial equations that we study this subject, and try to formulate our
physics in tensorial terms.

4) If X ···
... and Y ···

... are co-dimensional tensors of ranks
{
r′, s′

}
and

{
r′′, s′′

}
then their product X ···

...Y
···
... is tensorial with rank

{
r′ + r′′, s′ + s′′

}
:

tensors of the same dimension can be multiplied irrespective of their ranks.
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If X ···
... is tensorial of rank

{
r, s

}
then a the operation of

contraction: Set a superscript equal to a subscript, and add

yields components of a tensor of rank
{
r−1, s−1

}
. The mechanism is exposed

most simply by example: start from (say)

Xjk
� = M j

aM
k
bW

c
�X

ab
c

Set (say) k = 4 and obtain

Xjk
k = M j

aM
k
bW

c
kX

ab
c

= M j
a δcb Xab

c by M W = I

= M j
aX

ab
b

according to which Xj ≡ Xjk
k transforms as a contravariant vector. Similarly,

the twice-contracted objects Xjk
jk and Xjk

kj transform as (generally distinct)
invariants.89 Mixed tensors of high rank can be singly/multiply contracted in
many distinct ways. It is also possible to “contract one tensor into another;” a
simple example:

AkB
k :

{ invariant formed by contracting a covariant
vector into a contravariant vector

The “Kronecker symbol” δmn is a number-valued object90 with which all
readers are familiar. If “transformed tensorially” it gives

δmn −→ δmn = Mm
aW

b
nδ
a
b

= Mm
aW

a
n

= δmn by M W = I

and we are brought to the remarkable conclusion that the components δmn of the
Kronecker tensor have the same numerical values in every coordinate system.
Thus does δmn become what I will call a “universally available object”—to be
joined soon by a few others. With this . . .

We are placed in position to observe that if the quantities gmn transform
as the components of a 2nd rank covariant tensor

gmn −→ gmn = W a
mW b

ngab (177)

89 The “theory of invariants” was a favorite topic among 19th Century
mathematicians, and provided the founding fathers of tensor analysis with a
source of motivation (see pages 206–211 in E. T. Bell’s The Development of
Mathematics ()).

90 See again the top of page 110.
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then
1) the equation gmagan = δmn, if taken as (compare page 110) a definition of

the contravariant tensor gmn, makes good coordinate-independent tensor-
theoretic sense, and

2) so do the equations
X ···m···
... ... ≡ gmaX ··· ···

... a ...

X ··· ···
...m... ≡ gmaX

··· a ···
... ...

by means of which we have proposed already on page 110 to raise and
lower indices.91 To insure that gmaX ··· ···

... a ... and gamX ··· ···
... a ... are identical

we will require that

gmn = gnm : implies the symmetry also of gmn

The transformation equation (177) admits—uncharacteristically–of matrix
formulation

j
���g −→ j

���g = W
T j

���g W

Taking determinant of both sides, and writing

g ≡ det j
���g , W ≡ det W = 1/det M = M –1

we have
g −→ g = W 2g (178.1)

The statement that φ(x) transforms as a scalar density of weight w carries this
meaning:

φ(x) −→ φ(x) = Ww · φ(x(x))

We recover (169) in the “weightless” case w = 0 (and for arbitrary values of w
when it happens that W = 1). Evidently

g ≡ det j
���g transforms as a scalar density of weight w = 2 (178.2)

The more general statement that Xm1...mr
n1...ns transforms as a tensor density

of weight w means that

Xm1...mr
n1...ns

= Ww ·Mm1
a1 · · ·Mmr

ar
W b1

n1 · · ·W bs
ns
Xa1...ar

b1...bs

We can multiply/contract tensors of dissimilar weight, but must be careful not
to try to add them or set them equal. The “tensor/tensor density distinction”
becomes significant only in contexts where W �= 1.

Familiarity with the tensor density concept places us in position to consider
the tensor-theoretic significance of the Levi-Civita symbol

91 Note, however, that we work now N -dimensionally, and have stripped
gmn of its formerly specialized (Lorentzian) construction (163): it has become
“generic.”
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εn1n2 . . . nN
≡ sgn

(
1 2 · · · N
n1 n2 · · · nN

)

where “sgn” refers to the “signum,” which reports (see again page 109) whether{
n1, n2, . . . , nN

}
is an even/odd permutation of

{
1, 2, . . . , N

}
or no permutation

at all. The tentative assumption that εn1n2 . . . nN
transforms as a (totally

antisymmetric) tensor density of unspecified weight w

εn1n2 . . . nN
= Ww ·Wa1n1W

a2n2 · · ·WaNnN
εa1a2 . . . aN︸ ︷︷ ︸

|
= εn1n2 . . . nN

det W

by definition of the determinant!

= Ww+1 · εn1n2 . . . nN

brings us to the remarkable conclusion that the components of the Levi-Civita
tensor will have the same numerical values in every coordinate system provided
εn1n2 . . . nN

is assumed to transform as a density of weight w = −1. The
Levi-Civita tensor thus joins our short list of “universally available objects.”92

I have remarked that εn1n2 . . . nN
is “totally antisymmetric.” It is of

importance to notice in this connection that—more generally—statements of
the forms

X ···m···n···
... = ±X ···n···m···

...

and
X ···

···m···n··· = ±X ···
···n···m···

have tensorial (or coordinate system independent) significance, while symmetry
statements of the hybrid form

X ···m···
···n··· = ±X ···n···

···m···

—while they might be valid in some particular coordinate system—“become
unstuck” when transformed. Note also that

Xmn = 1
2 (Xmn + Xnm) + 1

2 (Xmn −Xnm)

serves to resolve Xmn tensorially into its symmetric and antisymmetric parts.93

92 The (weightless) “metric tensor” gmn is not “universally available,” but
must be introduced “by hand.” In contexts where gmn is available (has been
introduced to facilitate index manipulation) it becomes natural to construct

√
g εn1n2 . . . nN

: weightless totally antisymmetric tensor

—the values of which range on
{
0,±√g

}
in all coordinate systems.

93 problem 39.
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We have now in our possession a command of tensor algebra which is
sufficient to serve our immediate needs, but must sharpen our command of the
differential calculus of tensors. This is a more intricate subject, but one into
which—surprisingly—we need not enter very deeply to acquire the tools needed
to achieve our electrodynamical objectives. I will be concerned mainly with the
development of a short list of “accidentally tensorial derivative constructions,”94

and will glance only cursorily at what might be called the “non-accidental
aspects” of the tensor calculus.

catalog of accidentally tensorial derivative constructions

1. We established already at (171.1) that if φ transforms as a weightless scalar
field then the components of the gradient of φ

∂mφ transform tensorially (179.1)

2. And we observed on page 115 that if Xm transforms as a weightless covariant
vector field then the components of the curl of Xm transform tensorially.

∂nXm − ∂mXn transform tensorially (179.2)

3. If Xjk is a weightless tensor field, how do the ∂iXjk transform? Immediately

∂iXjk = W b
jW

c
k ·W a

i ∂aXbc + Xbc∂i
{
W b

jW
c
k

}
= W a

iW
b
jW

c
k ∂aXbc + Xbc

{
∂2xb

∂xi∂xj
∂xc

∂xk
+ ∂xb

∂xj
∂2xc

∂xk∂xi

}
︸ ︷︷ ︸

extraneous term

so ∂iXjk transforms tensorially only under such circumstances as cause the
“extraneous term” to vanish: this happens when X→ X is “affine;” i.e., when
the W-matrix is x-independent. Notice, however, that we now have

∂iXjk + ∂jXki + ∂kXij = W a
iW

b
jW

c
k(∂aXbc + ∂aXbc + ∂aXbc)

+ Xbc

{
∂2xb

∂xi∂xj
∂xc

∂xk
+ ∂xb

∂xj
∂2xc

∂xk∂xi

+ ∂2xb

∂xj∂xk
∂xc

∂xi
+ ∂xb

∂xk
∂2xc

∂xi∂xj

+ ∂2xb

∂xk∂xi
∂xc

∂xj
+ ∂xb

∂xi
∂2xc

∂xj∂xk

}
in which

{
etc.

}
is bc-symmetric; if Xbc were antisymmetric the extraneous

term would therefore drop away. We conclude that if Xjk is an antisymmetric
weightless covariant tensor field then the components of the windmill sum

∂iXjk + ∂jXki + ∂kXij transform tensorially (179.3)

94 The possibility and electrodynamical utility of such a list was brought first
to my attention when, as a student, I happened upon the discussion which
appears on pages 22–24 of E. Schrödinger’s Space-time Structure (). This
elegant little volume (which runs to only 119 pages) provides physicists with
an elegantly succinct introduction to tensor analysis. I recommend it to your
attention.
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4. If Xm is a vector density of unspecified weight w how does ∂mXm transform?
Immediately

∂mXm = Ww ·Mm
a∂m︸ ︷︷ ︸Xa + Xa∂m

{
Ww ·Mm

a

}
∂a

= Ww · ∂aXa + Xa
{
Ww ∂

∂xm
∂xm

∂xa
+ wWw−1 ∂W

∂xa

}

An important lemma95 asserts that

∂
∂xm

∂xm

∂xa
= ∂

∂xa
log det

∥∥∥∂xm
∂xn

∥∥∥
= ∂a logM = −∂a logW

= −W –1∂aW

so

= Ww · ∂aXa + Xa(w − 1)Ww−1 ∂W
∂xa︸ ︷︷ ︸

extraneous term

The extraneous term vanishes (for all w) when X→ X has the property that W
is x-independent,96 and it vanishes unrestrictedly if w = 1. We conclude that
if Xm is a contravariant vector density of unit weight then its divergence

∂mXm transforms tensorially (by invariance) (179.4)

5. If Xmn is a vector density of unspecified weight w how does ∂mXmn

transform? Immediately

∂mXmn = Ww ·Mm
aM

n
b(W c

m∂cX
ab)︸ ︷︷ ︸ +Xab∂m(Ww ·Mm

aM
n
b)︸ ︷︷ ︸∣∣∣ extraneous term

= Ww ·Mn
b ∂aX

ab by Mm
aW

c
m = δca

The extraneous term can be developed

Xab
{
Mn

bwWw−1(Mm
a∂m)W+Ww

[
Mn

b ∂mMm
a︸ ︷︷ ︸ +(Mm

a∂m)Mn
b

]}
|
= −W –1∂aW by the lemma

so by Mm
a∂m = ∂a we have

extraneous term = Xab
{
Mn

b(w − 1)Ww−1∂aW + Ww ∂2xn

∂xa∂xb

}

95 For the interesting but somewhat intricate proof, see classical dynamics
(/), Chapter 2, page 49.

96 This is weaker than the requirement that W be x-independent.



122 Aspects of special relativity

The second partial is ab-symmetric, and makes no net contribution if we assume
Xab to be ab-antisymmetric. The surviving fragment of the extraneous term
vanishes (all w) if W is constant, and vanishes unrestrictedly if w = 1. We are
brought thus to the conclusion that if Xmn is an antisymmetric density of unit
weight then

∂mXmn transforms tensorially (179.5)

“Generalized divergences” ∂mXmn1···np yield to a similar analysis, but will not
be needed.

6. Taking (179.5) and (179.4) in combination we find that under those same
conditons (i.e., if Xmn is an antisymmetric density of unit weight) then

∂m∂nX
mn transforms tensorially

but this is hardly news: the postulated antisymmetry fo Xmn combines with
the manifest symmetry of ∂m∂n to give

∂m∂nX
mn = 0 automatically

The evidence now in hand suggests—accurately—that antisymmetry has
a marvelous power to dispose of what we have called “extraneous terms.” The
calculus of antisymmetric tensors is in fact much easier than the calculus of
tensors-in-general, and is known as the exterior calculus. That independently
developed sub-branch of the tensor calculus supports not only a differential
calculus of tensors but also—uniquely—an integral calculus, which radiates
from the theory of determinants (which are antisymmetry-infested) and in
which the fundamental statement is a vast generalization of Stokes’ theorem.97

remark: Readers will be placed at no immediate disadvantage if,
on a first reading, they skip the following descriptive comments,
which have been inserted only in the interest of a kind of “sketchy
completeness” and which refer to material which is—remarkably!—
inessential to our electrodynamical progress (though indispensable
in many other physical contexts).

In more general (antisymmetry-free) contexts one deals with the
non-tensoriality of ∂mX ···

... by modifying the concept of differentiation, writing
(for example)

DjXk ≡W b
jW

c
k ∂bXc︸ ︷︷ ︸
|—tensorial transform of ∂jXk

≡ components of the covariant derivative of Xk

97 See again the mathematical digression that culminates on page 50. A
fairly complete and detailed account of the exterior calculus can be found in
“Electrodynamical applications of the exterior calculus” ().
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where by computation

= ∂jXk −XiΓ
i
jk

with
Γ ijk ≡ ∂xi

∂xp
∂2xp

∂xj∂xk

By extension of the notational convention Xk, j ≡ ∂jXk one writes Xk; j ≡DjXk.
It is a clear that Xj;k—since created by “tensorial continuation” from the
“seed” ∂jXk—transforms tensorially, and that it has something to do with
familiar differentiation (is differentiation, but with built-in compensation for
the familiar “extraneous term,” and reduces to ordinary differentiation in the
root coordinate system X). The quantities Γ ijk turn out not to transform
tensorially, but by the rule

= M i
aW

b
jW

c
kΓ

a
bc + ∂xi

∂xp
∂2xp

∂xj∂xk

characteristic of “affine connections.” Finally, one gives up the assumption
that there exists a coordinate system (the X-system of prior discussion) in
which Dj and ∂j have coincident (i.e., in which Γ ijk vanishes globally). The
affine connection Γ ijk(x) becomes an object that we are free to deposit on the
manifold M, to create an “affinely connected manifold”. . . just as by deposition
of gij(x) we create a “metrically connected manifold.” But when we do both
things98 a compatability condition arises, for we expect
• index manipulation followed by covariant differentiation, and
• covariant differentiation followed by index manipulation

to yield the same result. This is readily shown to entail gij;k = 0, which in turn
entails

Γ ijk = 1
2g
ia

(∂gaj
∂xk

+
∂gak
∂xj

− ∂gjk
∂xa

)
The affine connection has become implicit in the metric connection—it has
become the “Christoffel connection,” which plays a central role in Riemannian
geometry and its applications (general relativity): down the road just a short
way lies the Riemann-Christoffel curvature tensor

Rmnij =
∂Γmnj
∂xi

− ∂Γmni
∂xj

+ ΓmaiΓ
a
nj − ΓmajΓ

a
ni

which enters into statements such as the following

Xn;ij −Xn;ji = XaR
a
nij

which describes the typical inequality of crossed covariant derivatives. The
“covariant derivative” was invented by Elwin Christoffel (–) in .

98 Notice that we need both if we want to construct such things as the

covariant Laplacian of φ ≡ gmnφ;mn
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Figure 47: Any attempt to construct a transformationally coherent
theory of differentiation by comparing such neighboring vectors is
doomed unless X→ X gives rise to a transformation matrix that is
constant on the neighborhood.

Figure 48: The problem just noted is resolved if one compares one
vector with the local parallel transport of the other—a “stand-in”
rooted to the same point as the original vector. For then only a
single transformation matrix enters into the discussion.

Sharp insight into the meaning of the covariant derivative was provided in
 by Levi-Civita,99 who pointed out that when one works from Figure 47 one
cannot realistically expect to obtain a transformationally sensible result, for the

99 The fundamental importance of Levi-Civita’s idea was immediately
appreciated and broadcast by Hermann Weyl. See §14 in his classic Space,
Time & Matter (4th edition , the English translation of which has been
reprinted by Dover).
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transformation matrices W(x) and W(x + dx) that act upon (say) Xm(x) and
Xm(x + dx) are, in general, distinct. Levi-Civita observed that a workable
procedure does, however, result if one looks not Xm(x + dx)−Xm(x) but to
Xm(x)−Xm(x), where

Xm(x) results from parallel transport
of Xm(x + dx) from x + dx back to x

He endowed the intuitive concept “parallel transport” (Figure 48) with a precise
(natural) meaning, and immediately recovered the standard theory of covariant
differentiation. But he obtained also much else: he showed, for example,
that “geodesics” can be considered to arise not as “shortest” curves—curves
produced by minimization of arc length

∫
ds with (ds)2 = gmndx

mdxn

—but as curves whose tangents can be got one from another by parallel
transportation: head off in some direction and “follow your nose” was the
idea. Levi-Civita’s idea so enriched a subject previously known as the “absolute
differential calculus” that its name was changed . . . to “tensor analysis.”

Our catalog (pages 120–122) can be looked upon as an ennumeration of
circumstances in which—“by accident”—the Γ -apparatus falls away. Look, for
example, to the “covariant curl,” where we have

Xm;n −Xn;m = (Xm,n −XaΓ
a
nm)− (Xn,m −XaΓ

a
mn)

= Xm,n −Xn,m by Γ amn = Γ anm

The basic principles of the “absolute differential calculus” were developed
between  and  by Gregorio Ricci-Curbastro (–), who was a
mathematician in the tradition of Riemann and Christoffel.100 In  his
student, Tullio Levi-Civita (–), published “Sulle transformazioni della
eqazioni dinamiche” to demonstrate the physical utility of the methods which
Ricci himself had applied only to differential geometry. In —at the urging
of Felix Klein, in Göttingen—Ricci and Levi-Civita co-authored “Méthodes
de calcul différentiel absolus et leurs applications,” a lengthy review of the
subject . . .but they were Italians writing in French, and published in a German
periodical (Mathematische Annalen), and their work was largely ignored: for
nearly twenty years the subject was known to only a few cognoscente (who
included Minkowski at Göttingen), and cultivated by fewer. General interest
in the subject developed—explosively!—only in the wake of Einstein’s general
theory of relativity (). Tensor methods had been brought to the reluctant
attention of Einstein by Marcel Grossmann, a geometer who had been a
classmate of Einstein’s at the ETH in Zürich (Einstein reportedly used to study

100 Ricci had interest also in physics, and as a young man published (in Nuovo
Cimento) the first Italian account of Maxwellian electrodynamics.
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Grossmann’s class notes instead of attending Minkowski’s lectures) and whose
father had been instrumental in obtaining for the young and unknown Einstein
a position in the Swiss patent office.

Acceptence of the tensor calculus was impeded for a while by those (mainly
mathematicians) who perceived it to be in competition with the exterior
calculus—an elegant French creation (Poincaré, Goursat, Cartan, . . . ) which
treats (but more deeply) a narrower set of issues, but (for that very reason)
supports also a robust integral calculus. The exterior calculus shares the
Germanic pre-history of tensor analysis (Gauss, Grassmann, Riemann, . . . ) but
was developed semi-independently (and somewhat later), and has only fairly
recently begun to be included among the work-a-day tools of mathematical
physicists. Every physicist can be expected today to have some knowledge of
the tensor calculus, but the exterior calculus has yet to find a secure place in the
pedagogical literature of physics, and for that (self-defeating) reason physicists
who wish to be understood still tend to avoid the subject . . . in their writing
and (at greater hazard) in their creative thought.

3. Transformation properties of the electromagnetic field equations. We will be
led in the following discussion from Maxwell’s equations to—first and most
easily—the group of “Lorentz transformations,” which by some fairly natural
interpretive enlargement detach from their electrodynamic birthplace to provide
the foundation of Einstein’s Principle of Relativity . But it will emerge that

The covariance group of a theory depends
in part upon how the theory is expressed :

slight adjustments in the formal rendition of Maxwell’s equations will lead to
transformation groups that differ radically from the Lorentz group (but that
contain the Lorentz group as a subgroup) . . . and that also is a lesson that admits
of “enlargement”—that pertains to fields far removed from electrodynamics.
The point merits explicit acknowledgement because it relates to how casually
accepted conventions can exert unwitting control on the development of physics.

first point of view Let Maxwell’s equations be notated101

∂µF
µν = 1

cj
ν (180.1)

∂µFνλ + ∂νFλµ + ∂λFµν = 0 (180.2)

where Fµν is antisymmetric and where

Fµν ≡ gµαgνβF
αβ with j

���g ≡ ‖gµν‖ =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (181)

is (automatically) also antisymmetric. From Fµν = −Fνµ it follows, by the way,

101 Compare (167).
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that (180.2) reduces to the triviality 0 = 0 unless µ, ν and λ are distinct, so
the equation in question is just a condensed version of the sourceless Maxwell
equations as they were encountered on page 111.102 In view of entry (179.5) in
our catalog it becomes natural to

assume that Fµν and jµ transform as the components of
tensor densities of unit weight:

Fµν −→ Fµν = W ·Mµ
αM

ν
βF

αβ A1

jµ −→ jµ = W ·Mµ
αj
α A2

We note103 that it makes coordinate-independent good
sense to assume of the field tensor that it is antisymmetric:

Fµν antisymmetric =⇒ Fµν antisymmetric

The unrestricted covariance (in the sense “form-invariance under coordinate
transformation”) of (180.1) is then assured

∂µF
µν = 1

cj
ν −→ ∂µF

µν = 1
cj
ν

On grounds that it would be intolerable for the description (181) of j
���g to be

“special to the coordinate system X” we

assume gµν to transform as a symmetric tensor of zero
weight

gµν −→ gµν = Wα
µW

β
νgαβ B1

but impose upon X→ X the constraint that

= gµν B2

This amounts in effect to imposition of the requirement that X→ X be of such
a nature that

W
T j
���g W = j

���g everywhere (182)

102 We might write

‖Fµν‖ ≡




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0




∴ ‖Fµν‖ =




0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0




to establish explicit contact with orthodox 3-vector notation and terminology
(and at the same time to make antisymmetry manifest), but such a step would
be extraneous to the present line of argument.

103 See again page 119.
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Looking to the determinant of the preceding equation we obtain

W 2 = 1

from which (arguing from continuity) we conclude that

W is
{

everywhere equal to +1, else
everywhere equal to −1. (183)

This result protects us from a certain embarrassment: assumptions A1 and B1

jointly imply that Fµν transforms as a tensor of unit weight, while covariance of
the windmill sum in (180.2) was seen at (179.3) to require Fµν to transform as a
weightless tensor. But (183) reduces all weight distinctions to empty trivialities.
Thus does B2 insure the covariance of (180.2):

∂µFνλ + ∂νFλµ + ∂λFµν = 0 −→ ∂µF νλ + ∂νFλµ + ∂λFµν = 0

From (182) we will extract the statement that

X→ X is a Lorentz transformation (184)

and come to the conclusion that Maxwellian electrodynamics—as formulated
above—is Lorentz covariant . Lorentz () and Einstein () were the
independent co-discoverers of this fundamental fact, which they established
by two alternative (and quite distinct) lines of argument.

second point of view Retain both the field equations (180) and
the assumptions A but—in order to escape from the above-mentioned “point of
embarrassment”—agree in place of B1 to

assume that gµν transforms as a symmetric tensor density
of weight w = − 1

2

gµν −→ gµν = W− 1
2 ·Wα

µW
β
νgαβ B∗

1

for then Fµν becomes weightless, as (179.3) requires. Retaining

= gµν B2

we obtain
W− 1

2 ·W T j
���g W = j

���g everywhere (185.1)

If spacetime were N -dimensional the determinantal argument would now give

W 2−N
2 = 1

which (uniquely) in the physical case (N = 4) reduces to a triviality: W 0 = 1.
The constraint (183) therefore drops away, with consequences which I will
discuss in a moment.
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third point of view This differs only superficially from the
viewpoint just considered. Retain B1 but in place of B2

assume that
gµν = Ωgµν B∗

2

Then
W

T j
���g W = Ω j

���g (185.2)

and the determinantal argument supplies

Ω = W
2
N

↓
= W

1
2 in the physical case N = 4

Equations (185.1) and (185.2) evidently say the same thing: the Lorentzian
constraint (183) drops away and in place of (184) we have

X→ X is a conformal transformation (186)

The conformal covariance of Maxwellian electrodynamics was discovered
independently by Cunningham104 and Bateman.105 It gives rise to ideas which
have a curious past106 and which have assumed a central place in elementary
particle physics at high energy. Some of the electrodynamical implications of
conformal covariance are so surprising that they have given rise to vigorous
controversy.107 A transformation is said (irrespective of the specific context) to
be “conformal” if it preserves angles locally . . . though such transformations do
not (in general) preserve non-local angles, nor do they (even locally) preserve
length. Engineers make heavy use of the conformal recoordinatizations of the
plane that arise from the theory of complex variables via the statement

z → z = f(z) : f(z) analytic

The bare bones of the argument: write z = x + iy, z = u + iv and obtain

u = u(x, y)
v = v(x, y)

giving
du = uxdx + uydy

dv = vxdx + vydy

104 E. Cunningham, “The principle of relativity in electrodynamics and an
extension thereof,” Proc. London Math. Soc. 8, 223 (1910).
105 H. Bateman, “The transformation of the electrodynamical equations,”
Proc. London Math. Soc. 8, 223 (1910).
106 T. Fulton, F. Rohrlich & L. Witten, “Conformal invariance in physics,”
Rev. Mod. Phys. 34, 442 (1962).
107 See “Radiation in hyperbolic motion” in R. Peierls, Surprises in Theoretical
Physics (), page 160.



130 Aspects of special relativity

-100 -50 50

-50

50

100

1 2 3 4

1

2

3

4

Figure 49: Cartesian grid (above) and its conformal image (below)
in the case f(z) = z3, which supplies

u(x, y) = x3 − 3xy2

v(x, y) = 3x2y − y3

The command ParametricPlot was used to construct the figure.

But

analyticity of f(z) ⇐⇒ cauchy-riemann conditions :
ux = +vy

uy = −vx
so (

ux
uy

)
···
(
vx
vy

)
= uxvx + uyvy = −uxuy + uyux = 0
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which is to say: curves of constant u are everywhere ⊥ to curves of constant v,
just as curves of constant x were everywhere normal to curves of constant y.
The situation is illustrated in the preceding figure. The 2-dimensional case—in
which one can conformally transform in as infinitely many ways as one can
select f(z)—is, however, exceptional:108 in the cases N > 2 conformality arises
from a less esoteric circumstance, and the possibilities are described by a finite
set of parameters. Let Am and Bm be weightless vectors, let the inner product
be defined (A,B) ≡ gmnA

mBn, and suppose gmn to transform as a symmetric
tensor density of weight w. Then (A,B) and the “squared lengths” (A,A) and
(B,B) of all transform (not as invariants but) as scalar densities. But the

angle between Am and Bm ≡ arccos
{

(A,B)√
(A,A)(B,B)

}

clearly does transform by invariance. Analysis of (185.2) gives rise in the
physical case (N = 4) to a 15-parameter conformal group that contains the
6-parameter Lorentz group as a subgroup.

fourth point of view Adopt the (unique) affine connection Γλµν
which vanishes here in our inertial X-coordinate system. For us there is then no
distinction between ordinary differentiation and covariant differentiation. So in
place of (180) we can, if we wish, write

Fµν ;µ = 1
cj
ν (187.1)

Fνλ;µ + Fλµ;ν + Fµν;λ = 0 (187.2)

Which is to say: we can elect to “tensorially continuate” our Maxwell equations
to other coordinate systems or arbitrary (moving curvilinear) design. We retain
the description (181) of gµν , and we retain

gµν −→ gµν = Wα
µW

β
νgαβ B1

But we have no longer any reason to retain B2, no longer any reason to impose
any specific constraint upon the design of gµν . We arrive thus at a formalism
in which

Fµν ;µ = 1
cj
ν −→ Fµν ;µ = 1

cj
ν

Fνλ;µ + Fλµ;ν + Fµν;λ = 0 −→ F νλ;µ + Fλµ;ν + Fµν;λ = 0

and in which
X→ X is unrestricted (188)

No “natural weights” are assigned within this formalism to Fµν , jµ and gµν ,
but formal continuity with the conformally-covariant formalism (whence with
the Lorentz-covariant formalism) seems to require that we assign weights w = 1
to Fµν and jµ, weight w = − 1

2 to gµν .

108 See page 55 of “The transformations which preserve wave equations” ()
in transformtional physics of waves (–).
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Still other points of view are possible,109 but I have carried this discussion
already far enough to establish the validity of a claim made at the outset: the
only proper answer to the question “What transformations X→ X preserve the
structure of Maxwell’s equations?” is “It depends—depends on how you have
chosen to write Maxwell’s equations.”

We have here touched, in a physical setting, upon an idea—look at
“objects,” and the groups of transformations which preserve relationships
among those objects—which Felix Klein, in the lecture given when (in ,
at the age of ) he assumed the mathematical professorship at the University
of Erlangen, proposed might be looked upon as the organizing principle of
all pure/applied mathematics—a proposal which has come down to us as the
“Erlangen Program.” It has been supplanted in the world of pure mathematics,
but continues to illuminate the historical and present development of physics.110

4. Lorentz transformations, and some of their implications. To state that X← X

is a Lorentz transformation is, by definition, to state that the associated
transformation matrix M ≡ ‖Mµ

ν‖ ≡ ‖∂xµ/∂xν‖ has (see again page 127) the
property that

M
T j
���g M = j

���g everywhere (182)

where by fundamental assumption j
���g = j

���g T = j
���g –1 possesses at each point in

spacetime the specific structure indicated at (181).

I begin with the observation that M must necessarily be a constant matrix.
The argument is elementary: hit (182) with ∂λ and obtain

(∂λM)T j
���g M + M

T j
���g (∂λM) = O because j

���g is constant

This can be rendered

gαβM
α
λµM

β
ν + gαβM

α
µM

β
νλ = 0

where Mα
λµ ≡ ∂2xα/∂xλ∂xµ = Mα

µλ. More compactly

Γµνλ + Γνλµ = 0

where Γµνλ ≡ gαβM
α
µM

β
νλ. Also (subjecting the µνλ to cyclic permutation)

Γνλµ + Γλµν = 0
Γλµν + Γµνλ = 0

so 
 0 1 1

1 0 1
1 1 0





Γλµν

Γµνλ
Γνλµ


 =


 0

0
0




109 See D. van Dantzig, “The fundamental equations of electromagnetism,
independent of metric geometry,” Proc. Camb. Phil. Soc. 30, 421 (1935).
110 For an excellent discussion see the section “Codification of geometry by
invariance” (pages 442–453) in E. T. Bell’s The Development of Mathematics
(). The Erlangen Program is discussed in scholarly detail in T. Hawkins,
Emergence of the theory of Lie Groups (): see the index. For a short
history of tensor analysis, see Bell’s Chapter 9.
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The 3×3 matrix is non-singular, so we must have

Γλµν = Mα
λgαβ∂µM

β
ν = 0 : ditto cyclic permutations

which in matrix notation reads

M
T j

���g (∂µM) = O

The matrices M and j
���g are non-singular, so we can multiply by (M

T j
���g ) –1 to

obtain
∂µM = O : the elements of M must be constants

The functions xµ(x) that describe the transformation X← X must possess
therefore the inhomogeneous linear structure111

xµ = Λµνxν + aµ : the Λµν and aµ are constants

The transformation matrix M, with elements given now by constants Λµν , will
henceforth be denoted /\\\ to emphasize that it is no longer generic but has
been specialized (and also to suggest “Lorentz”). We shall (when the risk of
confusion is slight) write

x = /\\\x+ a (189.1)
↑
—describes a translation in spacetime

to describe an (“inhomogeneous Lorentz” or) Poincaré transformation, and

x = /\\\x (189.2)

to describe a (simple homogeneous) Lorentz transformation, the assumption in
both cases being that

/\\\T j
���g /\\\= j

���g (190)

important remark: Linearity of a transformation—
constancy of the transformation matrix—is sufficient in
itself to kill all “extraneous terms,” without the assistance
of weight restrictions.

It was emphasized on page 119 that “not every indexed object transforms
tensorially,” and that, in particular, the xµ themselves do not transform
tensorially except in the linear case. We have now in hand just such a case, and
for that reason relativity becomes—not just locally but globally—an exercise
in linear algebra. Spacetime has become a 4-dimensional vector space; indeed,
it has become an inner product space, with

(x, y) ≡ gµνx
µyν

= (y, x) by gµν = gνµ

= xT j
���g y

= x0y0 − x1y1 − x2y2 − x3y3 = x0y0 − xxx··· yyy




(191.1)

111 Einstein ()—on the grounds that what he sought was a minimal
modification of the Galilean transformations (which are themselves linear)—
was content simply to assume linearity.



134 Aspects of special relativity

The Lorentz inner product (interchangeably: the “Minkowski inner product”)
described above is, however, “pathological” in the sense that it gives rise to an
“indefinite norm;” i.e., to a norm

(x, x) = gµνx
µxν

= xT j
���g x

= (x0)2 − (x1)2 − (x2)2 − (x3)2 = (x0)2 − xxx···xxx


 (191.2)

which (instead of being positive unless x = 0) can assume either sign, and can
vanish even if x �= 0. From this primitive fact radiates much—arguably all—
that is most distinctive about the geometry of spacetime . . .which, as Minkowski
was the first to appreciate (and as will emerge) lies at the heart of the theory
of relativity.

If Aµ, Bµ and gµν transform as weightless tensors, then basic tensor algebra
informs us that gµνA

µBν transforms by invariance:

gµνA
µBν −→ gµνA

µBν = gµνA
µBν unrestrictedly

What distinguishes Lorentz transformations from transformations-in-general is
that

gµν = gµν

To phrase the issue as it relates not to things (like Aµ and Bµ) “written on”
spacetime but to the structure of spacetime itself, we can state that the linear
transformation

x −→ x = /\\\x

describes a Lorentz transformation if and only if

xT j
���g y = xT/\\\T j

���g /\\\ y = xT j
���g y for all x and y : entails /\\\T j

���g /\\\ = j
���g

where, to be precise, we require that j
���g has the specific design

j
���g ≡




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




that at (163) was impressed upon us by our interest in the transformation
properties of Maxwell’s equations (i.e., by some narrowly prescribed specific
physics).

We come away with the realization that Lorentz transformations have in
fact only incidentally to do with electrodynamics: they are the transformations
that preserve Lorentzian inner products, which is to say: that preserve the
metric properties of spacetime . . . just as “rotations” xxx −→ xxx = Rxxx are the
linear transformations that preserve Euclidean inner products

xxxT
Iyyy = xxxT

R
T
I Ryyy = xxxT

Iyyy for all xxx and yyy : entails R
T
R = I
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ti
m

e

space

Figure 50: Two “events” identify a triangle in the spacetime.
Relativity asks each inertial observer to use metersticks and clocks
to assign traditional meanings to the “Euclidean length” of the black
side (here thickened to suggest that space is several-dimensional)
and to the “duration” of the blue side—meanings which (as will
emerge) turn out, however, to yield observer-dependent numbers—
but assigns (Lorentz-invariant!) meaning also to the squared length
of the hypotenuse.

and in so doing preserve the lengths/angles/areas/volumes . . . that endow
Euclidean 3-space with its distinctive metric properties.

That spacetime can be said to possess metric structure is the great surprise,
the great discovery. In pre-relativistic physics one could speak of the duration
(quantified by a clock) of the temporal interval ∆t = ta − tb separating a pair
of events, and one could speak of the length

∆0 =
√

(xa − xb)2 + (ya − yb)2 + (za − zb)2

(quantified by a meter stick) of the spatial interval separating a pair of points;
one spoke of “space” and “time,” but “spacetime” remained an abstraction of
the design space ⊗ time. Only with the introduction j

���g did it become possible
(see Figure 50) to speak of the (squared) length

(∆s)2 = c2(ta − tb)2 − (xa − xb)2 − (ya − yb)2 − (za − zb)2

of the interval separating (ta, xxxa) from (tb, xxxb):

“space⊗ time” had become “spacetime”
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The first person to recognize the profoundly revolutionary nature of what had
been accomplished was (not Einstein but) Minkowski, who began an address to
the Assembly of German Natural Scientists & Physicians ( September )
with these words:

“The views of space and time which I wish to lay before you have
sprung from the soil of experimental physics, and therein lies their
strength. They are radical. Henceforth space by itself, and time by
itself, are doomed to fade away into mere shadows, and only a kind
of union of the two will preserve an independent reality.”

Electrodynamics had led to the first clear perception of the geometrical design
of the spacetime manifold upon which all physics is written. The symmetries
inherent in that geometry were by this time know to be reflected in the design
of Maxwell’s equations. Einstein’s Principle of Relativity holds that they must,
in fact, be reflected in the design of all physical theories—irrespective of the
specific phenomenology to which any individual theory may refer.

Returning now to the technical mainstream of this discussion . . . let the
Lorentz condition (190) be written

/\\\–1 = j
���g –1/\\\T j

���g (192)

Generally inversion of a 4×4 matrix is difficult, but (192) shows that inversion
of a Lorentz matrix /\\\ can be accomplished very easily .112.

Equations (190/192) impose a multiplicative condition upon /\\\ . It was to
reduce multiplicative conditions to additive conditions (which are easier) that
logarithms were invented. Assume, therefore, that /\\\ can be written

/\\\ = eA = I + A + 1
2!A

2 + · · ·
It now follows that

/\\\–1 = e−A while j
���g –1/\\\T j

���g = j
���g –1eA

T

j
���g = e j

���g –1
A

T j
���g

Evidently /\\\ will be a Lorentz matrix if

−A = j
���g –1

A
T j

���g

which (by j
���g T = j

���g ) can be expressed

( j���g A)T = −( j���g A)

This is an additive condition (involves negation instead of inversion) and
amounts simply to the statement that j

���g A ≡ ‖Aµν‖ is antisymmetric. Adopt
this notation

j
���g A =




0 A1 A2 A3

−A1 0 −a3 a2

−A2 a3 0 −a1

−A3 −a2 a1 0




112 problem 40
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where
{
A1, A2, A3, a1, a2, a3

}
comprise a sextet of adjustable real constants.

Multiplication on the left by j
���g –1 gives a matrix of (what I idiosyncratically

call) the “ j
���g -antisymmetric” design113

A ≡ ‖Aµν‖ =




0 A1 A2 A3

A1 0 a3 −a2

A2 −a3 0 a1

A3 a2 −a1 0




We come thus to the conclusion that matrices of the form

/\\\ = exp




0 A1 A2 A3

A1 0 a3 −a2

A2 −a3 0 a1

A3 a2 −a1 0


 (193)

are Lorentz matrices; i.e., they satisfy (190/192), and when inserted into (189)
they describe Poincaré/Lorentz transformations.

Does every Lorentz matrix /\\\ admit of such representation? Not quite. It
follows immediately from (190) that (det /\\\)2 = 1; i.e., that

Λ ≡ det /\\\= ±1, according as /\\\ is
{

“proper”
“improper”

while the theory of matrices supplies the lovely identity114

det(eM) = etrM : M is any square matrix (194)

We therefore have Λ = det(eA) = 1 by trA = 0:

Every Lorentz matrix /\\\ of the form (193) is necessarily
proper ; moreover (as will emerge), every proper /\\\ admits (195)
of such an “exponential representation.”

It will emerge also that when one has developed the structure of the matrices
/\\\ = eA one has “cracked the nut,” in the sense that it becomes easy to describe
their improper companions.115

What it means to “develop the structure of /\\\ = eA ” is exposed most
simply in the (physically artificial) case N = 2. Taking

j
���g =

(
1 0
0 −1

)
: Lorentz metric in 2-dimensional spacetime

113 Notice that j
���g -antisymmetry becomes literal antisymmetry when the metric

j
���g is Euclidean. Notice also that while it makes tensor-algebraic good sense to
write A

2 = ‖AµαAαν‖ it would be hazardous to write ( j���g A)2 = ‖AµαAαν‖.
114 problem 41.
115 problem 42.
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as our point of departure, the argument that gave (193) gives

/\\\ = exp
(

0 A
A 0

)
= eAJ (196.1)

where evidently

J =
(

0 1
1 0

)

By quick calculation (or, more elegantly, by appeal to the Cayley-Hamilton
theorem, according to which every matrix satisfies its own characteristic
equation) we find J

2 = I, from which it follows that

J
n =

{
I if n is even
J if n is odd

So

/\\\ =
{

1 + 1
2!A

2 + 1
4!A

4 + · · ·
}

︸ ︷︷ ︸ I +
{
A + 1

3!A
3 + 1

5!A
5 + · · ·

}
︸ ︷︷ ︸ J

coshA sinhA

=
(

coshA sinhA
sinhA coshA

)
(196.2)

≡ /\\\(A) : Lorentzian for all real values of A

It is evident—whether one argues from (196.2) of (more efficiently) from (196.1)
—that

I = /\\\(0) : existence of identity (197.1)
/\\\(A2) /\\\(A1) = /\\\(A1 + A2) : compositional closure (197.2)

/\\\–1(A) = /\\\(−A) : existence of inverse (197.3)

and that all such /\\\-matrices commute.

We are now—but only now—in position to consider the kinematic meaning
of A, and of the action of /\\\(A). We are, let us pretend, a “point PhD” who—
having passed the physical tests required to establish our inertiality—use our
“good clock and Cartesian frame” to assign coordinates x ≡

{
x0, x1, x2, x3

}
to

events. O—a second observer, similarly endowed, who we see to be gliding by
with velocity vvv—assigns coordinates x ≡

{
x0, x1, x2, x3

}
to those same events.

O shares our confidence in the validity of Maxwellian electrodynamics: we can
therefore write x = /\\\x+a. In the interests merely of simplicity we will assume
that O’s origin and our origin coincide: the translational terms aµ then drop
away and we have x = /\\\x . . .which in the 2-dimensional case reads
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(
x0

x1

)
=

(
coshA sinhA
sinhA coshA

) (
x0

x1

)
(198)

To describe the successive “ticks of the clock at his origin” O writes(
ct
0

)

while—to describe those same events—we write(
ct
vt

)

Immediately vt = ct · sinhA and ct = ct · coshA which, when we divide the
former by the latter, give

tanhA = β (199)

with
β ≡ v/c (200)

These equations serve to assign kinematic meaning toA, and therefore to /\\\(A).
Drawing now upon the elementary identities

coshA =
1√

1− tanh2A
and sinhA =

tanhA√
1− tanh2A

we find that (198) can be written(
x0

x1

)
= γ

(
1 β
β 1

) (
x0

x1

)
(201)

with

γ ≡ 1√
1− β2

= 1 + 1
2β

2 + 3
8β

4 + · · · (202)

Evidently γ becomes singular (see Figure 51) at β2 = 1; i.e., at v = ±c
. . .with diverse consequences which we will soon have occasion to consider. The
non-relativistic limit arises physically from β2 � 1; i.e., from v2 � c2, but can
be considered formally to arise from c ↑ ∞. One must, however, take careful
account of the c that lurks in the definitions of x0 and x0: when that is done,
one finds that (201) assumes the (less memorably symmetric) form(

t
x

)
= γ

(
1 v/c2

v 1

) (
t
x

)

giving ↓

=
(

1 0
v 1

) (
t
x

)
as c ↑ ∞ (203)
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Figure 51: Graph of the β-dependence of γ ≡ 1/
√

1− β2, as
β ≡ v/c ranges on the physical interval −1 < β < +1. Outside that
interval γ becomes imaginary.

Heretofore we have been content to share our profession with a zippy population
of “superluminal inertial observers” who glide past us with speeds v > c. But

/\\\(β) becomes imaginary when β2 > 1

We cannot enter into meaningful dialog with such observers; we therefore
strip them of their clocks, frames and PhD’s and send them into retirement,
denied any further collaboration in the development of our relativistic theory of
the world114—indispensable though they were to our former Galilean activity.
Surprisingly, we can get along very well without them, for

/\\\(β2)/\\\(β1) = /\\\(β)
β = β(β1, β2) = tanh(A1 +A2)

=
tanhA1 + tanhA2

1 + tanhA1 tanhA2

=
β1 + β2

1 + β1β2
(204)

entails (this is immediately evident in Figure 52) that

if v1 < c and v2 < c then so also is v(v1, v2) < c:
one cannot leapfrog into the superluminal domain

The function β(β1, β2) plays in (2-dimensional) relativity a role precisely
analogous to a “group table” in the theory of finite groups: it describes how
Lorentz transformations compose, and possess many wonderful properties, of

114 This, however, does not , of itself, deny any conceivable role to superluminal
signals or particles in a relativistic physics!
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Figure 52: Graph of the function β(β1, β2). The vertices of the
frame stand at the points

{
± 1,±1,±1

}
in 3-dimensional β-space.

If we write β3 = −β(β1, β2) then (204) assumes the high symmetry

β1 + β2 + β3 + β1β2β3 = 0

clearly evident in the figure. The “β-surface” looks rather like a soap
film spanning the 6-sided frame that results when the six untouched
edges of the cube are discarded.

which I list here only a few:

β(β1, β2) = β(β2, β1)
β(β1, β2) = 0 if β2 = −β1

β(1, 1) = 1

To this list our forcibly retired superluminal friends might add the following:

β(β1, β2) = β( 1
β1
, 1
β2

)
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If β is subluminal then 1
β is superluminal. So we have here the statement

that the compose of two superluminal Lorentz transformations is subluminal
(the i ’s have combined to become real). Moreover, every subluminal Lorentz
transformation can be displayed as such a compose (in many ways). Curious!

Equation (204) is often presented as “relativistic velocity addition formula”

v =
v1 + v2

1 + v1v2/c2

= (v1 + v2) ·
[
1−

(v1v2
c2

)
+

(v1v2
c2

)2

−
(v1v2
c2

)3

+ · · ·
]

= (Galilean formula) ·
[
relativistic correction factor

]
but that portrayal of the situation—though sometimes useful—seems to me to
miss (or to entail risk of missing) the simple origin and essential significance of
(204): the tradition that has, for now nearly a century, presented relativity as a
source of endless paradox (and which has, during all that time, contributed little
or nothing to understanding—paradox being, as it is, a symptom of imperfect
understanding) should be allowed to wither.

In applications we will have need also of γ(β1, β2) ≡ [1−β2(β1, β2)]−
1
2 , the

structure of which is developed most easily as follows:

γ = cosh(A1 +A2)
= coshA1 coshA2

[
1 + tanhA1 tanhA2

]
= γ1γ2

[
1 + β1β2

]
(205)

This “γ-composition law”—in which we might (though it is seldom useful) use

β =
√

1− γ−2 =

√
(γ + 1)(γ − 1)

γ

to eliminate the surviving β ’s—will acquire importance when we come to the
theory of radiation.

5. Geometric considerations. Our recent work has been algebraic. The following
remarks emphasize the geometrical aspects of the situation, and are intended
to provide a more vivid sense of what Lorentz transformations are all about.
By way of preparation: In Euclidean 3-space the equation xxxTxxx = r2 defines a
sphere (concentric about the origin, of radius r) which—consisting as it does of
points all of which lie at the same (Euclidean) distance from the origin—we may
reasonably call an “isometric surface.” Rotations (xxx→ xxx = Rxxx with R

T
R = I)

cause the points of 3-space to shift about, but by a linear rule (straight lines
remain straight) that maps isometric spheres onto themselves: such surfaces
are, in short, “R -invariant.” Similarly . . .

In spacetime the σ-parameterized equations

xxxT j
���g xxx = σ
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define a population of Lorentz-invariant isometric surfaces Σσ. The surfaces
that in 3-dimensional spacetime arise from

(x0)2 − (x1)2 − (x2)2 = σ

which describes a

• hyperboloid of two sheets in the case σ > 0
• cone in the case σ = 0
• hyperboloid of one sheet in the case σ < 0

are shown in Figure 53. The analogous construction in 2-dimensional spacetime
(Figure 54) is easier to sketch, and serves most purposes well enough, but is
misleading in one important respect: it fails to indicate the profound distinction
between one-sheeted and two-sheeted hyperboloids. On the former one can
move continuously from any point to any other (one can, in particular, get
from one to the other by Lorentz transformation), but passage from one sheet
to the other is necessarily discontinuous (requires “time reflection,” can might
be symbolized

future � past

and cannot be executed “a little bit at a time”).

How—within the geometric framework just described—is one to represent
the action x −→ x = /\\\x of /\\\(β)? I find it advantageous to approach the
question somewhat obliquely: Suppose O to be thinking about the points
(events) (

+1
+1

)
,

(
+1
−1

)
,

(
−1
+1

)
and

(
−1
−1

)

that mark the vertices of a “unit square” on her spacetime diagram. By quick
calculation

(
+1
+1

)
−→ K+(β)

(
+1
+1

)
and

(
−1
−1

)
−→ K+(β)

(
−1
−1

)
(

+1
−1

)
−→ K−(β)

(
+1
−1

)
and

(
−1
+1

)
−→ K−(β)

(
−1
+1

)

 (206)

where

K+(β) ≡
√

1+β
1−β and K−(β) ≡

√
1−β
1+β (207)
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Figure 53: Isometric surfaces in 3-dimensional spacetime. The
arrow is “the arrow of time.” Points on the blue “null cone” (or
“light cone”) are defined by the condition σ = 0: the interval
separating such points from the origin has zero squared length (in
the Lorentzian sense). Points on the green cup (which is interior
to the forward cone) lie in the “future” of the origin, while points
on the green cap (interior to the backward cone) lie in the “past:”
in both cases σ > 0. Points on the yellow girdle (exterior to
the cone) arise from σ < 0: they are separated from the origin by
intervals of negative squared length, and are said to lie “elsewhere.”
In physical (4-dimensional) spacetime the circular cross sections
(cut by “time-slices”) become spherical. Special relativity acquires
many of its most distinctive features from the circumstance that the
isometric surfaces Σσ are hyperboloidal.
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Figure 54: The isometric surfaces shown in the preceding figure
become isometric curves in 2-dimensional spacetime, where all
hyperbolas have two branches. We see that(

1
0

)
gives σ = 12 − 02 = +1, typical of points with timelike

(
1
1

)
gives σ = 12 − 12 = 0, typical of points with lightlike

(
0
1

)
gives σ = 02 − 12 = −1, typical of points with spacelike

separation from the origin. And that—since the figure maps to itself
under the Lorentz transformations that
• describe the symmetry structure of spacetime
• describe the relationships among inertial observers

—these classifications are Lorentz-invariant, shared by all inertial
observers.

Calculation would establish what is in fact made obvious already at (206): the
K±(β) are precisely the eigenvalues of /\\\(β).115 Nor are we surprised that the
associated eigenvectors are null vectors, since

(x, x)→ (Kx,Kx) = (x, x) entails (x, x) = 0

115 We note in passing that K−(β) = [K+(β)]–1 = K+(−β).
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+K

-K

-K +K

Figure 55: Inertial observer O inscribes a “unit square” , with
lightlike vertices, on her spacetime diagram. /\\\ (β) stretches one
diagonal by the factor K+, and shrinks the other by the factor K−.
That individual points “slide along isometric curves” is illustrated
here by the motion • → • of a point of tangency. Corresponding
sides of and its transform have different Euclidean lengths, but
identical Lorentzian lengths. Curiously, it follows from K+K− = 1
that and its transform have identical Euclidean areas.116,117

The upshot of preceding remarks is illustrated above, and elaborated in the
figure on the next page, where I have stated in the caption but here emphasize
once again that such figures, though drawn on the Euclidean page, are to be read
as inscriptions on 2-dimensional spacetime . The distinction becomes especially
clear when one examines Figure 57.

116 problem 43.
117 Some authors stress the utility in special relativity of what they call the

“k-calculus:” see, for example, Hermann Bondi, Relativity and Common Sense:
A New Approach to Einstein (), pages 88–121 and occasional papers in the
American Journal of Physics. My K-notation is intended to establish contact
with that obscure tradition.
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Figure 56: Elaboration of the preceding figure. O has inscribed a
Cartesian gridwork on spacetime. On the right is shown the Lorentz
transform of that coordinate grid. Misner, Thorne & Wheeler
(Gravitation (), page 11) have referred in this connection to
the “collapse of the egg crate,” though that picturesque terminology
is somewhat misleading: egg crates preserve side-length when they
collapse, while the present mode of collapse preserves Euclidean
area. Orthogonality, though obviously violated in the Euclidean
sense, is preserved in the Lorentzian sense . . .which is, in fact,
the only relevant sense, since the figure is inscribed not on the
Euclidean plane but on 2-dimensional spacetime. Notice that
tangents to isometric curves remain in each case tangent to the
same such curve. The entire population of isometric curves (see
again Figure 54) can be recovered as the population of envelopes of
the grid lines, as generated by allowing β to range over all allowed
values (−1 < β < +1).
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ϑ
γ

ϑ

γβ

Figure 57: O writes (ct, 0) to describe the “ tth tick of her clock.”
Working from (201) we find that O assigns coordinates (γt, γβt) to
that same event. The implication is that the (Euclidean) angle ϑ
subtended by
• O’s time axis and
• O’s representation of O’s time axis

can be described
tanϑ = β

The same angle, by a similar argument, arises when one looks to
O’s representation of O’s space axis. One could, with this infor-
mation, construct the instance of Figure 56 which is appropriate to
any prescribed β-value. Again I emphasize that—their Euclidean
appearance notwithstanding—O and O are in agreement that O’s
coordinate axes are normal in the Lorentzian sense.118

We are in position now to four points of fundamental physical significance ,
of which three are temporal, and one spatial. The points I have in mind will
be presented in a series of figures, and developed in the captions:

118 problem 44.
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Figure 58: Breakdown of non-local simultaneity. O sees three
spatially-separated events to be simultaneous. O, on the other hand,
assigns distinct x0-coordinates to those same events (see the figure
on the right), which he considers to be non-simultaneous/sequential.
It makes relativistic good sense to use the word “simultaneous”
only in reference to events which (like the birth of twins) occur
at the same moment and at the same spatial point. The Newtonian
concept of “instantaneous action at a distance”—central to his
“Universal Law of Gravitation” but which, on philosophical grounds,
bothered not only Newton’s contemporaries but also Newton himself
—has been rendered relativistically untenable: interactions, in any
relativistically coherent physics, have become necessarily local,
dominated by what philosophers call the “Principle of Contiguity.”
They have, in short, become collision-like events, the effects of which
propagate like a contagion: neighbor infects neighbor. If “particles”
are to participate in collisions they must necessarily be held to be
pointlike in the mathematical sense (a hard idealization to swallow),
lest one acquire an obligation to develop a physics of processes
interior to the particle. The language most natural to physics has
become field theory—a theory in which all interactions are local
field-field interactions, described by partial differential equations.
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Figure 59: Conditional covariance of causal sequence. At left:
diverse inertial observers all place the event • on a sheet of the
isometric hyperboloid that is confined to the interior of the forward
lightcone, and all agree that • lies “in the future” of the origin ◦.
But if (as at the right) • is separated from ◦ by a spacelike interval;
i.e., if • lies outside the lightcone at ◦, then some observers see
• to lie in the future of ◦, while other observers see • to lie in
its past. In the latter circumstance it is impossible to develop an
agreed-upon sense of causal sequence. Generally: physical events
at a point p can be said to have been “caused” only by events
that lie in/on the lightcone that extends backward from p, and can
themselves influence only events that lie in/on the lightcone that
extends forward from p. In electrodynamics it will emerge that
(owing to the absence of “photon mass terms”) effects propagate on
the lightcone. Recent quantum mechanical experiments (motivated
by the “EPR paradox”) are of great interest because they have yielded
results that appear to be “acausal” in the sense implied by preceding
remarks: the outcome of a quantum coin-flip at p predetermines
the result of a similar measuremennt at q even though the interval
separating q from p is spacelike.
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γ

γβ

Figure 60: Time dilation. Inertial observer O assigns duration x0

to the interval separating “successive ticks • . . . • of her clock.” A
second observer O, in motion relative to O, assigns to those same
events (see again Figure 57) the coordinates

(
0
0

)
and

(
x0

x1

)
=

(
γx0

γβx0

)

He assigns the same Lorentzian value to the squared length of the
spacetime interval • . . . • that O assigned to • . . . •

(γx0)2 − (γβx0)2 = (x0)2 − (0)2

but reports that the 2nd tick occurred at time

x0 = γx0 > x0

In an example discussed in every text (see, e.g., Taylor & Wheeler,
Spacetime Physics (), §42) the “ticking” is associated with the
lifetime of an unstable particle—typically a muon—which (relative
to the tabulated rest-frame value) seems dilated to observers who see
the particle to be in motion.
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Figure 61: Lorentz contraction. This is often looked upon as
the flip side of time dilation, but the situation as it pertains to
spatial intervals is—owing to the fact that metersticks persist, and
are therefore not precise analogs of clockticks—a bit more subtle.
At left is O’s representation of a meterstick sitting there, sitting
there, sitting there . . . and at right is O’s representation of that same
construction. The white arrows indicate that while O and O have
the same thought in mind when they talk about the “length of the
meterstick” (length of the spatial interval that separates one end
from the other at an instant) they are—because they assign distinct
meanings to “at an instant”—actually talking about different things.
Detailed implications are developed in the following figure.
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γβ�

�

γ�

�

Figure 62: Lorentz contraction (continued). When observers speak
of the “length of a meterstick” they are really talking about what they
perceive to be the width of the “ribbon” which such an extended
object inscribes on spacetime. This expanded detail from the
preceding figure shows how it comes about that the meterstick which
O sees to be at rest, and to which she assigns length �, is assigned
length

� = γ–1� < �

by O, who sees the meterstick to be in uniform motion. This familiar
result poses, by the way, a problem which did not escape Einstein’s
attention, and which contributed to the development of general
relativity : The circumference of a rigidly rotating disk has become
too short to go all the way around!119

Prior to Einstein’s appearance on the scene () it was universally held
that time dilation and “Lorentz-FitzGerald contraction” were physical effects,
postulated to account for the null result of the Michelson-Morley experiment,
and attributed to the interaction of physical clocks and physical metersticks
with the physical “æther” through which they were being transported. Einstein

119 See J. Stachel, “Einstein and the rigidly rotating disk” in A. Held (editor),
General Relativity & Gravitation (), Volume 1, page 1. H. Arzeliès, in
Relativistic Kinematics (), devotes an entire chapter to the disk problem
and its relatives.
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(with his trains and lanterns) argued that such effects are not “physical,” in the
sense that they have to do with the properties of “stuff”. . .but “metaphysical”
(or should one say: pre-physical?)—artifacts of the operational procedures by
which one assigns meaning to lengths and times. In preceding pages I have, in
the tradition established by Minkowski, espoused a third view: I have
represented all such effects are reflections of the circumstance (brought first
to our attention by electrodynamics) that the hyperbolic geometry of spacetime
is a primitive fact of the world, embraced by all inertial observers . . . and written
into the design of all possible physics.

remark: It would be nice if things were so simple (which in leading
approximation they are), but when we dismissed Newton’s Law of
Universal Gravitation as “relativistically untenable” we acquired
a question (“How did the Newtonian theory manage to serve so
well for so long?”) and an obligation—the development of a “field
theory of gravitation.” The latter assignment, as discharged by
Einstein himself, culminated in the invention of “general relativity”
and the realization that it is—except in the approximation that
gravitational effects can be disregarded—incorrect to speak with
global intent about the “hyperbolic geometry of spacetime.” The
“geometry of spacetime” is “hyperbolic” only in the same
approximate/tangential sense that vanishingly small regions
inscribed on (say) the unit sphere become “Euclidean.”

6. Lorentz transformations in 4-dimensional spacetime. The transition from toy
2-dimensional spacetime to physical 4-dimensional spacetime poses an enriched
algebraic problem

/\\\= exp
(

0 A
A 0

)
(196.1)

|
|
↓

/\\\= exp




0 A1 A2 A3

A1 0 a3 −a2

A2 −a3 0 a1

A3 a2 −a1 0


 (193)

and brings to light a physically-important point or two which were overlooked
by Einstein himself. The algebraic details are, if addressed with a measure of
elegance, of some intrinsic interest120. . .but I must here be content merely to
outline the most basic facts, and to indicate their most characteristic kinematic/
physical consequences. Consider first the

120 See elements of relativity ().



Lorentz transformations in 4-dimensional spacetime 155

case A1 =A2 =A3 = 0 in which /\\\ possesses only space/space generators.121

Then

/\\\ = exp




0 0 0 0
0
0 A

0




where

A ≡


 0 a3 −a2

−a3 0 a1

a2 −a1 0


 is real and antisymmetric

It follows quite easily that

=




1 0 0 0
0
0 R

0


 (208)

where R ≡ eA is a 3×3 rotation matrix . The action of such a /\\\ can be described(
x0

xxx

)
−→

(
x0

xxx

)
=

(
x0

Rxxx

)

as a spatial rotation that leaves time coordinates unchanged. Look to the case
a1 = a2 = 0, a3 = φ and use the Mathematica command MatrixExp[ /\\\] to
obtain

/\\\ =




1 0 0 0
0 cosφ sinφ 0
0 − sinφ cosφ 0
0 0 0 1




with the evident implication that in the general case such a Lorentz matrix
describes a lefthanded rotation through angle φ =

√
aaa···aaa about the unit vector

λλλ ≡ âaa .122 Such Lorentz transformations contain no allusion to vvv and have
no properly kinematic significance: O simply stands beside us, using her clock
(indistinguishable from ours) and her rotated Cartesian frame to “do physics.”
What we have learned is that

Spatial rotations are Lorentz transformations

of a special type (a type for which the 2-dimensional theory is too impoverished
to make provision). The associated Lorentz matrices will be notated R(φ,λλλ).

Look next to the complementary . . .

121 “Time/time” means 0 appears twice, “time/space” and “space/time” mean
that 0 appears once, “space/space” means that 0 is absent.
122 See classical dynamics (/), Chapter 1, pages 83–89 for a simple
account of the detailed argument.
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case a1 = a2 = a3 = 0 in which /\\\ possesses only time/space generators.
Here (as it turns out) /\\\ does possess kinematic significance. The argument
which (on page 139) gave

A = tanh–1β with β = v/c

now gives
AAA = tanh–1β · v̂vv

while the argument which (on pages 138–139) gave

/\\\= exp
{

tanh–1β

(
0 1
1 0

)}
=

(
γ vγ/c

vγ/c γ

)

now gives

/\\\= exp


tanh–1β




0 v̂1 v̂2 v̂3

v̂1 0 0 0
v̂2 0 0 0
v̂3 0 0 0







=




γ v1γ/c v2γ/c v3γ/c
v1γ/c 1 + (γ − 1)v1v1/v

2 (γ − 1)v1v2/v
2 (γ − 1)v1v3/v

2

v2γ/c (γ − 1)v2v1/v
2 1 + (γ − 1)v2v2/v

2 (γ − 1)v2v3/v
2

v3γ/c (γ − 1)v3v1/v
2 (γ − 1)v3v2/v

2 1 + (γ − 1)v3v3/v
2




Such Lorentz matrices will be notated

= /\\\(βββ) (209)

βββ ≡ vvv/c

They give rise to Lorentz transformations x −→ x = /\\\(βββ)x which are “pure”
(in the sense “rotation-free”) and are called “boosts.” The construction (208)
looks complicated, but in fact it possesses precisely the structure that one might
(with a little thought) have anticipated . For (209) supplies123

t = γ t + (γ/c2)vvv···xxx
xxx = xxx +

{
γ t + (γ − 1)(vvv···xxx)/v2

}
vvv

}
(210.1)

and if we resolve xxx and xxx into components which are parallel/perpendicular to
the velocity vvv with which O sees O to be gliding by

xxx = xxx⊥ + xxx‖ with
{

xxx‖ ≡ (xxx··· v̂vv) v̂vv ≡ x‖v̂vv
xxx⊥ ≡ xxx− xxx‖

xxx = xxx⊥ + xxx‖ with
{

xxx‖ ≡ (xxx··· v̂vv) v̂vv ≡ x‖v̂vv
xxx⊥ ≡ xxx− xxx‖

123 problem 45, 46.
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then (210.1) can be written (compare (203))

(
t
x‖

)
= γ

(
1 v/c2

v 1

) (
t
x‖

)

xxx⊥ = xxx⊥


 (210.2)

And in the Galilean limit we recover



t
x1

x2

x3


 =




1 0 0 0
v1 1 0 0
v2 0 1 0
v3 0 0 1







t
x1

x2

x3


 (210.3)

general case Having discussed the 3-parameter family of rotations
R(φ,λλλ) and the 3-parameter family of boosts /\\\(βββ) the questions arises: What
can one say in the general 6-parameter case

/\\\ = eA

It is—given the context in which the question was posed—natural to write

A = J + K

with

J ≡




0 A1 A2 A3

A1 0 0 0
A2 0 0 0
A3 0 0 0


 ≡ 3∑

i=1

Ai Ji

K ≡




0 0 0 0
0 0 a3 −a2

0 −a3 0 a1

0 a2 −a1 0


 ≡ 3∑

i=1

ai Ki

and one might on this basis be tempted to write /\\\ = eK · eJ, giving

/\\\general = (rotation) · (boost) (211)

Actually, a representation theorem of the form (211) is available, but the
argument which here led us to (211) is incorrect: one can write

e J+K = e K · e J if and only if J and K commute

and in the present instance we (by computation) have

[
J,K

]
= −

3∑
i=1

(AAA×aaa)i Ji (212)

= O if and only if AAA and aaa are parallel
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More careful analysis (which requires some fairly sophisticated algebraic
machinery124) leads back again to (211), but shows the boost and rotational
factors of /\\\ to be different from those initially contemplated. I resist the
temptation to inquire more closely into the correct factorization of /\\\, partly
because I have other fish to fry . . .but mainly because I have already in hand
the facts needed to make my major point, which concerns the composition of
boosts in 4-dimensional spacetime. It follows immediately from (208) that

(rotation) · (rotation) = (rotation) (213.1)
↑
—specific description poses a non-trivial

but merely technical (algebraic) problem

It might—on analogical grounds—appear plausible therefore that

(boost) · (boost) = (boost)

but (remarkably!) this is not the case: actually

= (rotation) · (boost) (213.2)

Detailed calculation shows more specifically that
/\\\(βββ2) · /\\\(βββ1) = R(φ,λλλ) /\\\(βββ ) (214.0)

where
βββ =

[
1 + (β2/β1)(1− 1

γ1
) cosω

]
βββ1 + 1

γ1
βββ2

1 + β1β2 cosω
(214.1)

λλλ = unit vector parallel to βββ2×βββ1 (214.2)
ω = angle between βββ1 and βββ2 (214.3)

φ = tan–1
{ ε sinω

1 + ε cosω

}
(214.4)

ε =
√

(γ1 − 1)(γ2 − 1)/(γ1 + 1)(γ2 + 1) (214.5)

and where β1, β2, γ1 and γ2 have the obvious meanings. One is quite unprepared
by 2-dimensional experience for results which are superficially so ugly, and which
are undeniably so complex. The following points should be noted:
1. Equation (214.1) is the 4-dimensional velocity addition formula. Looking
with its aid to βββ···βββ we obtain the speed addition formula

β =

√
β2

1 + β2
2 + 2β1β2 cosω − (β1β2 sinω)2

1 + β1β2 cosω
(215)

⇓
β � 1 if β1 � 1 and β2 � 1

according to which (see the following figure) one cannot, by composing velocities,
escape from the c-ball . Note also that

↓

β =
β1 + β2

1 + β1β2
in the collinear case: ω = 0

124 The requisite machinery is developed in elaborate detail in elements of
special relativity ().
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βββ2

ω βββ

βββ1

forbidden region

Figure 63: βββ1and βββ2,if not collinear, span a plane in 3-dimensional
βββ-space. The figure shows the intersection of that plane with what
I call the “c-ball,” defined by the condition β2 = 1. The placement
of βββ is given by (214.1). Notice that, while βββ1 + βββ2 falls into the
forbidden exterior of the c-ball, βββ does not. Notice also that βββ lies
on the βββ1-side of βββ1 + βββ2, from which it deviates by an angle that
turns out to be precisely the φ that enters into the design of the
rotational factor R (φ,λλλ).

which is in precise conformity with the familiar 2-dimensional formula (204).

2. It is evident in (214.1) that βββ depends asymmetrically upon βββ1 and βββ2.
Not only is βββ 
= βββ1 + βββ2, is its not even parallel to βββ1 + βββ2, from which it
deviates by an angle that turns out to be precisely the φ encountered already—
in quite another connection—at (214.4). The asymmetry if the situation might
be summed up in the phrase “βββ1 predominates.” From this circumstance one
acquires interest in the angle Ω between βββ and βββ1: we find

Ω = tan–1
{ β2 sinω

γ1(β1 + β2 cosω)

}
(216)

↓
Ω0 = tan–1

{ β2 sinω

β1 + β2 cosω

}
in the non-relativistic limit
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ω
φ

Ω
ω

Ω

βββ2 βββ2

βββ

βββ

βββ1 βββ1

Figure 64: At left: Galilean composition of non-collinear velocities.
At right: its Lorentzian counterpart, showing the sense in which
“βββ1 predominates.” Evidently

Ωrelativistic = Ω0 + φ � Ω0

calculations which are elementary in the Galilean case (see the figure) but
become a little tedious in the relativistic case.125 Asymmetry effects become
most pronounced in the ultra-relativistic limit. Suppose, for example, that
β1 = 1: then Ω ↓ 0 and

βββ → βββ1, irrespective of the value assigned to βββ2!

More physically,126 suppose β1 < 1 but β2 = 1: then

Ω = tan–1
{√

1− β2
1

sinω

β1 + cosω

}

The first occurrence of this formula is in §7 of Einstein’s first relativity paper
(), where it is found to provide the relativistic correction to the classic “law
of aberration.”127

3. It is a corollary of (215) that

γ = γ1γ2

[
1 + β1β2 cosω

]
which gives back (205) in the collinear case.

125 See page 87 in the notes just cited.
126 I say “more physically” because β = 1 cannot pertain to an “observer”
(though it can pertain to the flight of a massless particle): while it does make
sense to ask what an observer in motion (with respect to us) has to say about
the lightbeam to which we assign a certain direction of propagation, it makes
no sense to ask what the lightbeam has to say about the observer!
127 “Aberration” is the name given by astronomers to the fact that “fixed
stars” are seen to trace small ellipses in the sky, owing to the earth’s annual
progress along its orbit. See page 17 in W. Pauli’s classic Theory of Relativity
(first published in , when Pauli was only twenty-one years old; reissued
with a few additional notes in ) or P. G. Bergmann, Introduction to the
Theory of Relativity (), pages 36–38.
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4. In the small-velocity approximation (213.1) and (213.4) give

vvv = vvv1 + vvv2 −
[

1
2β1β2 cosω · vvv1 +

(
1
2β

2
1 + β1β2 cosω

)
vvv2

]
+ · · ·

φ = 1
4β1β2 sinω + · · ·

according to which all “relativistic correction terms” are of 2nd order.

The presence of the R-factor on the right side of (213)—i.e., the fact that
rotations arise when one composes non-collinear boosts—can be traced to the
following algebraic circumstance:[

J1,K2

]
= −J3 =

[
J2,K1

]
(217.1)[

K1,K2

]
= −K3 (217.2)[

J1, J2

]
= +K3 (217.3)

—each of which remains valid under cyclic index permutation. Equations
(217.1) are but a rewrite of (212). The compositional closure (213.1) to the
rotations can be attributed to the fact that it is a K that stands on the right
side of (217.2). The fact (213.2) that the set of boosts is not compositionally
closed arises from the circumstance that it is again a K—not, as one might have
expected, a J—that stands on right side of (217.3).

The essential presence of the rotational R-factor on the right side of (214)
was discovered by L. H. Thomas (: relativity was then already 21 years
old), whose motivation was not mathematical/kinematic, but intensely physical:
Uhlenbeck & Goudsmit had sought () to derive fine details of the hydrogen
spectrum from the assumption that the electron in the Bohr atom possesses
intrinsic “spin”. . .but had obtained results which were invariably off by a factor
of 2. Thomas—then a post-doctoral student at the Bohr Institute, and for
reasons to which I will return in a moment—speculated that a “relativistic
correction” would resolve that problem. Challenged by Bohr to develop the idea
(for which neither Bohr nor his associate Kramers held much hope), Thomas
“that weekend” argued as follows: (i ) A proton •, pinned to the origin of an
inertial frame, sees an electron • to be revolving with angular velocity Ωorbital

on a circular Bohr orbit of radius R. (ii) Go to the frame of the non-inertial
observer who is “riding on the electron” (and therefore sees • to be in circular
motion): do this by

going to the frame of the inertial observer who is instantaneously
comoving with • at time t0 = 0, then. . .
boosting to the frame of the inertial observer who is instantaneously
comoving with • at time t1 = τ , then. . .
boosting to the frame of the inertial observer who is instantaneously
comoving with • at time t2 = 2τ , then. . .
...
boosting to the frame of the inertial observer who is instantaneously
comoving with • at time t = Nτ
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Figure 65: Thomas precession of the non-inertial frame of an
observer • in circular orbit about an inertial observer •. In celestial
mechanical applications the effect is typically so small (on the order
of seconds of arc per century) as to be obscured by dynamical effects.
But in the application to (pre-quantum mechanical) atomic physics
that was of interest to Thomas the precession becomes quite brisk
(on the order of ∼ 1012 Hz.).

and by taking that procedure to the limit τ ↓ 0, N = t/τ ↑ ∞. One arrives thus
at method for Lorentz transforming to the frame of an accelerated observer . The
curvature of the orbit means, however, that successive boosts are not collinear;
rotational factors intrude at each step, and have a cumulative effect which (as
detailed analysis128 shows) can be described

dφ
dt ≡ ΩThomas = (γ − 1)Ωorbital

= 1
2β

2Ωorbital

{
1 + 3

4β
2 + 15

24β
4 + · · ·

}
in the counterrotational sense (see the figure). It is important to notice that
this Thomas precessional effect is of relativistic kinematic origin: it does not

128 See §103 in E. F. Taylor & J. A. Wheeler, Spacetime Physics () or pages
95–116 in the notes previously cited.122 Thomas’ own writing—“The motion of
the spinning electron,” Nature 117, 514 (1926); “The kinematics of an electron
with an axis,” Phil. Mag. 3, 1 (1927); “Recollections of the discovery of the
Thomas precessional frequency” in G. M. Bunce (editor), High Energy Spin
Physics–,AIP Conference Proceedings No. 95 (1983)—have never seemed
to me to be particularly clear. See also J. Frenkel, “Die Elektrodynamic des
rotierenden Elektrons,” Z. für Physik 37, 243 (1926).
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arise from impressed forces. (iii) Look now beyond the kinematics to the
dynamics: from •’s viewpoint the revolving • is, in effect, a current loop, the
generator of a magnetic field BBB. Uhlenbeck & Goudsmit had assumed that
the electron possesses a magnetic moment proportional to its postulated spin:
such an electron senses the BBB -field, to which it responds by precessing, acquiring
precessional energy EUhlenbeck & Goudsmit. Uhlenbeck & Goudsmit worked,
however, from a mistaken conception of “•’s viewpoint.” The point recognized
by Thomas is that when relativistic frame-precession is taken into account129

one obtains
EThomas = 1

2EUhlenbeck & Goudsmit

—in good agreement with the spectroscopic data. This was a discovery of
historic importance, for it silenced those (led by Pauli) who had dismissed as
“too classical” the spin idea when it had been put forward by Krönig and
again, one year later, by Uhlenbeck & Goudsmit: “spin” became an accepted/
fundamental attribute of elementary particles.130

So much for the structure and properties of the Lorentz transformations
. . . to which (following more closely in Minkowski’s footsteps than Lorentz’) we
were led by analysis of the condition

/\\\T j
���g /\\\= j

���g everywhere (182)

which arose from one natural interpretation of the requirement that X → X

preserve the form of Maxwell’s equations . . .but to which Einstein himself
was led by quite other considerations: Einstein—recall his trains/clocks/rods
and lanterns—proceeded by operational/epistemological analysis of how inertial
observers O and O, consistently with the most primitive principles of an
idealized macroscopic physics, would establish the relationship between their
coordinate systems. Einstein’s argument was wonderfully original, and lent an
air of “inescapability” to his conclusions . . .but (in my view) must today be
dismissed as irrelevant , for special relativity appears to remain effective in the

129 See pages 116–122 in elements of relativity ().
130 Thomas precession is a relativistic effect which 2-dimensional theory is too
impoverished to expose. Einstein himself missed it, and—so far as I am aware—
never commented in print upon Thomas’ discovery. Nor is it mentioned in
Pauli/s otherwise wonderfully complete Theory of Relativity .125 In  I had
an opportunity to ask Thomas himself how he had come upon his essential
insight. He responded “Nothing is ever really new. I learned about the subject
from Eddington’s discussion [Eddington was in fact one of Thomas’ teachers] of
the relativistic dynamics of the moon—somewhere in his relativity book, which
was then new. I’m sure the whole business—except for the application to Bohr’s
atom—was known to Eddington by . Eddington was a smart man.” Arthur
Stanley Eddington’s The Mathematical Theory of Relativity () provided
the first English-language account of general relativity. The passage to which
Thomas evidently referred occurs in the middle of page 99 in the 2nd edition
(), and apparently was based upon then-recent work by W. De Sitter.
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deep microscopic realm where Einstein’s operational devices/procedures (his
“trains and lanterns”) are—for quantum mechanical reasons—meaningless.
Einstein built better than he knew—or could know . . .but I’m ahead of my
story. The Lorentz transformations enter into the statement of—but do not in
and of themselves comprise—special relativity. The “meaning of relativity” is
a topic to which I will return in §8.

7. Conformal transformations in N-dimensional spacetime.* We have seen that
a second—and hardly less natural—interpretation of “Lorentz’ question” gives
rise not to (182) but to a condition of the form

W
T j

���g W = Ω j
���g everywhere (185.2)

where (as before)

j
���g =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




My objective here is to describe the specific structure of the transformations
X→ X which arise from (185.2).

We begin as we began on page 132 (though the argument will not not lead
to a proof of enforced linearity). If (185.2) is written

gαβW
α
µW

β
ν = gµν (218)

then (since the elements of j
���g are constants) application of ∂λ gives

gαβW
α
λµW

β
ν + gαβW

α
µW

β
νλ = gµνΩλ (219)

where Wα
λµ ≡ ∂λW

α
µ = ∂2xα/∂xλ∂xµ and Ωλ ≡ ∂λΩ. Let functions Γµνλ

and ϕλ ≡ ∂λϕ be defined—deviously—as follows:

Ωλ ≡ 2Ωϕλ (220)

gαβW
α
µW

β
νλ ≡ ΩΓµνλ : νλ-symmetric (221)

Then (since the stipulated invertibility of X→ X entails Ω =
√

W 
= 0) equation
(219) becomes

Γµνλ + Γνλµ = 2gµνϕλ

which by the “cyclic permutation argument” encountered on page 132 gives

Γλµν = gλµϕν + gλνϕµ − gµνϕλ (222)

* It is the logic of the overall argument—certainly not pedagogical good
sense!—that has motivated me to introduce this material (which will not be
treated in lecture). First-time readers should skip directly to §7.
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Now

Wα
µν = Γλµν · ΩMλ

βg
βα︸ ︷︷ ︸ by (221)

= gλκWα
κ by (218)

so by (222)
= ϕµW

α
ν + ϕνW

α
µ − gµν · gλκϕλWα

κ (223)

where the µν-symmetry is manifest. More compactly

= ΓκµνW
α
κ (224)

where
Γκµν ≡ gκλΓλµν

Application of ∂λ to (224) gives Wα
λµν =

∂Γκµν
∂xλ

Wα
κ + ΓκµνW

α
λκ which

(since W ��� , W ���� and Γ ��� are symmetric in their subscripts, and after relabling
some indices) can be written

Wα
λµν =

∂Γ βλν
∂xµ

Wα
β + ΓκνλWα

κµ︸ ︷︷ ︸
= Γ βκµW

α
β by (224)

=
{

∂Γ βλν
∂xµ

+ Γ βκµΓ
κ
νλ

}
Wα

β

from which it follows in particular that

Wα
λµν −Wα

λνµ =
{

∂Γ βλν
∂xµ

− ∂Γ βλµ
∂xν

+ Γ βκµΓ
κ
νλ − Γ βκνΓ

κ
µλ

}
Wα

β

≡ Rβ
λµνW

α
β (225)

The preceding sequence of manipulations will, I fear, strike naive readers as an
unmotivated jumble. But those with some familiarity with patterns of argument
standard to differential geometry will have recognized that
• the quantities Wα

µ transform as components of an α-parameterized set
of covariant vectors;

• the quantities Γκµν are components of131 an affine connection to which
(222) assigns a specialized structure;

• the α-parameterized equations (224) can be notated

DνW
α
µ ≡ ∂νW

α
µ −Wα

κ Γκµν = 0

according to which each of the vectors Wα
µ has the property that its

covariant derivative129 vanishes;
• the 4th rank tensor Rβ

λµν defined at (225) is just the Riemann-Christoffel
curvature tensor ,129 to which a specialized structure has in this instance
been assigned by (222).

131 See again page 123.
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But of differential geometry I will make explicit use only in the following—
independently verifiable—facts: let

Rκλµν ≡ gκβR
β
λµν

Then—owing entirely to (i) the definition of Rβ
λµν and (ii) the µν-symmetry

of Γ βµν —the tensor Rκλµν possess the following symmetry properties:

Rκλµν = −Rκλνµ : antisymmetry on the last pair of indices
= −Rλκµν : antisymmetry on the first pair of indices
= +Rµνκλ : supersymmetry

Rκλµν + Rκµνλ + Rκνλµ = 0 : windmill symmetry

These serve to reduce the number of independent components from N4 to
1
12N

2(N2 − 1):

N N4 1
12N

2(N2 − 1)

1 1 0
2 16 1
3 81 6
4 256 20
5 625 50
6 1296 105
...

...
...

We will, in particular, need to know that in the 2-dimensional case the only
non-vanishing components of Rκλµν are

R0101 = −R0110 = −R1001 = +R1010

Returning now to the analytical mainstream . . .

The left side of (225) vanishes automatically, and from the invertibility of
W we infer that

Rκλµν = 0 (226)

Introducing (222) into (225) we find (after some calculation marked by a great
deal of cancellation) that Rκλµν has the correspondingly specialized structure

Rκλµν = gκνΦλµ − gκµΦλν − gλνΦκµ + gλµΦκν (227)

where

Φλµ ≡ ϕλµ − ϕλϕµ + 1
2gλµ · (g

αβϕαϕβ) (228)

ϕλµ ≡ ∂ϕλ/∂x
µ = ∂2ϕ/∂xλ∂xµ = ϕµλ
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entail Φλµ = Φµλ. It follows now from (227) that

Rλµ ≡ Rα
λµα = (N − 2)Φλµ + gλµ · (gαβΦαβ) (229.1)

R ≡ Rβ
β = 2(N − 1) · gαβΦαβ (229.2)

must—in consequence of (226)—both vanish:

Rλµ = 0 (230.1)
R = 0 (230.2)

In the case N = 2 the equations (230) are seen to reduce to a solitary
condition

gαβΦαβ = 0 (231)

which in cases N > 2 becomes a corollary of the stronger condition

Φαβ = 0 (232)

This is the conformality condition from which we will work. When introduced
into (227) it renders (226) automatic.132

Note that (220) can be written ∂λϕ ≡ ϕλ = ∂λ log
√

Ω and entails

ϕ = log
√

Ω + constant

Returning with this information to (228), the conformality condition (232)
becomes

∂2 log
√

Ω
∂xµ∂xν

− ∂ log
√

Ω
∂xµ

∂ log
√

Ω
∂xν

+ 1
2gµν · g

αβ ∂ log
√

Ω
∂xα

∂ log
√

Ω
∂xβ

= 0

which—if we introduce
F ≡ 1√

Ω
(233)

—can be written

∂2 logF

∂xµ∂xν
= 1

2gµν · g
αβ ∂ logF

∂xα
∂ logF

∂xβ
− ∂ logF

∂xµ
∂ logF

∂xν

132 When N = 2 one must, on the other hand, proceed from (231). It is
therefore of interest that (231) and (226) are—uniquely in the case N = 2
—notational variants of the same statement . . . for

R0101 = only independent element
= g01Φ10 − g00Φ11 − g11Φ00 + g10Φ01 by (227)

= −g · gαβΦαβ by
(

g00 g01

g10 g11

)
= g–1 ·

(
g11 −g01

−g10 g00

)
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We write out the derivatives and obtain these simpler-looking statements

Fµν = gµν ·
gαβFαFβ

2F
(234)

where Fµ ≡ ∂µF and Fµν ≡ ∂µ∂νF . The implication is that

∂ν(gλµFµ) = gλµFµν

=
{

1
2

gαβFαFβ
F

}
δλν : vanishes unless ν = λ

which is to say: gλµFµ is a function only of xλ. But j
���g is, by initial assumption,

a constant diagonal matrix, so we have

Fµ is a function only of xµ, and so are all of its derivatives Fµν

Returning with this information to (233), we are brought to the conclusion that
the expression

{
etc.

}
is a function only of x0, only of x1, . . . ; that it is, in short,

a constant (call it 2C), and that (233) can be written

Fµν = 2Cgµν

giving

F = Cgαβx
αxβ − 2bαxβ + A

= C · (x, x)− 2(b, x) + A (235)

where bα and A are constants of integration. Returning with this information
to (234) we obtain

4CF = gαβFαFβ = gαβ(2Cxα − 2bα)(2Cxβ − 2bβ)

= 4C
[
C · (x, x)− 2(b, x) +

(b, b)
C

]

the effect of which, upon comparison with (235), is to constrain the constants{
A, bα , C

}
to satisfy

AC = (b, b)

This we accomplish by setting C = (b, b)/A, giving

F = A− 2(b, x) +
(b, b)(x, x)

A
: A and bα now unconstrained

Finally we introduce aα ≡ bα/A to obtain the pretty result

F = A
[
1− 2(a, x) + (a, a)(x, x)

]
(236)
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The conformal transformations X ← X have yet to be described, but we
now know this about W , the Jacobian of such a transformation:

Ω = W
2
N = 1

F 2
= 1

A2[1− 2(b, x) + (a, a)(x, x)]2
(237)

Clearly, tensor weight distinctions do not become moot in the context provided
by the conformal group, as they did (to within signs) in connection with the
Lorentz group.

To get a handle on the functions xα(x) that describe specific conformal
transformations X← X we introduce

∂µϕ ≡ ϕµ = ∂µ log
√

Ω = −∂µ logF = − 1
F

Fµ

into (223) to obtain

FWα
µν + FµW

α
ν + FνW

α
µ = gµν · gλκFλWα

κ

or again (use Wα
µ = ∂xα/∂xµ)

(Fxα)µν = Fµνx
α + gµν · gλκFλWα

κ (238)

To eliminate some subsequent clutter we agree translate from x-coordinates to
y -coordinates whose origin coincides with that of the x-coordinate system: we
write

xα(x) = yα(x) + Ktα with K ≡ A–1

and achieve yα(0) = 0 by setting Ktα ≡ xα(0). Clearly, if the functions xα(x)
satisfy (238) then so also do the functions yα(x), and conversely. We change
dependent variables now once again, writing

Fyα ≡ zα

Then yαµ = − 1
F 2 Fµx

α + 1
F zαµ and (238) assumes the form

zαµν = 1
F

{ (
Fµν − gµν ·

gλκFλFκ
F

)
︸ ︷︷ ︸ zα + gµν · gλκFλzακ

}

It follows, however, from the previously established structure of F that

= −Fµν = −2Cgµν

so

= gµν · 1
F

{
− 2Czα + gλκFλz

α
κ

}
(239)

Each of these α-parameterized equations is structurally analogous to (234), and
the argument that gave (235) no gives

zα(x) = Pα · (x, x) + Λαβxβ +
[

now no x-independent term
because y(0)=0 ⇒ z(0)=0

]
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Returning with this population of results to (239) we obtain

2Pα
[
C(x, x)− 2(b, x) + A

]
= −2C

[
Pα(x, x) + Λαβxβ

]
+

[
2Cxβ − 2bβ

][
2Pαxβ + Λαβ

]
—the effect of which (after much cancellation) is to constrain the constants Pα

and Λαβ to satisfy Pα = − 1
AΛαβ bβ = −Λαβ aβ . Therefore

zα(x) = Λαβ
{
xβ − (x, x)aβ

}
Reverting to y -variables this becomes

yα(x) = K
Λαβ

{
xβ − (x, x)aβ

}
1− 2(a, x) + (a, a)(x, x)

so in x-variables—the variables of primary interest—we have

xα(x) = K

[
tα +

Λαβ
{
xβ − (x, x)aβ

}
1− 2(a, x) + (a, a)(x, x)

]
(240)

Finally we set K = 1 and aα = 0 (all α) which by (237) serve to establish
Ω = 1. But in that circumstance (240) assumes the simple form

↓
= Λαβ xβ

and the equation (185.2) that served as our point of departure becomes
/\\\T j

���g /\\\= j
���g , from which we learn that the Λαβ must be elements of a Lorentz

matrix.

Transformations of the form (240) have been of interest to mathematicians
since the latter part of the 19th Century. Details relating to the derivation
of (240) by iteration of infinitesimal conformal transformations were worked
out by S. Lie, and are outlined on pages 28–32 of J. E. Campbell’s Theory of
Continuous Groups (). The finitistic argument given above—though in a
technical sense “elementary”—shows the toolmarks of a master’s hand, and is in
fact due (in essential outline) to H. Weyl (). I have borrowed most directly
from V. Fock, The Theory of Space, Time & Gravitation (), Appendix A:
“On the derivation of the Lorentz transformations.”

Equation (240) describes—for N 
= 2—the most general N -dimensional
conformal transformation, and can evidently be considered to arise by
composition from the following:

Lorentz transformation : x→ x = /\\\x (241.1)
Translation : x→ x = x + t (241.2)

Dilation : x→ x = Kx (241.3)
Möbius transformation : x→ x =

x− (x, x)a
1− 2(a, x) + (a, a)(x, x)

(241.4)
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To specify such a transformation one must assign values to
1
2N(N − 1) + N + 1 + N = 1

2 (N + 2)(N + 2)

adjustable parameters
{
tα,K, aα and the elements of log /\\\

}
, the physical

dimensionalities of which are diverse but obvious. The associated numerology
is summarized below:

N 1
2 (N + 2)(N + 1)

1 3
2 6 +∞
3 10
4 15
5 21
6 28
...

...

Concerning the entry at N = 2 : equation (240) makes perfect sense in the
case N = 2 , and that case provides a diagramatically convenient context

within which to study the meaning of (240) in the general case. But (240) was
derived from (232), which was seen on page 167 to be stronger that the condition
(231) appropriate to the 2-dimensional case. The weakened condition requires
alternative analysis,133 and admits of more possibilities—actually infinitely
many more, corresponding roughly to the infinitely many ways of selecting
f(z) in the theory of conformal transformations as it is encountered in complex
function theory.134 I do not pursue the topic because the physics of interest to
us is inscribed (as are we) on 4-dimensional spacetime.

Some of the mystery which surrounds the Möbius transformations—which
are remarkable for their nonlinearity—is removed by the remark that they can
be assembled from translations and “inversions,” where the latter are defined
as follows:

Inversion : x→ x = µ2 x
(x, x)

(241.5)

Here µ2 is a constant of arbitrary value, introduced mainly for dimensional
reasons. The proof is by construction:

x −−−−−−−−−−−−−−−−−−→
inversion

x = µ2x/(x, x)

−−−−−−−−−−−−−−−−−−→
translation with t=−µ2a

x = x− µ2a

−−−−−−−−−−−−−−−−−−→
inversion

x = µ2x/(x, x)

=
x− (x, x)a

1− 2(a, x) + (a, a)(x, x)




(242)

133 The problem is discussed in my transformational physics of waves
(–).
134 See again page 129.
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Inversion—which
• admits readily of geometrical interpretation(as a kindof “radial reflection”

in the isometric surface (x, x) = µ2)
• can be looked upon as the ultimate source of the nonlinearity which is

perhaps the most striking feature of the conformal transformations (240)
—is one of the sharpest tools available to the conformal theorist, so I digress
to examine some of its properties:

We have, in effect, already shown (at (242): set a = 0) that inversion
is—like every kind of “reflection”—self-reciprocal :

(inversion) · (inversion) = identity (243)

That inversion is conformal in the sense “angle-preserving” can be established
as follows: let x and y be the inversive images of x and y. Then

(x, y) = µ4 (x, y)
(x, x)(y, y)

shows that inversion does not preserve inner products. But immediately

(x, y)√
(x, x)(y, y)

=
(x, y)√

(x, x)(y, y)
(244)

which is to say:
angle = angle

Inversion, since conformal, must be describable in terms of the primitive
transformations listed at (241). How is that to be accomplished? We notice that
each of those transformations—with the sole exception of the improper Lorentz
transformations—is continuous with the identity (which arises at /\\\ = I, at
t = 0, at K = 1, at a = 0). Evidently improper Lorentz transformations—in a
word: reflections—must enter critically into the fabrication of inversion, and it
is this observation that motivates the following short digression: For arbitrary
non-null aµ we can always write

x =
[
x− (x, a)

(a, a)
a
]

+
(x, a)
(a, a)

a ≡ x‖ + x⊥

which serves to resolve xµ into components parallel/normal to aµ. It becomes
in this light natural to define

a-reflection : x = x⊥ + x‖

↓
x̂ = x⊥ − x‖ = x− 2

(x, a)
(a, a)

a (245)

and to notice that (by quick calculation)

(x̂, ŷ) = (x, y) : a-reflection is inner-product preserving
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This simple fact leads us to notice that (245) can be written

x̂ = /\\\x with /\\\ ≡ ‖Λµν‖ = ‖δµν − 2(a, a)–1aµaν‖

where a brief calculation (examine ΛαµgαβΛβν) establishes that /\\\ is a Lorentz
matrix with (according to Mathematica) det /\\\= −1. In short:

a-reflections are improper Lorentz transformations (246)

Thus prepared, we are led after a little exploratory tinkering to the following
sequence of transformations:

x −−−−−−−−−−−−−−−−−−→
translation

x = x− 1
(a, a)

a

−−−−−−−−−−−−−−−−−−→
reflection

x = x− 2
(x, a)
(a, a)

a

−−−−−−−−−−−−−−−−−−→
Möbius

x =
x− (x, x)a

1− 2(a, x) + (a, a)(x, x)
... algebraic simplification

= 1
(a, a)

{
x

(x, x)
− a

}

−−−−−−−−−−−−−−−−−−→
reverse translation

x = x + 1
(a, a)

a

= µ2 x
(x, x)

with µ2 ≡ (a, a)–1

The preceding equations make precise the sense in which

inversion = (translation)–1·(Möbius)·(reflection)·(translation) (247)

and confirm the conclusion reached already at (244): inversion is conformal.
Finally, if one were to attempt direct evaluation of the Jacobian W of the
general conformal transformation (240)—thus to confirm the upshot

W = ±KN
[ 1
1− 2(a, x) + (a, a)(x, x)

]N

of (237)—one would discover soon enough that one had a job on one’s hands!
But the result in question can be obtained as an easy consequence of the
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following readily-established statements:

Winversion = −µ2N 1
(x, x)N

(248.1)

WLorentz = ±1 (248.2)
Wtranslation = 1 (248.3)
Wdilation = KN (248.4)

It follows in particular from (242) that

WMöbius = (−)2µ2N 1
(x, x)N

· 1 · µ2N 1
(x, x)N

with x = µ2
[

x
(x, x)

− a
]

=
[ 1
1− 2(a, x) + (a, a)(x, x)

]N
(248.5)

We are familiar with the fact that specialized Lorentz transformations serve
to boost one to the frame of an observer O in uniform motion. I discuss now
a related fact with curious electrodynamic implications: specialized Möbius
transformations serve to boost one to the frame of a uniformly accelerated
observer . From (241.4) we infer that aµ has the dimensionality of reciprocal
length, so

1
2gµ ≡ c2aµ is dimensionally an “acceleration”

and in this notation (241.4) reads

xµ → xµ =
xµ − 1

2c2 (x, x)gµ

1− 1
c2 (g, x) + 1

4c4 (g, g)(x, x)
(249)

We concentrate now on implications of the assumption that gµ possesses the
specialized structure 


g0

g1

g2

g3


 =

(
0
ggg

)

that results from setting g0 = 0. To describe (compare page 139) the “successive
ticks of the clock at his origin” O writes(

ct
000

)

which to describe those same events we write(
ct
xxx

)
= 1

1− (g t/2c)2

(
ct
000 + 1

2ggg t
2

)

where g ≡ √ggg···ggg and the + intruded because we are talking here about gµ; i.e.,
because we raised the index. In the non-relativistic limit this gives(

t
xxx

)
=

(
t

1
2ggg t

2

)
(250)

which shows clearly the sense in which we see O to be in a state of uniform
acceleration. To simplify more detailed analysis of the situation we (without
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loss of generality) sharpen our former assumption, writing

ggg =


 g

0
0




Then

1− 1
c2 (g, x) + 1

4c4 (g, g)(x, x) =

[
(x− λ)2 + y2 + x2 − c2 t2

]
λ2

λ ≡ 2c2
g is a “length”

and (249) becomes

t = λ2

[etc.]
· t

x = λ2

[etc.]
·
{
x + λ–1(c2 t2 − x2)

}

= λ
[etc.]

·
{
c2 t2 −

(
x− 1

2λ
)2 +

(
1
2λ

)2
}

= λ
[etc.]

·
{
−

[
etc.

]
− λ(x− λ)

}

y = λ2

[etc.]
· y

z = λ2

[etc.]
· z




(251)

It is evident that
[
etc.

]
vanishes—and the transformation (251) becomes

therefore singular—on the lightcone c2 t2− (x−λ)2− y2−x2 = 0 whose vertex
is situated at

{
t, x, y, z

}
=

{
0, λ, 0, 0

}
. It is to gain a diagramatic advantage

that we now set y = z = 0 and study what (251) has to say about how t and x
depend upon t and x. We have

t = λ2

[(x− λ)2 − c2 t2]
· t (252.1)

(x + λ) = − λ2

[(x− λ)2 − c2 t2]
· (x− λ) (252.2)

which jointly entail[
c2t2 − (x + λ)2

][
c2 t2 − (x− λ)2

]
= λ4 (253)

But equations (252) can be written

[
c2 t2 − (x− λ)2

]
= −λ2 t

t
(254.1)

= λ2 x− λ
x + λ

(254.2)
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and when we return with the latter to (253) we find

[
c2t2 − (x + λ)2

]
= λ2 x + λ

x− λ

from which t has been eliminated: complete the square and obtain

(
x + λ

x− 1
2λ

x− λ

)2

− (ct)2 =
(

λ2

2(x− λ)

)2

(255.1)

which is seen to describe a x-parmeterized family of hyperbolas inscribed on the
(t, x)-plane. These are Möbius transforms of the lines of constant x inscribed
on the (t, x)-plane. Proceeding similarly to the elimination of (x− λ) we find

[
c2t2 − (x + λ)2

]
= −λ2 t

t

giving (
ct + λ2

2ct

)2

− (x + λ)2 =
(

λ2

2ct

)2

(255.2)

which describes a t -parameterized family of hyperbolas—Möbius transforms
of the “time-slices” or lines of constant t inscribed on the (t, x)-plane. The
following remarks proceed from the results now in hand:
• O, by (252), assigns to O’s origin the coordinates t0 = 0, x0 = 0; their

origins, in short, coincide.
• In (255.1) set x = 0 and find that O writes

(x + 1
2λ)2 − (ct)2 = ( 1

2λ)2

to describe O’s worldline, which O sees to be hyperbolic, with x-intercepts
at x = 0 and x = −λ and asymptotes ct = ±(x + 1

2λ) that intersect at
t = 0, x = − 1

2λ.
• If, in (252), we set x = 0 we obtain

t = λ2

[λ2 − c2 t2]
· t

x = λ3

[λ2 − c2 t2]
− λ

which provide O’s t-parameterized description of O’s worldline. Notice
that t and x both become infinite at t = λ/c, and that t thereafter
becomes negative!

• To describe her lightcone O writes x = ±ct. Insert x = +ct into (252.1),
(ask Mathematica to) solve for t and obtain ct = λct/(2ct + λ). Insert
that result and x = +ct into (252.2) and, after simplifications, obtain
x = +ct. Repeat the procedure taking x = −ct as your starting point:
obtain ct = −λct/(2ct− λ) and finally x = −ct. The striking implication
is that (252) sends

O’s lightcone �−→ O’s lightcone



Conformal transformations 177

The conformal group is a wonderfully rich mathematical object, of which I
have scarcely scratched the surface.135 But I have scratched deeply enough to
illustrate the point which motivated this long and intricate digression, a point
made already on page 126:

The covariance group of a theory depends
in part upon how the theory is expressed :

One rendering of Maxwell’s equations led us to the Lorentz group, and to
special relativity. An almost imperceptibly different rendering committed us,
however, to an entirely different line of analysis, and led us to an entirely
different place—the conformal group, which contains the Lorentz group as
a subgroup, but contains also much else . . . including transformations to the
frames of “uniformly accelerated observers.” Though it was electrodynamics
which inspired our interest in the conformal group,136 if you were to ask an
elementary particle theorist about the conformal group you would be told that
“the group arises as the covariance group of the wave equation

ϕ = 0 : conformally covariant

Conformal covariance is broken (reduced to Lorentz covariance) by the inclusion
of a “mass term”

( + m2)ϕ = 0 : conformal covariance is broken

It becomes the dominant symmetry in particle physics because at high energy
mass terms can, in good approximation, be neglected

rest energy mc2 � total particle energy

and enters into electrodynamics because the photon has no mass.” That the
group enters also into the physics of massy particles133 is, in the light of such
a remark, somewhat surprising. Surprises are imported also into classical
electrodynamics by the occurrence of accelerations within the conformal group,
for the question then arises: Does a uniformly accelerated charge radiate?137

135 I scratch deeper, and discuss the occurance of the conformal group in
connection with a rich variety of physical problems, in appell, galilean
& conformal transformations in classical/quantum free particle
dynamics () and transformational physics of waves (–).
136 In “‘Electrodynamics’ in 2-dimensional spacetime” () I develop a
“toy electrodynamics” that gives full play to the exceptional richness that the
conformal group has been seen to acquire in the 2-dimensional case.
137 This question—first posed by Pauli in §32γ of his Theory of Relativity—
once was the focus of spirited controversy: see T. Fulton & F. Rohrlich,
“Classical radiation from a uniformly accelerated charge,” Annals of Physics 9,
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8. Transformation properties of electromagnetic fields. To describe such a field at
a spacetime point P we might display the values assumed there by the respective
components of the electric and magnetic field vectors EEE and BBB. Or we might
display the values assumed there by the components Fµν of the electromagnetic
field tensor. To describe the same physical facts a second138 observer O would
display the values assumed by EEE and BBB, or perhaps by Fµν . The question is

How are
{
EEE,BBB

}
and

{
EEE,BBB

}
related?

The answer has been in our possession ever since (at A on page 127, and on
the “natural” grounds there stated) we assumed it to be the case that

Fµν transforms as a tensor density of unit weight (256)

But now we know things about the “allowed” coordinate transformations that
on page 127 we did not know. Our task, therefore, is to make explicit the
detailed mathematical/physical consequences of (256). We know (see again
(186) on page 129) that (256) pertains even when X → X is conformal, but
I will restrict my attention to the (clearly less problematic, and apparently
more important) case (184) in which

X→ X is Lorentzian

The claim, therefore, is that

x→ x = /\\\x induces F→ F = V · /\\\F/\\\T

where /\\\T j
���g /\\\= j

���g entails
V ≡ 1

det /\\\
= ±1

and F = V·/\\\F/\\\T means Fµν = V ΛµαFαβΛνβ . It is known, moreover, that (see
again (211) on page 157) /\\\ can be considered to have this factored structure:

/\\\ = R · /\\\(βββ)

(continued from the preceding page) 499 (1960); T. Fulton, F. Rohrlich & L. Witten,
“Physical consequences of a coordinate transformation to a uniformly
accelerated frame,” Nuovo Cimento 26, 652 (1962) and E. L. Hill, “On
accelerated coordinate systems in classical and relativistic mechanics,” Phys.
Rev. 67, 358 (1945); “On the kinematics of uniformly accelerated motions &
classical electromagnetic theory,” Phys. Rev. 72, 143 (1947). The matter
is reviewed by R. Peierls in §8.1 of Surprises in Theoretical Physics (),
and was elegantly laid to rest by D. Boulware, “Radiation from a uniformly
accelerated charge,” Annals of Physics 124, 169 (1980). For more general
discussion see T. Fulton, F. Rohrlich & L. Witten, “Conformal invariance in
physics,” Rev. Mod. Phys. 34, 442 (1962) and L. Page, “A new relativity,”
Phys. Rev. 49, 254 (1936). Curiously, Boulware (with whom I was in touch
earlier today:  October ) proceeded without explicit reference to the
conformal group, of which he apparently was (and remains) ignorant.
138 In view of the conformal covariance of electrodynamics I hesitate to insert
here the adjective “inertial.”
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This means that we can study separately the response of F to spatial rotations
R and its response to boosts /\\\(βββ).

response to rotations Write out again (159)

F = A(EEE,BBB) ≡




0 −E1 −E2 −E3

E1 0 −B1 B2

E2 B3 0 −B1

E3 −B2 B1 0


 ≡

(
0 −EEE T

EEE B

)

and (208)

R ≡
(

1 000 T

000 R

)

where

R =


R11 R12 R13

R21 R22 R23

R31 R32 R33




is a 3×3 rotation matrix: R
–1 = R

T. It will, in a moment, become essential to
notice that the latter equation, when spelled out in detail, reads

1
det R


 (R22R33 −R23R32) (R13R32 −R12R33) (R12R23 −R13R22)

(R23R31 −R21R33) (R11R33 −R13R31) (R21R13 −R23R11)
(R32R21 −R31R22) (R31R12 −R32R11) (R11R22 −R12R21)




=


R11 R21 R31

R12 R22 R32

R13 R23 R33


 (257)

where
1

det R

= ±1 according as R is proper/improper

Our task now is the essentially elementary one of evaluating

F = 1
det R

(
1 000 T

000 R

) (
0 −EEE T

EEE B

) (
1 000 T

000 R
T

)

= 1
det R

(
0 −(REEE)T

REEE R B R
T

)

which supplies

EEE = (det R)–1 · REEE (258.1)
B = (det R)–1 · R B R

T (258.2)

The latter shows clearly how the antisymmetry of B comes to be inherited by B,
but does not much resemble its companion. however . . . if we139 first spell out

139 problem 47.
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the meaning of (258.2)

 0 −B3 B2

B3 0 −B1

−B2 B1 0


 = (det R)–1 · R


 0 −B3 B2

B3 0 −B1

−B2 B1 0


 R

T (259.1)

then (on a large sheet of paper) construct a detailed description of the matrix
on the right, and finally make simplifications based on the rotational identity
(257) . . .we find that (258.1) is precisely equivalent to (which is to say: simply
a notational variant of) the statement140

	
B1

B2

B3


 = R


B1

B2

B3


 (259.2)

Equations (258) can therefore be expressed

EEE = (det R)–1 · REEE (260.1)
BBB = RBBB (260.2)

remark: In the conventional language of 3-dimensional
physics, objects AAA that respond to rotation xxx → xxx = Rxxx by
the rule

AAA→ AAA = RAAA

are said to transform as vectors (or “polar vectors”), which
objects that transform by the rule

AAA→ AAA = (det R) · RAAA

are said to transform as pseudovectors (or “axial vectors”).
Vectors and pseudovectors respond identically to proper
rotations, but the latter respond to reflections (improper
rotations) by acquisition of a minus sign. If AAA and BBB are both
vectors (or both pseudovectors) then CCC ≡ AAA×BBB provides the
standard example of a pseudovector . . . for reasons that become
evident when one considers what mirrors do to the “righthand
rule.”

The assumption141 that

Fµν transforms as a tensor density of unit weight

140 For a more elegant approach to the proof of this important lemma see
pages 22–22 in classical gyrodynamics ().
141 See again the first point of view , page 126.
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was seen at (260) to carry the implication that

EEE responds to rotation as a pseudovector

BBB responds to rotation as a vector

}
(261.1)

If we were, on the other hand, to assume142 that

Fµν transforms as a weightless tensor

then the (det R)–1 factors would disappear from the right side of (258), and we
would be led to the opposite conclusion:

EEE responds to rotation as a vector

BBB responds to rotation as a pseudovector

}
(261.2)

The transformation properties of EEE and BBB are in either case “opposite,”143 and
it is from EEE that the transformation properties of ρ and jjj are inherited. The
mirror image of the Coulombic field of a positive charge looks
• like the Coulombic field of a negative charge according to (261.1), but
• like the Coulombic field of a positive charge according to (261.2).

Perhaps it is for this reason (supported by no compelling physical argument)
that (261.2) describes the tacitly-adopted convention standard to the relativistic
electrodynamical literature. The factors that distinguish tensor densities from
weightless tensors are, in special relativity, so nearly trivial (det /\\\ = ±1) that
many authors successfully contrive to neglect the distinction altogether.

response to boosts All boosts are proper. Our task, therefore, is to
evaluate

A(EEE,BBB) = /\\\(βββ) A(EEE,BBB) /\\\T(βββ) (262)

where /\\\(βββ) has the structure (209) described on page 156. It will serve our
exploratory purposes to suppose initially that

βββ =


β

0
0




142 See again the second point of view , page 128.
143 This fact has been latent ever since—at (67)—we alluded to the “EEE -like
character” of 1

c vvv×BBB, since

vector×
{

vector
pseudovector =

{pseudovector
vector



182 Aspects of special relativity

—i.e., that we are boosting along the x-axis: then

/\\\(βββ) =




γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1




and it follows from (262) by quick calculation that

A(EEE,BBB) =




0 −E1 −γ(EEE−βββ×BBB)2 −γ(EEE−βββ×BBB)3
E1 0 −γ(BBB+βββ×EEE)3 +γ(BBB+βββ×EEE)2

γ(EEE−βββ×BBB)2 +γ(BBB+βββ×EEE)3 0 −B1

γ(EEE−βββ×BBB)3 −γ(BBB+βββ×EEE)2 +B1 0




Noting that
E1 = (EEE−βββ×BBB)1 because (βββ×BBB) ⊥ βββ

B1 = (BBB+βββ×EEE)1 because (βββ×EEE) ⊥ βββ

we infer that
EEE = (EEE−βββ×BBB)‖ + γ(EEE−βββ×BBB)⊥
BBB = (BBB+βββ×EEE)‖ + γ(BBB+βββ×EEE)⊥

}
(263)

where components ‖ and ⊥ to βββ are defined in the usual way: generically

AAA = AAA‖ + AAA⊥

AAA‖ ≡ (AAA···β̂ββ )β̂ββ = 1
β2


β1β1 β1β2 β1β3

β2β1 β2β2 β2β3

β3β1 β3β2 β3β3




︸ ︷︷ ︸
AAA

projects onto βββ

Several comments are now in order:

1. We had already on page 46 (when we are arguing from Galilean relativity)
reason to suspect that “EEE & BBB fields transform in a funny, interdependent way.”
Equations (263) first appear—somewhat disguised—in §4 of Lorentz ().78

They appear also in §6 of Einstein ().78 They were, in particular, unknown
to Maxwell.
2. Equations (263) are ugly enough that they invite reformulation, and can
in fact be formulated in a great variety of (superficially diverse) ways . . . some
obvious—in the 6-vector formalism86 one writes

(
EEE
BBB

)
= M(βββ)

(
EEE
BBB

)

where M(βββ) is a 6×6 matrix whose elements can be read off from (263)—and
some not so obvious. I would pursue this topic in response to some specific
formal need, but none will arise.
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3. The following statements are equivalent:

Maxwell’s equations

∇∇∇···EEE = ρ

∇∇∇×BBB − 1
c
∂
∂tEEE = 1

cjjj

∇∇∇···BBB = 0
∇∇∇×EEE + 1

c
∂
∂tBBB = 000

simply “turn black” in response to




(264.1)

t = γ t + 1
c2 γvvv···xxx

xxx = xxx +
{
γ t + (γ − 1) 1

v2vvv···xxx
}
vvv

ρ = γρ + 1
c2 γvvv···jjj

jjj = jjj +
{
γρ + (γ − 1) 1

v2vvv···jjj
}
vvv

EEE = (EEE−βββ×BBB)‖ + γ(EEE−βββ×BBB)⊥
BBB = (BBB+βββ×EEE)‖ + γ(BBB+βββ×EEE)⊥

Maxwell’s equations

∂µF
µν = 1

cjν

∂µF νλ + ∂νFλµ + ∂λFµν = 0

simply “turn black” in response to




(264.2)

xµ = Λµαxα

jν = Λνβ jβ

Fµν = ΛµαΛνβFαβ

and provide detailed statements of what one means when one refers to the
“Lorentz covariance of Maxwellian electrodynamics.” Note that it is not enough
to know how Lorentz transformations act on spacetime coordinates: one must
know also how they act on fields and sources. The contrast in the formal
appearance of (264.1: Lorentz & Einstein) and (264.2: Minkowski) is striking,
and motivates me to remark that
• it is traditional in textbooks to view (264.1) as “working equations,” and

to regard (264.2) as “cleaned-up curiosities,” to be written down and
admired as a kind of afterthought . . .but

• my own exposition has been designed to emphasize the practical utility
of (264.2): I view (264.1) as “elaborated commentary” upon (264.2)—too
complicated to work with except in some specialized applications.

4. We know now how to translate electrodynamical statements from one inertial
frame to another. But we do not at present possess answers to questions such
as the following:
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• How do electromagnetic fields and/or Maxwell’s equations look to an
observer in a rotating frame?

• How—when Thomas precession is taken into account—does the nuclear
Coulomb field look to an observer sitting on an electron in Bohr orbit?

• How do electromagnetic fields and the field equations look to an arbitrarily
accelerated observer?

We are, however, in position now to attack such problems, should physical
motivation arise.

5. Suppose O sees a pure EEE -field: BBB(xxx) = 0 (all xxx). It follows from (263) that
we would see and electromagnetic field of the form

EEE = EEE‖ + γEEE⊥ = γEEE + (1− γ) 1
v2 (vvv···EEE)vvv

BBB = γ(βββ×EEE) = 1
cγ(vvv×EEE)

Our BBB -field is, however, structurally atypical: it has a specialized ancestory,
and (go to O’s frame) can be transformed away—globally . In general it is not
possible by Lorentz transformation to kill BBB (or EEE ) even locally, for to do so
would be (unless EEE ⊥BBB at the spacetime point in question) to stand in violation
of the second of the following remarkable equations144

EEE ···EEE −BBB ···BBB = EEE ···EEE −BBB ···BBB (265.1)
EEE ···BBB = EEE ···BBB (265.2)

The preceding remark makes vividly clear, by the way, why it is that attempts to
“derive” electrodynamics from “Coulomb’s law + special relativity” are doomed
to fail: with only that material to work with one cannot escape from the force
of the special/atypical condition EEE ···BBB = 0.

6. We do not have in hand the statements analogous to (264) that serve to lend
detailed meaning to the “conformal covariance of Maxwellian electrodynamics.”
To gain a sense of the most characteristic features of the enriched theory it
would be sufficient to describe how electromagnetic fields and sources respond
to dilations and inversions.

7. An uncharged copper rod is transported with velocity vvv in the presence of a
homogeneous magnetic field BBB. We see a charge separation to take place (one
end of the rod becomes positively charge, the other negatively: see Figure 66),
which we attribute the presence q(vvv×BBB)-forces. But an observer O co-moving
with the rod sees no such forces (since vvv = 000), and must attribute the charge
separation phenomenon to the presence of an electric field EEE. It was to account
for such seeming “explanatory asymmetry” that Einstein invented the theory
of relativity. I quote from the beginning of his  paper:

144 problem 48.
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v

B

Figure 66: A copper rod is transported with constant velocity vvv in a
homogeneous magnetic field. Charge separation is observed to occur
in the rod. Observers in relative motion explain the phenomenon
in—unaccountably, prior to the invention of special relativity—quite
different ways.

on the electrodynamics of moving

bodies

a. einstein

It is known that Maxwell’s electrodynamics—as usually understood at

the present time—when applied to moving bodies, leads to asymmetries

which do not appear to be inherent in the phenomena. Take, for example,

the reciprocal electrodynamic action of a magnet and a conductor. The

observable phenomenon here depends only on the relative motion of the

conductor and the magnet, whereas the customary view draws a sharp

distinction between the two cases in which either the one or the other

of these bodies is in motion. For if the magnet is in motion and the

conductor at rest, there arises in the neighborhood of the magnet an

electric field with a certain definite energy, producing a current at the

places where parts of the conductor are situated. But if the magnet is

stationary and the conductor in motion, no electric field arises in the

neighborhood of the magnet. In the conductor, however, we find an

electrtomotive force, to which in itself there is no corresponding energy,

but which gives rise—assuming equality of relative motion in the two

cases discussed—to elecric currents of the same path and intensity as

those produced by the electric forces in the former case.

Examples of this sort, together with the unsuccessful attempts to

discover any motion of the earth relatively to the “light medium,” suggest

that the phenomena of electrodynamics as well as of mechanics possess

no properties corresponding to the idea of absolute rest.
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After sixteen pages of inspired argument Einstein arrives at equations (263),
from which he concludes that

. . . electric and magnetic forces do not exist independently of the state

of motion of the system of coordinates.

Furthermore it is clear that the asymmetry mentioned in the

introduction as arising when we consider the currents produced by the

relative motion of a magnet and a conductor now disappears.

He comes to the latter conclusion by arguing that to determine the force FFF
experienced by a moving charge q in an electromagnetic field

{
EEE,BBB

}
a typical

inertial observer should
i) transform

{
EEE,BBB

}
→

{
EEE0,BBB0

}
to the instantaneous rest frame of the

charge;
ii) write FFF 0 = qEEE0;
iii) transform back again to his own reference frame: FFF ← FFF 0.

We don’t, as yet, know how to carry out the last step (because we have yet
to study relativistic mechanics). It is already clear, however, that Einstein’s
program eliminates asymmetry because it issues identical instructions to every
inertial observer . Note, moreover, that it contains no reference to “the” velocity
. . .but refers only to the relative velocity (of charge and observer, of observer
and observer).

The field-transformation equations (263) lie, therefore, at the motivating
heart of Einstein’s  paper. All the rest can be read as “technical support”—
evidence of the extraordinary surgery Einstein was willing to perform to remove
a merely aesthetic blemish from a theory (Maxwellean electrodynamics) which—
after all—worked perfectly well as it was! Several morals could be drawn. Most
are too obvious to state . . . and all are too important for the creative physicist
to ignore.

9. Principle of relativity . The arguments which led Einstein to the Lorentz trans-
formations differ profoundly from those which (unbeknownst to Einstein) had
led Lorentz to the same result. Lorentz argued (as we have seen . . . and done)
from the structure of Maxwell’s equations. Einstein, on the other hand (and
though he had an electrodynamic problem in mind), extracted the Lorentz
transformations from an unprecedented operational analysis: his argument
assumed very little . . . and he had, therefore, correspondingly greater confi-
dence in the inevitability and generality of his conclusions. His argument was,
in particular, entirely free from any reference to Maxwell’s equations, so his
conclusion—that inertial observers are interrelated by Lorentz transformations
—could not be specific to Maxwellean electrodynamics. It was this insight—and
the firmness145 with which he adhered to it—which distinguished Einstein’s
thought from that of his contemporaries (Lorentz, Poincaré). It led him to

145 I have indicated on page 163 why, in the light of subsequent developments,
Einstein’s “firmness” can be argued to have been inappropriately strong.
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propose, at the beginning of his §2, two principles . . .which amount, in effect,
to this, the

Principle of Relativity: The concepts, statements and
formulæ of physics—whatever the phenomenology to
which they specifically pertain—must preserve their
structure when subjected to Lorentz transformation.

(266)

The principle of relativity functions as a “syntactical constraint” on the
“statements that physicists may properly utter”—at least when they are doing
local physics. Concepts/statements/theories which fail to pass the (quite
stringent) “Lorentz covariance test” can, according to the principle of relativity,
be dismissed out of hand as ill-formed, inconsistent with the grammar of physics
. . . and therefore physically untenable. Theories that pass the test are said to be
“relativistic,” “Lorentz invariant” or (more properly) Lorentz covariant . The
physical correctness of such a theory is, of course, not guaranteed. What is
guaranteed is the ultimate physical incorrectness of any theory—whatever may
be its utility in circumscribed contexts (think of non-relativistic classical and
quantum mechanics!)—that stands in violation of the principle of relativity.146

Some theories—such as the version of Maxwellean electrodynamics that
was summarized at (264.1)—conform to the principle of relativity, but do so
“non-obviously.” Other theories—see again (264.2)—conform more obviously.
Theories of the latter type are said to be “manifestly Lorentz covariant .”
Manifest is, for obvious reasons, a very useful formal attribute for a physical
theory to possess. Much attention has been given therefore to the cultivation
of principles and analytical techniques which sharpen one’s ability to generate
manifestly covariant theories “automatically.” Whence the importance which
theoretical physicists nowadays attach to variational principles, tensor analysis,
group representation theory, . . . (Einstein did without them all!).

Clearly, the principle of relativity involves much besides the simple “theory
of Lorentz transformations” (it involves, in short, all of physics!) . . .but one
must have a good command of the latter subject in order to implement the
principle. If in (266) one substitutes for the word “Lorentz” the words
“Galilean,” “conformal,” . . . one obtains the “principle of Galilean relativity,”
the “principle of conformal relativity,” etc. These do have some physically
illuminating formal consequences, but appear to pertain only approximately to
the world-as-we-find-it . . .while the principle announced by Einstein pertains
“exactly/universally.”

I have several times emphasized the universal applicability of the principle

146 But every physical theory is ultimately incorrect! So the question that
confronts physicists in individual cases is this: Is Lorentz non-covariance the
principal defect of the theory in question, the defect worth of my corrective
attention? Much more often than not, the answer is clearly “No.”



188 Aspects of special relativity

of relativity. It is, therefore, by way of illustrative application that in Part II
of his paper Einstein turns to the specific physics which had served initially to
motivate his research—Maxwellean electrodynamics. It is frequently stated that
“electrodynamics was already relativistic (while Newtonian dynamics had to be
deformed to conform).” But this is not quite correct. The electrodynamics
inherited by Einstein contained field equations, but it contained no allusion
to a field transformation law . Einstein produced such a law—namely (263)—
by insisting that Maxwell’s field equations conform to the principle of relativity .
Einstein derived (from Maxwell’s equations + relativity, including prior
knowledge of the Lorentz transformations) a result—effectively: that the Fµν

transform tensorially—which we were content (on page 127) to assume. We, on
the other hand, used Maxwell’s equations + tensoriality to deduce the design of
the Lorentz transformations. Our approach—which is effectively Lorentz’—is
efficient (also free of allusions to trains & lanterns), but might be criticized on
the ground that it is excessively “parochial,” too much rooted in specifics of
electrodynamics. It is not at all clear that our approach would have inspired
anyone to utter a generalization so audacious as Einstein’s (266). Historically it
didn’t: both Lorentz and Poincaré were in possession of the technical rudiments
of relativity already in , yet both—for distinct reasons—failed to recognize
the revolutionary force of the idea encapsulated at . Einstein was, in this
respect, well served by his trains and lanterns. But it was not Einstein but
Minkowski who first appreciated that at Einstein had in effect prescribed
that

The physics inscribed on spacetime must mimic
the symmetry structure of spacetime itself.

10. Relativistic mechanics of a particle. We possess a Lorentz covariant field
dynamics. We want a theory of fields and (charged) particles in interaction.
Self-consistency alone requires that the associated particle dynamics be Lorentz
covariant. So also—irrespective of any reference to electromagnetism—does the
principle of relativity.

The discussion which follows will illustrate how non-relativistic theories
are “deformed to conform” to the principle of relativity. But it is offered to
serve a more explicit and pressing need: my primary goal will be to develop
descriptions of the relativistic analogs of the pre-relativistic concepts of energy,
momentum, force, . . . though a number of collateral topics will be treated en
route.

In Newtonian dynamics the “worldline” of a mass point m is considered to
be described by the 3-vector-valued solution xxx(t) of a differential equation of
the form

FFF (t, xxx) = m d2

dt2 xxx(t) (267)

This equation conforms to the principle of Galilean covariance (and it was from
this circumstance that historically we acquired our interest in the “population
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t t(λ)

xxx(t) xxx(λ)

Figure 67: At left: the time-parameterized flight of a particle,
standard to Newtonian mechanics, where t is assigned the status
of an independent variable and xxx is a set of dependent variables.
At right: arbitrarily parameterization permits t to join the list of
dependent variables; i.e., to be treated co-equally with xxx.

of inertial observers”), but its Lorentz non-covariance is manifest . . . for the
equations treats t and xxx with a distinctness which the Lorentz transformations
do not allow because they do not preserve. We confront therefore this problem:
How to describe a worldline in conformity with the requirement that space
and time coordinates be treated co-equally? One’s first impulse it to give up
t -parameterization in favor of an arbitary parameterization of the worldline
(Figure 67), writing xµ(λ). This at least treats space and time co-equally
. . .but leaves every inertial observer to his own devices: the resulting theory
(kinematics) would be too sloppy to support sharp physics. The “slop” would,
however, disappear if λ could be assigned a “natural” meaning—a meaning
which stands in the same relationship to all inertial observers. Einstein’s idea—
foreshadowed already on page 186—was to assign to λ the meaning/value of
“time as measured by a comoving clock.” The idea is implemented as follows
(see Figure 68): Let O write x(λ) to describe a worldline, and let him write

dx(λ) ≡ x(λ + dλ)− x(λ) =
(

cdt
dddxxx

)

to describe the interval separating a pair of “neighboring points” (points on
the tangent at x(λ)). If and only if dx(λ) is timelike will O be able to boost to
the instantaneous restframe (i.e., to the frame of an observer O who sees the
particle to be momentarily resting at her origin):

(
cdt
dddxxx

)
= /\\\(βββ )

(
cdτ
000

)
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λ + dλ
λ

λ0

Figure 68: An accelerated observer/particle borrows his/its proper
time increments dτ from the wristwatches of momentarily comoving
inertial observers.

where from the boost-invariant structure of spacetime it follows that

dτ =
√

(dt)2 − 1
c2dddxxx···dddxxx =

√
1− β2(t) dt (268)

≡ time differential measured by instantaneously comoving clock

= 1
c

√(
dx0

dλ

)2 −
(
dx1

dλ

)2 −
(
dx2

dλ

)2 −
(
dx3

dλ

)2
dλ

= 1
cds

The proper time τ associated with a finitely-separated pair of points is defined

τ(λ, λ0) = 1
c

∫ λ

λ0

√
gαβ

dxα(λ′)
dλ′

dxβ(λ′)
dλ′ dλ

′
=

∫
dτ =

arc-length
c

= 0 at λ = λ0 :
{

x(λ0) is the reference point at which
we “start the proper clock”

Functional inversion gives

λ = λ(τ, λ0)

and in place of x(λ) it becomes natural to write

x(τ) ≡ x(λ(τ, λ0)) : τ -parameterized description of the worldline

Evidently τ -parameterization is equivalent (to within a c-factor) to arc-length
parameterization—long known by differential geometers to be “most natural”
in metric spaces. Two points deserve comment:
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Figure 69: The worldline of a masspoint lies everywhere interior
to lightcones with vertices on the worldline. The spacetime interval
separating any two points on a worldline is therefore time-like, and
the constituent points of the worldline fall into a temporal sequence
upon which all inertial observers agree.

1. Einstein’s program works if and only if all tangents to the worldline are
timelike (Figure 69). One cannot, therefore, τ -parameterize the worldline of a
photon. Or of a “tachyon.” The reason is that one cannot boost such particles
to rest: one cannot Lorentz transform the tangents to such worldlines into local
coincidence with the x0-axis.
2. The dτ ’s in

∫
dτ refer to a population of osculating inertial observers.

It is a big step—a step which Einstein (and also L. H. Thomas) considered
quite “natural,” but a big step nonetheless—to suppose that τ has anything
literally to do with “time as measured by a comoving (which in the general case
means an accelerating) clock.” The relativistic dynamics of particles is, in fact,
independent of whether attaches literal meaning to the preceding phrase. Close
reading of Einstein’s paper shows, however, that he did intend to be understood
literally (even though—patent clerk that he was—he would not have expected
his mantle clock to keep good time if jerked about). Experimental evidence
supportive of Einstein’s view derives from the decay of accelerated radioactive
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particles and from recent observations pertaining to the so-called twin paradox
(see below).

Given a τ -parameterized (whence everywhere timelike) worldline x(τ), we
define by

u(τ) ≡ d
dτ x(τ) = dt

dτ
d
dt

(
ct
xxx

)
= γ

(
c
vvv

)
(269)

the 4-velocity uµ(τ), and by

a(τ) ≡ d2

dτ2 x(τ)

= d
dτ u(τ) = dt

dτ
d
dtγ

(
c
vvv

)
(270)

=
(

1
cγ4(aaa···vvv)

γ2aaa + 1
c2 γ

4(aaa···vvv)vvv

)

the 4-acceleration aµ(τ). These are equations written by inertial observer O:
vvv refers to O’s perception of the particle’s instantaneous velocity vvv(t), and
γ ≡

[
1 − 1

c2vvv···vvv
]− 1

2 .147 Structurally similar equations (but with everything
turned red) would be written by a second observer O. In developing this aspect
of the subject one must be very careful to distinguish—both notationally and
conceptually—the following:

O’s perception of the instantaneous particle velocity vvv

O’s perception of O’s velocity sss

O’s perception of the instantaneous particle velocity vvv

Supposing O and O to be boost-equivalent (no frame rotation)

x = /\\\(sss/c)x

we have

u = /\\\(sss/c)u (271.1)
a = /\\\(sss/c)a (271.2)

These equations look simple enough, but their explcit meaning is—owing to the
complexity of /\\\(sss/c), of uµ and particularly of aµ—actually quite complex. I
will develop the detail only when forced by explicit need.148

It follows from (269) that

(u, u) = gαβu
αuβ = γ2(c2 − v2) = c2 · γ2(1− β2) = c2 (272)

147 problem 49.
148 In the meantime, see my electrodynamics (/), pages 202–205.
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according to which all velocity 4-vectors have the same Lorentzian length. All
are, in particular (since (u, u) = c2 > 0), timelike. Differentiating (272) with
respect to τ we obtain

d
dτ (u, u) = 2(u, a) = 0 (273)

according to which it is invariably the case that u ⊥ a in the Lorentzian sense.
It follows now from the timelike character of u that all acceleration 4-vectors
are spacelike. Direct verification of these statements could be extracted from
(269) and (270). The statement (u, u) = c2—of which (273) is an immediate
corollary—has no precursor in non-relativistic kinematics,149 but is, as will
emerge, absolutely fundamental to relativistic kinematics/dynamics.

Looking “with relativistic eyes” to Newton’s 2nd law (267) we write

Kµ = m d2

dτ2 x
µ(τ) (274)

This equation would be Lorentz covariant—manifestly covariant—if

Kµ ≡ Minkowski force transforms like a 4-vector

and m transforms as an invariant. The Minkowski equation (274) can be
reformulated

Kµ = m d
dτ u

µ = maµ

or again = d
dτ p

µ

where pµ ≡ muµ = γm

(
c
vvv

)
≡

(
p0

ppp

)
(275)

From the γ -expansion (202) we obtain

p0 = γmc (276.1)
=

(
1 + 1

2β
2 + 3

8β
4 + · · ·

)
mc

= 1
c
(
mc2 + 1

2mv2 + · · ·
)

↑
—familiar from non-relativistic dynamics as kinetic energy

ppp = γmvvv (276.2)
= mvvv + · · ·
↑
—familiar from non-relativistic dynamics as linear momentum

It becomes in this light reasonable to call pµ the energy-momentum 4-vector.

149 The constant speed condition

vvv···vvv = constant

is sometimes encountered, but has no claim to “universality” in non-relativistic
physics: when encountered (as in uniform circular motion), it entails vvv ⊥ aaa.
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Looking to the finer details of standard relativistic terminology . . . one writes

p0 = 1
cE (277)

and calls E = γmc2 = mc2 + 1
2mv2 + · · ·

the relativistic energy . More particularly

E0 ≡ mc2 is the rest energy (278)
T ≡ E − E0 is the relativistic kinetic energy

In terms of the vvv -dependent “relativistic mass” defined150

M ≡ γm = m√
1− v2/c2

(279)

we have

E = Mc2 (280.1)

and T = (M −m)c2 =
{

1√
1− v2/c2

− 1
}

mc2

The relativistic momentum can in this notation be described

ppp = Mvvv (280.2)

It is—so far as I can tell—the “non-relativistic familiarity” of (280.2) that
tempts some people151 to view (283) as the fruit of an astounding “empirical
discovery,” lying (they would have us believe) near the physical heart of special
relativity. But (283) is, I insist, a definition—an occasional convenience,
nothing more—one incidental detail among many in a coherent theory. It
is naive to repeat the tired claim that “in relativity mass becomes velocity
dependent:” it is profoundly wrongheaded to attempt to force relativistic
dynamics to look less relativistic than it is.

We have

p =
(

1
cE
ppp

)
= mu

and from (272) it follows that

(p, p) = (E/c)2 − ppp ···ppp−m2c2 (281)

This means that p lies always on a certain m-determined hyperboloid (called
the “mass shell ”: see Figure 70) in 4-dimensional energy-momentum space.

150 It becomes natural in the following context to call m the rest mass, though
in grown-up relativistic physics there is really no other kind . Those who write
m when they mean M are obliged to write m0 to distinguish the rest mass.
151 See, for example, A. P. French, Special Relativity: The MIT Introductory
Physics Series (), page 23.
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p0

pµ

mc

Figure 70: The hyperboloidal mass shell, based upon (281) and
drawn in energy-momentum space. The p0-axis (energy axis) runs
up. The mass shell intersects the p0-axis at a point determined by
the value of m:

p0 = mc i.e., E = mc2

The figure remains meaningful (though the hyperboloid becomes a
cone) even in the limit m ↓ 0, which provides first indication that
relativistic mechanics supports a theory of massless particles.

From (281) we obtain

E = ±c
√

ppp···ppp + (mc)2 (282)

= ±
{
mc2 + 1

2mppp···ppp + · · ·
}

which for a relativistic particle describes the ppp -dependence of the energy E, and
should be compared with its non-relativistic free-particle counterpart

E = 1
2mppp···ppp

The ± assumes major importance in relativistic quantum mechanics (where it
must be explained away lest it provide a rathole that would de-stabilize the
world!), but in relativistic classical mechanics one simply abandons the minus
sign—dismisses it as an algebraic artifact.

Looking next to the structure of Kµ . . . ot follows from the Minkowski
equation K = ma by (u, a) = 0 that

(K,u) = 0 : K ⊥ u in the Lorentzian sense (283)

We infer that the 4-vectors that describe Minkowski forces are invariably
spacelike. It follows moreover from (283) that as p ∼ u moves around the
K-vector must move in concert, contriving always to be ⊥ to u: in relativistic



196 Aspects of special relativity

dynamics all forces are velocity-dependent. What was fairly exceptional in
non-relativistic dynamics (where FFF damping = −b vvv and FFFmagnetic = (q/c)vvv×BBB
are the only vecocity-dependent forces that come readily to mind) is in
relativistic dynamics universal . Symbolically

K = K(u, . . .)

where the dots signify such other variables as may in particular cases enter into
the construction of K. The simplest case—which is, as we shall see, the case of
electrodynamical interest—arises when K depends linearly on u:

Kµ = Aµνu
ν (284.1)

where (K,u) = Aµνu
µuν = 0 forces the quantities Aµν(. . .) to satisfy the

antisymmetry condition : Aµν = −Aνµ (284.2)

K-vectors that depend quadratically upon u exist in much greater variety: the
following example

Kµ = φα(x)
[
c2gαµ − uαuµ

]
figured prominently in early (unsuccessful) efforts to construct a special
relativistic theory of gravitation.152,153

If K is notated

K =
(

K0

KKK

)
(285)

then (283)—written γ(K0c−KKK···vvv) = 0—entails

K0 = 1
cKKK···vvv : knowledge of KKK determines K0 (286)

It follows in particular that

K0 = 0 in the (momentary) rest frame (287)

It is, of course, the non-zero value of KKK that causes the particle to take leave
of (what a moment ago was) the rest frame. Borrowing notation from (275) and

152 This work (∼) is associated mainly with the name of G. Nordström,
but for a brief period engaged the enthusiastic attention of Einstein himself:
see page 144 in Pauli,135 and also A. O. Barut, Electrodynamics and Classical
Theory of Fields and Particles (), page 56; A. Pais, Subtle is the Lord: The
Science and Life of Albert Einstein (), page 232.
153 For further discussion of the “general theory of K-construction” see my
relativistic dynamics (), pages 13–22.
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(285), the Minkowski equation (274) becomes(
K0

KKK

)
= γ ddt

(
γmc
γmvvv

)
(288)

where use has been made once again of d
dτ = γ ddt . In the non-relativistic limit

↓(
0
FFF

)
=

(
0

d
dtmvvv

)
←− Newtonian!

where we have written
FFF ≡ lim

c↑∞
KKK (289)

to account for such c-factors as may lurk in the construction of KKK. We are used
to thinking of the “non-relativistic limit” as an approximiation to relativistic
physics, but at this point it becomes appropriate to remark that

In fully relativistic particle dynamics the “non-relativistic
limit”becomes literally effective in the momentary rest frame.

The implication is that if we knew the force FFF experienced by a particle at rest
then we could by Lorentz transformation obtain the Minkowski force K active
upon a moving particle: (

K0

KKK

)
= /\\\(βββ)

(
0
FFF

)
(290)

Reading from (210.1) it follows more particularly that

K0 = γ 1
cvvv···FFF

KKK = FFF +
{
(γ − 1)(vvv···FFF )/v2

}
vvv = FFF⊥ + γFFF ‖

}
(291)

from which, it is gratifying to observe, one can recover both (289) and (286).

We stand not (at last) in position to trace the details of the program
proposed154 in a specifically electrodynamical setting by Einstein. Suppose
that a charged particle experiences a force

FFF = qEEE : EEE ≡ electrical field in the particle’s rest frame

Then
KKK = q(EEE⊥ + γEEE‖)

But from the field transformation equations (263) it follows that

EEE⊥ = γ(EEE + βββ×BBB)⊥
EEE‖ = (EEE + βββ×BBB)‖

where EEE and BBB refer to our perception of the electric and magnetic fields at
the particle’s location, and βββ to our perception of the particle’s velocity. So
(because the γ -factors interdigitate so sweetly) we have

KKK = γq(EEE + 1
c vvv×BBB) (292)

154 See again page 186.
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But (288) supplies KKK = γ ddt (γmvvv), so (dropping the γ -factors on left and right)
we have155

q(EEE + 1
c vvv×BBB) = d

dt (γmvvv) (293)

This famous equation describes the relativistic motion of a charged particle in
an impressed electromagnetic field (no radiation or radiative reaction), and is
the upshot of156 the Lorentz force law—obtained here not as an it ad hoc
assumption, but as a forced consequence of
• some general features of relativistic particle dynamics
• the transformation properties of electromagnetic fields
• the operational definition of EEE . . . all fitted into
• Einstein’s “go to the frame of the particle” program (pages 186 & 189).

Returning with (292) to (286) we obtain

K0 = 1
cγqEEE ···vvv (294)

so the Minkowski 4-force experienced by a charged particle in an impressed
elecromagnetic field becomes

K =
(

K0

KKK

)
= γq

(
1
cEEE ···vvv

EEE + 1
c vvv×BBB

)

= (q/c)




0 E1 E2 E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0







γc
γv1

γv2

γv3




↓
Kµ = (q/c)Fµ

νu
ν (295)

We are brought thus to the striking conclusion that the electromagnetic
Minkowski force is, in the described at (284), simplest possible .

The theory in hand descends from FFF = mẍxx, and might plausibly be called
“relativistic Newtonian dynamics.” Were we to continue this discussion we
might expect to busy ourselves with the construction of
• a “relativistic Lagrangian dynamics”
• a “relativistic Hamiltonian dynamics”
• a “relativistic Hamilton-Jacobi formalism”
• “relativistic variational principles,” etc.

—all in an effort to produce a full-blown “relativistic dynamics of particles.”
The subject157 is, however, a minefield, and must be persued with much greater
delicacy than the standard texts suggest. Relativistic particle mechanics

155 problem 50.
156 See again equation (67) on page 35.
157 See the notes153 already cited.
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remains in a relatively primitive state of development because many of the
concepts central to non-relativistic mechanics are—for reasons having mainly to
do with the breakdown of non-local simultaneity—in conflict with the principle
of relativity. But while the relativistic theory of interacting particles presents
awkwardnesses at every turn, the relativistic theory of interacting fields unfolds
with great ease and naturalness: it appears to be a lesson of relativity that we
should adopt a field-theoretic view of the world .

We have already in hand a relativistic particle mechanics which, though
rudimentary, is sufficient to our electrodynamic needs. Were we to pursue this
subject we would want to look to the problem of solving Minkowski’s equation
of motion (274) isn illustrative special cases . . . any short list of which would
include
• the relativistic harmonic oscillator

• the relativistic Kepler problem

• motion in a (spatially/temporally) constant electromagnetic field.

This I do on pages 245–275 of electrodynamics (/), where I give also
many references. The most significant point to emerge from that discussion is
that distinct relativistic systems can have the same non-relativistic limit; i.e.,
that constructing the relativistic generalization of a non-relativistic system is an
inherently ambiguous process . For the present I must be content to examine two
physical questions that have come already to the periphery of our attention.

hyperbolic motion: the “twin paradox” We—who call ourselves O—
are inertial. A second observer Q sits on a mass point m which we see to
be moving with (some dynamically possible but otherwise) arbitrary motion
along our x-axis. I am tempted to say that Q rides in a little rocket, but that
would entail (on physical grounds extraneous to my main intent) the temporal
variability of m: let us suppose therefore that Q moves (accelerates) because
m is acted on by impressed forces. In any event, we imagine Q to be equipped
with
• a clock which—since co-moving—measures proper time τ

• an accelerometer, with output g. If Q were merely a passenger then g(τ)
would constitute a king of log. But if Q were a rocket captain then g(τ)
might describe his flight instructions, his prescribed “throttle function.”

Finally, let Oτ designate the inertial observer who at proper time τ sees Oτ to
be instantaneously at rest: spacetime points to which we assign coordinates x
are by Oτ assigned coordinates xτ . Our interest attaches initially to questions
such as the following: Given the throttle function g(τ),

1) What is the boost /\\\(τ) associated with O ← Oτ?

2) What is the functional relationship between t and τ?

3) What are the functions
x(t) that describes our sense of Q’s position at time t
β(t) that describes our sense of Q’s velocity at time t
a(t) that describes our sense of Q’s acceleration at time t?
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Since Oτ sees Q to be momentarily resting at Oτ ’s origin we have

u(τ) = /\\\(τ)
(

c
0

)
by (269)

a(τ) = /\\\(τ)
(

0
g(τ)

)
by (269) (296)

But

=
du(τ)
dτ

=
d/\\\(τ)
dτ

(
c
0

)

We know, moreover, that158

/\\\(τ) = eA(τ)J with J ≡
(

0 1
1 0

)
, A(τ) = tanh–1β(τ)

so
d/\\\(τ)
dτ

= /\\\(τ) · dA(τ)
dτ

J

dA(τ)
dτ

=
1

1− β2

dβ

dτ

Returning with this information to (296) we obtain

1
1− β2

dβ

dτ
= 1

cg(τ)

where integration of dt/dτ = γ supplies

τ =
∫ t √

1− β2(t′) dt
′

(297)

Given g(•), our assignment therefore is to solve

[ 1
1− β2(t)

] 3
2 dβ(t)

dt
= 1

cg
( ∫ t √

1− β2(t′) dt
′)

(298)

for β(t): a final integration would then supply the x(t) that describes our
perception of Q’s worldline. The problem presented by (298) appears in the
general case to be hopeless . . .but let us at this point assume that the throttle
function has the simple structure

g(τ) = g : constant

158 See again pages 138 and 139.
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The integrodifferential equation (298) then becomes a differential equation
which integrates at once: assuming β(0) = 0 we obtain β/

√
1− β2 = (g/c)t

giving

β(t) =
t√

(c/g)2 + t2
(299.1)

By integration we therefore have159

[
x(t)− x(0) + (c2/g)

]2 − (ct)2 = (c2/g)2 (299.2)

and
τ(t) = (c/g) sinh–1 gt/c (299.3)

while expansion in powers of gt/c (which presumes gt� c) gives

v(t) = g t
[
1− 1

2 (gt/c)2 + · · ·
]

x(t) = x(0) + 1
2gt

2
[
1− 1

4 (gt/c)2 + · · ·
]

(300)

τ(t) = t
[
1︸ ︷︷ ︸− 1

6 (gt/c)2 + · · ·
]

|
—conform to non-relativistic experience

According to (299.2) we see Q to trace out (not a parabolic worldline, as in
non-relativistic physics, but) a hyperbolic worldline, as shown in Figure 71.

The results now in hand place us in position to construct concrete
illustrations of several points that have been discussed thus far only as vague
generalities:
1. Equation (299.1) entails

γ(t) =
√

1 + (gt/c)2

which places us in position to construct an explicit description

/\\\(t) = γ(t)
(

1 β(t)
β(t) 1

)
: recall (201)

↑
t = (c/g) sinh gτ/c , by (299.3)

of the Lorentz matrix that achieves O ← Oτ , and thus to answer a question
posed on page 199. We can use that information to (for example) write

K(t) = ma(t) = /\\\(t)
(

0
mg

)

to describe the relationship between

K(t) ≡ our perception of the Minkowski force impressed upon m(
0

mg

)
≡ O’s perception of that Minkowski force

159 problem 51.
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Figure 71: Our (inertial) representation of the hyperbolic worldline
of a particle which initially rests at the point x(0) but moves off with
(in its own estimation) constant acceleration g. With characteristic
time c/g it approaches (and in Galilean physics would actually
achieve) the speed of light. If we assign to g the comfortable value
9.8 meters/second2 we find c/g = 354.308 days.

2.* In (299.2) set x(0) = 0. The resulting spacetime hyperbola is, by notational
adjustment 1

2λ �→ c2/g, identical to that encountered at the middle of page 176:
our perception of Q’s worldline is a conformal transform Q’s own perception
of her (from her point of view trivial) worldline. If Q elected to pass her time
doing electrodynamics she would—though non-inertial—use equations that are
structurally identical to the (conformally covariant) equations that we might
use to describe those same electrodynamical events.
3. O is inertial, content to sit home at x = 0. Q—O’s twin—is an astronaut,
who at time t = 0 gives her brother a kiss and sets off on a flight along the
x-axis, on which her instruction is to execute the following throttle function:

g(τ) =




+g : 0 < τ < 1
4T

−g : 1
4T < τ < 3

4T

+g : 3
4T < τ < T

Pretty clearly, O’s representation of Q’s worldline will be assembled from
four hyperbolic segments (Figure 72), each of duration (c/g) sinh gT/4c. At

* This remark will be intelligible only to those brave readers who ignored my
recommendation that they skip §6.
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Figure 72: Inertial observer O’s representation of the rocket flight
of his twin sister Q. If T � 4c/g then O will see Q to be moving
much of the time at nearly the speed of light (hyperbola approaches
its asymptote). The dashed curve represents the flight of a lightbeam
that departs/returns simultaneously with Q.

the moment of her return the clock on Q’s control panel will read T, but
according to O’s clock the

return time = T · (4c/gT ) sinh gT/4c =
{

> T

∼ T only if T� 4c/g (301.1)

and Q’s adventure will have taken her to a turn-around point lying160 a

160 Work from (299.2).
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Figure 73: Particle worldlines • → • all lie within the confines
of the blue box (interior of the spacetime region bounded by the
lightcones that extend forward form the lower vertex, and backward
from the later vertex). The red trajectory—though shortest-possible
in the Euclidean sense—is longest-possible in Minkowski’s sense,
while the blue trajectory has zero length. The “twin paradox” hinges
on the latter fact. The acceleration experienced by the rocket-borne
observer Q is, however, not abrupt (as at the kink in the blue
trajectory) but evenly distributed.

distance = 2
{√

(ct)2 + (c2/g)2 − c2/g
}

(301.2)

t = 1
4 (return time)

away. For brief trips we therefore have

distance = 2(c2/g)
{√

1 + (gt/c)2 − 1
}

= 2 ·
{

1
2gt

2 + · · ·
}

while for long trips

distance = 2ct
{√

1 + (c/gt)2 − (c/gt)
}

︸ ︷︷ ︸
|
—this factor is always positive, always < 1,

and approaches unity as t↑∞
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—both of which make good intuitive sense.161 Notice (as Einstein—at the end
of §4 in his first relativity paper—was the first to do) that

Q is younger than O upon her return

and that this surprising fact can be attributed to a basic metric property of
spacetime (Figure 73).162 The so-called twin paradox arises when one argues
that from Q’s point of view it is O who has been doing the accelerating, and who
should return younger . . . and they can’t both be younger! But those who pose
the “paradox” misconstrue the meaning of the “relativity of motion.” Only O
remained inertial throughout the preceding exercise, and only Q had to purchase
rocket fuel . . . and those facts break the supposed “symmetry” of the situation.
The issue becomes more interesting with the observation that we have spent
our lives in (relative to the inertial frames falling through the floor) “a rocket
accelerating upward with acceleration g” (but have managed to do so without an
investment in “fuel”). Why does our predicament not more nearly resemble the
the predicament of Q than of O?163

current-charge interaction from two points of view We possess
a command of relativistic electrodynamics/particle dynamics that is now so
complete that we can contemplate detailed analysis of the “asymmetries” that
served to motivate Einstein’s initial relativistic work. The outline of the
illustrative discussion which follows was brought to my attention by Richard
Crandall.164 The discussion involves rather more than mere “asymmetry:” on
its face it involves a “paradox.” The system of interest, and the problem it
presents, are described in Figure 74. The observer O who is at rest with respect
to the wire sees an electromagnetic field which (at points exterior to the wire)
can be described

EEE =


 0

0
0


 and BBB =


 0
−Bz/R
+By/R




where B = I/2πcR and R =
√

y2 + z2. The Minkowski 4-force experienced by
q therefore becomes (see again (295))




K0

K1

K2

K3


 = (q/c)




0 0 0 0
0 0 By/R Bz/R
0 −By/R 0 0
0 −Bz/R 0 0







γc
γv
0
0




161 problem 52.
162 problem 53.
163 See at this point C. W. Sherwin, “Some recent experimental tests of the
clock paradox,” Phys. Rev. 120, 17 (1960).
164 For parallel remarks see §5.9 in E. M. Purcell’s Electricity & Magnetism:
Berkeley Physics Course–Volume 2 () and §13.6 of The Feynman Lectures
on Physics–Volume 2 ().
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vq

R

E

B

x

y

z

z

x

y

Figure 74: At top: O’s view of the system of interest . . . and at
bottom: O’s view. O—at rest with respect to a cylindrical conductor
carrying current I—sees a charge q whose initial motion is parallel
to the wire. He argues that the wire is wrapped round by a solenoidal
magnetic field, so the moving charge experiences a (vvv ×BBB)-force
directed toward the wire, to which the particle responds by veering
toward and ultimately impacting the wire. O is (initially) at rest
with respect to the particle, so must attribute the impact an electrical
force. But electrical forces arise (in the absence of time-dependent
magnetic fields) only from charges. The nub of the problem: How
do uncharged current-carrying wires manage to appear charged to
moving observers?

So we have 


K0

K1

K2

K3


 =




0
0

−(γqBv/c)y/R
−(γqBv/c)z/R


 =

(
K0

KKK

)

according to which KKK is directed radially toward the wire. To describe this
same physics O—who sees O to be moving to the left with speed v—writes
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K = /\\\K = (q/c) · /\\\




0 0 0 0
0 0 By/R Bz/R
0 −By/R 0 0
0 −Bz/R 0 0


 /\\\–1

︸ ︷︷ ︸
· /\\\




γc
γv
0
0




︸ ︷︷ ︸
F u

with

/\\\= γ




1 −β 0 0
−β 1 0 0

0 0 1 0
0 0 0 1




Straightforward computation supplies

= (q/c) ·




0 0 −βγBy/R −βγBy/R
0 0 + γBy/R + γBz/R

−βγBy/R γBy/R 0 0
−βγBz/R γBz/R 0 0






c
0
0
0




=




0
0

−(γqBv/c)y/R
−(γqBv/c)z/R


 =

(
K0

KKK

)

While O saw only a BBB -field, it is clear from the computed structure of F that O
sees both a BBB -field (γ times stronger that O’s) and an EEE -field. We have known
since (210.2) that

(spatial part of any 4-vector)⊥ boosts by invariance

so (since KKK ⊥ vvv) are not surprised to discover that

KKK = KKK, but observe that
{
O considers KKK to a magnetic effect
O considers KKK to an electric effect

More specifically, O sees (Figure 74) a centrally-directed electric field of just
the strength

E = βγB = βγI/2πcR

that would arise from an infinite line charge linear density

λ = −βγI/c

The question now before us: How does the current-carrying wire acquire, in O’s
estimation, a net charge? An answer of sorts can be obtained as follows: Assume
(in the interest merely of simplicity) that the current is uniformly distributed
on the wire’s cross-section:

I = ja where a ≡ πr2 = cross-sectional area
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Figure 75: O’s representation of current flow in a stationary wire
and (below) the result of Lorentz transforming that diagram to the
frame of the passing charge q. For interpretive commentary see the
text.
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To describe the current 4-vector interior to the wire O therefore writes

j =




0
I/a
0
0




O, on the other hand, writes the Lorentz transform of j:

j ≡
(

cρ
jjj

)
= /\\\ j =



−βγI/a

γI/a
0
0


 =⇒ ρ = −βγI/ac

O and O assign identical values to the cross-sectional area

a = a because cross-section ⊥ vvv

so O obtains
λ ≡ charge per unit length = ρa

= −βγI/c

—in precise agreement with the result deduced previously. Sharpened insight
into the mechanism that lies at the heart of this counterintuitive result can be
gained from a comparison of the spacetime diagrams presented in Figure 75. At
top we see O’s representation of current in a stationary wire: negatively ionized
atoms stand in place, positive charges drift in the direction of current flow.165

In the lower figure we see how the situation presents itself to an observer O
who is moving with speed v in a direction parallel to the current flow. At any
instant of time (look, for example, to his x0 = 0 timeslice, drawn in red) O sees
ions and charge carriers to have distinct linear densities . . . the reason being
that she sees ions and charge carriers to be moving with distinct speeds, and
the intervals separating one ion from the next, one charge carrier from the next
to be Lorentz contracted by distinct amounts. O’s charged wire is, therefore, a
differential Lorentz contraction effect. That such a small velocity differential

drift velocity relative to ions ∼ 10−11c

can, from O’s perspective, give rise to a measureable net charge is no more
surprising than that it can, from O’s perspective, give rise to a measureable
net current: both can be attributed to the fact that an awful lot of charges
participate in the drift.

165 O knows perfectly well that in point of physical fact the ionized atoms
are positively charged, the current carriers negatively charged, and their drift
opposite to the direction of current flow: the problem is that Benjamin Franklin
did not know that. But the logic of the argument is unaffected by this detail.
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Just about any electro-mechanical system would yield similarasymmetries/
“paradoxes” when analysed by alternative inertial observers O and O. The
preceding discussion is in all respects typical, and serves to illustrate two points
of general methodological significance:
• The formal mechanisms of (manifestly covariant) relativistic physics are

so powerful that they tend to lead one automatically past conceptual
difficulties of the sort that initially so bothered Einstein, and (for that
very reason) . . .

• They tend, when routinely applied, to divert one’s attention from certain
(potentially quite useful) physical insights: there exist points of physical
principle which relativistic physics illuminates only when explicitly
interrogated.

When using powerful tools one should always wear goggles.



3
MECHANICAL PROPERTIES

OF THE ELECTROMAGNETIC FIELD

Densities, fluxes & conservation laws

Introduction. Energy, momentum, angular momentum, center of mass, moments
of inertia . . . these are concepts which derive historically from the mechanics
of particles. And it is from particle mechanics that—for reasons that are
interesting to contemplate—they derive their intuitive force. But these are
concepts which are now recognized to pertain, if in varying degrees, to the
totality of physics. My objective here will be to review how the mechanical
concepts listed above pertain, in particular, to the electromagnetic field. The
topic is of great practical importance. But it is also of some philosophical
importance . . . for it supplies the evidence on which we would assess the
ontological question: Is the electromagnetic field “real”?

How to proceed? Observe that in particle mechanics the concepts in
question arise not as “new physics” but as natural artifacts implicit in the
design of the equations of motion. We may infer that the definitions we seek

i) will arise as “natural artifacts” from Maxwell’s equations
ii) must mesh smoothly with their particulate counterparts.

But again: how—within those guidelines—to proceed? The literature provides
many alternative lines of argument, the most powerful of which lie presently
beyond our reach.166 In these pages I will outline two complementary

166 I am thinking here of the Lagrangian formulation of the classical theory of
fields, which is usually/best studied as an antonomous subject, then applied to
electrodynamics as a (rather delicate) special case.
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approaches to the electrodynamical concepts of energy and momentum. The
first approach is inductive, informal. The second is deductive, and involves
formalism of a relatively high order. Both approaches (unlike some others)
draw explicitly on the spirit and detailed substance of relativity. The discussion
will then be extended to embrace angular momentum and certain more esoteric
notions.

1. Electromagnetic energy/momentum: first approach. We know from prior work
of an elementary nature167 that it makes a certain kind of sense to write

1
2EEE ···EEE = energy density of an electrostatic field
1
2BBB ···BBB = energy density of a magnetostatic field

}
(302)

But what should we write to describe the energy density E of an unspecialized
electrodynamical field? Relativity suggests that we should consider this question
in intimate association with a second question: What should we write to
describe the momentum density PPP of an arbitrary electromagnetic field? We
are led thus to anticipate168 the theoretical importance of a quartet of densities

P =




P0

P1

P2

P3




with P0 ≡ 1
cE

(303)

where [Pµ] = momentum/3-volume.

Intuitively we expect changes in the energy/momentum at a spacetime
point to arise from a combination of

1) the corresponding fluxes (or energy/momentum “currents”)
2) the local action of charges (or “sources”)

so at source-free points we expect169 to have

∂
∂tE +∇∇∇···(energy flux vector) = 0

∂
∂tP

1 +∇∇∇···(flux vector associated with 1st component of momentum) = 0
∂
∂tP

2 +∇∇∇···(flux vector associated with 2nd component of momentum) = 0
∂
∂tP

3 +∇∇∇···(flux vector associated with 3rd component of momentum) = 0

This quartet of conservation laws would be expressed quite simply

∂µS
µν = 0 : (ν = 0, 1, 2, 3) (304)

167 The argument proceeded from elementary mechanics in the electrostatic
case (pages 19–24), but was more formal/tentative (page 60) and ultimately
more intricate (pages 97–98) in the magnetostatic case.
168 See again pages 193 and 194.
169 See again pages 36–37.
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if we were to set (here the Roman indices i and j range on
{
1, 2, 3

}
)

E ≡ cP0 ≡ S00 ≡ energy density

Si0 ≡ 1
c (ith component of the energy flux vector)

cP j ≡ S0j ≡ c(jth-component-of-momentum density)

Si j ≡ (ith component of the P j flux vector)




(305)

where c-factors have been introduced to insure that the Sµν all have the same
dimensionality—namely that of E.

Not only are equations (304) wonderfully compact, they seem on their
face to be “relativistically congenial.” They become in fact manifestly Lorentz
covariant if it is assumed that

Sµν transforms as a 2nd rank tensor (306)

of presently unspecified weight. This natural assumption carries with it the
notable consequence that

The Pµ ≡ 1
cS

0µ do not transform as components of a 4-vector

or even (as might have seemed more likely) as components of a 4-vector density .

The question from which we proceeded—How to describe E as a function
of the dynamical field variables?—has now become sixteen questions: How to
describe Sµν? But our problem is not on this account sixteen times harder, for
(304) and (306) provide powerful guidance. Had we proceeded naively (i.e.,
without reference to relativity) then we might have been led from the structure
of (302) to the conjecture that E depends in the general case upon EEE···EEE, BBB ···BBB,
maybe EEE ···BBB and upon scalars formed from ĖEE and ḂBB (terms that we would not
see in static cases). Relativity suggests that E should then depend also upon
∇∇∇···EEE, ∇∇∇···BBB, ∇∇∇×EEE, ∇∇∇×BBB, . . .but such terms are—surprisingly—absent from
(302). Equations (304) and (306) enable us to recast this line of speculation
. . . as follows:

1) We expect Sµν to be a tensor-valued function of gµν , Fµν , F
�
µν and possibly

of ∂αFµν , ∂α∂βFµν , . . .with the property that
2) S00 gives back (302) in the electrostatic and magnetostatic cases. We

require, moreover, that
3) In source-free regions it shall be the case that Maxwell’s equations

∂µF
µν = 0 and ∂µFνλ + ∂νFλµ + ∂λFµν = 0 =⇒ ∂µS

µν = 0

Two further points merit attention:
4) Dimensionally [Sµν ] = [Fµν ]2 : Sµν is in this sense a quadratic function

of Fµν .
5) Source-free electrodyanmics contains but a single physical constant,

namely c : it contains in particular no natural length170. . . so one must
make do with ratios of ∂F -terms, which are transformationally unnatural.

170 That’s a symptom of the conformal covariance of the theory.



214 Mechanical properties of the electromagnetic field

Motivated now by the 2nd and 4th of those points, we look to the explicit
descriptions (159) and (161) of ‖Fµν‖ and ‖Gµν‖ and observe that by direct
computation171

‖FµαFαν‖ =




EEE···EEE (EEE×BBB)1 (EEE×BBB)2 (EEE×BBB)3
(EEE×BBB)1 C11+BBB···BBB C12 C13

(EEE×BBB)2 C21 C22+BBB···BBB C23

(EEE×BBB)3 C31 C32 C33+BBB···BBB




‖FµαGαν‖ = −EEE···BBB‖gµν‖

‖GµαGαν‖ =




BBB···BBB (EEE×BBB)1 (EEE×BBB)2 (EEE×BBB)3
(EEE×BBB)1 C11+EEE···EEE C12 C13

(EEE×BBB)2 C21 C22+EEE···EEE C23

(EEE×BBB)3 C31 C32 C33+EEE···EEE




= ‖FµαFαν‖ − (EEE···EEE −BBB···BBB)·‖gµν‖




(307)

where Ci j ≡ −EiEj −BiBj .172 The arguments that gave (302) assumed in the
first instance that BBB = 000 and in the second instance that EEE = 000, so provide no
evidence whether we should in the general case expect the presence of an EEE···BBB
term. If we assume tentatively that in the general case

S00 ≡ E = 1
2EEE···EEE + 1

2BBB···BBB + λEEE···BBB : λ an adjustable constant

then we are led by (307) to write

Sµν = 1
2F

µ
αF

αν + 1
2G

µ
αG

αν − λFµαG
αν

= 1
2F

µ
αF

αν + 1
2

[
FµαF

αν − 1
2 (FαβFβα)gµν

]
− λ 1

4 (FαβGβα)gµν

= FµαF
αν − 1

4F
αβ(Fβα + λGβα)gµν (308)

We come now to the critical question: Does the Sµν of (308) satisfy (304)? The
answer can be discovered only by computation: we have

∂µS
µ
ν = (∂µFµα)Fαν︸ ︷︷ ︸ +Fµα∂µFαν︸ ︷︷ ︸− 1

4∂ν(F
αβFβα)︸ ︷︷ ︸−λ 1

4∂ν(F
αβGβα)

a b c

171 problem 54.
172 Recall in this connection that the Lorentz invariance of

1
2F

αβFβα = EEE ···EEE −BBB ···BBB = − 1
2G

αβGβα
1
4F

αβGβα = −EEE ···BBB

was established already in problem 48b.
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But

a = 0 by Maxwell: ∂µFµα = 1
cJ

α and we have assumed Jα = 0
b = 1

2F
µα(∂µFαν − ∂αFµν) by antisymmetry of Fµα

= 1
2F

µα(∂µFαν + ∂αFνµ) by antisymmetry of Fµν
= − 1

2F
µα∂νFµα by Maxwell: ∂µFαν + ∂αFνµ + ∂νFµα = 0

= 1
4∂ν(F

αβFβα)
= c

so we have
∂µS

µ
ν = −λ 1

4∂ν(F
αβGβα)

= λ∂ν(EEE···BBB)

It is certainly not in general the case that EEE···BBB is x-independent (as ∂ν(EEE···BBB)=0
would require) so to achieve

= 0

we are forced to set λ = 0. Returning with this information to (308) we obtain

Sµν = 1
2 (FµαFαν + GµαG

αν)

= FµαF
αν − 1

4 (FαβFβα)gµν
(309)

. . .which possesses all of the anticipated/required properties (see again the list
on page 213), and in addition posses two others: Sµν is symmetric

Sµν = Sνµ (310)

and traceless
Sαα = 0 (311)

Equation (309) describes the elements of what is called the electromagnetic
stress-energy tensor. Reading from (307) we obtain

‖Sµν‖ =
(

1
2 (E2 + B2) (EEE×BBB)T

(EEE×BBB) T

)

where E2 ≡ EEE···EEE, B2 ≡ BBB···BBB and where

T ≡ ‖( 1
2E

2δij−EiEj)+( 1
2B

2δij−BiBj)‖

is the negative of what is—for historical reasons—called the “Maxwell stress
tensor” (though it is, with respect to non-rotational elements of the Lorentz
group, not a tensor!). Writing

=
(

E cPPP T

1
cSSS T

)
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we conclude (see again page 212) that

E = 1
2 (E2 + B2) describes energy density. This construction was first

studied by W. Thompson (Lord Kelvin) in .

SSS = c(EEE×BBB) describes energy flux. This construction was discovered by
J. H. Poynting and (independently) by O. Heaviside in . It is called
the “Poynting vector” (though it is vectorial only with respect to the
rotation group).

PPP = 1
c (EEE×BBB) describes momentum density, and was discovered by

J. J. Thompson in .

The successive columns in T are momentum fluxes associated with the
successive elements of PPP. The “stress tensor” was introduced by Maxwell,
but to fill quite a different formal need.173

It is remarkable that the individual elements of the stress-energy tensor issued
historically from so many famous hands . . . and over such a protracted period
of time.

The following comments draw attention to aspects of the specific design
(309) of the electromagnetic stress-energy tensor Sµν :

173 Maxwell considered it to be his job to describe the “mechanical properties
of the æther,” and so found it natural to borrow concepts from fluid dynamics
and the theory of elastic media. The following design—taken from his “On

physical lines of force” ()—illustrates how fantastic he allowed his
mechanical imagination to become [see R. Tricker, Contributions of Faraday
& Maxwell to Electrical Science () page 118 or C. Everitt, James Clerk
Maxwell: Physicist & Natural Philosopher () page 96 for accounts of the
idea the figure was intended to convey]. In his Treatise Maxwell writes that he
was “only following out the conception of Faraday, that lines of force tend to
shorten themselves, and that they repel each other when placed side by side:
all that we have done is express the value of the tension along the lines, and
the pressure at right angles to them, in mathematical language . . . ”
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1. Though we have already noted (page 213) that—in view of the facts that
[Fµν ] =

√
energy density and electrodynamics supplies no “natural length”—it

would be difficult to build ∂F -dependence into the design of Sµν , it still seems
remarkable that we have achieved success with a design that depends not at all
on the derivatives of the field . . . for elsewhere in physics energy and momentum
typically depend critically upon time-derivatives of the dynamical variables. It
was on account of this electrodynamical quirk that the static arguments that
gave (302) led us to an E found to pertain also to dynamical fields.
2. It is gratifying that energy density (and therefore also the integrated total
energy) is bounded below:

S00 ≡ E � 0 : vanishes if and only if Fµν vanishes

For otherwise the electromagnetic field would be an insatiable energy sink (in
short: a “rat hole”) and would de-stabilize the universe.
3. From the fact that Sµν is a quadratic function of Fµν it follows (see again
(45) on page 24) if follows that stress-energy does not superimpose:

Fµν = Fµν1 + Fµν2 : superimposed fields
↓

Sµν = Sµν1 + Sµν2 + (cross term)

4. From the symmetry of Sµν it follows rather remarkably that

energy flux ∼ momentum density : SSS = c2PPP

The discussion that led from (302) to (309) can be read as a further example
of the “bootstrap method in theoretical physics,” but has been intended to
illustrate the theory-shaping power of applied relativity . With a little physics
and a modest amount of relativity one can often go a remarkably long way.
In the present instance—taking a conjectured description of S00 as our point
of departure—we have managed to deduce the design of all fifteen of the other
elements of Sµν , and to achieve at (309) a highly non-obvious result of
fundamental physical importance.

Suppose now we were to abandon our former assumption that Fµν moves
“freely;” i.e., that Jν = 0. The argument that led from the bottom of page 214
to (309) then supplies

∂µS
µ
ν = 1

cJ
αFαν + b− c︸ ︷︷ ︸

0 by previous argument|
↓

∂µS
µν = − 1

cF
ν
αJ

α (312)

The flux components • of the stress-energy tensor

S =



◦ ◦ ◦ ◦
• • • •
• • • •
• • • •



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describe how energy/momentum are sloshing about in spacetime, causing local
adjustments of the energy/momentum densities ◦. It becomes in this light
natural to suppose that the expression on the right side of (312)

− 1
cF

ν
αJ

α

{
describes locally the rate at which energy/momentum
are being exchanged between the electromagnetic field
Fµν and the source field Jµ

We turn now to a discussion intended to lend substance to that interpretation.

2. Electromagnetic energy/momentum: second approach. We know that in the
presence of an impressed electromagnetic field Fµν a charged particle feels a
Minkowski force given (see again page 198) by

Kµ = (q/c)Fµνuν (295)

. . . to which the particle responds by changing its energy/momentum; i.e., by
exchanging energy/momentum with—ultimately—the agent who impressed the
field (the field itself acting here as intermediary). I propose to adjust the
image—to remove the puppeteer (“agent”) and let the puppets themselves
(electromagnetic field on the one hand, charged matter on the other) battle it
out. For formal reasons—specifically: to avoid the conceptual jangle that tends
to arise when fields rub elbows with particles—it proves advantageous in this
context to consider the source to be spatially distributed , having the nature of
a charged fluid/gas/dust cloud, from which we recover particulate sources as
a kind of degenerate limit: “lumpy gas.” But to carry out such a program we
must have some knowledge of the basic rudiments of fluid mechanics—a subject
which was, by the way, well-known to Maxwell,174 and from which (see again
the words quoted in footnote #173) he drew some of his most characteristic
images and inspiration.

digression: elementary essentials of fluid dynamics

Fluid dynamics is a phenomenological theory, formulated without explicit
reference to the underlying microscopic physics.175 It seeks to develop the
(xxx, t)-dependence of
• ρ(xxx, t), a scalar field which describes mass density , and
• vvv(xxx, t), a vector field which describes fluid velocity .

The product of these admits of two modes of interpretation:

ρvvv ≡ mass current = momentum density

174 G. G. Stokes (–) was twelve years older than Maxwell, and had
completed most of his fluid dynamical work by .
175 . . . Imagined by Navier to be “atomic.” Stokes, on the other hand, was not
yet convinced of the reality of atoms, and contrived to do without the assistance
that might be gained from an appeal to the “atomic hypothesis.”
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Figure 77: A designated drop of liquid (think of a drop of ink
dripped into a glass of water) shown at times t and t + dt. Every
point in the evolved drop originated as a point in the initial drop.
Not shown is the surrounding fluid.

(in which connection it is instructive to recall that two pages ago we encountered

1
c2SSS = PPP : mass flux ≡ energy flux

c2
= momentum density

as an expression of the symmetry of a stress-energy tensor). The first of those
interpretations supplies

∂
∂tρ +∇∇∇···(ρvvv) = 0 (313)

as an expression of mass conservation . . .while from the second interpretation
we infer that the ith component of momentum of a designated drop V of fluid
can at times t and t + dt be described

∫
V

ρ(xxx, t + dt)vi(xxx, t + dt)d3x︸ ︷︷ ︸ and
∫
V

ρ(xxx, t)vi(xxx, t)d2x

ai

The integrals (see Figure 77) range over distinct domains, but can be made to
range over the same domain by a change of variables:

ai =
∫
V

ρ(xxx + vvv dt, t + dt)vi(xxx + vvv dt, t + dt)
∣∣∣∂xxx
∂xxx

∣∣∣ d3x
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Expanding ρ(xxx + vvv dt, t + dt), vi(xxx + vvv dt, t + dt) and the Jacobian176

∣∣∣∂xxx
∂xxx

∣∣∣ =

∣∣∣∣∣∣
1 + v11dt v12dt v13dt

v21dt 1 + v22dt v23dt
v31dt v32dt 1 + v33dt

∣∣∣∣∣∣ = 1 + (v11 + v22 + v33)︸ ︷︷ ︸ dt + · · ·

∇∇∇···vvv

we obtain

ai =
∫
V

{
ρvi +

[(
∂
∂t + vvv···∇∇∇

)
ρvi + ρvi∇∇∇···vvv

]
dt + · · ·

}
d3x

From this it follows that the temporal rate of change of the ith component of
the momentum of our representative drop can be described

Ṗi(drop) =
∫
V

[(
∂
∂t + vvv···∇∇∇

)
ρvi + ρvi∇∇∇···vvv

]
d3x (314.1)

This quantity arises physically from forces experienced by our drop, which can
be considered to be of two types:

impressed volume forces :
∫
V

fi(xxx, t) d3x

surface forces :
∫
∂V

σσσi···dddSSS =
∫
V

∇∇∇···σσσi d3x

The latter describe interaction of the drop with adjacent fluid elements. So we
have

=
∫
V

[
fi +

∑
j

∂σij
∂xj

]
d3x (314.2)

where σij refers to the jth component of σσσi. The right sides of equations (314)
are equal for all V so evidently

(
∂
∂t + vvv···∇∇∇

)
ρvi + ρvi∇∇∇···vvv︸ ︷︷ ︸ = fi +

∑
j

∂σij
∂xj

These are Euler’s equations of fluid motion, and can be notated in a great variety
of ways: from

= ∂
∂t (ρvi) + ∂j(ρvivj)

= vi
[
∂
∂tρ +∇∇∇···(ρvvv)

]
︸ ︷︷ ︸ +ρ

(
∂
∂t + vvv···∇∇∇

)
vi

0 by mass conservation (313)

we see that we can, in particular, write

176 Here vi j ≡ ∂vi/∂x
j .
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∂
∂t (ρvi) + ∂j(ρvivj − σij) = fi (315)

↑—impressed force density

. . .but any attempt to solve equations (313) and (315) must await structural
specification of the “stress tensor”σij . It is in this latter connection that specific
fluid models are described/distinguished/classified. General considerations
(angular momentum conservation) can be shown to force the symmetry of the
stress tensor (σij = σji), but still leave the model-builder with a vast amount
of freedom. “Newtonian fluids” arise from the assumption

σij = −pδij +
∑
k,l

DijklVkl

where Vkl ≡ 1
2 (∂lvk+∂kvl) are components of the so-called “rate of deformation

tensor,” where the Dijkl are the so-called “viscosity coefficients” and where p is
the “static pressure.” Isotropy (the rotational invariance of Dijkl) can be shown
to entail Dijkl = λδijδkl + µ(δikδjl + δilδjk) and thus to reduce the number of
independently specifiable D-coefficients from 36 to 2, giving

σij = −pδij + λδij
∑
k

Vkk + 2µVij

Then
∑
k σkk = −3p+ (3λ+ 2µ)

∑
k Vkk and in the case 3λ+ 2µ = 0 we obtain

the stress tensor characteristic of a “Stokes fluid”

σij = −pδij + 2µVij − 2
3µδij

∑
k

Vkk

For an “incompressible Stokes fluid” this simplifies

σij = −pδij + 2µVij

and in the absence of viscosity simplifies still further

σij = −pδij

At zero pressure we obtain what is technically called dust :

σij = 0 (316)

We will have need of (313), (315) and (316). Other remarks on this page
have been included simply to place what we will be doing in its larger context,
to stress that we will be concerned only with the simplest instance of a vast
range of structured possibilities—the number of which is increased still further
when one endows the fluid with “non-Newtonian,” or thermodynamic, or (say)
magnetohydrodynamic properties. end of digression
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The charges which comprise the “sources” of an electromagnetic field must,
for fundamental reasons, satisfy Lorentz-covariant equations of motion. We
propose to consider the sources to comprise collectively a kind of “fluid.” We
stand in need, therefore, of a relativistic fluid dynamics. To that end we observe
that equations c · (313)⊕ (315) comprise a quartet of equations that can be
written

∂µs
µν = fν (316)

with

‖sµν‖ ≡




ρc2 ρcv1 ρcv2 ρcv3

ρcv1 ρv1v1 − σ11 ρv1v2 − σ12 ρv1v3 − σ13

ρcv2 ρv2v1 − σ21 ρv2v2 − σ22 ρv2v3 − σ23

ρcv3 ρv3v1 − σ31 ρv3v2 − σ32 ρv3v3 − σ33


 , ‖fν‖ ≡




0
f1

f2

f3




In the instantaneous rest frame of a designated fluid element
∣∣∣
↓

‖sµν‖ =




ρc2 0 0 0
0 −σ11 −σ12 −σ13

0 −σ21 −σ22 −σ23

0 −σ31 −σ32 −σ33




and for a “non-viscous Newtonian fluid”—a model that is, as will emerge,
adequate to our intended application—we obtain

∣∣∣
↓

‖sµν‖ =




ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


 (317)

Equation (316) looks a lot more relativistic than (at the moment) it is, but
becomes fully relativistic if it is assumed that

i) sµν and fν are prescribed in the local rest frame and
ii) respond tensorially to Lorentz transformations.

Thus

∂µs
µν = fν in the rest frame of a fluid element
↓

∂µs
µν = kν in the lab frame (318.1)

where
kν ≡ Λνβ(βββ)fβ ≡ “Minkowski force density” (318.2)

βββ ≡ 1
c ·

(
velocity with which we in the lab frame

see the fluid element to be moving

)

sµν ≡ Λµα(βββ)Λνβsαβ (318.3)
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Details relating to the construction (318.2) of kν have been described already
at (290/291) on page 197. We look now to details implicit in the construction
(318.3) of the “stress-energy tensor sµν of the relativistic fluid.” Notice first
that sµν shares the physical dimensionality of Sµν :

[sµν ] =
force

(length)2
=

energy
3-volume

= pressure

If we take sµν to be given by (317) and /\\\(βββ) to possess the general boost design
(209) then a straightforward computation177 supplies

sµν = (ρ + 1
c2 p)uµuν − pgµν (319)

where
ρ ≡ mass density in the local rest frame

uµ ≡ γ

(
c
vvv

)
≡ 4-velocity of the fluid element

At (319) we encounter the stress-energy tensor of a “relativistic non-viscous
Newtonian fluid” which plays a major role in relativistic cosmology, where
theorists speak of a “fluid” the elements of which are galaxies!178 If in (319) we
set p = 0 we obtain the stress-energy tensor of relativistic dust

sµν = ρuµuν (320)

where uµ(x) is the 4-velocity field characteristic of the moving dust, and ρ(x)
is the rest mass density. The simplicity of (320) reflects the absence (in dust)
of any direct interparticle interaction, and has the consequence that (for dust)
the fluid dynamical equations

∂µs
µν = kν

are but thinly disguised variants of the equations of particulate motion:

expression on the left = uν · ∂µ(ρuµ)︸ ︷︷ ︸ +ρ(uµ∂µ)uν

0 by mass conservation
= ρ( ddτ )uν

= kν by Minkowski’s equation (275), adapted
here to mass/force densities

For a “dust cloud” which contains but a single particle we expect sµν(x)
to vanish except on the worldline of the particle, and are led from (320) to the
odd-looking construction

sµν(x) = mc

∫ +∞

−∞
uµ(τ)uν(τ)δ(x− x(τ)) dτ (321)

↑—solution of m d
dτ u

ν = Kν

177 problem 55.
178 See, for example, C. W. Misner, K. S. Thorne & J. A. Wheeler, Gravitation
(), pages 153–154.
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where the c-factor arises from dimensional considerations.179 Equation (321)
describes the stress-energy tensor of a relativistic mass point ,180 and if, in
particular, it is the Lorentz force

Kµ = (q/c)Fµαuα (295)

that “steers” the particle then (321) becomes the stress-energy tensor of a
relativistic charged particle—a concept introduced by Minkowski himself in
.

If all the constituent particles in a charged dust cloud are of then same
species (i.e., if the value of q/m is invariable within the cloud) then

ρuµ ≡ mass-current 4-vector field
= (m/q) · charge-current 4-vector field
= (m/q) · Jµ

and (320) becomes

sµν(x) = (m/q) · Jµ(x)uν(x) (322)

This is the stress-energy tensor of a single-species charged dust cloud. For a
single charged particle—looked upon as a “degenerate charged dust cloud”—
we have

Jµ(x) = qc

∫ +∞

−∞
uµ(τ)δ(x− x(τ)) dτ (323)

which when introduced into (320) gives back (321).

From (295)—written

Kµ/(unit 3-volume) = 1
cF

µ
α(q/unit 3-volume)uα

—we infer that the Lorentz force density experienced by a charged dust cloud
can be described

kµ = 1
cF

µ
αJ

α (324)

which positions us to address the main point of this discussion: I show now how
(324) can be used to motivate the definition (309) of the stress-energy tensor
Sµν of the electromagnetic field. Most of the work has, in fact, already been

179 [4-dimensional δ-function]= (4-volume)–1 so

[cδ(x− x(x))] = (3-volume)–1

180 problem 56.
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Poynting’s energy flux vector SSS

EEE
r BBB

1

Figure 78: Current I passes through a cylindrical resistor with
resistance R = ρ1/πr2. The potential V = IR implies the existence
of an axial electric field EEE of magnitude E = V/1, while at the
surface of the resistor the magnetic field is solenoidal, of strength
B = I/c2πr. The Poynting vector SSS = c(EEE×BBB) is therefore centrally
directed, with magnitude S = cEB, which is to say: the field dumps
energy into the resistor at the rate given by

rate of energy influx = S · 2πr1
= c(IR/1)(I/c2πr)2πr1

= I2R

The steady field can, from this point of view, be considered to act as
a conduit for energy that flows from battery to resistor. The resistor,
by this account, heats up not because copper atoms are jostled by
conduction electrons, but because it drinks energy dumped on it by
the field.

done: we have (drawing only upon Maxwell’s equations and the antisymmetry
of Fµν) at (312) already established that

1
cF

ν
αJ

α can be expressed − ∂µS
µν

with Sµν ≡ FµαF
αν − 1

4 (FαβFβα)gµν

So we have
∂µs

µν = kν = −∂µSµν

giving

∂µ (sµν + Sµν)︸ ︷︷ ︸ = 0 (325)

|—stress-energy tensor of total system: sources + field

This equation provides (compare page 218) a detailed local description of
energy/momentum traffic back and forth between the field and its sources,
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and does so in a way that conforms manifestly to the principle of relativity. We
speak with intuitive confidence about the energy and momentum of particulate
systems, and of their continuous limits (e.g., fluids), and can on the basis of
(325) speak with that same confidence about the “energy & momentum of the
electromagnetic field.”

The language employed by Maxwell (quoted on page 216) has by this point
lost much of its quaintness, for the electromagnetic field has begun to acquire
the status of a physical “object”—a sloshy object, but as real as any fluid. The
emerging image of “field as dynamical object” acquires even greater plausibility
from illustrative applications—such as that presented here as Figure 78—and
from the discussion to which we now turn:

3. Electromagnetic angular momentum. If EEE and BBB describe the electric and
magnetic fields at a point xxx then (see again page 216) PPP = 1

c (EEE×BBB) describes
the momentum density at xxx, and it becomes natural to suppose that

LLL ≡ xxx×PPP = 1
cxxx× (EEE ×BBB) (326)

describes—relative to the origin—the angular momentum density of the field
at xxx. From the “triple cross product identity” we infer that

LLL = 1
c
{
(xxx···BBB)EEE − (xxx···EEE)BBB

}
lies in the local (EEE ···BBB)-plane

We expect that the total angular momentum resident in the field will be given
by an equation of the form

LLL =
∫

all space

LLL d3x

. . . that angular momentum flux vectors will be associated with each of the
components of LLL . . . and that there will, in general be angular momentum
exchange between the field and its sources. All these expectations—modulo
some surprises—will be supported by subsequent events. We begin, however,
by looking not to formal fundamentals but to the particulars of a tractable
special case:

electromagnetic gyroscope with no moving parts

Suppose—with J. J. Thompson ()—that an electric charge e has been
glued to one end of a stick of length a, and that a “magnetic charge” g has
been glued to the other end. It is immediately evident (see Figure 79) that the
superimposed EEE and BBB-fields that result from such a static charge configuration
give rise to a momentum field PPP = 1

c (EEE×BBB) that circulates about the axis
defined by the stick, so that if you held such a construction in your hand it would
feel and act like a gyroscope . . . though it contains no moving parts! We wish
to quantify that intuitive insight, to calculate the total angular momentum
resident within the static electromagnetic field. Taking our notation from the
figure, we have
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z

LLL

EEE
BBB

rrr2

rrrg

θ rrr1

y
ϕ

x e

Figure 79: Notations used in analysis of the“Thompson monopole”
(or “mixed dipole”). Momentum circulation is represented by the
purple ellipse, and is right-handed with respect to the axis defined by
the vector aaa directed from e to g : (• → •). Momentum circulation
gives rise to a local angular momentum density that lies in the local
(EEE,BBB)-plane. Only the axial component of LLL =

∫
LLL d3x survives the

integration process.

EEE =
e

4πr3
1

rrr1 with rrr1 = rrr + 1
2aaa

r2
1 = r2 + rrr···aaa + 1

4a
2

BBB =
g

4πr3
1

rrr2 with rrr2 = rrr − 1
2aaa

r2
2 = r2 − rrr···aaa + 1

4a
2

giving

PPP =
eg/c

(4π)2
1

r3
1r

3
2

aaa× rrr

LLL =
eg/c

(4π)2
1

r3
1r

3
2

rrr × (aaa× rrr)

But

rrr × (aaa× rrr) = r2aaa− (rrr···aaa)rrr = r2a


 − cos θ · sin θ cosϕ
− cos θ · sin θ sinϕ

1− cos θ · cos θ



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The x and y -components are killed by the process
∫ 2π

0
dϕ, so (as already antic-

ipated) we have

LLL =


 0

0
L




with

L =
eg/c

(4π)2

∫∫∫
1

r3
1r

3
2

r2a sin2 θ · r2 sin θ drdθdϕ

= 2π
eg/c

(4π)2

∫∫
1

r2
1r

2
2

ra sin θ
r1r2

(r sin θ)2 · rdrdθ

Write r = 1
2sa and obtain

= 4π
eg/c

(4π)2

∫∫
1

s2
1s

2
2

s sin θ
s1s2

(s sin θ)2 · sdsdθ (327)

s2
1 ≡ s2 + 1 + 2s cos θ
s2
1 ≡ s2 + 1− 2s cos θ

from which all reference to the stick-length—the only “natural length” which
Thompson’s system provides—has disappeared:

The angular momentum in the field of Thompson’s
mixed dipole is independent of stick-length.

Evaluation of the
∫∫

poses a non-trivial but purely technical problem which
has been discussed in detail—from at least six points of view!—by I.Adawi.181

The argument which follows—due in outline to Adawi—illustrates the power
of what might be called “symmetry-adapted integration” and the sometimes
indispensable utility of “exotic coordinate systems.”

Let (327) be written

L =
eg/c

4π

∫∫ ( w

s1s2

)3
d(area) (328)

with w = s sin θ and d(area) = s dsdθ. The dimensionless variables s1, s2 and
w admit readily of geometric interpretation (see Figure 80). Everyone familiar
with the “string construction” knows that

s1 + s2 = 2u describes an ellipse with pinned foci

and will be readily convinced that

s1 − s2 = 2v describes (one branch of) a hyperbola

181 “Thompson’s monopoles,” AJP 44, 762 (1976). Adawi learned of this
problem—as did I—when we were both graduate students of Philip Morrison
at Cornell University (/). Adawi was famous among his classmates for
his exceptional analytical skill.
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s2

s

θ

s1

Figure 80: In dimensionless variables

ζ ≡ s cos θ = 2z/a and w ≡ s sin θ = (2r/a) sin θ

the electric charge • sits on the ζ-axis at ζ = −1, the magnetic
charge • at ζ = +1. The “confocal conic coordinate system,” shown
at right, simplifies the analysis because it conforms optimally to the
symmetry of the system.

It is equally evident on geometrical grounds that the parameters u and v
are subject to the constraints indicated in Figure 81 below, and that the
(u, v)-parameterized ellipses/hyperbolas are confocal . Some tedious but
straightforward analytical geometry shows moreover that

ζ2

u2
+

w2

u2 − 1
= 1 describes the u-ellipse

ζ2

v2
− w2

1− v2
= 1 describes the v-hyperbola

Equivalently
ζ2

cosh2 α
+

w2

sinh2 α
= 1 with u ≡ coshα

ζ2

cos2 β
− w2

sin2 β
= 1 with v ≡ cosβ
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v

+1

1 u

−1

Figure 81: The parameters u and v are subject to the constraints

1 <u <∞
−1 <v < +1

which is to say: they range on the purple strip.

from which it follows readily that

ζ = coshα cosβ = uv

w = sinhα sinβ =
√

(u2 − 1)(1− v2)

The last pair of equations describe a coordinate transformation

(ζ, w) �−→ (u, v)

and it is in the confocal coordinates (u, v) that we propose to evaluate the
∫∫

.
To that end, we observe that

s1s2 =
(s1 + s2

2

)2

−
(s1 − s2

2

)2

= u2 − v2

and
dζdw = J dudv

J = det

(
∂ζ
∂u

∂ζ
∂v

∂w
∂u

∂w
∂v

)
=

u2 − v2√
(u2 − 1)(1− v2)

=
s1s2

w

Returning with this information to (328) we obtain

L = 2 · eg/c
4π

∫ 1

0

dv

∫ ∞

1

(u2 − 1)(1− v2)
(u2 − v2)2

du

where the leading 2-factor comes from
∫ +1

−1
= 2

∫ +1

0
(because the integrand is

an even function of v). Finally write u = 1/t and use du = −(1/t2)dt to obtain
the remarkably symmetric result

= 2 · eg/c
4π

∫ 1

0

∫ 1

0

(1− t2)(1− v2)
(1− t2v2)2

dtdv
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-2

-1
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Figure 82: Only the axial component (the component parallel to
• → •) of LLL survives the integration process. From results developed
in the text we discover the density of that component to be given in
Cartesian coordinates by Laxial = 1

4π (eg/c) · f(w, ζ) with

f(w, ζ) =
w2

[w2 + (ζ − 1)2]
3
2 [w2 + (ζ + 1)2]

3
2

of which the figure provides a contour plot. The angular momentum
of Thompson’s mixed dipole is seen to reside mainly in the “meat
of the apple,” exclusive of its core.

The double integral yields to a rather pretty direct analysis,182 but I will on
this occasion be content simply to ask Mathematica, who supplies

∫ 1

0

∫ 1

0

(1− t2)(1− v2)
(1− t2v2)2 dtdv =

∫ 1

0

v3 − v + (1− v4) tanh–1v

2v3
dv = 1

2

So we have Thomson’s relation

L =
eg

4πc

which in rationalized units ẽ ≡ e/
√

4π and g̃ ≡ g/
√

4π assumes the still simpler

182 See classical electrodynamics (), page 319.
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form
L =

ẽg̃

c
: independently of the “stick length” a (328)

We know (which Thompson did not) that the intrinsic angular momentum
(“spin”) of an elementary particle is always an integral multiple of 1

2�. It
becomes attractive therefore to set

= n · 1
2�

giving
ẽg̃ = n 1

2�c

But
�c = 137 ẽ2

so on these grounds
g̃ = n 137

2 ẽ (329)

which suggests that if the universe contained even a single magnetic monopole
then we could on this basis understand the observed quantization of electric
charge . Magnetic monopoles are, according to (329) “strongly” charged, and
therefore should be conspicuous. On the other hand, they should be relatively
hard to isolate, for they are bound by forces (n 137

2 )2 = 4692n2 times stronger
than the forces which bind electric monopoles. This line of thought origi-
nates in a paper of classic beauty by P. A. M. Dirac (), and after seventy
years continues to haunt/taunt the imagination of physicists (J. Schwinger,
A. O. Barut and many others). For a good review (and basic references) see
§6.12 in J. D. Jackson’s Classical Electrodynamics (3rd edition ).

We return now—with our relativistic goggles on—to the more general issues
posed on page 226. I ask: How does LLL transform? . . .my double intent being

1) to achieve manifest conformity with the principle of relativity, and
2) to develop formulæ which describe the angular momentum flux vectors.

Here as so often, index play provides the essential clue. If we bring to (326) the
recollection (page 216) that

Pi = 1
cS

0i : i = 1, 2, 3

we obtain
L1 = x2P3 − x3P2 = 1

c (x
2S03 − x3S02) ≡ L023

L2 = x3P1 − x1P3 = 1
c (x

3S01 − x1S03) ≡ L031

L3 = x1P2 − x2P1 = 1
c (x

1S02 − x2S01) ≡ L012

From L1 ≡ L023 and the experience of pages 212–216 we infer that the equations
Li23 ≡ 1

c (x
2Si3 − x3Si2) may very well describe the components (i = 1, 2, 3)

of the L1-flux vector . This is a conjecture which can be confirmed by direct
calculation:

∂αLα23 = 1
c∂α(x2Sα3 − x3Sα2)

= 1
c (δ

2
αS

α3 + x2∂αS
α3 − δ3αSα2 − x3∂αS

α2)
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The 2nd and 4th terms on the right vanish individually (in source-free regions)
as instances of momentum conservation (∂αSαi = 0), so

= 1
c (S

23 − S32)
= 0 by the symmetry of Sµν

Similar remarks pertain to L2 and L3. Indeed, the same argument supplies

∂αLαµν = 0 in source-free regions : µ, ν = 0, 1, 2, 3 (330)

where
Lαµν ≡ 1

c (x
µSαν − xνSαµ) (331)

has obviously the following antisymmetry property:

Lαµν = −Lανµ (332)

Starting from the construction (326) of the three components of the angular
momentum density vector LLL, and drawing upon a little bit of relativity . . .we
have been led
• to explicit descriptions of the associated angular momentum fluxes, and
• to three unanticipated conservation laws:

∂αKα1 = ∂αKα2 = ∂αKα2 = 0 with Kαi ≡ Lα0i (333)

We have been led, in short, from an initial trio of field functions to a final total
of 24—the components of a µν-antisymmetric third-rank tensor Lαµν

0 K1 K2 K3

−K1 0 L3 −L2

−K2 −L3 0 L1

−K3 L2 −L1 0 flux vectors

densities

. . . all of which become intricately (but linearly) intermixed when Lorentz
transformed. And an anticipated trio of conservation laws (conservation of
angular momentum) have—by force of Lorentz covariance—been joined by an
unanticipated second trio. We confront, therefore, this unanticipated question:
What is the physical significance of the conserved vector

KKK ≡
∫

all space

KKK d3x (334.1)

KKK ≡


 K1

K2

K3


 with Ki ≡ K0i ≡ L00i (334.2)
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4. Motion of the “center of mass” of a free field. Bringing to (334.2) the definition
(331) we have

Ki = L00i = 1
c (x

0S0i − xiS00)

which in the notations introduced at the bottom of page 215 becomes

= 1
c

{
(ct)(cPi)− xiE

}
= c(tPi −Mxi)

M ≡ E/c2 ≡ local “mass density” of the field (335)

giving
KKK = c(tPPP−Mxxx) (336)

For free fields

PPP ≡
∫

PPP d3x = total linear momentum

and

M ≡
∫

M d3x = total effective mass

=
total energy

c2

are known to be constants of the motion. So writing

KKK ≡
∫

KKK d3x

= c(tPPP −
∫

Mxxx d3x︸ ︷︷ ︸)
|
=MXXX(t)

XXX(t) ≡ 1
M

∫
xxxMd3x = 1

E

∫
xxxEd3x (337)

= center of mass/energy of the free field

we see that KKK-conservation

d
dtKKK = 000 , the upshot of the local conservations laws (333)

amounts simply to the satisfying statement that the center of mass/energy of
a free electromagnetic field moves uniformly/rectilinearly :

d
dtXXX(t) = PPP/M = constant (338)

In this respect a free electromagnetic field is very like a Newtonian free particle!
Or more precisely: like an isolated system of Newtonian particles.
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important remark: Such frequently-encountered (because
frequentlyuseful) abstractions as “electromagnetic plane waves”
are utterly non-localized. Their total mass/energy/momentum
are defined by non-convergent integrals so the definition (337)
becomes meaningless: no center of mass can be assigned to
such idealized solutions of Maxwell’s equations. We are led to
regard as “physical” only those free fields to which the center of
mass concept does pertain—fields which (because of the manner
in which they “vanish at infinity”) can be considered to be
“isolated.” Fourier analysis is in this respect strange (though
no stranger here than in quantum mechanics), for it invites us
to display semi-localized physical free fields as wavepacket-like
superpositions of idealized non-physical free fields.

Distributed quantities—wherever in pure/applied mathematics they may
be encountered—are often most usefully described in terms of their moments of
ascending order. If, for example, ρ(xxx) describes a mass distribution in 3-space
then we standardly define

0th moment M ≡
∫
ρ(xxx) d3x ≡ 〈1〉 = total mass

1st moments M i ≡
∫
xiρ(xxx) d3x ≡ 〈xi〉

2nd moments M ij ≡
∫
xixjρ(xxx) d3x ≡ 〈xixj〉

...

and from those construct such objects as183

center of mass vector : Xi ≡ 〈x
i〉
〈1 〉

matrix of centered 2nd moments : Cij ≡ 〈(xi −Xi)(xj −Xj)〉
moment of inertia matrix : Iij ≡ (C11 + C22 + C33)δij − Cij

...

where Cij provides leading-order information about how the mass is distributed
about the center of mass, Iij is a construction natural to the dynamics of rigid
bodies, etc. The point is that such objects—defined in reference to a variety of
density functions—can be associated with isolated electromagnetic fields. This
is not commonly done, but is an analytical device that has been exploited to
good effect by Schwinger.184 Following (except notationally) in Schwinger’s

183 See classical gyrodynamics (), pages 9–11.
184 See J. Schwinger et al , Classical Electrodynamics (), Chapter 3.



236 Mechanical properties of the electromagnetic field

footsteps, let us agree to write

〈xxx〉0 ≡ 1
E

∫
pulse

xxx E d3x : E -weighted mean position

〈xxx〉i ≡ 1
P i

∫
pulse

xxxPi d3x : Pi-weighted mean position

... and more generally

〈•〉ν ≡
[ ∫

pulse

S0ν d3x

]–1 ∫
pulse

•S0ν d3x : S0ν-weighted mean •

where “pulse” is the term used by Schwinger to emphasize that his results—all of
which refer to the motion of moments—pertain only to isolated electromagnetic
fields. In this notation (338) reads

M d
dt 〈xxx〉

0 = PPP

which when integrated becomes

〈xxx〉0t = vvv t+ 〈xxx〉00
vvv ≡ 1

MPPP ≡ constant velocity of the center of energy (339.1)

A natural companion to the preceding statement arises from Schwinger’s
(characteristically clever) observation that

d
dt

∫
pulse

xxx···PPP d3x = d
dt

{
P 1〈x1〉1 + P 2〈x2〉2 + P 3〈x3〉3

}

= −
∫

pulse

xi ∂0cP
i︸ ︷︷ ︸ d3x
|
= ∂0S0i = −∂kSki by ∂µSµi = 0

= +
∫

pulse

[
∂k(xiSki)︸ ︷︷ ︸−Skigki

]
d3x

|
—contributes a surface term, which vanishes

= E because Skk = −S0
0 = −E by (311)

The implication is that if we define

uuu ≡ d
dt ξξξ with ξξξ ≡


 〈x

1〉1
〈x2〉2
〈x3〉3




↑
—an object curiouser than Schwinger would have us believe!

then
E = PPP ··· uuu (340)
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. . .which tells us nothing about uuu⊥ but informs us that

uuu‖ = u‖P̂PP is a constant vector, with u‖ = E/P (339.2)

From equations (339) it follows that

vvv···uuu‖ = 1
M (E/P )PPP ···P̂PP = c2

Schwinger observes that if
i) vvv refers to the velocity of energy transport
ii) uuu‖ refers to the velocity of momentum transport
iii) and if, moreover, (as would then seem plausible) those are identical

then

v = c :




for isolated free fields (“pulses”) with
identical energy/momentum transport
velocites (vvv = uuu‖) the transport speed
is necessarily the speed of light

(341)

and (340) becomes
E = cP (342)

which—interestingly—is of the design assumed by (282) in the massless limit:

E = c
√
ppp···ppp+ (mc)2

↓
= cp as m ↓ 0

But this line of argument provides no insight into the (seemingly plausible, but
in fact highly specialized) conditions under which Schwinger’s hypotheses hold.

Sharpened results can be obtained by looking to motion of the energetic
second moment 〈gµνxµxν〉0: from local energy conservation ∂αSα0 = 0 it follows
trivially that

(gµνxµxν)∂αS0α = ∂α
[
(gµνxµxν)S0α

]
− 2S0αxα = 0

which can be spelled out

1
c∂t

[
(c2t2 − xxx···xxx)E

]
+∇∇∇···(etc.)− 2c(Et−PPP···xxx) = 0

⇓
d
dt

∫
pulse

(c2t2 − xxx···xxx)E d3x+ vanishing surface term− 2c2
{
Et−

∫
pulse

PPP···xxx d3x
}

= 0

But it was established on the preceding page that d
dt

{
etc.

}
= 0; i.e., that

{
etc.

}
is a constant of the motion:

Et−
∫

pulse

PPP···xxx d3x = Et− PPP ···ξξξ t = constant = −PPP ···ξξξ0
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from which we could recover E = PPP ···uuu by t-differentiation. So we have

d
dt (c

2t2E − E〈xxx···xxx〉0 ) + 2c2PPP ···ξξξ0 = 0

giving E d
dt 〈xxx···xxx〉0 = 2c2(Et+PPP ···ξξξ0) whence (divide by E =Mc2 and integrate)

〈xxx···xxx〉0t = c2t2 + 2 1
MPPP ···ξξξ0t+ 〈xxx···xxx〉

0
0 (343)

To gain leading-order information about the evolving spatial distribution
of the field we introduce the centered second moment with respect to E:

σ2 ≡ 1
E

∫
pulse

(xxx− 〈xxx〉0)···(xxx− 〈xxx〉0)E d3x

= 〈xxx···xxx〉0 − 〈xxx〉0···〈xxx〉0

Necessarily σ2 � 0, with equality if and only if the pulse is “point-like.” Results
in hand now supply

σ2
t =

[
c2t2 + 2 1

MPPP ···ξξξ0t+ 〈xxx···xxx〉
0
0

]
−

[
1
MPPP t+ 〈xxx〉

0
0

]
···
[

1
MPPP t+ 〈xxx〉

0
0

]

=
[
1− P 2

M2c2

]
(ct)2 + 2 1

Mc
PPP ···

[
ξξξ0 − 〈xxx〉00

]
ct+ σ2

0

≡ A (ct)2 + 2B (ct)1 + C (ct)0 (344)

. . .which pertains to all isolated fields, and is plotted in Figure 83. The roots
of σ2

t = 0 are evidently both complex , which entails

0 � B2 � AC (345)

But C ≡ σ2
0 � 0 so necessarily

A ≡
[
1−

(
cP
E

)2 ]
� 0

Evidently (342) identifies the exceptional condition A = 0, which by (345)
entails B = 0. And this, by (344), entails PPP ··· ξξξ0 = PPP ···〈xxx〉00. But we have already
established that

PPP ··· ξξξ0 = PPP ··· ξξξ t − Et

=
∫
xxx···PPP d3x− Et

PPP ···〈xxx〉00 = PPP ···
{
〈xxx〉0t − 1

MPPP t
}

=
[ ∫

PPP d3x

]
···
[

1
E

∫
xxxE d3x

]
− P 2

E/c2
t

and the t-terms are rendered equal by the condition cP/E = 1 which is now in
force. The implication is that

B = 0 ⇐⇒
[ ∫

E d3x

][ ∫
xxx···PPP d3x

]
=

[ ∫
PPP d3x

]
···
[ ∫

xxxE d3x

]
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σ2

ct

Figure 83: Graph—computed from the right side of (344)— of
the function σ2

t that describes (in leading approximation) how the
energy in an isolated free field becomes spatially dispersed. This is
what would happen to (for example) the Coulomb field of a charge if
the charge were suddenly “turned off.” It follows immediately from
(344) that

d
dtσt → c as t ↑ ∞

In the text the fact that the curve cannot cross the time-axis is
shown to have important general implications.

which is readily seen to be satisfied if (but only if?) it is everywhere and always
the case that

PPPE = PPPE

This is a very strong condition, for it forces the momentum density PPP to be
everywhere and always proportional to the constant vector P̂PP :

PPP = 1
cEP̂PP (346.1)

Integration over the isolated free field gives

PPP = 1
cEP̂PP (346.2)

What can one say about the structure of the electric/magnetic fields which
is forced by (what we now recognize to be) the strong condition

E = c|PPP |, equivalently E = cP (347)

On the one hand we have185

185 I hope it will be clear from context when, in the following discussion, E
means “total energy” and when it means “magnitude of EEE .”
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E = c|PPP |
↓∫

E2 +B2

2
d3x =

∣∣∣∣
∫
EEE×BBB d3x

∣∣∣∣
�

∫ ∣∣EEE×BBB∣∣ d3x (348.1)

with equality if and only if EEE×BBB is unidirectional . On the other hand

∣∣EEE×BBB∣∣2 = E2B2 − (EEE ···BBB)2

=
[
E2 +B2

2

]2

−
{[
E2 −B2

2

]2

+ (EEE ···BBB)2
}

�
[
E2 +B2

2

]2

: equality if and only if E2 = B2 and EEE ···BBB = 0

so ∫ ∣∣EEE×BBB∣∣ d3x �
∫
E2 +B2

2
d3x (348.2)

which is (348.1) but with the inequality reversed. If we are to achieve (347)
then both inequalities must hold: both, in other words, must reduce to equalities.
The relation E = cP is seen thus to require that it be everywhere and always
the case that

1) EEE×BBB is unidirectional

2) E2 = B2

3) EEE ⊥ BBB
These same conditions will assume major importance when we come to consider
plane wave solutions of the free field equations . . .which is curious, since (as
was remarked already on page 235) plane waves cannot be “isolated,” cannot
be considered to comprise “pulses.”

The discussion of recent paragraphs illustrates the power of the “momental
mode of argument” (and illustrates also the deft genius of Schwinger!), but
by no means exhausts the resources of the method: much fruit awaits the
picking. More to the immediate point, it shows that basic mechanical properties
of electromagnetic fields can be exposed without direct appeal to Maxwell’s
equations. Collectively, those properties encourage us to think of the (free)
field as a mechanical object . . . even as a mechanical object which is—to a
remarkable degree—“particle-like.”

5. Zilch, spin & other exotic constructs. However “particle-like” we may consider
the electromagnetic field to be, it does—because a field—possess many more
degrees of freedom than a particle (infinitely many!), and can be expected
to possess correspondingly many more constants of the motion. That one
can actually write some of these down was discovered—by accident, and to
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everyone’s surprise—by D. M. Lipkin in .186 Lipkin happened somehow to
notice that if he defined

Z0 ≡ EEE ···curlEEE +BBB ···curlBBB

ZZZ ≡ 1
c

[
EEE× ∂

∂tEEE +BBB× ∂
∂tBBB

]

 (349)

then187 it follows from the free-field Maxwell equations188 that

∂0Z
0 +∇∇∇···ZZZ = 0 (350)

This he interpreted to provide local expression of the fact that

total “zilch” ≡
∫
Z0 d3x

is a constant of the free-field motion. The name he gave his discovery reflects
the fact that he had (nor, to this day, does anyone have, so far as I am aware) no
sense of what the physical significance of “zilch” might be. He drew attention to
the fact that field derivatives—so conspicuously absent from the stress-energy
and angular momentum tensors—enter into the definitions (349).

One is tempted at (350) to write ∂αZα = 0, but such an equation would
make relativistic good sense only if the Zα transform as components of a
4-vector . . .which, as it turns out, they do not. One confronts therefore the
question: How to bring Lipkin’s discovery into manifest compliance with the
principle of relativity? Persuit of this issue led Lipkin to the identification of
nine additional new conservation laws. More specifically, he was led to write

Zα = V 00α

where—as T. A. Morgan189 was quick to discover—the tensor components of
V µνα can be described quite simply as follows:

V µνα ≡ (∂αGµλ)Fλν − (∂αFµλ)Gλν (351)

186 “Existence of a new conservation law in electromagnetic theory,” J. Math.
Phys. 5, 696 (1964).
187 problem 57.
188 In (65) set ρ = 0 and jjj = 000.
189 “Two classes of new conservation laws for the electromagnetic field and
other massless fields,” J. Math. Phys. 5, 1659 (1964). See also T. A. Morgan &
D. W. Joseph, “Tensor lagrangians and generalized conservation laws for free
fields,” Nuovo Cimento 39, 494 (1965) and R. F. O’Connell & D. R. Tompkins,
“Generalized solutions for massless free fields and consequent generalized
conservation laws,” J. Math. Phys. 6, 1952 (1965). It follows easily from
(351) that

V 00α = −(EEE ···∂αBBB −BBB ···∂αEEE )

One achieves conformity with (349) by drawing upon the free field equations
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This discovery motivated Morgan to write

V µνα1···αpβ1···βq ≡ (∂α1 · · · ∂αpGµλ)(∂β1 · · · ∂βqFλν)
− (∂α1 · · · ∂αpFµλ)(∂β1 · · · ∂βqGλν)

T µνα1···αpβ1···βq ≡ 1
2

[
(∂α1 · · · ∂αpFµλ)(∂β1 · · · ∂βqFλν)

+ (∂α1 · · · ∂αpGµλ)(∂β1 · · · ∂βqGλν)
]

and to observe that—in consequence of the free field equations and certain
fundamental “dualization identities”190—each of the above quantities is

1) µν-symmetric: V µν··· = V νµ··· and T µν··· = T νµ···

2) traceless: V µµ··· = T µµ··· = 0, and
3) locally conserved: ∂µV µν··· = ∂µTµν··· = 0.

In the absence of “spectator indices” (i.e., in the case p = q = 0) Tµν··· reduces
to the familiar stress-energy tensor (309), so at least that member of Morgan’s
infinite population of functionally-independent conservation laws has a strong
claim to physical significance. Lipkin’s tensor V µνα has moreover the property
(which recommended it to his attention in the first place—namely) that

∂αV
µνα = 0 : These are Lipkin’s 10 conservation laws

. . .but the proof of that fact (see the papers cited above) is intricate, and will
be omitted.

The solitary conservation law (350) discovered by Lipkin is seen in
retrospect to have been but the tip of an iceberg. Of methodological interest
is the observation that it was relativity that led from the tip to a perception of
the iceberg as a whole. On page 233 we were led from the three components
of angular momentum density to the 24 elements of Lαµν . Here the relativistic
payoff has been infinitely richer . . .but to what effect? Although the theoretical
placement of zilch-like conservation laws has been somewhat clarified,191 the
subject has passed into almost total obscurity: “zilch” is indexed in none of the
standard texts, and appears to be on nobody’s mind. I know of no argument

(continued from the preceding page) and upon (compare (5)) the following uncommon
but quite elementary identity:

3∑
k=1

(Ak∇∇∇Bk−Bk∇∇∇Ak)=AAA×curlBBB−BBB×curlAAA+AAAdivBBB−BBBdivAAA− curl(AAA×BBB)

Note that the curl(AAA×BBB)-term makes no contribution to∇∇∇···ZZZ, so can be omitted
(Lipkin’s option) from the definition of ZZZ.
190 See page 16 in elements of relativity ().
191 See especially T. W. B. Kibble, “Conservation laws for free fields,” J. Math.
Phys. 6, 1022 (1965).
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to the effect that zilch is a concept too fundamentally trivial to support useful
physics, but the effort to expose that physics appears to lie in the distant
future. A place to start might be to describe the zilch-like features of some
specific solutions of the free field equations, the objective being to gain a sharper
intuitive sense of what those infinitely many conservation laws are trying to tell
us. “Infinitely many conservation laws” seems a treasure too rich to ignore.

Classical mechanics came into the world as the theory of a particular
system—the gravitational two-body system—and it was Newton’s descriptive
success in that special case that lent credibility to the concepts and methods
he had created. But Newton’s FFF = d

dtppp was by itself insufficient to support a
theory of mechanical-systems-in-general, for it assumed FFF to be known/given
in advance, and had nothing to say about how the forces (most conspicuously:
the forces of constraint) internal to multiparticle systems come to be known.
The general theory of mechanical systems had to await the cultivation of ideas
that radiate from the work of Lagrange,192 and only when such a theory was
in place could the deepest and most subtle aspects of the original two-body
problem be exposed. So it was also in the history of classical field theory:
Maxwell gave us the theory of a particular classical field system—a theory
which Einstein showed to be “naturally relativistic”—but motivation to create
a general theory of relativistic classical fields had to await the development of
interest a “relativistic theory of gravitation,” the theory which by the time it
had become ripe enough to fall from the tree had metamorphosed into “general
relativity.” It emerged that Lagrangian methods provide—ready made—the
language of choice for the description of relativistic classical fields, and that the
“mechanical properties of fields” are brought into focus (Noether’s insight) by
conservation laws that reflect symmetries of the dynamical action:193

SR[ϕ] ≡
∫∫∫∫

R
L(ϕ, ∂ϕ) d4x

Here ϕ is any solution of the field equations

∂µ
∂L
∂ϕa,µ

− ∂L
∂ϕa

= 0

192 Lagrange’s Mechanique analytique was published in —101 years after
the publication of Newton’s Philosophiae Naturalis Principia Mathematica.
Another near-half-century was to elapse before Hamilton—who took his
inspiration directly from what he called Lagrange’s “scientific poem”—
completed his own contributions to mechanics (“On a general method in
dynamics” appeared in , and his “Second essay on a general method in
dynamics” in ) and it was not until  that Emmy Noether placed the
elegant capstone on Lagrangian dynamics.
193 For more detailed discussion see, for example, classical field theory
(), Chapter 1, pages 15–32 or Herbert Goldstein, Classical Mechanics
(2nd edition ), Chapter 12.
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R is any “bubble” in spacetime, and a indexes the individual components of the
multi-component field system. When one returns with such general principles to
the electrodynamic birthplace of relativistic field theory one acquires
deepened insight into the meaning—and a greater respect for the “naturalness”
—of constructions that in §§1–3 were introduced in a somewhat improvisatory
ad hoc manner. Specifically, one finds that (see again (304) and (309)) the
ν-indexed quartet of conservation laws

∂αS
αν = 0 (352.1)
Sµν ≡ FµαFαν − 1

4 (FαβFβα)gµν

reflects the translational symmetry of the electromagnetic free-field action
function, and that (see again (330) and (331)) the antisymmetrically µν-indexed
sextet of conservation laws

∂αLαµν = 0 (352.2)
Lαµν ≡ 1

c (x
µSαν − xνSαµ)

reflects the Lorentz symmetry of the action. Three of the latter (those that arise
from the rotational component of the Lorentz group) refer to the conservation
of angular momentum LLL, while the other three (those that arise from boosts)
refer to the conservation of KKK. We know, however, that Maxwellian electrody-
namics is conformally covariant, and that the 4-dimensional conformal group
is a 15-parameter group that—in addition to translations, rotations and boosts
—contains “dilations” (one parameter) and “Möbius transformations” (four
parameters). What are the associated conservation laws? This question was
studied by E. Bessel-Hagen (), whose work is reviewed in a very accessible
paper by B. F. Plybon.194 It develops that dilational symmetry of the action
entails

∂α(Sαβxβ) = 0 (352.3)

while Möbius symmetry supplies a µ-indexed quartet of conservation laws

∂α(2Sαβxβxµ − Sαµ · xβxβ) = 0 (352.4)

Recalling from (310) & (311) that Sµν is symmetric and traceless , we observe
(with Plybon) that195

• (352.2) follows from (352.1) and the symmetry of Sµν

• (352.3) follows from (352.1) and the tracelessness of Sµν

• (352.4) follows from (352.1) and the traceless symmetry of Sµν

So (352.4) provides no information additional to that conveyed already by the
conservation laws (352.1/2/3) and it is therefore pointless to inquire after the

194 “Observations on the Bessel-Hagen conservation laws for electromagnetic
fields,” AJP 42, 998 (1974).
195 problem 58.
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“independent physical meaning” of the Möbius invariants.196 The physical
meanings of the translational and Lorentz invariants has already been
established, while (352.3) supplies the dilational invariant

D ≡
∫

(S0
βx

β) d3x

= c
∫

(Et−PPP···xxx) d3x

= c(Et− PPP ···ξξξt)

. . . the invariance of which was encountered/exploited already at the bottom of
page 237.

This elegant train of thought lends new interest to the zilch-like free-field
conservation laws discussed previously, for it is easily demonstrated that those
are of a design to which standard “Noetherian analysis” can never lead. This
observation led Morgan & Joseph189 to construct a highly non-standard theory
of “tensor Lagrangians”

L −→ Lpopulation of tensor indices

in which all of the infinitely many “conservation of zilch” statements can be
attributed to the translational invariance of the associated tensor Lagrangians.
They note, however, that free fields are unobservable in principle: that it is by
their interactions that systems announce themselves . . . and that it appears to
be impossible to build interactions into a tensor Lagrangian theory. It is, in
their view, this circumstance that robs “conservation of zilch” of any claim
to physical significance, and that explains why only scalar Lagrangians are
encountered in theories of the observable real world.

To approach the subject of “spin,” as it is (but only rarely!) encountered
in classical electrodynamics I must back up a bit. In  A. Proca undertook
to apply orthodox Lagrangian methods to the construction of what might be
called a “relativistic electrodynamics of massive photons,” his hope being that
such objects might be identified with Yukawa’s conjectured “mesons” (:
see again page 18). Proca was led197 to a system of field equations which in

196 This, however, is not to say that (352.4) is useless. Used in conjunction
with (352.1) and the traceless symmetry of Sµν it supplies

∂α
[
(xβxβ)Sµα

]
− 2Sµαxα = 0

which in the case µ = 0 was used (at the middle of page 237) to good effect by
Schwinger.
197 Details are developed in classical field theory (), Chapter 2,
pages 16–22 and 51–56.
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manifestly Lorentz covariant notation read

Gµν = ∂µUν − ∂νUµ

∂λGµν + ∂µGνλ + ∂νGλµ = 0
∂µG

µν + κ
2Uν = 0

∂νU
ν = 0

and in this electrodynamically-inspired notation

‖Gµν‖ =




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


 and



U0

U1

U2

U3


 =

(
φ
AAA

)

become

EEE = −∇∇∇φ− 1
c
∂
∂tAAA and BBB = ∇∇∇×AAA

∇∇∇×EEE + 1
c
∂
∂tBBB = 000 and ∇∇∇···BBB = 0

∇∇∇···EEE = −κ
2φ and ∇∇∇×BBB− 1

c
∂
∂tEEE = −κ

2AAA

1
c
∂
∂tφ+∇∇∇···AAA = 0

Here
κ ≡ mc/� with physical dimension [κ ] = (length)–1

is Proca’s “mass parameter”—the reciprocal of the λ encountered already on
page 18. The formal success of Proca’s program resides in the observation
that in the limit κ ↓ 0 these equations assume precisely the form of the
free-field Maxwell equations (61) in what we will later learn to call the “Lorentz
gauge.” Noether’s argument leads from the translational invariance of Proca’s
Lagrangian to a stress-energy tensor which is not symmetric, but which after
“Belinfante symmetrization” becomes198

Tµν = GµσGσν + Lgµν + κ
2UµUν

L ≡ 1
2

{
Gσρ(Uρ,σ − Uσ,ρ)− 1

2G
ρσGρσ

}
− 1

2κ
2UρUρ

which is manifestly symmetric, but traceless only in the limit κ ↓ 0, and which
supplies

energy density = 1
2

[(
G2

01 +G2
02 +G2

03 +G2
12 +G2

23 +G2
31

)
+ κ

2
(
U2

0 + U2
1 + U2

2 + U2
3

)]
= 1

2

{
E

2 + B
2 + κ

2(φ2 + A
2)

}
� 0

momentum density vector = 1
c
{
EEE×BBB + κ

2φAAA
}

198 We write Tµν instead of Sµν because S has been preempted by Spin.
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These formulæ give back their electromagnetic counterparts in the limit κ ↓ 0
. . . and bring us at last to the main point of this discussion: Noether’s argument
leads from the Lorentz invariance of Proca’s Lagrangian to an angular
momentum tensor of the form

Jµαβ = 1
c
(
xαTµβ − xβTµα

)
= Lµαβ + Sµαβ

= orbital component + intrinsic or “spin” component

with

Sµαβ = 1
c
(
GαµUβ −GβµUα

)

Both ∂µLµαβ and ∂µSµαβ fail to vanish, but they do so in such a concerted
way that ∂µJµαβ = 0 (which arise from the familiar pair of circumstances:
∂µT

µν = 0 and Tµν = T νµ). Straightforward extension of (see again page 233)
the definition

angular momentum density vector =


 L023

L031

L012




supplies

spin density vector =


 S023

S031

S012


 = 1

c


G

20U3 −G30U2

G30U1 −G10U3

G10U2 −G20U1




= 1
c EEE×AAA (353)

which does check out dimensionally: from

[EEE ] =
√

energy density and [AAA ] = length ·
√

energy density

we have
[spin density] = time · energy density

= action density
= angular momentum density

Remarkably, (353) contains no reference to κ, therefore no reference to either
� or m. We expect it therefore to retain its meaning even in the classical
electromagnetic limit . . . or would but for this awkward detail: in Proca theory
(κ �= 0) ∂νUν = 0 enjoys the status of a field equation, but in the Maxwellian
limit (κ = 0) it acquires the status of an arbitrarily imposed side condition (the
“Lorentz gauge condition,” which will acquire major importance later in our
work). In electrodynamics we expect therefore to have

spin density SSS = 1
c EEE×AAA , but only in the Lorentz gauge! (354)
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But if (354) requires us to nail down the gauge, it does not require us to nail
down the coordinate system, to specify a “reference point”: since the expression
on the right lacks the “momental structure” of xxx×ppp it is insensitive to where we
have elected to place of the origin of the xxx-coordinate system. If SSS has anything
at all to do with “angular momentum” it must have to do with “intrinsic angular
momentum” (or “spin”).

Equation (354) appears on page 115 of Davison Soper’s Classical Field
Theory () but nowhere else in the pedagogical literature, so far as I have
been able to discover. That the construction 1

c EEE×AAA does indeed have
“something to do with angular momentum” Soper argues as follows: Look to
the case

‖Aµ‖ =
(
ϕ
AAA

)
=




0
−A sin[k(ct− z)]
±A cos[k(ct− z)]

0




Then the Lorentz gauge condition ∂µAµ = 0 becomes trivial, and

EEE = −∇∇∇ϕ− 1
c
∂
∂tAAA =


 Ak cos[k(ct− z)]
±Ak sin[k(ct− z)]

0




BBB = ∇∇∇×AAA =


∓Ak sin[k(ct− z)]

+Ak cos[k(z − ct)]
0


 = ẑzz×EEE

describe � / � circularly polarized plane waves of frequency ω = kc, advancing
up the z -axis with speed c. We compute

SSS = 1
c EEE×AAA = ±A2(k/c)


 0

0
1




Noting that the energy density is E = 1
2 (E2 +B2) = A2k2 we have

SSS = (E/ω) ẑzz (355)

To interpret this result, Soper draws upon a “photonic” conception of the
electromagnetic field: he imagines it to contain N photons per unit volume,
each carrying energy �ω. Then E = N�ω gives

SSS = (N�) ẑzz

which Soper interprets to state that

Each photon carries � units of intrinsic angular momentum (356)

In the quantum theory of angular momentum one is brought to the conclusion
that the

“allowed values” of orbital angular momentum are 0, �, 2�, 3�, . . .

“allowed values” of spin angular momentum are 0, 1
2�, �, 3

2�, 2�, . . .
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and is led to assert that “electrons are spin 1
2 particles,” that “fermions carry

half-integral spin, bosons carry integral spin,” etc. We are (in view of what
happens to those statements in the limit � ↓ 0) not surprised to encounter the
frequently-repeated to claim—not quite accurate, as it turns out199—that “spin
is an intrinsically quantum mechanical phenomenon, and at the deepest level a
relativistic quantum mechanical phenomenon.” It becomes in this light
interesting to notice that (355) is classically meaningful as it stands, that the
introduction of “photonic language”—though possible—is inessential . And
indeed: the first direct experimental support of (355) was reported by authors
who, while they allowed themselves to make casual use of “photonic language,”
employed methods that were in fact entirely classical.200

Yet subtleties lurk within the preceding account of the angular momentum
of electromagnetic free fields, and literature bearing on the subject remains to
this day often confused/misleading. Some authors fall into paradox when they
talk about orbital angular momentum but imagine themselves to be talking
about spin angular momentum,201 though by the present account the two could
hardly be more different: an unbounded circularly polarized plane wave carries

• infinite spin angular momentum but (by a symmetry argument)

• zero orbital angular momentum.

Richly detailed accounts of orbital angular momentum can be found in §2.7 and
Chapter 9 of J. W. Simmons & M. J. Guttmann’s States, Waves and Photons:
A Modern Introduction to Light () and in a recent paper by L. Allen,
M. J. Padgett & M. Babiker,202 but those authors do not share my interest in
probing the outer limits of classical electrodynamics: they have other fish to
fry, and at critical moments reveal themselves to have photons on the brain.
Nor are things quite so simple as I have represented them to be: in §3 of the
last of the papers mentioned above we encounter the observation that

“. . . there is a considerable literature which warns against such a
separation [as is conveyed by the equation JJJ = LLL + SSS: they cite
sources, and continue . . . ] Biedenharn & Louck write ‘It is, indeed,

199 See the material collected in H. C. Corben, Classical & Quantum Theories
of Spinning Particles ().
200 R. A. Beth, “Mechanical detection and measurement of the angular
momentum of light,” Phys. Rev. 50, 115 (1936). Beth used a torsion balance
to measure the change in the angular momentum of a circularly polarized light
beam on passage through a doubly refracting crystal plate. He worked at
Princeton, and was in correspondence with A. H. S. Holbourn (at Cambridge)
who obtained similar results at the same time (Nature 137, 31 (1936)). Beth
reports that an equation equivalent to (355) can be found in J. H. Poynting,
Proc. Roy. Soc. A82, 560 (1909).
201 See, for example, R. I. Khrapko, “Question #79. Does plane wave not
carry a spin?” AJP 69, 405 (2001).
202 “The orbital angular momentum of light,” Progress in Optics (), pages
294–372.
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not possible to separate the total angular momentum of the photon
field into and “orbital” and a “spin” part (this would contradict
gauge invariance); the best that can be done is to define the helicity
operators . . .which is an observable (Beth).’ ”203

The problems to which these authors allude do not arise in the Proca theory.
They are parts of an interrelated nest of problems that arise in the Maxwellian
limit κ ↓ 0—problems to which we will have occasion to revisit after we have
acquired some sharper tools. Appeals to the Proca theory will often prove of
assistance in those endeavors.

6. Conclusion. The work of this chapter has shown the electromagnetic field
to be richly endowed with “mechanical properties”. . . to possess, indeed, all
the properties that we standardly/intuitively associate with “particles” except
spatial localization. The results developed are of a practical importance that
should by now be obvious. On the philosophical side . . .while they do not of
themselves “resolve” the question “Is the electromagnetic field ‘real’ ”? they do
have clear relevance to any attempt to assess the status of that question. It is
my personal opinion that any attempt to dismiss the electromagnetic field as
“a computational convenience . . .but a physical fiction”

• has overwhelmingly much to answer for

• is therefore quite unlikely to succeed, and

• would almost entail more cost than benefit.

Readers should, however, be aware that some very able physicists—the young
Feynman, among others!—have from time to time been motivated to adopt—
tentatively, and without compelling success—the opposite view, and that this
minor tradition has exposed isolated points of great interest.204

Our work has also served—an many points—to illustrate the remarkable
theory-shaping power of special relativity .

It is for theory-shaping reasons that I have raised (and will raise again)
the “reality question.” We do not expect the methods of physics ever to part
the final veil and reveal “the stark beauty of naked Reality”: we are, after all,
decendents of Newton, the great natural philosopher who, though he yearned to
know what gravity is, recognized that he/we must be content to describe what
gravity does (“I do not philosophize . . . ”). But when we look to the history
of physics we find that major developments have often entailed shifts in the
points at which we imagine the “reality” in our theories to be invested. So it
is for pragmatic reasons that we must pay attention to the “reality question”

203 Their reference here is to L. C. Biedenharn & J. D. Luock, Angular
Momentum in Quantum Physics: Vol.VIII of the Encyclopaedia of Mathematics
& its Applications ().
204 See the papers reprinted in E. H. Kerner (editor), The Theory of Action-
at-a-Distance in Relativistic Particle Physics (). Also relevant is F. Hoyle
& J. V. Narlikar’s Action at a Distance in Physics and Cosmology ().
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if it is our ambition to contribute to the next such development. My claims
regarding the “reality of the electromagnetic field” draw only weak support from
electro/magnetostatics, stronger support from electrodynamics . . .but in the
end we must admit that in fact we never observe EEE -fields orBBB -fields their naked
selves: what we observe are (ramifications of) their mechanical properties, the
results of their interaction with other mechanical systems (which themselves
remain similarly unobservable in isolation!). It might therefore be argued that
we should assign tentative “reality” not to Fµν but to objects like Sµν . But
even then the situation is not entirely clear cut . . . for suppose were were to
form

Sµν ≡ Sµν + ∂αWαµν

Wαµν assumed to be
{
αµ-antisymmetric
µν -symmetric

Then
∂µS

µν = 0 ⇐⇒ ∂µS
µν = 0

Sµν = Sνµ ⇐⇒ Sµν = Sνµ

and (because αµ-antisymmetry entails ∂αWα0ν =
∑
k ∂kW

k0ν ≡ ∇∇∇···WWW ν)

∫
S0ν d3x =

∫
S0ν d3x+

∫
∇∇∇···WWW ν d3x

= ditto +
∫
WWW ν···dddσσσ

=
∫
S0ν d3x if the surface term is assumed to vanish

show that, while Sµν assigns
• different energy/momentum densities but
• the same total energy/momentum

to the field, it satisfies all formal requirements (symmetry, local conservation)
just as well as Sµν . We possess therefore as many viable candidate stress-energy
tensors as there are ways to assign value to Wαµν and no principle of choice.
It becomes difficult in such a circumstance to argue that one member of the
population has a stronger claim to “reality” than another.205

205 For related discussion see electrodynamical applications of the
exterior calculus () pages 57–61 and “electrodynamics” in
2-dimensional spacetime () pages 13–14.
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4
POTENTIAL & GAUGE

Introduction. When Newton wrote FFF = mẍxx he imposed no significant general
constraint on the design of the force law FFF (xxx, t). God, however, appears to have
special affection for conservative forces—those (a subset of zero measure within
the set of all conceivable possibilities) that conform to the condition

∇∇∇×FFF = 000

—those, in other words, that can be considered to derive from a scalar potential:

FFF = −∇∇∇U (357)

Only in such cases is it
• possible to speak of energy conservation
• possible to construct a Lagrangian L = T − U

• possible to construct a Hamiltonian H = T + U

• possible to quantize.
It is, we remind ourselves, the potential U—not the force FFF —that appears in
the Schrödinger equation . . .which is rather remarkable, for U has the lesser
claim to direct physicality: if U “does the job” (by which I mean: if U
reproduces FFF ) then so also does

U ≡ U + constant (358)

where “constant” is vivid writing that somewhat overstates the case: we require
only that∇∇∇···(constant) = 000, which disallows xxx-dependence but does not disallow
t-dependence.



254 Potential & gauge

At (357) a “spook” has intruded into mechanics—a device which we are
content to welcome into (and in fact can hardly exclude from) our
computational lives . . .but which, in view of (358), cannot be allowed to appear
nakedly in our final results. The adjustment

U −→ U = U + constant

provides the simplest instance of what has come in relatively recent times to
be called a “gauge transformation.”206 For obvious reasons we require of such
physical statements as may contain U that they be gauge-invariant . To say the
same thing another way: It is permissible to write (say)

E = 1
2mẋ2 + U(xxx)

in the midst of a theoretical argument, but it would be pointless to go to the
stockroom in quest of a “U -meter”: the best we could do would be to obtain a
“potentiometer” . . . that has two testleads and measures

∆U = U(xxx)− U(xxx0) : gauge-invariant

Or a “differential potentiometer,” that measures ∇∇∇U .

Moving deeper into mechanics, we encounter the Lagrangian L(q, q̇, t),
which (though seldom described in such terms) must itself be a kind of
“potential”—a “spook”—since susceptible to gauge transformations of the form

L(q, q̇, t) −→ L(q, q̇, t) + d
dt (any function of q and t)

—the point here being that if L and L are so related then they give rise to
identical equations of motion.

We encountered the scalar potential already when at (17) we had occasion
to write

EEE = −∇∇∇ϕ : invariant under ϕ −→ ϕ = ϕ + constant (359.1)

and to observe that it is characteristic of the structure of electrostatic fields
that

∇∇∇×EEE = 000 (359.2)

In a parallel discussion of magnetostatic fields we were led at (92) to the “vector
potential;”207 i.e., to the observation that if we write

206 The terminology is due, I have read, to Hermann Weyl (the founding father
of what became “gauge field theory”), who reportedly had in mind the “gauge”
of railway tracks.
207 The vector potential first appears (∼) in work of F. E. Neumann
(–) concerned with the mechanical interaction of current-carrying
wires (Ampere’s law: see page 58). Maxwell (–) came independently
to the same idea at a much later date, and from a different direction (Faraday’s
law). Neumann, by the way, was a close associate of Jacobi (–) from
 until the younger man’s death, and was the teacher of many of the greatest
figures in 19th Century German physics.
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BBB = ∇∇∇×AAA : invariant under AAA −→ AAA = AAA +∇∇∇χ (359.3)

then
∇∇∇···BBB = 0 (359.4)

is rendered automatic.
So important is the role played by scalar/vector potentials in all vector field

theories—in fluid dynamics, for example, but especially in electrodynamics—
that in this chapter I interrupt the flow of the narrative to indicate how those
concepts fit within the framework of the manifestly covariant theory of the
electromagnetic field. The ideas presented here will be central to all of our
subsequent work.

1. How potentials come into play: Helmholtz’ decomposition theorem. In three
dimensions, a vector field VVV (xxx) is said to be
• “irrotational” if and only if ∇∇∇×VVV = 000

• “solenoidal” if and only if ∇∇∇···VVV = 0.
Helmholtz (and later but independently also Maxwell) showed that every vector
field can be resolved208

VVV (xxx) =
{
irrotational part III(xxx)

}
+

{
solenoidal part SSS(xxx)

}
(360)

Drawing now upon the (unproven) converse of (6) we conclude that III can be
considered to arise by

III = ∇∇∇ψ

from a scalar potential ψ, and that SSS can be considered to arise by

SSS = ∇∇∇× ψψψ

from a vector potential ψψψ. Every vector field VVV can therefore be displayed

VVV = ∇∇∇ψ +∇∇∇× ψψψ = gradient + curl (361)

but that display is non-unique, since the potentials are determined only to within
gauge transformations

ψ −→ ψ = ψ + arbitrary constant
ψψψ −→ ψψψ = ψψψ +∇∇∇(arbitrary scalar field)

}
(362)

Since susceptible to gauge transformation, the potentials ψ and ψψψ are released
from adherence to such boundary/symmetry/transformation properties as—in
specific applications—typically pertain to the “physical” fields VVV .

208 For proof see R. B. McQuistan, Scalar & Vector fields: A Physical
Interpretation (), page 261.
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It is not obvious that the replacement of three objects (the components
of the vector VVV ) by four (ψ and the components of ψψψ) represents an advance.
But in applications it is invariably the case that Helmholtz decomposition (360)
serves to clarify the essential structure of the theory in question, and is often
the case that by exploiting gauge freedom one can simplify both the formulation
of the theory and many of the attendant computations . The electrodynamical
application will serve to illustrate both of those advantages.

Helmholtz decomposition provides the simplest instance of the vastly more
general “Hodge decomposition,” which (though not usually phrased in such
terms) can be considered to pertain to completely antisymmetric tensors of
arbitrary rank, inscribed on N -dimensional manifolds of almost arbitrary
topology.209

2. Application to Maxwellian electrodynamics. Look again to the pair of Maxwell
equations that make no reference to source activity:

∇∇∇···BBB = 0 (65.2)
∇∇∇×EEE + 1

c
∂
∂tBBB = 000 (65.4)

The former asserts that magnetic fields—not only in the static case, but also
dynamically—are solenoidal , so can be written

BBB = ∇∇∇×AAA (363.1)

Returning with this information to (65.4) we obtain ∇∇∇×
{
EEE + 1

c
∂
∂tAAA

}
= 000,

according to which EEE + 1
c
∂
∂tAAA is irrotational, so can be expressed −∇∇∇ϕ, giving

EEE = −∇∇∇ϕ− 1
c
∂
∂tAAA (363.2)

=
{
irrotational component arising from charges

}
+

{
component generated by Faraday induction

}
↓
= −∇∇∇ϕ in the static case

It was, by the way, to place himself in position to write EEEFaraday = − 1
c
∂
∂tAAA that

Maxwell was motivated207 to reinvent the vector potential.

The construction (363.1) of BBB is invariant under AAA −→ AAA = AAA−∇∇∇χ. But
that adjustment sends

EEE = −∇∇∇ϕ− 1
c
∂
∂tAAA −→ EEE = −∇∇∇ϕ− 1

c
∂
∂t (AAA +∇∇∇χ)

= −∇∇∇
{
ϕ + 1

c
∂
∂tχ

}
− 1

c
∂
∂tAAA

209 See H. Flanders, Differential Forms, with Applications to the Physical
Sciences (), page 138.
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and that observation motivates us to write ϕ ≡ ϕ + 1
c
∂
∂tχ. To summarize: the

equations (363) are invariant under

ϕ −→ ϕ = ϕ + 1
c
∂
∂tχ

AAA −→ AAA = AAA−∇∇∇χ

}
(364)

where χ is an arbitrary scalar field, and where we can look upon the first
adjustment as a forced implication of the second.

The source-independent Maxwell equations (65.2) and (65.4) have—by the
introduction (363) of the scalar/vector potentials—been rendered automatic.
We need concern ourselves, therefore, only with the sourcey Maxwell equations

∇∇∇···EEE = ρ (65.1)
∇∇∇×BBB − 1

c
∂
∂tEEE = 1

cjjj (65.3)

which, when expressed in terms of the potentials, become a pair of second order
partial differential equations:

∇∇∇···
{
−∇∇∇ϕ− 1

c
∂
∂tAAA

}
= ρ

∇∇∇×(∇∇∇×AAA)− 1
c
∂
∂t

{
−∇∇∇ϕ− 1

c
∂
∂tAAA

}
= 1

cjjj

These, after simplification210 and reorganization, can be rendered

− 1
c
∂
∂t∇∇∇···AAA−∇

2ϕ = ρ[(
1
c
∂
∂t

)2 −∇2
]
AAA +∇∇∇

{
1
c
∂
∂tϕ +∇∇∇···AAA

}
= 1

cjjj

or again but more symmetrically (add/subtract a term in the first equation)

[(
1
c
∂
∂t

)2 −∇2
]
ϕ− 1

c
∂
∂t

{
1
c
∂
∂tϕ +∇∇∇···AAA

}
= ρ[(

1
c
∂
∂t

)2 −∇2
]
AAA + ∇∇∇

{
1
c
∂
∂tϕ +∇∇∇···AAA

}
= 1

cjjj

}
(365.1)

The field equations (365) are gauge-invariant , which is to say: under the
substitutional adjustment

ϕ 
−→ ϕ− 1
c
∂
∂tχ

AAA 
−→ AAA +∇∇∇χ
they go over into

[(
1
c
∂
∂t

)2 −∇2
]
ϕ− 1

c
∂
∂t

{
1
c
∂
∂tϕ +∇∇∇···AAA

}
= ρ[(

1
c
∂
∂t

)2 −∇2
]
AAA + ∇∇∇

{
1
c
∂
∂tϕ +∇∇∇···AAA

}
= 1

cjjj

}
(365.2)

210 Recall the identity ∇∇∇×(∇∇∇×AAA) = ∇∇∇(∇∇∇···AAA)−∇2AAA , of which we made use
already on page 54.
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because all the χ-terms cancel. Gauge freedom can be used to render (365.2)
simpler (or, for that matter, more complicated) than (365.1). For example:
from ∇∇∇···AAA = ∇∇∇···AAA−∇2χ we learn that if χ is taken to be any solution of

∇2χ = ∇∇∇···AAA
then AAA satisfies the

coulomb gauge condition: ∇∇∇···AAA = 0

and equations (365.2) become

∇2ϕ = −ρ[(
1
c
∂
∂t

)2 −∇2
]
AAA = 1

cjjj −∇∇∇
{

1
c
∂
∂tϕ

}
|
—formally a kind of “current”

The Coulomb gauge is also known as the “radiation” or “transverse gauge.”
For discussion see §6.3 in J. D. Jackson’s Classical Electrodynamics (3rd edition
). Of much more general importance is the

lorentz gauge condition: 1
c
∂
∂tϕ +∇∇∇···AAA = 0 (366)

which arises from taking χ to be any solution of

χ = −
{

1
c
∂
∂tϕ +∇∇∇···AAA

}
and which brings (365.2) to the strikingly simple form

ϕ = ρ

AAA = 1
cjjj

}
(367)

historical remark: I have been informed by David Griffiths
(who learned from J.D.Jackson, while on sabbatical at Berkeley)
that (366) first appears in the work ( )not of H. A. Lorentz
(Dutch, –) but of L. V. Lorenz (Danish, –),
so should —in violation of universal practice—be called the
“Lorenz gauge condition” (no “t”). For the fascinating historical
details see J. D. Jackson & L. B. Okun, “Historical roots of
gauge invariance,” RMP 73, 6653 (2001). My own recent effort
to discover the facts of the matter took me to the Dictionary
of Scientific Biography (), where I was reminded that the
Lorentz article—by Russell McCormmach, an eminent historian
of physics who was once my Reed College classmate—provides
a splendid short account of the confused state of electrodynamics
when Lorentz entered upon the scene. Theories by Weber,
Neumann, Riemann, Lorenz and—almost lost in the crowd—
Maxwell were then in lively competition. McCormmach makes
clear the insightful audacity that Lorentz displayed when he
embraced a theory that assigned a central place to a perplexing
notion (the field concept) and that declined to address a question
that others considered paramount: What is charge?
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3. Manifestly covariant formulation of the preceding material. The emphasis here
must be on the “manifestly.” The material developed in §2 is relativistic as
it stands (as, indeed, were the Maxwell equations (65) on which it is based)
. . .but “covertly” so. It will emerge that our recent work becomes much more
transparent when rendered in language that makes the Lorentz covariance
manifest. We look first to the notational aspects of the matter, then to its
transformational aspects (which will be almost obvious):

Let us—in addition to this familiar variant of (159)

‖Fµν‖ =




0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0




—agree to write




A0

A1

A2

A3


 ≡

(
ϕ
AAA

)
, equivalently




A0

A1

A2

A3


 =

(
ϕ
−AAA

)
(368)

where the Lorentz metric gµν has been used to lower the indices. Then equations
(363) become

B1 = F32 = −F23 = −(∂2A3 − ∂3A2)
B2 = F13 = −F31 = −(∂3A1 − ∂1A3)
B3 = F21 = −F12 = −(∂1A2 − ∂2A1)
E1 = F01 = −F10 = −(∂1A0 − ∂0A1)
E2 = F02 = −F20 = −(∂2A0 − ∂0A2)
E3 = F03 = −F30 = −(∂3A0 − ∂0A3)

or, more compactly,
Fµν = ∂µAν − ∂νAµ (369)

The preceding construction is obviously invariant under

Aµ −→ Aµ = Aµ + ∂µχ (370)

which when spelled out in detail becomes precisely (364).

The source-independent pair of Maxwell equations were found at (166) to
be expressible

∂µFνλ + ∂νFλµ + ∂λFµν = 0

which are seen now to follow automatically from the construction (369), while
the sourcey pair of Maxwell equations—which at (167) we learned to write

∂µF
µν = 1

cj
ν with ‖jν‖ ≡

(
cρ
jjj

)
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—become ∂µ(∂µAν − ∂νAµ) = 1
cj
ν or

Aν − ∂ν(∂µAµ) = 1
cj
ν (371)

The Coulomb gauge condition violates the spirit of relativity (can be adopted
by any particular inertial observer, but not simultaneously by all), but that
criticism does not pertain to (366), which becomes the

lorentz gauge condition: ∂µA
µ = 0 (372)

and when in force causes (371) to become

Aν = 1
cj
ν (373)

which reproduces (367). Imposition of the Lorentz gauge condition does not
quite exhaust the available gauge freedom, for

∂µA
µ = 0 =⇒ ∂µA

µ = 0
Aµ = Aµ + ∂µχ with χ any solution of χ = 0

It becomes at this point entirely natural to assume that Aµ transforms as
a weightless vector field. It is then automatic—here our “catalog of accidentally
tensorial derivative constructions” (pages 120–122) comes again into play—that
Fµν ≡ ∂µAν − ∂νAµ transforms as a weightless antisymmetric tensor, and that
∂µFνλ + ∂νFλµ + ∂λFµν = 0 makes tensorial good sense. On the other hand
• ∂µF

µν= 1
cj
ν is unrestrictedly tensorial if and only if Fµν (whence also jν)

have unit weight
• ∂µA

µ = 0 is unrestrictedly tensorial if and only if Aµ has unit weight
We, however, have interest at the moment in a restricted tensoriality, in Lorentz
covariance (which means“tensoriality with respect toLorentz transformations”).
Inspection of the arguments used to develop the entries in the “catalog” shows
that all weight restrictions arose from the presumption that the elements of the
transformation matrix M ≡ ‖∂xm/∂xn‖ change from point to point: ∂M �= O.
But in that respect the Lorentz transformations—being linear transformations
—are atypical: one has ∂/\\\= O, with the consequence that all weight
restrictions are lifted. We are brought thus to the conclusion that the numbered
equations at the top of the page are Lorentz covariant as they stand .

It is now possible—and instructive—to consider afresh this question:

4. So what kind of a thing is Maxwellian electrodynamics? My strategy will be to
consider the question not in isolation, but in juxtaposition to a second question:
What kind of a thing is the Proca theory? . . . and it is to the latter question
that we look first.

The Proca theory arises fairly naturally when—within the formal context
provided by the “classical theory of fields”—one asks for a relativistic theory of
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a massive vector field . One is led at length to a system of free-field equations
that were encountered already on page 246 and are reproduced below:

∂µU
µ = 0 (374.1)

∂µG
µν + κ

2U ν = 0 (374.2)

Gµν ≡ ∂µUν − ∂νUµ (374.3)

∂λGµν + ∂µGνλ + ∂νGλµ = 0 (374.4)

Here Uµ is the physical field, (374.1) and (374.2) are the field equations, (374.3)
introduces a notational device used to simplify the statement of the second field
equation—which would otherwise read

Uν −∂ν(∂µUµ)︸ ︷︷ ︸ +κ
2Uν = 0

|
—vanishes by the first field equation

—and (374.4) records a corollary property of the “notational device” Gµν .
Distinct vector fields—namely those that stand in the relationship

Uµ = Uµ + ∂µχ

—give rise to identical Gµν-fields, but the field equations are not invariant under
Uµ −→ Uµ = Uµ + ∂µχ. For if Uµ satisfies

∂µU
µ = 0

∂µG
µν + κ

2U ν = 0

then Uµ satisfies
∂µ(Uµ − ∂µχ) = 0

∂µG
µν + κ

2(Uµ − ∂µχ) = 0

which become structurally identical to the original equations if and only if

χ = 0 and κ
2 = 0

In the degenerate case κ
2 = 0 the Proca free-field equations (374) become

structurally identical to the system of equations that was seen above to describe
the free electromagnetic field, but in the latter context the “location of the
physics” is shifted, and the equations stand suddenly in a different logical
relation to one another. One writes

∂µF
µν = 0 (375.1)

∂λFµν + ∂µF νλ + ∂νFλµ = 0 (375.2)

Fµν = ∂µAν − ∂νAµ (375.3)

∂µA
µ = 0 (375.4)
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What was formerly a mere “notational device” Gµν has now become the physical
field Fµν , and what was formerly dismissed as an incidental “corollary property”
has at (375.2) been promoted to the status of a field equation. It is to render
that field equation “automatic” that we write (375.3), at which point it is the
formerly physical vector field that has acquired the status of a “notational
device, a crutch”. . .denied direct physical significance because it is defined only
up to an arbitrary gauge transformation. Finally, the Lorentz gauge condition
(375.4)—which in Proca theory enjoyed the status of a field equation—has
in electrodynamics been demoted to the status of an arbitrarily imposed side
condition.

The comparative situation (at least so far as concerns free Proca/Maxwell
fields: no externally impressed sources/currents) can be summarized this way:

proca has given us the manifestly covariant theory of a
physical/observable massive vector field Uµ.

maxwell has given us (what is in effect, or can be rendered as)
the manifestly covariant theory of an unphysical/unobservable
massless vector field—a “gauge field.” The observable physics
attaches in that theory to the gauge invariant object

field tensor Fµν ≡ curl of the gauge field

The “theory of gauge fields”—quantum mechanical generalizations of Aµ

—has, during the second half of the 20th Century, moved to center stage in
the theory of elementary particles and their fundamental interactions.211 Our
recent experience indicates that gauge freedom arises from masslessness, so
we are perhaps not surprised to learn that a major problem in that area has
been to figure out a way to endow gauge fields with mass (lots of it! . . . as
the experimental evidence clearly requires). The “Higgs mechanism” stands
as the best available solution of the problem,212 though it is in some respects
unattractive, and has as yet no convincing experimental support.

Further insight into the distinctive structure of the electromagnetic field
can be gained by carrying “comparative Proca/Maxwell theory” a bit further:

5. Plane wave solutions of the Proca/Maxwell field equations. Both (374) and
(375) are notable for their linearity . In both theories a principle of superposition
is operative, so we expect to be able to write

general solution =
∑∫

(simple solutions)

211 See L. O’Raifeartaigh, The Dawning of Gauge Theory () for a splendid
account of the major contours of that development.
212 See the concluding §11.9 in David Griffiths’ Introduction to Elementary
Particles () for a brief account of the essential idea.
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The meaning most usefully assigned to “simple solution” is highly context-
dependent (selection of a basis always is): it serves my present purpose to
proceed as Fourier did; i.e., to write

Uµ(x) =
∫

Uµ(k) · eikx d4k with ‖kµ‖ ≡
(
ω/c
kkk

)
, ‖xµ‖ ≡

(
ct
xxx

)

where kx ≡ kαx
α ≡ ω t−kkk···xxx is evidently Lorentz invariant, where the Uµ(k) are

understood to transform as a k -parameterized population of complex 4-vectors,
and where the reality of Uµ(x) requires [Uµ(k)]∗ = Uµ(−k). At the expense of
some notational clutter we could write

Uµ(x) =
∫

Vµ(k) cos kx d4k +
∫

Wµ(k) sin kx d4k

where Vµ and Wµ are now understood to be real 4-vectors. From the field
equations

{
gαβ∂α∂β + κ

2
}
Uµ = 0 and ∂µU

µ = 0 we discover that necessarily

k2 ≡ gαβkαkβ ≡ k2
0 − kkk···kkk = κ

2 (376.1)

and
kµU

µ = 0 equivalently kµV
µ = kµW

µ = 0 (376.2)

The first condition places the k -vector “on the mass shell” (see again Figure 70),
while the second condition requires (the real and imaginary parts of) Uµ to be
(in the Lorentzian sense) normal to kµ.213 The question now arises: How many
linearly independent vectors Vµ stand normal to any given timelike vector
kµ? The answer, pretty clearly, is three: the following example illustrates
the situation

‖kµ‖ =




κ

0
0
0


 ⊥ ‖Vµ‖ =




0
1
0
0


 else




0
0
1
0


 else




0
0
0
1




and so do all Lorentz transforms of that example.

213 The language has become a bit tangled: The mass shell is seen in Figure 70
to live in p -space, while the κ -shell lives in k -space. A scale factor distinguishes
the one form the other:

p = �k and mc = �κ

The “timelike/null (or lightlike)/spacelike” terminology I will carry over from
x-space into p -space, though in the latter context it would be more correct to
distinguish “energylike” from “momentumlike” 4-vectors. In k -space there is,
so far as I am aware, no commonly accepted “correct” terminology.
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Suppose we write

Vµ cos kx = Vµ cos(kkk···xxx− ω t)

to describe one of our “simple free Proca fields.” A second inertial observer O
would write

Vµ cos kx = Vµ cos(kkk···xxx− ω t)

to describe the same physical situation, but we will persist in language special
to our own perception of the situation. Writing

φ(xxx, t) ≡ kkk···xxx− ωt ≡ phase

or again
kkk···xxx = ωt + phase

we see the points of constant phase to lie at time t on a plane in 3-dimensional
space. From

∇∇∇φ = kkk : all xxx and all t

we see that all phase planes stand normal to kkk, which by t-differentiation we
have

kkk···uuu = ω : uuu = uk̂kk ≡ phase velocity

Immediately
u = ω/k = phase speed

From (376.1) we have the “dispersion equation”

ω = c
√
k2 + κ 2

so

u = c

√
k2 + κ 2

k
which




is � c
is a descending function of k
=∞ at k = 0
= c at k =∞

On the other hand, we have

group speed v ≡ dω
dk

= c k√
k2 + κ 2

which




is � c
is an ascending function of k
= 0 at k = 0
= c at k =∞

Different inertial observers will assign different values to u and v, but all will
be in agreement that

(phase speed) · (group speed) = c2 : all k
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The results just developed are standard to all occurrences of the so-called
“Klein-Gordon equation” ψ + κ

2ψ = 0, which is to say: they are not special
to the Proca theory.214 I turn now to statements that are special to the Proca
theory. Agree to write eee‖ ≡ k̂kk, to let eee1 be any unit 3-vector normal to k̂kk, and
to define eee2 ≡ k̂kk× eee1, so that

{
eee‖, eee1, eee2

}
comprise a righthanded orthonormal

triad in 3-dimensional kkk -space. And recall that kkk came to us from the 4-vector

‖kµ‖ =
(
ω/c
kkk

)
=

(√
k2 + κ 2

kkk

)
: gives kµkµ = κ

2

Now define the spacelike unit 4-vectors

‖Vµ
1‖ ≡

(
0
eee1

)
and ‖Vµ

2‖ ≡
(

0
eee2

)

Clearly
Vµ

1 ⊥ Vµ
2

kµ ⊥ both Vµ
1 and Vµ

2

}
in the Lorentzian sense

Finally construct

‖Vµ
‖ ‖ ≡ γ

(
β
eee‖

)

note : β and γ are here to be regarded
simply as constants, stripped of all prior
relativistic associations.

214 And though they pertain the the planewave solutions of certain relativistic
free fields, the results just obtained bear a striking resemblence to equations
encountered in the theory of relativistic free particles . . . for E = γmc2 can be
written

v = c

√
E2 − (mc2)2

E

which describes the speed v of a mass m with energy E. We see that

particle speed v




= 0 at E = mc2

approaches c as E ↑ ∞
∴ can never equal or exceed c

while in the limit m ↓ 0 we have

speed of a “massless particle” is always v = c

We see also that the “massless particle” concept is delicate: it would be senseless
to write pµ = 0uµ or E = γ0c2.



266 Potential & gauge

and observe that ⊥ to both Vµ
1 and Vµ

2 is (for all β) automatic, while ⊥ kµ

entails β
√
k2 + κ 2 − k = 0, which requires that we set

β = k√
k2 + κ 2

= group speed v

c

The “spacelike unit vector condition”

gµνV
µ
‖ V

ν
‖ = gµνV

µ
1V

ν
1 = gµνV

µ
2V

ν
2 = −1

requires finally that we set
γ = 1√

1− β2

To summarize: the Proca theory supports plane waves of three types.
Specification of the propagation vector kkk �= 000 determines both the direction of
propagation k̂kk and the frequency of oscillation ω = c

√
k2 + κ 2. The three wave

types consist of two linearly independent transverse waves

Uµ
transverse(x) =

{
Vµ

1 cos(kkk···xxx− ω t + δ1)

Vµ
2 cos(kkk···xxx− ω t + δ2)

and a solitary longitudinal wave

Uµ
longitudinal(x) = Vµ

‖ cos(kkk···xxx− ω t + δ‖)

In the degenerate case kkk = 000 the “direction of propagation” loses its meaning
(there is no propagation!), the xxx-dependence drops away, the field oscillates
as a whole with frequency ω0 = cκ, the “transverse/longitudinal distinction”
becomes meaningless, and the orthonormal triad

{
eee1, eee2, eee3 ≡ eee‖

}
can be erected

arbitrarily. It is as such a “degenerate case” that any Proca field presents itself
to any “co-moving observer.” The example of page 263 provides an instance of
just such a case.

It is in the light of the preceding discussion, and by the formal process
κ

2 ↓ 0, that we return now to free-field electrodynamics. We have already
noted (while discussing the relationship of (375) to (374)) that the transition

κ
2 arbitrarily small −→ κ

2 = 0

is formally/qualitatively quite abrupt. The point becomes especially vivid when
one looks comparatively to the planewave solutions of the Proca/Maxwell field
equations. Look first to what happens to the dispersion equation

ω = c
√
k2 + κ 2 −−−−−−−−−−−−→

κ↓0
ω = ck

In Proca theory we found that

phase speed ≡ ω/k = c

√
k2 + κ 2

k
=

ω√
(ω/c)2 − κ2
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is frequency-dependent. Proca fields are “dispersive:” the constituent Fourier
components of wavepackets travel at different speeds, and the wavepackets
therefore “dissolve.” The free electromagnetic field is, on the other hand,
non-dispersive, since

ω = ck =⇒ phase speed = group speed = c : all k

Look next to what happens to the propagation 4-vector
(√

k2 + κ 2

kkk

)
−−−−−−−−−−−−→

κ↓0

(
k
kkk

)
: clearly a null vector

By this account, a “co-moving observer”—defined by the condition kkk = 000
—would (because kµ = 0) see a spatially constant/non-oscillatory potential215

Aµ(x) = Aµ : Aµ arbitrary
⇓

no electromagnetic EEE or BBB fields at all!

But such use of the “co-moving observer” concept is impossible, for we are
informed by Proca theory that such an observer sees the group speed to vanish,
while in electrodynamics all inertial observers see the group speed to be c. And
it is forbidden to contemplate “inertial observers passing by with the speed of
light” because /\\\ (βββ) becomes singular when β = 1.

remark: At this point we touch upon a point that engaged
the curiosity of the young Einstein, and that contributed later
to the invention of special relativity. In his “Autobiographical
Notes” (see Paul Schilpp (editor), Albert Einstein: Philosopher-
Scientist (), page 53) he remarks that

“. . .After ten years of reflection such a principle resulted
from a paradox upon which I had already hit at the age
of sixteen: if I pursue a light beam with velocity c . . . I
should observe such a beam as a spatially oscillatory
electromagnetic field at rest. However, there seems to
be no such thing, whether on the basis of experience
or according to Maxwell’s equations . . . It seemed to me
intuitively clear that, judged from the standpoint of such
an observer, everything would have to happen according
to the same laws as for an observer . . . at rest.”

We are in position now to recognize that—beyond his
willingness to attach “intuitive clarity” to an impossible fiction
—Einstein had (at sixteen!) a somewhat crooked conception
of the Maxwellian facts of the matter, but . . .

215 Forgive the too-casual figure of speech: one cannot “see” electromagnetic
4-potentials, except with the mind’s eye!
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The transverse Proca plane waves described at the bottom of page 265 go
over straightforwardly into transverse electromagnetic plane waves : we have

Aµtransverse(x) =

{
Aµ

1 cos(kkk···xxx− ω t + δ1)

Aµ
2 cos(kkk···xxx− ω t + δ2)

where the constant Aµ-vectors differ only notationally from the Vµ-vectors
described previously. But Proca’s longitudinal plane wave becomes

Aµlongitudinal(x) = Aµ
‖ cos(kkk···xxx− ω t + δ‖)

where in light of the ∞ that intrudes into

‖Vµ
‖ ‖ ≡ γ

(
β
eee‖

)
−−−−−−−−−−−−→

κ↓0
∞·

(
1
eee‖

)

we have set (
1
eee‖

)
≡ Aµ

‖

We expected to have Aµ
‖ ⊥ kµ, but in fact Aµ

‖ is parallel to the propagation
vector

kµ = k ·Aµ
‖

and kµA
µ
‖ = 0 arises from the circumstance that in electrodynamics kµ is null.

Writing
Atransverse
µ (x) = constant

k
· kµei(kαx

α)

we find
F transverse
µν = ∂µA

transverse
ν − ∂νA

transverse
µ

= i
constant

k
· (kµkν − kνkµ)

= 0

and conclude that in electrodynamics the potential Atransverse
µ can be dismissed

as an unphysical artifact:

Massive Proca fields support three polarizational degrees
of freedom, but—“because the photon is massless”—the
electromagnetic field supports only two, and they are
transverse to the direction of propagation.

As things now stand that statement, by the argument from which it sprang, can
be claimed to pertain only to the 4-potential, and to hold only in the Lorentz
gauge. But later it will be shown to pertain also to the gauge-independent
physical fields EEE and BBB.

One sometimes encounters attempts to attribute the “disappearance of
the longitudinal mode” to the proposition that “an observer riding on a photon
sees time dilated to a standstill, and the forward space dimension contracted to
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extinction.” I am not entirely sure the idea actually does what it is intended to
do, but in any event: such observers cannot exist , so can have no role to play
in any convincing account of the physical facts. On the other hand, it is (in
other contexts) sometimes illuminating to point out that “an observer riding on
a very fast massive particle sees time dilated nearly to a standstill, and 3-space
contracted nearly to a wafer.”

6. Contact with the methods of Lagrangian field theory.* As Kermit the Frog
might say, “It’s not easy, bein’ massless”. . . impossible in pre-relativistic physics,
and a delicate business in relativistic physics . . .whether you are a particle214

or a field. Looking to Maxwellian electrodynamics as “Proca theory in the
massless limit,” we have seen (in §4) that electrodynamics—for all its physical
importance—lives right on the outer edge of formal feasibility , that “turning off
the mass”
• strips the vector field Aµ of its former direct physicality
• introduces “gauge freedom” into the theory
• reduces a formerly basic field equation to the status of a mere convention
• shifts the “locus of physicality,” from Aµ to Fµν .

In all those respects electromagnetic field is fairly typical of massless fields in
general, so close study of the way Maxwell’s theory is constructed tends to
be more broadly informative than one might at first suppose. The sketchy
remarks that follow touch on matters that would be fundamental to any such
“close study.”

A formalism derived straightforwardly from Lagrangian mechanics is today
universally acknowledged to provide the language of choice if one’s objective is
a systematic development of the properties of a field theory.216 The formalism
in outline: Let ϕa signify the fields of interest.217 The associated field theory
acquires its specific structure from the postulated design of a “Lagrange density”
—a real number-valued function L(ϕ, ∂ϕ) of the field and their spatial/temporal
derivatives ∂µϕa. An extension of Hamilton’s principle

δS = 0 with S ≡ 1
c

∫
R

L d4x

leads193 to an a-indexed system of coupled Euler-Lagrange equations

∂µ
∂L

∂ϕa,µ
− ∂L

∂ϕa
= 0

* This relatively advanced material will not be treated in lecture. First-time
readers should skip directly to §7.
216 In some cases of historic importance this was recognized only after the fact:
Maxwell, Einstein, Schrödinger, Dirac . . . each was led to the field theory that
bears his name by methods that made no use of the Lagrangian method.
217 The subscript a is generic. In specific cases it becomes a set of tensor/spinor
indices and other marks used to distinguish one field component from another.
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which when spelled out in detail read

∂2L

∂ϕa,µ∂ϕb,ν
ϕb,µν + ∂2L

∂ϕa,µ∂ϕb
ϕb,µ −

∂L

∂ϕa
= 0

These are, in the general case, non-linear partial differential equations into
which, however, the second partials enter linearly, and will be manifestly Lorentz
covariant if L is Lorentz invariant. Noether’s theorem can be brought now into
play to deduce the design of the stress-energy tensor and to develop other
mechanical properties of the field system, to identify conservation laws, etc.

The Proca theory is an unexceptional relativistic field theory that fits
straightforwardly into the Lagrangian rubric. Taking the vector field Uµ to
be the field system of interest, one constructs218

L = 1
2g
αρgβσUα,β(Uρ,σ − Uσ,ρ)− 1

2κ
2gαβUαUβ

and computes

∂ν
∂L

∂Uµ,ν
− ∂L

∂Uµ
= ∂ν(Uµ,ν − Uν,µ) + κ

2Uµ = 0

In short: Uµ − ∂µ(∂νUν) + κ
2Uµ = 0, which when hit with ∂µ supplies

κ
2(∂µUµ) = 0

⇓
∂µU

µ = 0 if κ
2 �= 0

Returning with this information to the field equation, we obtain (see again
(374.1&2))

Uµ + κ
2Uµ = 0

whereupon we might introduce Gµν ≡ ∂µUν − ∂νUµ as an auxiliary definition.
Alternatively , we might take

{
Uµ, Gµν

}
to be the field system of interest, and

write

L = − 1
4g
αρgβσGαβGρσ − 1

2g
αρgβσGαβ(Uρ,σ − Uσ,ρ)− 1

2κ
2gαβUαUβ

giving
∂κ

∂L

∂Gµν,κ
− ∂L

∂Gµν
= 1

2G
µν + 1

2 (Uµ,ν − Uν,µ) = 0

∂ν
∂L

∂Uµ,ν
− ∂L

∂Uµ
= − 1

2∂ν(G
µν −Gνµ) + κ

2Uµ = 0

218 See my classical field theory (), Chapter 2, pages 16–19 for
discussion of why this is a relativistically natural thing to do, and for other
details.
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The former “auxiliary definition” has now acquired the status of a field equation

Gµν = ∂µUν − ∂νUµ

The automatic antisymmetry of Gµν permits the second set of field equations
to be written

∂νG
νµ + κ

2Uµ = 0

and from that pair of equations we again recover ∂µUµ = 0 as a corollary
provided κ

2 �= 0.

Proca theory supplies us with a way to construct Gµν from Uµ but no way
to construct Uµ from Gµν . It is therefore not possible to dismiss Uµ from the
list of field functions, to consider Lagrangians of the form L(G, ∂G). Nor are
we motivated to do so. But in electrodynamics—where Fµν is physical but the
vector field Aµ is unphysical—that would be our natural instinct. It appears,
however, to be impossible to obtain the free-field Maxwell equations

∂µF
µν = 0

∂µFνλ + ∂νFλµ + ∂λFµν = 0

from a Lagrangian of the form L(F, ∂F ): we are forced to enlist the assistance
of the 4-potential . . . and then things become easy. If, for example, we borrow
from Proca theory the construction219

L = − 1
4g
αρgβσFαβFρσ − 1

2g
αρgβσFαβ(Aρ,σ −Aσ,ρ) + no mass term

then we obtain

Fµν = ∂µAν − ∂νAµ whence ∂µFνλ + ∂νFλµ + ∂λFµν = 0

and

∂µF
µν = 0

but because κ
2 = 0 we have lost the leverage which would enforce the Lorentz

gauge condition ∂µAµ = 0.

The preceding discussion touches on yet another sense in which Maxwellian
electrodyanmics is—for the familiar reason (“masslessness of the photon”)—
formally exceptional, delicate.

7. Naked potential in the classical/quantum dynamics of particles. Though
particles respond to forces FFF = −∇∇∇U , it is the naked potential that enters into
the design of the Lagrangian L = T − U (which, as was remarked on page 254,
is itself a kind of “potential”). We found at (293) that the non-relativistic220

219 For other possibilities see A. O. Barut, Electrodynamics and Classical
Theory of Fields and Particles (), page 102.
220 Why non-relativistic? Because my destination is a result that emerges
from non-relativistic quantum mechanics.
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motion of a charged particle in an impressed electromagnetic field can be
described

d
dt (mvvv) = e

{
EEE + 1

c vvv×BBB
}

which by (363) becomes

= e
{
−∇∇∇ϕ− 1

c
∂
∂tAAA+ 1

c vvv×∇∇∇×AAA
}

(377)

I begin this discussion with a review of how that equation of motion can be
brought within the compass of Lagrangian mechanics. We will not be surprised
when we find that ϕ and AAA stand nakedly/undifferentiated in our final result.

From d
dtAAA = ∂

∂tAAA+ (vvv···∇∇∇)AAA it follows that

− 1
c
∂
∂tAAA = − 1

c
d
dtAAA+ 1

c (vvv···∇∇∇)AAA

Moreover
1
c vvv×∇∇∇×AAA = 1

c∇∇∇(vvv···AAA)− 1
c (vvv···∇∇∇)AAA

Taken in combination, those two identities supply

e
{
−∇∇∇ϕ− 1

c
∂
∂tAAA+ 1

c vvv×∇∇∇×AAA
}

= e
{
−∇∇∇ϕ− 1

c
d
dtAAA+ 1

c∇∇∇(vvv···AAA)
}

But

e
{
−∇∇∇ϕ− 1

c
d
dtAAA+ 1

c∇∇∇(vvv···AAA)
}
i
= e

{
− ϕ,i − 1

c
d
dtAi + 1

c vvv···AAA,i
}

=
{
d
dt
∂
∂vi
− ∂
∂xi

}
e(ϕ− 1

cvvv···AAA)

The implication is that (377) can be written
{
d
dt
∂
∂vi
− ∂
∂xi

}
L = 0

L ≡ 1
2mvvv···vvv − e(ϕ− 1

cvvv···AAA)︸ ︷︷ ︸ (378)

|
—Classic instance of a “velocity-dependent

potential” that gives rise by Lagrange

differentiation to a velocity-dependent force:

see, for example, Goldstein’s Section I-5.

As anticipated, the potentials stand naked in L.

The “momentum conjugate to xxx” is given by

ppp ≡ ∂L
∂vvv

= mvvv + e
cAAA (379)

and must be distinguished from the “mechanical momentum” mvvv. Substitution
of vvv = 1

m
(
ppp− e

cAAA
)

into H = vvv···ppp− L(xxx, vvv) gives the associated Hamiltonian

H(xxx, ppp) = 1
2m

(
ppp− e

cAAA
)
···
(
ppp− e

cAAA
)

+ eϕ (380)
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Though the motion must necessarily be gauge invariant, the Lagrangian is
not: the gauge transformation (364)

ϕ −→ ϕ = ϕ + 1
c
∂
∂tχ

AAA −→ AAA = AAA−∇∇∇χ

sends
L −→ L = 1

2mvvv···vvv − e(ϕ− 1
cvvv···AAA)

= L− e
c
{
∂
∂tχ+ vvv···∇∇∇χ

}
= L− d

dt

{e
c χ

}
From the final equation we conclude that, though L and L are distinct, they are
(see again page 254) gauge-equivalent in the sense of Lagrangian mechanics—in
the sense, that is to say, that they give rise to identical Lagrange equations.
The action associated with any Hamiltonian test-path xxx(t)

S[xxx(t)] ≡
∫ t2

t1

L
(
xxx(t), vvv(t)

)
dt

therefore responds to gauge transformation by a rule

S −→ S = S − e
c
{
χ(xxx2)− χ(xxx1)

}
(381)

in which for the first time we see the “naked gauge function” (evaluated here
at the specified endpoints of the test-path: xxx1 ≡ xxx(t1) and xxx2 ≡ xxx(t2)).

Turning now from the classical to the quantum mechanics of a charged
particle in an impressed field, we are led from (380) to the time-dependent
Schrödinger equation

Hψ = i� ∂∂tψ with H ≡ 1
2m

(
�

i∇∇∇− e
cAAA

)
···
(

�

i∇∇∇− e
cAAA

)
+ eϕ

= − �
2

2m

(
∇∇∇− igAAA

)
···
(
∇∇∇− igAAA

)
+ eϕ (382)

g ≡ e/�c

We expect/require the quantum physics to be gauge-invariant, but observe that
H is clearly not gauge-invariant. As a first step toward reconciling the latter
fact with the former requirement we observe (i) that the Schrödinger equation
can be written

− �
2

2m

(
∇∇∇− igAAA

)
···
(
∇∇∇− igAAA

)
ψ = i�( ∂∂t + igcϕ)ψ

and (ii) that from the “shift rule”

e−F (u) ∂
∂u• ≡

[
∂
∂u + ∂F

∂u

]
e−F (u)•

it follows that if we multiply the left/right sides of the Schrödinger equation by
e−igχ we obtain an equation that can be written
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− �
2

2m

(
∇∇∇+ ig∇∇∇χ− igAAA

)
···
(
∇∇∇+ ig∇∇∇χ− igAAA

)
e−igχψ = i�( ∂∂t + ig

∂χ
∂t + igcϕ)e−igχψ

or again
− �

2

2m

(
∇∇∇− igAAA

)
···
(
∇∇∇− igAAA

)
e−igχψ = i�( ∂∂t + igcϕ)e−igχψ

The implication is that if we interpret “gauge transformation” to have this
expanded meaning

ϕ −→ ϕ = ϕ + 1
c
∂
∂tχ

AAA −→ AAA = AAA−∇∇∇χ
ψ −→ ψ = e−igχ · ψ


 (383)

then we have achieved a gauge-covariant quantum theory{
− �

2

2m

(
∇∇∇− igAAA

)
···
(
∇∇∇− igAAA

)
+ eϕ

}
ψ = i� ∂∂tψ|| gauge transformation

↓{
− �

2

2m

(
∇∇∇− igAAA

)
···
(
∇∇∇− igAAA

)
+ eϕ

}
ψ = i� ∂∂tψ

which—more to the point—yields gauge-invariant physical statements, of which
the following

〈ψ|xxx |ψ〉 = 〈ψ|xxx |ψ〉
〈ψ|ppp − e

c AAA |ψ〉 = 〈ψ|ppp − e
c AAA |ψ〉

are merely illustrative.

To retain the relative simplicity of time-independent quantum mechanics,
let us assume for the moment that all potentials and gauge functions depend
only upon xxx. We are placed then in position to write

ψ(xxx, t) =
∫
G(xxx, t;xxx0, 0)ψ(xxx0, 0) d3x0

and thus to describe the temporal evolution of the (unobserved) wavefunction.
Quantum mechanics provides two alternative descriptions of the “propagator”
G(xxx, t;xxx0, t0): the “spectral description”

G(xxx, t;xxx0, 0) =
∑
n

e−
i
�
Entψn(xxx)ψ

∗
n(xxx0)

and Feynman’s “sum-over-paths description”

G(xxx, t;xxx0, 0) = (normalization factor) ·
∑
paths

exp
{
i
�
S[path: (xxx0, 0)→ (xxx, t)]

}

Bringing ψ = eigχ · ψ to the spectral description we obtain

G(xxx, t;xxx0, 0) = G(xxx, t;xxx0, 0) · exp
{
ig

[
χ(xxx)− χ(xxx0)

]}
The point of interest is that since (381) can be expressed

i
�
S[path] = i

�
S[path] + ig

[
χ(xxx)− χ(xxx0)

]
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the Feynman method leads immediately to that same conclusion,221 and does so
independently of how we elect to give meaning to the “sum-over-paths” concept.

From BBB = ∇∇∇×AAA it follows that

magnetic flux Φ through disk bounded by C =
∫∫

disk

BBB ···dσdσdσ

=
∫∫

disk

(∇∇∇×AAA)···dσdσdσ

=
∮
C
AAA···d"d"d" (384)

This simple result is of importance for at least two reasons:

1. It exposes a gauge-independent “naked AAA”:∮
C
AAA···d"d"d" =

∮
C
AAA···d"d"d" because

∮
C
∇∇∇χ ···d"d"d" = 0 (all χ)

2. It assigns physical importance (as explained below) to certain topological
circumstances, and does so for reasons that are of some interest in themselves.
The simplest way to expose the points at issue is to consider the “cylindrical”
magnetic field shown in Figure 84. The symmetry of the field, and what we
know about the geometrical meaning of “curl,” suggest that the AAA-field should
have (to within gauge) the form indicated in Figure 85:

AAA = A(r)TTT

TTT ≡ unit tangent to Amperian circle of radius r =


−y/r+x/r

0




Working from (384) we therefore have

encircled flux =
{
π r2B if r � R
πR2B if r � R

= 2πr ·A(r)

221 Or would if we could establish the gauge-independence of the normalization
factor. The point becomes trivial if one is willing to borrow from the result of
the spectral argument, but (except in the simplest cases) is too intricate to
pursue here by methods internal to the Feynman formalism. Evaluation of the
normalization factor is in some respects the most delicately problematic aspect
of the formalism. Feynman himself was content to assume that

normalization factor = (xxx,xxx0)-independent function of t

and to extract its specific design from the requirement that

lim
t↓0

G(xxx, t;xxx0, 0) = δ(xxx− xxx0)
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x

y

z

Figure 84: Current flows in an infinitely long straight solenoid, of
radius R. The resulting magnetic field is well known to be coaxial
and uniform across the interior of the solenoid, but to vanish at all
points exterior to the solenoid:

BBB =





 0

0
B


 at interior points


 0

0
0


 at exterior points

The “magnetic spaghetti, stretching from one side of Euclidean
space to the other,” alters the topology of the part of space where
BBB = 000, and this is shown in the text to have some profound physical
consequences. Additional spaghetti would make the topological
situation even more complicated. The configuration shown has the
merit of being simple enough to permit all calculations to be done
exactly.
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x

y

Figure 85: Cross-section of the preceding figure. The black circles
(one with radius r < R, one with r > R) are �-oriented “Amperian
loops” drawn to capture the symmetry of the system. Red arrows
decorate the larger loop, and indicate the anticipated design of the
AAA-field. The red arrows that march along the x-axis illustrate how
the magnitude of AAA, as computed in the text, depends upon r. The
striking fact is that, while BBB vanishes at exterior points r > R, the
vector potential AAA does not.

A little guesswork has brought us thus to

A(r) =




1
2Br : r � R

1
2BR

2r–1 : r � R

whence

AAA(xxx) =




1
2B


−y+x

0


 : r � R

1
2BR

2


−y/r

2

+x/r2

0


 : r � R

(385)

and a quick calculation222 confirms the accuracy of the guess:

BBB = ∇∇∇×AAA =





 0

0
B


 : r � R

000 : r � R

222 problem 59.
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Figure 86: Graph of the multivalued superpotential α(x, y) defined
at (387)

In the exterior region the condition∇∇∇×AAA = 000 would be rendered automatic
if we wrote

AAA = ∇∇∇α (386)
↑
—“superpotential”

The AAA-vectors stand normal to the equi-(super)potential surfaces, so from
results in hand we infer that α(xxx) is constant on planes that radiate radially
from the z-axis: α(xxx) = f(arctan(y/x)). On a hunch, we try the simplest
instance of such a function

α(x, y, z) = 1
2BR

2 arctan(y/x) (387)

and by quick calculation (ask Mathematica) verify that indeed

∇∇∇α = 1
2BR

2


−y/r

2

+x/r2

0


 = AAAexterior

The superpotential defined at (387) is plotted in Figure 86. It is clearly
multivalued, but—a remark of David Griffiths223 notwithstanding—no physical
principle excludes that possibility: we are concerned here not with potentials
but with superpotentials.

223 Introduction to Electrodynamics (), page 207, Problem 29.
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x

y

Figure 87: Two (oriented) curves are inscribed on a plane from
which a single green hole has been excised. Each curve begins & ends
at the point marked •. Many curves are equivalent to—the proper
phrase is “homotopic to”—the red curve C in the sense that they
could be brought into coincidence with C by continuous deformation.
But the blue curve C is not among them: the required deformation
is impeded by the circumstance that C winds (once) around the hole.
Evidently C1 and C2 will be homotopically equivalent

C1 ∼ C2 iff C1 and C2 have the same “winding number”

The idea of resolving the set of all •-based curves into homotopic
equivalence classes extends straightforwardly to more complex
situations (multiple holes in the plane,surfaces of sphere/torus/etc.).
Down this road lies “homotopy theory,” of which a very good
introductory account (written for physicists) can be found in §23.2
of L. S. Schulman’s Techniques & Applications of Path Integration
().

I allude above to the topological information that can be gained from
resolving curves/loops/paths into homotopic equivalence classes. Some physical
problems hinge naturally on precisely that mode of classification, and acquire
thus a “topological” aspect. One such—but by no means the only such—
problem was identified by Bohm & Aharonov in  ,224 who contemplate
a modification of the “two slit experiment” in which (see Figure 88) a solenoid
is tucked behind the slits: particles, in their flight from source to detector,
experience no electromagnetic forces, but pass through a region in which AAA �= 000 ,
and the latter circumstance has (as Bohm & Aharonov were actually not the
first to point out) observable consequences. I turn now to a sketch of how the
so-called “Bohm-Aharonov effect” comes about:

224 Y. Aharonov & D. Bohm, “Significance of electromagnetic potentials in
the quantum theory,” Phys. Rev. 115, 485 (1959).
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Figure 88: In Bohm/Aharonov’s modification (below) of the classic
2-slit experiment (above) a solenoid produces a localized BBB-field. By
arrangement, particles—in their flight from source to detector—are
excluded from the region where BBB �= 000, but pass through a region
now flooded with the associated AAA field. The latter circumstance was
predicted and experimentally found to cause an observable alteration
of the interference pattern—the Bohm-Aharonov effect .

In the classic 2-slit set-up (prior to Bohm/Aharonov’s modification) a
particle proceeds in time t from source via slit #1 to detection point xxx with
probability amplitude

ψ1(xxx, t) ∼
∑

such paths

e
i
�
S[path via slit #1] (388)
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where the ∼ signals my intention to be casual about normalization factors
throughout this discussion. ψ2(xxx, t) is defined similarly, and the net amplitude
for arrival at (xxx, t) is given by

ψ(xxx, t) = ψ1(xxx, t) + ψ2(xxx, t)

All three of those functions are solutions of

− �
2

2m∇
2ψ = i� ∂∂tψ

though ψ1 and ψ2 satisfy somewhat different boundary conditions (ψ1 vanishes
at slit #2, ψ2 vanishes at slit #1). If we write

ψ1(xxx, t) =
√
P1(xxx, t) eiφ1(xxx,t) and ψ2(xxx, t) =

√
P2(xxx, t) eiφ2(xxx,t)

then the probability of detection at (xxx, t) is given by

P (xxx, t) = |ψ1 + ψ2|2

= P1 + P2 + 2
√
P1P2 cos ∆φ︸ ︷︷ ︸

interference term

Here ∆φ ≡ φ1 − φ2 and we dismiss as irrelevant the fact that most detectors
are so slow that they report only the value of P (xxx) ≡

∫ ∞
0
P (xxx, t) dt.

Now turn on the current in the solinoid. In place of (388) we have

ψ1(xxx, t) ∼
∑
paths

e
i
�

{
S[path via slit #1]+ e

c

∫
path

A·dxA·dxA·dx
}

But all paths • −−−−−−−−−→ xxx
via slit #1

(let such paths be called “paths of type #1”)

are homotopically equivalent, ∇∇∇×AAA = 000 holds at every point along each, so we
have ∫

any path of type #1

AAA···dxdxdx =
∫

any other such path

AAA···dxdxdx

= path-independent function of xxx

giving

ψ1(xxx, t) = e
i
�

e
c

∫
typical path of type #1

A·dxA·dxA·dx · ψ1(xxx, t)

We note in passing that from the operator identity

∇∇∇ = e
− i

�

e
c

∫
#1

A·dxA·dxA·dx [
∇∇∇− i

�

e
cAAA

]
e

i
�

e
c

∫
#1

A·dxA·dxA·dx

it follows that if ψ1 satisfies the Schrödinger equation at the top of the page
then ψ1 satisfies

− �
2

2m

[
∇∇∇− igAAA

]
···
[
∇∇∇− igAAA

]
ψ1 = i� ∂∂tψ1

—as expected. Identical remarks pertain, of course, to ψ2.

Which brings us at last to the main point of this discussion. It follows from
results now in hand that turning on the solenoidal BBB-field sends
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P (xxx) = P1(xxx) + P2(xxx) + 2
√
P1(xxx)P2(xxx) cos

{
∆φ(xxx)

}
↓

P (xxx) = P1(xxx) + P2(xxx) + 2
√
P1(xxx)P2(xxx) cos

{
∆φ(xxx) + g

[ ∫
#1

−
∫

#2

]
AAA···dxdxdx

}

But paths • −−−−−−−−−−−−→ xxx
via slit #1

and • −−−−−−−−−−−−→ xxx
via slit #2

are homotopically
inequivalent: the integrals, instead of cancelling, produce

∮
C
AAA···dxdxdx = enveloped magnetic flux Φ

because C encloses the solenoid. So we have

P (xxx) = P1(xxx) + P2(xxx) + 2
√
P1(xxx)P2(xxx) cos

{
∆φ(xxx) + e

�cΦ
}

(389)

which, since Φ is xxx-independent, describes an observably shifted copy of the
original interference pattern P (xxx). Several points now merit comment:

1. The pattern-shift becomes invisible when

Φ = n · 2π�c
e : n = 0,±1,±2, . . . (390)

This “flux quantization condition” assumes central importance in connection
with the physics of superconductors (most notably: that of “superconducting
quantum interference devices” or SQUIDs).225

2. One sometimes encounters the claim that “The vector potential, though not
observable classically, becomes observable in quantum mechanics.” The claim
is misleading: what becomes quantum mechanically observable is not AAA itself
but the gauge-invariant construct

∮
CAAA···dxdxdx , and the element of surprise arises

from cases in which BBB = 000 everywhere along C. The situation is, however, in
some respects quite familiar: at (116) we had

Faraday emf = − 1
c
d
dt (enclosed magnetic flux) = − 1

c
d
dt

∮
C
AAA···dxdxdx

—some engineering applications of which (e.g.,, the bevetron) hinge critically
on the fact that C may be remote from the region of changing flux. Here as in
the Bohm-Aharanov effect, an element of non-locality intrudes.

225 See F. Schwabl, Quantum Mechanics (2nd edition ), §§7.5 & 7.6 or
Bjørn Felsager, Geometry, Particles, and Fields (), §2.12. On the cover
of my edition of the latter text, by the way, is a version of my Figure 84,
promoted by Felsager to the status of an ikon symbolizing the problem area
where geometry/topology and the physics of particles/fields intersect.
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3. We found at (386) that

AAA = ∇∇∇α in the region exterior to the solenoid

By gauge transformation AAA −→ AAA = AAA −∇∇∇α we construct therefore a vector
potential AAA which vanishes identically in the exterior region . . . and presents
us with a seeming contradiction:
• We know on the one hand that∮

C
AAA···dxdxdx =

∮
C
AAA···dxdxdx by gauge-invariance (391)

• but on the other hand it is clear that∮
C

000···dxdxdx = 0

Why does this not extinguish the Bohm-Aharonov effect?
The “seeming contradiction” is resolved by the observation that (391) holds
if (as is standardly the case) the gauge function is single-valued. But the gauge
function α that kills the external solenoidal AAA-field is (see again Figure 86)
multi -valued, and the contours C of interest wind from one sheet to the next,
so ∮

C
∇∇∇α···dxdxdx = α(point)− α(same point on next-lower sheet) �= 0

Soon after Michael Berry’s discovery () of what came to be called
“Berry’s phase”—soon recognized to be itself a manifestation of a more general
phenomenon called “geometrical phase”—it was pointed out by Aharonov
himself that the Bohm-Aharonov effect can be portrayed as a special instance
of that deeper and ever more pervasive train of physico-geometrical train of
thought . . . that, in short, it represents but the tip of an iceberg.226

Conclusion. Potentials are usually considered to enter electrodynamics as mere
computational crutches, as aids to simplified formulation of the theory. The
same—only more so—can be said of the “superpotentials” of which Hertz
gave the first systematic account.227 We have seen, however, by looking upon
Maxwell’s theory as a limiting case of Proca’s theory . . . that the ghostly status
of the potential hangs by a precarious thread: that gauge freedom would be lost,
that the potential fields would become directly observable/physical participants
in the theory “if only the photon were endowed with mass, however slight.”

226 See Y. Aharonov & J. Anandan, “Phase change in cyclic quantum
evolution,” PR Letters 58, 1593 (1987) and other classic papers reprinted in
A. Shapere & F. Wilczek, Geometric Phases in Physics (). Also §10.2.4 in
David Griffiths’ Introduction to Quantum Mechanics ().
227 See §13–4 Wolfgang Panofsky & Melba Phillips, Classical Electricity &
Magnetism ().
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With the infusion of quantum mechanical ideas the life of Aµ acquires a
dramatic new dimension, and the subject acquires a deeply geometrical flavor.
Our review of the Bohm-Aharonov effect has served to illustrate the point, and
I have alluded to parallel developments in the theory of superconductivity, but
historically prior to either of those is a pretty train of thought set into motion
by Dirac in . Dirac228 put
• the classical electrodynamnics of a magnetic monopole and
• the quantum mechanics of an electrically charged particle

in a bag together. . . shook. . . and came away with an explanation for why
electrical charge is quantized . We are in position to follow the details only
the (very instructive) first part of his argument.229

We look (with Dirac) to the vector potential

AAA = (g/4π)




y
r(r−z)
−x

r(r−z)
0


 : r2 ≡ x2 + y2 + z2 (392)

and compute230

BBB = ∇∇∇×AAA = (g/4π) 1
r3


x

y
z


 =

{
spherically symmetric radial field of
a magnetic monopole of strengh g

. . . as encountered already on page 227. Notice now that on the z-axis (i.e., at
x = y = 0)

1
r(r − z)

=
{
∞ : z > 0

1/2z2 : z < 0

The potential (392) is called a “Dirac string potential” because it displays a
“string singularity” on the positive z-axis. To clarify the mathematical/physical
meaning of the singularity we make use once again of the “regularization trick,”
first encountered on page 12: we write

AAAε = (g/4π)




y
R(R−z)

−x
R(R−z)

0


 : R2 ≡ r2 + ε2

(from which we recover (392) in the limit ε ↓ 0) and compute

BBBε = ∇∇∇×AAAε = BBBmonopole
ε + BBB string

ε

228 P. A. M. Dirac, Proc. Roy. Soc. London A133, 60 (1931); Phys. Rev. 74,
817 (1948).
229 For a splendid account of details here omitted see Chapter 9 in Felsager.225

Also §6.11 in J. D. Jackson, Classical Electrodynamics (3rd edition ).
230 problem 60.
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z

radius

Figure 89: B string
ε displayed as a function of z and

radius s ≡
√

x2 + y2

The trough along the positive z-axix gets narrower/deeper as ε ↓ 0.
The figure refers to the case ε = 1

10 .

Figure 90: Graphs of the radial dependence of B string
ε at z = 1 in

the cases ε = 3
10 , 2

10 , 1
10 .
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with

BBBmonopole
ε = (g/4π) 1

R3


x

y
z


 and BBB string

ε = (g/4π)


 0

0
B string
ε




where

B string
ε ≡ B string(z, s; ε) ≡ − ε2(2R− z)

R3(R− z)2
: R ≡

√
s2 + z2

Clearly
lim
ε↓0

BBBmonopole
ε = monopole field described earlier

It is from the string term, which runs everywhere parallel to the z-axis, that
we have things to learn. Figures 89 & 90 tell the story. Mathematica informs
us that

∫ ∞

0

B string(z, s; ε)2πs ds = − 2πε2√
z2 + ε2 (−z +

√
z2 + ε2 )∣∣∣∣ limit ε ↓ 0∣∣

↓
=

{−4π : z > 0
0 : z < 0

We are brought thus to the conclusion that BBB string
ε is a field such as would arise

from a solenoid of zero cross-section wrapped around the positive z-axis and
carrying a current given by

jjj = lim
ε↓0

jjjε with jjjε = c∇∇∇×BBB string
ε

We learn, moreover, that (see Figure 91)

total magnetic flux delivered down-string by BBB string

= total magnetic flux delivered spherically outward by BBBmonopole

so the net flux through any closed surface containing a Dirac monopole is zero!

One can show that the “string singularity” encountered at (392) is essential,
in the sense that it cannot be gauged away. But pretty clearly (and as one can
also show), the string can trace any curve “from infinity” to the point where it
terminates (called “the monopole”).

The second part of Dirac’s argument is, as already indicated, quantum
mechanical: he looks to the quantum motion of an electrically charged particle
in the presence of a monopole and stipulates that the string (irrespective of its
shape) shall be quantum mechanically invisible. This requirement, which from
one point of view serves to fix the pitch of the multivalued superpotential
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Figure 91: Magnetic field and field lines of the Dirac monopole
described in the text. The net magnetic flux through any surface that
encloses the monopole is zero. Dirac’s idealized “string solenoid” is
shown (here as in the text) to be coincident with the positive z-axis,
but can in general trace any curve from the location of the monopole
“to infinity.” My use of the phrase “from the monopole” is perhaps
misleading: for Dirac the monopole is the dangling free end of the
string solenoid.

(Figure 86), can be phrased as a requirement that the string give rise to a null
Bohm-Aharonov effect (this 25 years before the ostensible discovery of the
Bohm-Aharonov effect!). One is led thus from (390) to the Dirac quantization
condition

string flux g = n · 2π�c
e

This is precisely the condition

angular momentum of Tompson’s mixed dipole eg
4πc = n · 1

2�
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to which we were led on page 232 by quite another (and less compelling) line of
argument. The strongest conclusion that can be drawn from either argument
is that the product e·g is quantized:

eg = n · 2π�c

A fundamentally new idea would be required to account theoretically for this
observed fact of Nature:

e—and therefore also g—are individually quantized

Dirac’s argument does not quite do the job; to pretend otherwise (a common
practice) is to engage in some wishful thinking . . . and to decline an invitation
to invention.

The Bohm-Aharonov effect and its siblings—seen now to include flux
and charge quantization—are topological children of a liaison between Aµ and
quantum mechanics. Gauge field theory is, if anything, even more deeply
geometrical. Drawing covertly upon ideas (covariant differentiation, curvature)
borrowed from differential geometry, it portrays electrodynamics as “the price
one pays” in order to promote the global phase invariance

ψ −→ ψ = eigχ · ψ : χ any real constant

standard to quantum theory . . . to an invariance with respect to local phase
transformations

ψ −→ ψ = eigχ(x) · ψ : χ(x) any real-valued function of x

This is accomplished by in effect pursuing in reverse the argument which on
pages 273–274 was used to establish the electrodynamical gauge-invariance
of quantum mechanics: we adjust the meaning (of momentum; i.e., of) the
differentiation operator

∂µ −→ Dµ ≡ ∂µ − igAµ

and achieve the desired local phase (or gauge) invariance by stipulating that the
“compensating field” Aµ will participate in the transformation by the rule (383).
Finally (by a mechanism natural to Lagrangian field theory) we launch the
compensating field into motion and find that it satisfies precisely the equation

Aν − ∂ν(∂µAµ) = 1
cjν

that at (371) was found to comprise “Maxwell’s theory in a nutshell.” The
theory leads, moreover, to an explicit description of the current 4-vector jµ.
Directly observable “physicality” is assigned—from a formal point of view
almost as an afterthought!—to the gauge-invariant construction

Fµν ≡ ∂µAν − ∂νAµ : analog of geometrical “curvature”
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No mere crutch, Aµ has by this point become arguably the principal object in
Maxwellian electrodynamics—the wellspring from which the theory flows. And
in quantum electrodynamics (QED) it is, moreover, Aµ—not Fµν but Aµ—that
is “quantized.”231

For several decades the program just described was dismissed as a formal
curiosity, an exercise that led to nothing not already known. But in the ’s
it was discovered (by Yank & Mills, Shaw, Umazawa211) that it admits readily
and elegantly of profound generalization, that it can be used to construct
Maxwell-like theories of the non-electromagnetic interactions among elementary
particles—“non-Abelian gauge theories” that appear to be in generally excellent
agreement with the observational facts.232 Physics provides no more persuasive
evidence that Truth and stunning Beauty come often to the same thing.

It may be fair, as I did at the outset, to refer to potentials (and, more
generally, to gauge fields) as “spooks,” as sirens who discretely hide their
nakedness, but such language leaves half the story untold: they are spooks
who spring from the deepest darkest places, who come to us murmuring of the
most obscure symmetries of Nature . . . and who appear to be in formal control
of Reality.

231 See, for example, J. M. Jauch & F. Rohrlich, The Theory of Photons &
Electrons (), §2–4.
232 For an elementary introduction to this inexhaustibly rich subject see, for
example, the final Chapter 11 in David Griffiths’ Introduction to Elementary
Particles ().
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5
LIGHT IN VACUUM

Theory of optical polarization

Introduction. In regions empty of matter—empty more particularly of charged
matter—the electromagnetic field is described by equations that we have learned
to write in various ways:

∇∇∇···EEE = 0

∇∇∇×BBB − 1
c
∂
∂tEEE = 000

∇∇∇···BBB = 0

∇∇∇×EEE + 1
c
∂
∂tBBB = 000




(65)

∂µF
µν = 0

∂αε
αρσνFρσ = 0

}
(168)

Fµν = ∂µAν − ∂νAµ
Aν − ∂ ν(∂µAµ) = 0 : arbitrary gauge

↓
Aν = 0 : Lorentz gauge




(371)

And we have learned that, whichever language we adopt, multiple instances of
the wave equation hover close by. It was Maxwell himself who first noticed that
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equations (65) can be “decoupled by differentiation” to yield six copies of the
wave equation:

EEE = BBB = 000

The manifestly covariant version of Maxwell’s argument is less familiar: to

∂aεarsν · ∂αεαρσνFρσ = 0

bring the identity233

εarsνε
αρσν = 1

g δ
αρσ

ars ≡ 1
g

∣∣∣∣∣∣
δαa δαr δαs
δρa δρr δρs
δσa δσr δσs

∣∣∣∣∣∣
= 1
g
{
δαa(δρrδσs − δσrδρs)

+ δαr(δρsδσa − δσsδρa)
+ δαs(δρaδσr − δσaδρr)

}
and obtain

(Frs − Fsr) + ∂a
{
∂r(Fsa − Fas) + ∂s(Far − Fra)

}
= 0

whence (by the antisymmetry of Fµν)

Fµν = 1
c (∂µjν − ∂νjµ)

↓
= 0 in charge-free space: jµ = 0

Finally, at (371) we obtained four copies of the wave equation by covariant
specialization of the gauge.

We will be concerned in these pages with certain particular solutions of the
preceding free-field equations that bear on the classical physics of light. Two
points should be born in mind:
• All of the equations ennumerated above are satisfied by the Coulomb field

of an isolated charge except at the location of the charge itself . They are
satisfied by the Lorentz transforms of such a field (field of a charge drifting
by), by the field of a static population of such charges, by the magnetic
field of a current-carrying wire except at the location of the wire itself ,

233 For discussion of the “generalized Kronecker deltas” see pages 7–8 in
“Electrodynamical applications of the exterior calculus” (). The notational
resources of the exterior calculus render the following argument—though it
looks here a little contrived—entirely and transparently natural. Incidentally,
g has recently signified magnetic charge, and before that was the name of a
coupling constant: g ≡ e/�c. In the following lines g is restored to its original
meaning: g ≡ det ‖gµν‖.



Introduction 293

by the fields produced by drifting populations of such wires. In none
of those situations are the fields detectable by the apparatus of optics
(photometers, etc.); none of them present the diffraction/interference
phenomena characteristic of wave physics; to each of them the language
of optics would appear alien (except quantum mechanically, where one
attributes electrostatic interaction to an “exchange of photons”). What
we at present lack is a sharp criterion for distinguishing “light-like” from
“other” solutions of the free-field equations.

• We will be studying the physics of light-in-the-absence-of-matter, of light
in vacuuo. But such light is invisible, an inferential abstraction! For it
is only by its interaction with matter (production by radiative processes,
transmission through media, manipulation by lenses/mirrors/filters and
other such devices,detection by eyes/photometers) that we “see” light,
that we become aware of its existence as a fact of Nature—reportedly
the first fact.234 But before we can construct a theory of the light-matter
interaction we must possess a theory of (the electromagnetic properties of)
matter . . . and toward that objective—since matter and most production/
absorption processes are profoundly quantum mechanical—classical
physics can carry us only a short part of the way (yet far enough to
account phenomenologically for most of classical optics).

Nevertheless . . . the ideas to which we will be led are absolutely fundamental to
the physics of light, whatever the depth of the physical detail and conceptual
sophistication with which we elect to pursue that subject.

The physics of light is in several important (but too seldom remarked)
respects “exceptional, surprising.” In order to highlight the points at issue,
which remain invisible until placed in broader context, I will (as I have several
times already) draw occasionally on Proca’s theory of “massive light.”

1. Fourier decomposition of the wave field. On pages 291 & 292 we encountered
several instances of the wave equation

ϕ = 0 i.e.,
{

1
c2 ∂

2
t −∇2

}
ϕ(t, xxx) = 0

It is mathematically natural—alien to the spirit of relativity, but an option
available to every particular inertial observer—to “split off the time variable,”

234 “In the beginning God created the heavens and the earth. The earth was
without form, and void, and darkness was on the face of the deep. Then God
said, ‘Let there be light’; and there was light. And God saw the light, that it
was good; and God divided the light from the darkness. . . ” (Genesis I: 1–4).
For an absorbing account of the philosophical contemplation of relationships
among God, Good and Light that, after more than two millennia, had led by
the 16th Century to the conception of physical space—the non-obvious one we
now take for granted—that “made physics possible” see Max Jammer’s slim
masterpiece Concepts of Space: The History of Theories of Space in Physics
(), with forward by Albert Einstein.
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writing ϕ(t, xxx) = f(t) · φ(xxx). Then

1
c2 f̈ = −k2f and (∇2 + k2)φ = 0

where k2 is a positive separation constant, with the physical dimension of
(length)−2. We are led thus to solutions of the monochromatically oscillatory
form

ϕω(t, xxx) = eiωt · φω(xxx) with ω ≡ kc

where ω can assume any (positive or negative) real value.235

In Cartesian coordinates the

helmholtz equation : (∇2 + k2)φ = 0

reads {
( ∂∂x )2 + ( ∂∂y )2 + ( ∂∂z )

2 + k2
}
φ(x, y, z) = 0

The separation of variables technique can be carried to completion, and yields
solutions of the form

φ(x, y, z) = (constant) · eik1x · eik2y · eik3z

with k2
1 + k2

2 + k2
3 = k2.236 But it has been known since  that separation

can be carried to completion in a total of eleven coordinate systems; namely,

1. Cartesian (or rectangular) coordinates

2. Circular-cylinder (or polar) coordinates

3. Elliptic-cylinder coordinates

4. Parabolic-cylinder coordinates

5. Spherical coordinates

6. Prolate spheroidal coordinates

7. Oblate spheroidal coordinates

8. Parabolic coordinates

9. Conical coordinates

10. Ellipsoidal coordinates

11. Paraboloidal coordinates

235 We make casual use here and henceforth of the familiar “complex variable
trick,” with the understanding that one has direct physical interest only in the
real/imaginary parts of ϕω.
236 Separation of three variables brings only two separation constants into play.
Why, therefore, do we appear in the present instance to encounter three? By
notational illusion. Look upon (say) k2 and k3 as separation constants, and
regard k1 ≡

√
k2 − k2

2 − k2
3 as an enforced definition.
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so the question arises: Why are all but the first largely absent from literature
pertaining to the physics of light? Why do theorists in this area so readily
capitulate to “Cartesian tyranny.” For several reasons:
• In non-Cartesian coordinates the description of ∇2 becomes complicated,

so separation of the Helmholtz equation leads to a system of three typically
fairly complicated ordinary differential equations, the solutions of which
are typically “higher functions” (Bessel functions, Legendre functions,
Mathieu functions, etc.).237 For example (looking only to the simplest
case): in circular-cylinder coordinates

x = r cos θ
y = r sin θ
z = z

the Helmholtz equation becomes
{(

∂
∂r

)2 + 1
r
∂
∂r + 1

r2

(
∂
∂θ

)2 +
(
∂
∂z

)2 + k2
}
φ = 0

We write φ = R(r) ·Θ(θ) · Z(z) and obtain

d2R
dr2 + 1

r
dR
dr −

(
α
r2 + β

)
R = 0

d2Θ
dθ2 + αΘ = 0

d2Z
dz2 + (k2 + β)Z = 0


 α and β are separation constants

The second equation gives

Θ(θ) = a2 sin
√
α θ + b2 cos

√
α θ

which by a single-valuedness requirement enforces

√
α = n : 0,±1,±2, . . .

The third equation (no single-valuedness requirement is here in force,
since z is not a periodic variable) gives

Z(z) = a3 sin
√
k2 + β z + b3 cos

√
k2 + β z

For the first equation Mathematica supplies

R(r) = a1BesselI[n, r
√
β ] + b1BesselI[−n, r

√
β ]

237 Details are spelled out in various mathematical handbooks, of which my
favorite in this connection is P. Moon & D. E. Spencer, Field Theory Handbook
(1961).
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• All the coordinate systems listed—with the sole exception of the Cartesian
coordinate system(s)—possess singularities (recall the behavior of the
circular-cylinder and spherical coordinate systems on the z-axis).

• Description of the translations/rotations/Lorentz transformations of
physical interest is awkward except in Cartesian coordinates. Notice in
particular that

φ = (constant) · eiωt · eik1x · eik2y · eik3z

= (constant) · ei(k0x0+k1x
1+k2x

2+k3x
3) with k0 ≡ ω/c

= (constant) · eikx

where kx ≡ kαxα becomes Lorentz invariant if we stipulate that

k ≡



k0 ≡ ω/c
k1

k2

k3


 ≡

(
k0

kkk

)
transforms as a covariant 4-vector

Notice also that
eikx = i2gαβkαkβ e

ikx

= 0 if and only if k is null: kαk
α = 0

It is impossible to argue so neatly in non-Cartesian coordinates.
• In Cartesian coordinates—uniquely—we gain direct access to the powerful

techniques of Fourier transform theory . . . for by superposition of the plane
waves just described we obtain

φ(x) = 1
(2π)2

∫∫∫∫
a(k)δ(kαk

α − 0)eikx dk0dk1dk2dk3

= Fourier transform of a(k)δ(kαk
α − 0)

• Last but most important: When we write (say) Fµν = 0 we have interest
not in independent µν-indexed solutions of the wave equation, but in
solutions so interrelated that they satisfy the ν-indexed side-conditions
∂µF

µν = 0 and ∂αεαρσνFρσ = 0. Similarly, when we write Aµ = 0 we
have interest not in independent µ-indexed solutions of the wave equation,
but in solutions so interrelated that they satisfy the side-condition
∂µA

µ = 0. Implications of the side conditions are far easier to work out
in Cartesian coordinates than in any other coordinate system.

So we yield uncomplainingly to “Cartesian tyranny,” and expect soon to see
concrete evidence of the advantages of doing so.

One further point merits preparatory comment. If solutions

φn(x) = ane
iknx

of the wave equation are required to satisfy linear side conditions∑
n

φn(x) = 0

then pretty clearly it is essential that k1 = k2 = . . .; i.e., that they buzz in
synchrony .
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Look now to these plane wave solutions

E1(x) = E1 · eik1x

E2(x) = E2 · eik2x

E3(x) = E3 · eik3x

B1(x) = B1 · eik4x

B2(x) = B2 · eik5x

B3(x) = B3 · eik6x

↑—constants

upon Maxwell’s equations (65) impose what amount to a set of eight linear side
conditions, which there is no hope of satisfying unless the components of EEE and
BBB “buzz in synchrony”:

k1α = k2α = k3α = k4α = k5α = k6α

So we adopt this sharpened hypothesis:

EEE(x) = EEE · eikx = EEE · exp
{
i(ωt− kkk···xxx)

}
BBB(x) = BBB · eikx = BBB · exp

{
i(ωt− kkk···xxx)

}
}

(393)

Maxwell’s equations (65) now become a set of conditions

kkk ···EEE = 0

kkk×BBB + ω
c EEE = 000

kkk ···BBB = 0

kkk×EEE − ωc BBB = 000

that serve to constrain the relationships amongEEE, BBB and the propagation vector
kkk . The 1st and 3rd conditions tell us that

EEE and BBB lie necessarily in the plane normal to kkk

Crossing kkk into the 2nd equation gives

ω
c kkk×EEE + kkk× (kkk×BBB)︸ ︷︷ ︸ = 000

= (kkk ···BBB)kkk − (kkk ···kkk)BBB = 000−
(ω
c

)2
BBB

which is redundant with the 4th equation. Dotting EEE into the 4th equation we
discover that

EEE and BBB are normal to each other
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Figure 92: Snapshot of a monochromatic electromagnetic plane
wave. Normal to all planes-of-constant-phase (two are shown) is
the “propagation or wave vector” kkk . The blue sinusoid represents
the EEE-vector. Normal to it (and of the same amplitude and phase)
is the green BBB-vector. In animation the electric/magnetic waves
would be seen to slide rigidly along kkk with phase speed c.

Finally, dot the 4th equation into itself to obtain(ω
c

)2
BBB···BBB = (kkk×EEE)···(kkk×EEE)︸ ︷︷ ︸

= (kkk ···kkk)(EEE ···EEE)− (kkk ···EEE)2 =
(ω
c

)2
EEE ···EEE − 0

EEE and BBB are of equal magnitude

It now follows that if kkk and EEE are given/known, then BBB can be computed from

BBB = k̂kk×EEE (394)

We saw already on page 264 that

phase = kkk ···xxx− ωt
is constant on planes ⊥ kkk that slide along with

phase speed ω/k = c
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so are led to the image of an electromagnetic plane wave shown in Figure 92.

The vector EEE can be inscribed in two linearly independent ways on the
phase plane. With that fact in mind . . .
• go to some arbitrary “inspection point,”
• face into the onrushing plane wave,
• inscribe an arbitrarily unit vector eee1 on the phase plane,
• construct eee2 ≡ k̂kk × eee1, a unit vector ⊥ eee1.

The “flying EEE -vector” can by these conventions be described

EEE(t) = E1eee1 + E2eee2 =
(
E1(t)
E2(t)

)
(395.1)

with
E1(t) = E1 cos(ωt+ δ1)
E2(t) = E2 cos(ωt+ δ2)

}
(395.2)

Equations (395) will provide the point of departure for the main work of this
chapter.

Suppose we had elected to work in the language of potential theory; i.e.,
from238

Aµ(x) = Aµ · eikx

↑
—constant 4-vector

where

Aµ(x) = 0 requires kµ to be null: kµkµ = 0
The Lorentz gauge condition ∂µAµ = 0 requires kµAµ = 0

Borrowing notation from pages 296 and 259

‖kµ‖ =
(
k0

kkk

)
with k0 ≡

√
kkk···kkk = ω/c

‖Aµ‖ =
(
ϕ
AAA

)

we find that
kµA

µ = 0 ⇐⇒ ϕ = k̂kk···AAA
so our potential plane wave can be described

Aµ(x) = Aµ· eikx with ‖Aµ‖ =
(
k̂kk···AAA
−AAA

)

238 See again page 268. We employ the “complex variable trick” to simplify
the writing: extract the real part to obtain the physics.
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This we use to obtain

E1 = F01 = ∂0A1 − ∂1A0 = i(k0A1 − k1A0) · eikx

E2 = F02 = ∂0A2 − ∂2A0 = i(k0A2 − k2A0) · eikx

E3 = F03 = ∂0A3 − ∂3A0 = i(k0A3 − k3A0) · eikx

B1 = F32 = ∂3A2 − ∂2A3 = i(k3A2 − k2A3) · eikx

B2 = F13 = ∂1A3 − ∂3A1 = i(k1A3 − k3A1) · eikx

B3 = F21 = ∂2A1 − ∂1A2 = i(k2A1 − k1A2) · eikx

whence

EEE = −(ω/c)
[
AAA− (k̂kk···AAA)k̂kk

]
· ieikx

= −(ω/c)AAA⊥· ieikx (396.1)

BBB = −(ω/c)
[
k̂kk ×AAA

]
· ieikx

= k̂kk ×EEE (396.2)

Notice that

• there are two linearly independent ways to inscribe AAA⊥ on the plane
normal to kkk

• AAA‖ makes no contribution to EEE or BBB, no contribution therefore to the
physics . . . so can be discarded, the reason being that

• AAA‖ can be very simply gauged away : take χ = eikx and notice that

∂µχ = ikµχ is parallel to kµ

Moreover
∂µ(∂µχ) = −(kµkµ)χ = 0 because kµ is null

so such a gauge transformation respects the Lorentz gauge condition.

The argument just completed has led us back again—but rather more swiftly/
luminously—to precisely the physical results obtained earlier by other means.

It is instructive to consider how electromagnetic plane wave physics would
be altered “if the photon had mass.” According to Proca,239 we would have
interest then the plane wave solutions

Aµ(x) = Aµ· eikx

of
( + κ

2 )Aµ = 0 and ∂µA
µ = 0

239 We borrow here from §5 in Chapter 4, but use Aµ rather than Uµ to denote
the “massive vector Proca field.”
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The first condition supplies kµkµ = κ
2 or k0 =

√
kkk···kkk + κ2, while the second

condition supplies A0 = (kkk···AAA)/k0. The argument that led to (396) now leads
to

EEE = −
[
k0AAA−A0kkk

]
· ieikx

= −k0
[
AAA− (kkk···AAA)kkk

k2
0

]
· ieikx

= −k0
[
AAA− ℘2(k̂kk···AAA)k̂kk

]
· ieikx (397.1)

BBB = −k
[
k̂kk ×AAA

]
· ieikx

= ℘ · (k̂kk ×EEE) (397.2)

where what I call the “Proca factor”

℘ ≡ k/k0 =

√
kkk···kkk√

kkk···kkk + κ2
with

{
k ≡

√
kkk···kkk

k0 = ω/c

↓
= 1 in the Maxwellian limit κ

2 ↓ 0

We distinguish two cases:

Case AAA ⊥ kkk This can happen in two ways. Because k̂kk···AAA = 0 we have

EEE = −(ω/c)AAA⊥· ieikx

BBB = ℘ · (k̂kk ×EEE)

which differs from (396) only in the presence of the ℘ -factor, which diminishes
the strength of the BBB -field.

Case AAA ‖ kkk Writing AAA = A‖k̂kk we have

EEE = −(ω/c)(1− ℘2)A‖k̂kk · ieikx

BBB = ℘ · (k̂kk ×EEE)

= 000 because EEE ‖ k̂kk

The electric field has acquired an oscillatory longitudinal component which
possesses no magnetic counterpart , and both longitudinal fields vanish in the
Maxwellian limit.

2. Stokes parameters. The “flying EEE -vector” of (395) traces/retraces the
simplest of Lissajous figures—an ellipse—on the (E1, E2)-plane. The flight
of EEE(t) is, at optical frequencies (ω ∼ 1015 Hz), much too brisk to be observed,
but the figure of the ellipse (size, shape, orientation) and the � / � sense
in which it is pursued are observable—detectable by the “slow” devices of
classical optics (eyes, photometers, filters of various types). They give rise
to the phenomenology of optical polarization, the theory of which will concern
us in this and the next few sections.
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E2

χ√
S0

eee2
α ψ

eee1 E1

EEE(t)

Figure 93: Ellipse traced by the EEE-vector of an electromagnetic
plane wave, with kkk up out of the page. It is a remarkable property
of ellipses that all circumscribing rectangles (two are shown) have
the same diagonal measure, which can be taken to set the size of
the ellipse. The angle ψ describes the orientation of the principal
rectangle, which is of long dimension 2a, short dimension 2b. The
shape of the ellipse is usually described in terms of the

ellipticity ≡
√

1− (b/a)2

but—as Stokes appreciated—is equally well described by

χ ≡ arctan(b/a)

Helicity information is absent from (398), but from (395.2) we
discover—look to d

dtEEE(t) at conveniently chosen points, or argue
that if E2(t) leads E1(t) (i.e., if δ2 > δ1) the circulation is clockwise,
and in the contrary case counterclockwise—that the circulation is �
or � according as 0 < δ ≡ δ2 − δ1 < π or −π < δ < 0.
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Eliminating t between equations (395.2) we obtain240

E2
2 · E2

1 − 2E1E2 cos δ · E1E2 + E2
1 · E2

2 = E2
1E

2
2 sin2 δ (398)

δ ≡ δ2 − δ1 ≡ phase difference

Equations (395.2) provide a parametric description, and (398) an implicit
description . . . of the ellipse241 shown in Figure 93. Some elementary analytical
geometry—the details are fun but uninformative, and (since they have nothing
specifically to do with electrodynamics) will be omitted—leads to the following
conclusions:

S0 = E2
1 + E2

2

sin 2χ = sin 2α · sin δ =
2E1E2 sin δ

E2
1 + E2

2

≡ S3

S0

tan 2ψ = tan 2α · cos δ =
2E1E2 cos δ

E2
1 − E2

2

≡ S2

S1

where S1 ≡ E2
1 − E2

2

Notice that helicity—which was observed above to be controlled by the sign
of δ—could as well be said (since E1 and E2 are non-negative) to be controlled
by the sign of χ, and that (as is clear from the figure) χ ranges on the restricted
interval

[
− π

2 ,+
π
2

]
. Recasting and extending the results summarized above, we

have
S0 = E2

1 + E2
2

S1 = E2
1 − E2

2 = S0 cos 2χ cos 2ψ
S2 = 2E1E2 cos δ = S0 cos 2χ sin 2ψ
S3 = 2E1E2 sin δ = S0 sin 2χ




(399)

These equations define the so-called Stokes parameters, which were introduced
by G. G. Stokes in  to facilitate the discussion of some experimental results.
There is reason to think that Stokes himself was unaware of the extraordinary
power of his creation . . .which took nearly a century, and the work of many
hands, to be revealed. Today his lovely idea is recognized to be central to
every classical/statistical/quantum account of the phenomenology of optical
polarization.

It is evident that
S2

1 + S2
2 + S2

3 = S2
0 (400)

and that rotational sense (helicity) can be read from the sign of S3.

240 problem 61.
241 problem 62.
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√
S0

χ

ψ

S3

S0

2χ S2

2ψS1

Figure 94: Equations (399) serve to associate points on the Stokes
sphere of radius S0 with centered ellipses of fixed size and all possible
figures & orientations. Points in the northern hemisphere (S3 > 0)
are assigned � helicity, points in the southern hemisphere are
assigned � helicity. In the case S0 = 1 the Stokes sphere becomes
the Poincaré sphere.
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Henri Poincaré () observed that, in view of the structure second stack
of equalities in (399), it is natural to place the polarizational states of
electromagnetic plane waves in one-one association with the points SSS that
comprise the surface of a sphere of radius S0 in 3-dimensional “Stokes space,”
as indicated in Figure 94. It becomes obvious from the figure that specification
of

{
S0, S1, S2, S3

}
is equivalent to specification of the intuitively more

immediate parameters
{
S0, ψ, χ

}
. We need kkk to describe the direction of

propagation and frequency/wavelength of the monochromatic plane wave, but
if we have only “slow detectors” to work with then

{
S0, S1, S2, S3

}
summarize

all that we can experimentally verify concerning the polarizational state of the
wave.242

Reading from Figure 94, we find the polarizational states which correspond
to (for example) the axial positions on the Poincaré sphere to be those
illustrated below:




1
+1

0
0







1
−1

0
0







1
0

+1
0







1
0
−1

0







1
0
0

+1







1
0
0
−1




It becomes in this light natural to say (with Stokes) of a pair of plane waves
that they are “oppositely polarized” if and only if their Stokes

SSS ≡


S1

S2

S3


 and SSS ≡


S1

S2

S3




vectors point in diametrically opposite directions:

SSS = −λ2SSS

of which
S0 = +λ2S0

242 It is because they relate so directly to the observational realities that Stokes
parameters become central to the quantum theory of photon spin. See §2–8 in
J. M. Jauch & F. Rohrlich, The Theory of Photons & Electrons () where,
by the way, I was first introduced to this pretty subject.
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is—by (400)—a corollary. From (399) we see that

SSS −→ SSS = −λ2SSS

can, in more physical terms, be described

E1 −→ E1 = +λE2

E2 −→ E2 = −λE1

δ −→ δ = δ

so the “oppositely polarized” associates of

EEE(t) = eee1E1 cosωt+ eee2E2 cos(ωt+ δ)

have the form

EEE(t) = eee1λE2 cos(ωt+ α)− eee2λE1 cos(ωt+ δ + α)

where λ and α are arbitrary. As is intuitively evident, as Fresnel (∼)
demonstrated experimentally,243 and as we will soon be in position to prove,
oppositely polarized plane waves to not interfere.

I propose now to make more secure the recent claim242 that Stokes
parameters pertain directly to the observational properties of plane waves.
Energy flux is described (see again page 216) by the

Poynting vector SSS(t) = c(EEE×BBB)

For a plane wave BBB = k̂kk×EEE

so = cE2(t)k̂kk

The magnitude of the Poynting vector is given therefore by

S(t) = cE2(t) = c
{
E2

1 cos2 ωt+ E2
2 cos2(ωt+ δ)

}
and the intensity of the wave (S(t) averaged over a period τ) by

I ≡ 1
τ

∫ τ
0

S(t) dt = 1
2c

{
E2

1 + E2
2

}
So

S0 ≡ E2
1 + E2

2 = 2
cI (401)

can be measured directly by a “J-meter,” i.e., by a photometer that has been
re-scaled so that it displays

J ≡ 2
c · (intensity)

243 Augustin Jean Fresnel (–) was an engineer who took up optics
while a political exile with time on his hands. It was his study of polarization
that led him to propose that light was to be understood in terms of transverse
waves, not the longitudinal waves postulated by Huygens, Young and others.
Practical problems of lighthouse design led him to the invention of the Fresnel
lens and to fundamental contributions to theoretical optics (diffraction).
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If an arbitrarily polarized wave

EEEin(t) = eee1E1 cosωt+ eee2E2 cos(ωt+ δ)

is incident upon a ←→ linear polarizer then the exit beam can be described

EEEout(t) = eee1E1 cosωt

so—arguing from (399)—we have



S0

S1

S2

S3



out

=




E2
1

E2
1

0
0


 =




1
2 (S0 + S1)
1
2 (S0 + S1)

0
0


 =




1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 0






S0

S1

S2

S3



in

We are led thus to these descriptions of the action of some typical polarizers:

←→ polarizer :



S0

S1

S2

S3



out

=




1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 0






S0

S1

S2

S3



in

(402.1)

� polarizer :



S0

S1

S2

S3



out

=




1
2 − 1

2 0 0
− 1

2
1
2 0 0

0 0 0 0
0 0 0 0






S0

S1

S2

S3



in

(402.2)

↗↙ polarizer :



S0

S1

S2

S3



out

=




1
2 0 1

2 0
0 0 0 0
1
2 0 1

2 0
0 0 0 0






S0

S1

S2

S3



in

(402.3)

↖↘ polarizer :



S0

S1

S2

S3



out

=




1
2 0 − 1

2 0
0 0 0 0

− 1
2 0 1

2 0
0 0 0 0






S0

S1

S2

S3



in

(402.4)

� polarizer :



S0

S1

S2

S3



out

=




1
2 0 0 1

2

0 0 0 0
0 0 0 0
1
2 0 0 1

2






S0

S1

S2

S3



in

(402.5)

� polarizer :



S0

S1

S2

S3



out

=




1
2 0 0 − 1

2

0 0 0 0
0 0 0 0

− 1
2 0 0 1

2






S0

S1

S2

S3



in

(402.6)

Arguing again from (399), we find that the action

EEEin(t) = eee1E1 cosωt+ eee2E2 cos(ωt+ δ)
↓

EEEout(t) = eee1e−αE1 cosωt+ eee2e−αE2 cos(ωt+ δ)
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of a neutral filter can be described

neutral filter :



S0

S1

S2

S3



out

= e−2α




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






S0

S1

S2

S3



in

(402.7)

Suppose, now, that we present a plane wave serially to
0) a neutral filter F0 with e−2α = 1

2 ,
1) a ←→ polarizer F1,
2) a ↗↙ polarizer F2,
3) a � polarizer F3

and in each case use a J-meter to measure the intensity of the output, obtaining

[
S0

]
out

=




J0 = 1
2S0 when F0 used

J1 = 1
2 (S0 + S1) when F1 used

J2 = 1
2 (S0 + S2) when F2 used

J3 = 1
2 (S0 + S3) when F3 used

Algebraically deconvolving the output data, we obtain

S0 = 2J0

S1 = 2J1 − 2J0

S2 = 2J2 − 2J0

S3 = 2J3 − 2J0




(403)

Alternative sets of filters would serve as well, but would require some algebraic
adjustment at (403). The implication is that

With four suitably selected filters and a photometer
one can measure Stokes’ parameters, and thus fully
characterize the intensity/polarization/helicity of a
(coherent monochromatic) plane wave.

3. Mueller calculus. A light beam—modeled, for the moment, as a plane wave—
with attributes {

kkk, S0, S1, S2, S3

}
in

is presented to a passive device, from which a beam with attributes{
kkk, S0, S1, S2, S3

}
out

emerges. A description of how the output variables depend upon the input
variables would comprise a characterization of the device. In view of the fact
that
• mirrors/lenses typically change the direction of the beam, and scatterers

typically spray a beam in multiple directions
• some crystals change the frequency of a monochromatic beam
• some materials/devices alter the coherence properties of an incident beam,

others alter the degree of polarization (of which more later)
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we recognize that some physical restriction is involved when agree to limit our
concern to devices that conform to the following scheme:


S0

S1

S2

S3



in

−−−→ device −−−→



S0

S1

S2

S3



out

Since (400) pertains generally to monochromatic plane waves, we see that
for every such device[

S2
0 − S2

1 − S2
2 − S2

3

]
out

=
[
S2

0 − S2
1 − S2

2 − S2
3

]
in

= 0 (403.1)

while for every passive device (since passive devices are—unlike lasers—not
connected to an external energy source, and therefore may absorb energy from,
but cannot inject energy into. . . the transmitted light beam) energy conservation
requires

0 �
[
S0

]
out

�
[
S0

]
in

(403.2)

A general theory of passive devices would result from an effort to describe the
functional relationships

Sµout = Dµ(S0in, S1in, S2in, S3in) : µ = 0, 1, 2, 3

permitted by (403). Remarkably, such an effort, if based upon (403.1) alone,
would lead back again to the conformal group, which was encountered earlier
in quite another connection.244 When (403.2) is brought into play certain
group elements are excluded: one is left with what might be called the “device
semigroup.”245

A far simpler theory—which is, however, adequate to most practical needs
—is obtained if one imposes the additional assumption that the parameters
Sµout are linear functions of Sµ in:



S0

S1

S2

S3



in

−−−→ linear passive device −−−→



S0

S1

S2

S3



out

= M



S0

S1

S2

S3



in

One is led then to the linear fragment of the conformal group; i.e., to the
condition (compare (185.2) on pages 129 & 164)

M
T j
���g M = m2 j

���g (404.1)

subject to the proviso that one must exclude cases that place one in violation
of (403.2). Evidently det M = m4, so in non-singular cases one can state that
M/m is Lorentzian:

M (if non-singular) possesses the structure M = m · /\\\ (404.2)

244 See again Chapter 2, §6. For a brief sketch of the resulting theory of optical
devices see pages 353–354 in classical electrodynamics ().
245 A semigroup is a “group without inversion.”
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remark: One must carefully resist any temptation to conclude
from the design of (404) that the Stokes parameters Sµ transform
as the components of a 4-vector. Their Lorentz transformation
properties are inherited—via the definitions (399)—from those
of the electromagnetic field, and are in fact quite intricate. The
subject is treated on pages 436 et seq in my electrodynamics
().

The idea of using 4×4 matrices to describe the action of linear passive optical
devices was first developed in a report by Hans Mueller . . .which, however, he
never published. Such matrices are called “Mueller matrices,” and their use
(discussed below) is the subject matter of the “Mueller calculus.”

The 4×4 matrices encountered in (402.1–6) are readily shown to satisfy

M
T j
���g M = O, which is (404.1) with m = 0 (405)

and to be always in compliance with (403.2).246 So each is a Mueller matrix.
Each is found, moreover, to possess247 the “projection property”248

M
2 = M (406)

Calculation shows, moreover, that in each case

det(M− λI) = λ3(λ− 1) (407)

so

MSin = 0 has three linearly independent solutions;
the device extinguishes such beams

MSin = Sin has but one; the device is transparent to
such beams (scalar multiples of one another)

example : Noting that 32 + 42 + 122 = 132 let us, by contrivance, take

Sin =




13
3
4
12




and let us take M to be the Mueller matrix of (402.1) that describes the action
of a ←→ polarizer. Then (by quick calculation)

246 problem 63.
247 problem 64.
248 From (406) it follows, by the way, that (det M)2 = det M whence

det M =
{ 1 if M is the trivial projector I

0 otherwise

The zero on the right side of (405) can be therefore be looked upon as a forced
consequence of projectivity.
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Sout = MSin =




8
8
0
0


, projected component of




13
3
4
12




The exit beam is 100% ←→ polarized, but dimmer:

S0out = 8 < S0in = 13

A second pass through the device (second such projection) has no effect (that
being the upshot of M

2 = M):

M




8
8
0
0


 =




8
8
0
0




To describe the action of an arbitrary polarizer : let σσσ be an arbitrary unit
3-vector and construct

M(σσσ) ≡ 1
2 ·




1 σ1 σ2 σ3

σ1 σ1σ1 σ1σ2 σ1σ3

σ2 σ2σ1 σ2σ2 σ2σ3

σ3 σ3σ1 σ3σ2 σ3σ3


 (408.1)

One can show249 that M(σσσ) satisfies (405/6/7) and that

M(σσσ)




1
σ1

σ2

σ3


 =




1
σ1

σ2

σ3


 (408.2)

Moreover
M(−σσσ)M(+σσσ) = O : all σσσ (409)

which supplies neat support for Stokes’ claim (page 305) that diametrically
opposite points on the Stokes sphere refer to “opposite polarizations,” and
conforms precisely to the pattern evident when one compares (402.2) with
(402.1), (402.4) with (402.3), (402.6) with (402.5). In the case

σσσ =


 1

0
0




Equation (409) might be notated

M(↑↓)M(←→) = O

249 problem 65.
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and interpreted to express the familiar fact that no light passes through crossed
polarizers.

Suppose, however, we were to interpose (between M(↑↓) and M(←→)) a third
device: let it be (say) the linear polarizer represented (see again Figure 94) by

M(ψ) ≡M(σσσ) with σσσ =


 cos 2ψ

sin 2ψ
0




With the assistance of Mathematica we compute

M(↑↓)M(ψ)M(←→) =




1
8 sin2 2ψ 1

8 sin2 2ψ 0 0
− 1

8 sin2 2ψ − 1
8 sin2 2ψ 0 0

0 0 0 0
0 0 0 0


 
= O

which illustrates the basis of an experimental technique standard to microscopy
and engineering: one places a microscope slide or the stressed Lucite model of a
machine part between crossed polarizers, and examines the transmitted image.

The preceding calculation also illustrates the central idea of the “Mueller
calculus”: To determine the net effect of cascaded optical devices one simply
multiplies the corresponding Mueller matrices.

“Optical devices” exist in considerable variety. At (402.7) we encountered
the Mueller matrices

M = e−2α · I (410)

that describe the action of “neutral filters.” Such a device is transparent
at α = 0, and becomes progressively more absorptive (optically dense) as α
increases.

Mueller matrices of major practical importance arise if at (404.2) we set
m = 1 and assume M = /\\\ to have (see again (208) on page 155) the rotational
design

M =




1 0 0 0
0
0 R

0


 (411)

R ≡ exp


2θ


 0 −σ3 σ2

σ3 0 −σ1

−σ2 σ1 0





 : a rotation matrix

Such an M leaves S0 invariant (no absorption) but causes

SSS ≡


S1

S2

S3



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Figure 95: The input beam in Stokes state ◦ is passes through three
successive devices of type (411) to produce an output beam in Stokes
state •. Dots mark the centers of rotation (ends of the σσσ vectors).
Because rotations possess the group property, the net effect of the
three rotational beam transformations could have been achieved by
a single such transformation.

to experience righthanded (�) rotation through the angle 2θ about the axis
defined by the unit vector σσσ. In the special case

σσσ =


 0

0
1




(411) gives

M =




1 0 0 0
0 cos 2θ − sin 2θ 0
0 sin 2θ cos 2θ 0
0 0 0 1




the action of which (see again Figure 94) is to rotate the plane of polarization:

ψ → ψ + θ

Such devices exploit the optical activity phenomenon, and are called “rotators.”
The case

σσσ =


 1

0
0



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gives

M =




1 0 0 0
0 1 0 0
0 0 cos 2θ − sin 2θ
0 0 sin 2θ cos 2θ




which achieves
δ → δ + 2θ

Such devices are called “compensators” or “phase shifters.” It is clear that
Mueller matrices of type (411) are non-singular: M

–1 is again a Mueller matrix,
which means that the action of such a device could be undone by a suitably
chosen second such device. Projection, on the other hand, is a non-invertible
operation: the action of a polarizer, when undone by subsequent polarizers,
always entails attenuation of the beam. To illustrate the point, we return to
the example of page 312 and by computation find that

M(←→)M(ψ)M(←→) = 1
2 cos4 ψ ·M(←→)

Looking back again to (404.2), it becomes natural in view of the foregoing
to assign /\\\ the “boost” design of (209), writing

M = m·




γ β1γ β2γ β3γ
β1γ 1+(γ−1)β1β1/β

2 (γ−1)β1β2/β
2 (γ−1)β1β3/β

2

β2γ (γ−1)β2β1/β
2 1+(γ−1)β2β2/β

2 (γ−1)β2β3/β
2

β3γ (γ−1)β3β1/β
2 (γ−1)β3β2/β

2 1+(γ−1)β3β3/β
2




where the β ’s are “device parameters” that have now nothing to do with velocity .
Immediately

S0out = mγ(S0in + βββ ···SSSin)

SSSin = S0in ŜSSin by (400)

= mγ(1 + βββ ··· ŜSSin)S0in

= mγ(1 + β cosω)S0in : ω is the angle between βββ and SSSin

so to achieve universal compliance with the passivity condition (403.2) we must
have

0 < m �
√

1−β
1+β � 1

where it is understood that 0 � β < 1. It is not at all difficult to show of such
Mueller matrices that though M

–1 exists—and is, in fact, easy to describe

[m/\\\(βββ)]–1 = m–1/\\\(−βββ)

—it stands in violation of the passivity condition, so cannot be realized by
a passive device. On pages 361/2 of some notes already cited244 I explore
some of the finer details of this subject, and argue that it should be possible
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to mimic 4-dimensional relativity (composition of non-colinear boosts, Thomas
precession, etc.) by experiments performed on a linear optical bench!

In some respects more elegantly efficient—but in other physical respects
more limited—than the Mueller calculus is the “Jones calculus,” devised by
R. Clark Jones one summer in the early ’s while he was employed in the
laboratory of Edwin Land as a Harvard undergraduate. In Jones’ formalism
Stokes’ parameters are folded into the design of a complex 2-vector, and devices
are represented by complex 2×2 matrices. The formalism is developed in
elaborate detail in my “Ellipsometry” () and in the literature cited there,
but it would take us too far afield to attempt to treat the subject here.

4. Partially polarized plane waves. The “plane waves” considered thus far are
highly idealized abstractions: they
• are of infinite temporal duration
• are of infinite spatial extent . . . and therefore
• carry infinite energy and momentum, and moreover
• are spatially/temporally perfectly coherent.

But so also—and in much the same way—is the Euclidean plane an idealized
abstraction. Euclidean geometry becomes relevant to physical geometry only
in contexts (very numerous indeed!) in which it is sensible to conflate the local
geometry of the curved surface with the local geometry of the tangent plane. So
it is in classical electrodynamics: ideas borrowed from the idealized physics of
plane waves become relevant to the physics of realistic radiation fields only as
local approximants,250 and can be expected to lose their utility “in the large,”
as also in the vicinity of charges, caustics, “kinks” in the field.

But radiation fields the gross properties of which display any degree of
spatial/temporal variability cannot be precisely monochromatic. We expect
natural fields to acquire also some degree of spatial/temporal incoherence from
the radiation production mechanism, whatever it might be. We are led thus
to the concept of a quasi-monochromatic plane wave—led, that is, to the
replacement

EEE(t) =
{
eee1E1e

iδ1 + eee2E2e
iδ2

}
eiωt (395)

↓
EEE(t) =

{
eee1E1(t)eiδ1(t) + eee2E2(t)eiδ2(t)

}
eiωt (412)

where ω sets the nominal frequency and E1(t), E2(t), δ1(t) and δ2(t) are assumed
to change
• slowly with respect to eiωt but (in typical cases)
• rapidly with respect to the response time of our photometers.

250 Beware! Plane waves are, in one critical respect, not representative of the
typical local facts. I refer to the circumstance that, while EEE ⊥ BBB is charac-
teristic of plane waves, it is not a property of fields in general (superimposed
plane waves). See below, page 332.
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Figure 96: Imperfectly elliptical flight (compare Figure 93) of the
EEE-vector when the plane wave is only quasi-monochromatic.

Notice that we make no attempt to tinker with the spatial properties of the wave
(our photometer looks, after all, to only a local sample of the physical wave),
and that the procedure we have adopted is frankly “phenomenological” in the
sense that we do not ask how E1(t), E2(t), δ1(t) and δ2(t) might be constrained
by Maxwell’s equations.

From (412) we conclude that, as illustrated above, EEE(t) traces an ellipse
only in the shortrun—an ellipse with “instantaneous” Stokes parameters given
(see again (399)) by

S0(t) = E2
1(t) + E2

2(t)

S1(t) = E2
1(t)− E2

2(t)
S2(t) = 2E1(t)E2(t) cos δ(t)
S3(t) = 2E1(t)E2(t) sin δ(t)




(413)

δ(t) ≡ δ2(t)− δ1(t)
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The ellipse jiggles about, constantly changing is figure/orientation, in a manner
determined by the (let us say steady) statistical properties of the wave. The
functions E1(t),E2(t) and δ(t)—whence also S0(t), S1(t), S2(t) and S3(t)—have,
in other words, assumed the character of random variables. Our filters and
(slow) J-meters, used as described on page 308, supply information not about
the functions Sµ(t) but about their mean values:

Sµ ≡ 〈Sµ(t)〉 ≡ 1
T

∫ T

0

Sµ(t) dt :

{
T might refer to the response
time of the instrument

Proceeding in this light from (403) and (413) we have

S0 = 2J0 = 〈E2
1〉+ 〈E2

2〉
S1 = 2J1 − 2J0 = 〈E2

1〉 − 〈E2
2〉

S2 = 2J2 − 2J0 = 2〈E1E2 cos δ〉
S3 = 2J3 − 2J0 = 2〈E1E2 sin δ〉




(414)

Evidence that Stokes’ parameters are, if not by initial intent, nevertheless
wonderfully well-adapted to discussion of the dominant statistical properties of
physical lightbeams emerges from the following little argument: working from
(414) we have

S2
0 = 〈E2

1〉2 + 2〈E2
1〉〈E2

2〉+ 〈E2
2〉2 (415.1)

S2
1 + S2

2 + S2
3 = 〈E2

1〉2 − 2〈E2
1〉〈E2

2〉+ 〈E2
2〉2 + 〈2E1E2 cos δ〉2 + 〈2E1E2 sin δ〉2

= S2
0 + 4

{
〈E1E2 cos δ〉2 + 〈E1E2 sin δ〉2 − 〈E2

1〉〈E2
2〉

}
(415.2)

But if x and y are any random variables (however distributed) then from
〈(λx + y)2〉 = λ2〈x〉2 + 2λ〈xy〉 + 〈y〉2 � 0 (all λ) it follows that in all cases
〈xy〉2 � 〈x2〉〈y2〉, so we have

〈E1E2 cos δ〉2 � 〈E2
1〉〈E2

2 cos2 δ〉
〈E1E2 sin δ〉2 � 〈E2

1〉〈E2
2 sin2 δ〉

giving

S2
1 + S2

2 + S2
3 ≤ S2

0 + 4
{
〈E2

1〉〈E2(cos2 δ + sin2 δ)2〉 − 〈E2
1〉〈E2

2〉
}

︸ ︷︷ ︸
0

We are led thus to the important inequality

S2
0 − S2

1 − S2
2 − S2

3 � 0 (416)
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with—according to (400)—equality if (but not only if!) the beam is literally
monochromatic. Looking back again to Figure 94, we see that (416) serves to
place the vector

SSS ≡


 S1

S2

S3




inside the Stokes sphere of radius S0, and that SSS reaches all the way to the
surface of the Stokes sphere if and only if the beam is, in a fairly evident sense,
statistically equivalent to a monochromatic beam.

If E1, E2 and δ are statistically independent random variables then we can
in place of (414) write

S0 = 〈E2
1〉+ 〈E2

2〉
S1 = 〈E2

1〉 − 〈E2
2〉

S2 = 2〈E1〉〈E2〉〈cos δ〉
S3 = 2〈E1〉〈E2〉〈sin δ〉

If, moreover, all δ -values are equally likely, then 〈cos δ〉 = 〈sin δ〉 = 0, and we
have S2 = S3 = 0. If, moreover, 〈E1〉 = 〈E2〉 then S1 = 0. The resulting beam




1
0
0
0


 is said to be unpolarized : SSS = 000

It becomes on this basis natural to introduce the

“degree of polarization” P ≡

√
S2

1 + S2
2 + S2

3

S0
: 0 � P � 1 (417)

and to write




S0

S1

S2

S3


 =



PS0

S1

S2

S3


 +




(1− P )S0

0
0
0




= 100% polarized component + unpolarized component

When an unpolarized beam is presented to (for example) the linear polarizer of
(402.1) one obtains




S0

S1

S2

S3



in

−−−−−−−−−−−−−−−−→
linear polarizer at 0◦




S0

S1

S2

S3



out

=




1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 0







S0

0
0
0



in

=




1
2S0
1
2S0

0
0



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Here
Pin = 0 : the entry beam is unpolarized, but
Pout = 1 : the exit beam is 100% polarized

And when the exit beam is presented to a second linear polarizer, described by
the M(ψ) of page 312, one obtains251 the “Law of Malus”:

output intensity
input intensity

= 1
4 (1 + cos 2ψ) = 1

2 cos2 ψ

A quasi-monochromatic beam is said to be

unpolarized
partially polarized

completely polarized


 according as




0 = P

0 < P < 1
P = 1

An unpolarized beam necessarily is polarized in the shortrun, but in the longer
term the EEE -vector traces an orientation-free scribble. Partial polarization
results when the scribble is somewhat oriented (fuzzy): this requires that E1(t),
E2(t), δ1(t) and δ2(t) more somewhat in concert; i.e., that they be statistically
correlated . It is important to note that the numbers Sµ provide a very
incomplete description of the beam statistics, and that even complete knowledge
of the statistical properties of the beam would leave the actual t -dependence of
EEE indeterminate. Many beams are—even in the case of complete polarization—
consistent with any prescribed/measured set of Sµ-values.

We are by those remarks into position to appreciate the import of Stokes’

Principle of Optical Equivalence: Lightbeams with identical
Stokes parameters are “equivalent” in the sense that they
interact identically with devices which detect or alter the
intensity and/or polarizational state of the incident beam.

and the depth of his insight into the physics of light. But one does not say
of objects that they are, in designated respects, “equivalent” unless there exist
other respects—whether overt or covert—in which they are at the same time
inequivalent; implicit in the formulation of Stokes’ principle is an assertion
that physical light beams possess properties beyond those to which the Stokes
parameters allude, properties to which photometer-like devices are insensitive.
There are many ways to render a page gray with featureless squiggles, many
ways to assemble an unpolarized light beam. What such beams, such statistical
assemblages share is, according to (414), not “identity” but only the property
that a certain quartet of numbers arising from their low-order moments and
correlation coefficients are equi-valued.

251 problem 66. Étiènne Louis Malus (–) was a French engineer/
physicist.
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We have, in effect, been alerted by Stokes to the existence of a “statistical
optics”—to the possibility that instruments (more subtle in their action than
photometers) might be devised which are sensitive to higher moments of an
incident optical beam. And we have been alerted to the possible existence
and potential usefulness of an ascending hierarchy of “higher order analogs” of
the parameters that bear Stokes’ name, formal devices that serve to capture
successively more refined statistical properties of optical beams. Examination
of the literature252 shows all those expectations to be borne out by fairly recent
developments. It becomes interesting in the light of these remarks to recall
the title of the paper in which the Stokes parameters were first described:
“On the composition and resolution of streams of polarized light from different
sources” (Trans. Camb. Phil. Soc. 9, 399 (1852)). Stokes brought the theory
of physical light beams to a state somewhat analogous to that encountered
in thermodynamics, where a few operationally defined variables mask a rich
time-dependent microphysics, yet serve to support a formalism which is—
surprisingly—closed/self-consistent/complete . . . and which accounts accurately
for the phenomenological facts.

Already on page 318 we began to accumulate evidence that the Mueller
calculus is as “robust” as the Stokes formalism upon which it is based. To our
former population of Mueller matrices M it might now seem appropriate to add
(for example)

M ≡




1 0 0 0
0 e−u 0 0
0 0 e−u 0
0 0 0 e−u


 : u � 0 (418)

which evidently describes the action of an isotropic depolarizer , where the
adjective refers to isotropy not in physical space but in Stokes space. The
interesting point—which stands as an open invitation to formal/physical
invention—is that the M described above does not satisfy the fundamental
Mueller condition (404.1). Relatedly: I am informed by Morgan Mitchell, my
optical colleague, that while active “polarization scramblers” do exist, a “passive
depolarization device” would be a “tall order.” 253, 254

5. Optical beams. Listed at the beginning are several respects in which “plane
waves are highly idealized abstractions.” With the introduction of the notion
of “quasi-monochromaticity” we were able to introduce an element of realism
into the discussion, but
• infinite temporal duration
• infinite spatial extent
• infinite energy/momentum

252 See, for example, E. L. O’Neill, Introduction to Statistical Optics ();
J. W. Simmons & M. J. Guttmann, States, Waves and Photons: A Modern
Introduction to Light (); C. Brosseau,Fundamentals of Polarized Light: A
Statistical Optics Approach ().
253 problem 67.
254 problem 68.
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Figure 97: Representation of the function ϕ(t, x, 0, z) described at
(419) below. The Gaussian wavepacket glides rigidly, as indicated
by the arrow. It is temporally confined, but spatially unconfined.

are unphysical abstractions that survived untouched in the ensuing discussion
of beam statistics and imperfect polarization. Temporal confinement is fairly
easy to achieve, as the following remark makes clear:

Write ei(kct+0x+0y−kz) to describe a plane wave running up the z-axis.
Write

ϕ(t, x, y, z) =
∫ +∞

−∞
f(k)eik(c t−z) dk

=
∫ +∞

−∞
g(ω)eiω( t−z/c) dω

to describe a weighted superposition of such waves. Take g(ω) to have, in
particular, the form of a normalized Gaussian centered at Ω:

g(ω) ≡ 1√
2π
Te−

1
2T

2(ω−Ω)2 : T > 0 has the physical dimension of time

↓
= δ(ω − Ω) as T ↑ ∞

Then

ϕ(t, x, y, z) =
∫ +∞

−∞
1√
2π
Te−

1
2T

2(ω−Ω)2eiω( t−z/c) dω

= e−
1
2T

−2(t−z/c)2 · eiΩ(t−z/c) (419)
↓
= eiΩ(t−z/c) as T ↑ ∞

The physical (i.e., the real) part of the expression on the right side of (419) is
plotted in Figure 97.
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I have occasionally allowed myself to speak informally of “beams” when
the objects to which I referred were actually plane waves. We confront now the
mathematical force of the distinction. While the waves sampled by astronomers
are good approximations to plane waves, when we go into the laboratory to
perform optical experiments we deal most commonly with laterally confined
light beams.255 The mathematical description of lateral confinement poses
a number of delicate problems entirely absent from the theory of temporal
confinement. The subject acquired new urgency from the invention of the laser,
and it is from a classic contribution to that literature256 that I have adapted
the following remarks:

Setting aside, for the moment, the fact that electromagnetic radiation is
properly described by a transverse vector field, we look for laterally confined
monochromatic solutions ϕ(t, x, y, z) = eiωt · φ(x, y, z) of the scalar wave
equation ϕ = 0. Which is to say (see again page 294): we look for laterally
confined solutions of the Helmholtz equation

{
( ∂∂x )2 + ( ∂∂y )2 + ( ∂∂z )

2 + k2
}
φ(x, y, z) = 0

We have interest in laterally confined waves propagating in the z-direction, so
look for solutions of the form

φ(x, y, z) = e−ikz · ψ(x, y, z) : k = ω/c

Which is to say: we look for laterally confined solutions of

{
( ∂∂x )2 + ( ∂∂y )2 + ( ∂∂z )

2
}
ψ(x, y, z) = 2ik ∂∂zψ(x, y, z)

We agree to work in the approximation that ψ(x, y, z) changes so gradually in
the z-direction that the red ( ∂∂z )

2-term can be dropped. We arrive then at an
equation

1
2k

{
( ∂∂x )2 + ( ∂∂y )2

}
ψ(x, y, z) = i ∂∂zψ(x, y, z) (420)

which is structurally reminiscent of the Schrödinger equation for a particle free
to move in two dimensions:

�

2m

{
( ∂∂x )2 + ( ∂∂y )2

}
ψ(x, y, t) = −i ∂∂ tψ(x, y, t)

Both equations have unlimitedly many solutions, depending
• in quantum mechanics upon the form assigned to ψ(x, y, t) at an initial

time t0, commonly taken to be t0 = 0

255 We do not speak of “star beams,” and it is only for local meteorological
reasons that we speak sometimes of “sun beams.”
256 H. Kogelnik & T. Li, “Laser beams and resonators,” Applied Optics 5,
1550 (1966). See also §4.5 in O. Svelto, Principles of Lasers (3rd edition ).
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• in beam theory upon the form assigned to ψ(x, y, z) at some prescribed
axial point z0; we will find it convenient to take z0 = 0.

To illustrate the point, the authors of quantum texts257 often take ψ(x, y, t0)
to be Gaussian

ψ(x, y, 0) = Ae−a(x
2+y2)

and by one or another of the available computational techniques obtain

ψ(x, y, 0) −−−−→
t

ψ(x, y, t) = A 1
1+i(t/T ) exp

{
− a(x2+y2)

1+i(t/T )

}
: T ≡ m/2a�

which they use to demonstrate the characteristic temporal diffusion of initially
localized quantum states. Exactly the same mathematics lies at the base of the
“theory of Gaussiam beams.” Suppose it to be the case that

ψ(x, y, z) = Be−a(x
2+y2) at z = 0

The exact solution of (420) is given then at other axial points z by258

ψ(x, y, z) = B 1
1−iz/Z e

−a(x2+y2)/(1−iz/Z) : Z ≡ k/2a

= B 1
1+(z/Z)2 [1 + i(z/Z)] exp

{
−ar2 1

1+(z/Z)2 [1 + i(z/Z)]
}

[1 + i(z/Z)] =
√

1 + (z/Z)2 eiΦ with Φ ≡ arctan(z/Z)

= B√
1+(z/Z)2

exp
{
−ar2 1

1+(z/Z)2

}
exp

{
i
[
Φ(z)− ar2 z/Z

1+(z/Z)2

]}

r2 ≡ x2 + y2

We are brought thus to a beam of the design

ϕ(t, x, y, z) ∼ 1
ρ(z) exp

{
−

[
r
ρ(z)

]2}·ei[ωt−kz+Φ(z)−(r/ρ)2(z/Z)
]

(421)

where

ρ(z) ≡
√

1 + (z/Z)2

a
describes the “spot radius” at z

Evidently

ρmin ≡ ρ0 = ρ(0) =
√

1/a : called the “beam waist”

and at this point the a-notation—a relic of Griffiths’ discussion of another
subject—has outworn its usefulness: we agree henceforth to write 1/ρ2

0 in place
of a. In this new notation we have

ρ(z) = ρ0

√
1 + (z/Z)2 i.e., (ρ/ρ0)2 − (z/Z)2 = 1 (422)

257 See, for example, David Griffiths, Introduction to Quantum Mechanics
(), page 50: Problem 2.22.
258 problem 69.
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Figure 98: Graph of the function ρ(z) = ρ0

√
1 + (z/Z)2 that lends

the Gaussian beam its hyperbolic profile. The asymptotes are shown
in red. The blue box is of length L. Its ends are positioned at
z = ±Z, where the spot radius has grown from ρ0 to

√
2ρ0. The

figure was drawn with Z/ρ0 = 10, and is in that respect misleading:
in realistic cases Z/ρ0 ∼ 104 and the angle between the asymptotes
(beam divergence) is much(!) reduced .

Figure 99: Graph of the factor that, according to (421), controls
the amplitude of a Gaussian beam. The values assigned to ρ0 and Z
are the same as those in the preceding figure, and are unrealistic in
the sense already explained. The running-wave modulation would
be much too finely detailed to be displayed at the same scale.
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which shows that the growth of the spot radius is hyperbolic (see Figure 98 &
Figure 99), with asymptotes

ρasymptotic = ±(ρ0/Z)z

the slopes of which are typically very shallow: from the definition

Z ≡ 1
2L ≡ kρ2

0/2 = πρ2
0/λ

we have
beam waist = 0.3989

√
Lλ

beam divergence = 0.7978
√
λ/L

}
(423)

where the numerics arise from
√

1/2π and
√

2/π respectively. In a typical case
L ∼ 1 meter and λ ∼ 7.0×10−7 meter, giving

beam waist = 0.33 mm

beam divergence = 6.67×10−4 (dimensionless)

Such a beam must travel about 15 meters for the spot radius to grow to 1 cm.

Looking back again to (421), we set r = 0 and find that the

axial phase at z = ωt− kz + arctan(z/Z)

Arguing from d
dt (axial phase at z) = 0 we compute

phase velocity at z =
[
k − Z

Z2+z2

]–1 · ω
=

[
1− Zλ

2π(Z2+z2)

]–1 · c by Z/k = Zλ/2π = 1
2ρ

2
0

=
{

1 + λ
2πZ +

(
λ

2πZ

)2 + · · ·
}
·c � c at z = 0

↓
= c as z →∞

—the interesting point being that as z becomes large the axial phase velocity
approaches c from above. Looking next to the geometry of the near-axial
equiphase surfaces, we study

kz − arctan(z/Z) +
r2

ρ2
0[1 + (z/Z)2]

(z/Z) = kz0 − arctan(z0/Z) (424)

where z0 marks the point at which the surface in question intersects the z-axis.
Taking both r2 and z0 − z to be small and asking Mathematica to develop the
arctan as a power series in (z − z0), we obtain

r2

ρ2
0[1 + (z0/Z)2]

(z0/Z) =
{
k − 1

Z[1 + (z0/Z)2]

}
(z0 − z) + · · · (425)

Define R in such a way that

k
2R
≡ 1

ρ2
0[1 + (z0/Z)2]

(z0/Z)

which is to say: let R ≡ z[1 + (Z/z)2], so that the expression on the left side of
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Figure 100: Equiphase contours, taken from the expression on the
left side of (424).

(425) can be written kr2/2R. Next, notice that

1
Z[1 + (z0/Z)2]

<
1
Z

= 2
L
� π

2
λ

= k

so the second term in braces can be abandoned, giving (see Figure 100)

z0 − z = (1/2R)(x2 + y2) :
{

parabola-of-revolution, opening
to the left, with apex at z0

(425)

That
R = radius of curvature at the apex

follows from the observations (i) that

[z − (z0 −R)]2 + x2 + y2 = R2 (426)

describes a sphere of radius R that is centered on the z-axis and intersects that
axis at z = z0 and z = z0 − 2R, and (ii) that expansion of (426) gives back
(425) if a small (z0 − z)2-term is abandoned. This information might be used
to design the concave mirrors placed at the ends of a “Gaussian laser.”

The Gaussian beam discussed above can be used as the “seed” from which
to grow an infinite population of “Gaussian beams of higher order.” These (at
least those of lower order) are of physical importance when taken individually,
and collectively enable one (by weighted superposition) to fabricate beams of
unlimited variety. The generative idea is quite elementary

If ϕ is a solution of ϕ = 0 and if D is a differential
operator that commutes with

D = D

then so also is Dϕ a solution.

but must be adapted to the approximation scheme that was seen on page 322
to lie at the base of Gaussian beam theory: we write

ϕ(t, x, y, z) = ei(ω t−kx) · ψ(x, y, z)
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and require that ψ be an exact solution of the “Schrödinger equation”259

{
( ∂∂x )2 + ( ∂∂y )2

}
ψ(x, y, z) = i(4Z/ρ2

0)
∂
∂zψ(x, y, z) (427)

Taking from page 323 the demonstrably exact solution

ψ00 = ρ0
1

ρ0[1− iz/Z]
exp

{
− x2 + y2

ρ2
0[1− iz/Z]

}

—which by ρ0[1− iz/Z] = ρ0

√
1 + (z/Z)2 e−i arctan(z/Z) ≡ ρ(z)e−iΦ(z) can also

be written

= ρ0
1

ρ(z)
eiΦ(z) · exp

{
−

[ x

σ(z)

]2

−
[ y

σ(z)

]2
}

σ(z) ≡
√
ρ0ρ(z) e−i

1
2Φ

= ρ0
1
ρe
iΦ · e−ξ2−η2

: ξ ≡ x/σ and η ≡ y/σ

—as our “seed,” we harvest this fairly natural fruit:

ψmn ≡
(
−ρ0

∂
∂x

)m(
−ρ0

∂
∂y

)n
ψ00

= ρ0
1
ρe
iΦ

(
−ρ0

1
σ
∂
∂ξ

)m(
−ρ0

1
σ
∂
∂η

)n
e−ξ

2−η2

= ρ0
1
ρe
iΦ

(
ρ0

1
σ

)m+n(− ∂
∂ξ

)m(
− ∂
∂η

)n
e−ξ

2−η2

=
(
ρ0

1
ρ

)
1+ 1

2 (m+n) ei[1+
1
2 (m+n)]ΦHm(ξ)Hn(η) · e−ξ

2−η2
(428)

In the final line we have recalled260 Rodrigues’ construction

Hm(ξ) = eξ
2(− ∂

∂ξ

)m
e−ξ

2

of the Hermite polynomials:

H0(ξ) = 1
H1(ξ) = 2ξ
H2(ξ) = 4ξ2 − 2
H3(ξ) = 8ξ3 − 12ξ
H4(ξ) = 16ξ4 − 48ξ2 + 12

...

That the functions ψmn constructed in this way do in fact exactly satisfy (427)
can be demonstrated (for small m, n) by Mathematica -assisted calculation, but
that they must do so follows transparently from the observation that

∂
∂x and ∂

∂y commute with
{

( ∂∂x )2 + ( ∂∂y )2
}
− i(4Z/ρ2

0)
∂
∂z

259 This is just (420) with k �→ 2aZ = 2Z/ρ2
0.

260 See, for example, Chapter 24 in J. Spanier & K. B. Oldham, An Atlas of
Functions ().
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The Gaussian factor

e−ξ
2−η2

= exp
{
−x2 + y2

ρ2(z)
[1 + i(z/Z)]

}

is a shared feature of all the ψmn-functions, which give rise therefore to identical
populations of equiphase surfaces (Figure 100). Using Mathematica’s

HermiteH[n,x]

command to evaluate the complex prefactors

gmn(x, y) ≡
(
ρ0

1
ρ

)
1+ 1

2 (m+n) ei[1+
1
2 (m+n)]ΦHm

( x√
ρ0ρ

ei
1
2Φ

)
Hn

( y√
ρ0ρ

ei
1
2Φ

)

in some low-order cases, we find

g00 = (ρ0/ρ)eiΦ

g10 = (ρ0/ρ)2(x/ρ)e2iΦ

...
g20 = (ρ0/ρ)4(x/ρ)2e3iΦ − 2(ρ0/ρ)2e2iΦ

g11 = (ρ0/ρ)
{
2(x/ρ)

}{
2(y/ρ)

}
e3iΦ

...
g30 = (ρ0/ρ)8(x/ρ)3e4iΦ − 12(ρ0/ρ)2(x/ρ)e3iΦ

g21 = (ρ0/ρ)
{
4(x/ρ)22(y/ρ)e4iΦ − 2(ρ0/ρ)2e3iΦ

}{
2(y/ρ)

}
...

The red terms depart from the result asserted by Kogelnik & Li and quoted by
Svelto256:

gmn = (ρ0/ρ)Hm(x/ρ)Hn(y/ρ) ei[1+m+n]Φ

Their results261 and mine are, however, in precise agreement at z = 0, where
ρ = ρ0 and Φ = 0 give

ψmn(x, y, 0) = Hm(x/ρ0)Hn(y/ρ0) exp
{
−x2 + y2

ρ2
0

}

This striking result acquires special interest from the orthogonality relation

∫ +∞

−∞
Hµ(u)Hν(u)e−u

2
du =

√
πµ!2µδµν

261 . . .which are not incorrect (as I for awhile supposed) but refer to a distinct
population of beam modes: the point is developed in §§3 & 4 of a companion
essay “Toward an exact theory of lightbeams” ().
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For if we introduce the “normalized Gaussian beam functions”

Ψmn(x, y, z) ≡ 1
ρ0

√
m!2mn!2nπ

ψmn(x, y, z)

then we have∫ +∞

−∞

∫ +∞

−∞
Ψµν(x, y, 0)Ψmn(x, y, 0) exp

{
x2 + y2

ρ2
0

}
dxdy = δµmδνn

which we can use to evaluate the coefficients cmn that enter into the description

ψ(x, y, 0) =
∑
m,n

cmnΨmn(x, y, 0)

of beam structure at the waist . We then write

ϕ(t, x, y, z) = ei(ωt−kz) ·
∑
m,n

cmnΨmn(x, y, z) (429)

=
∑

modes

Gaussian beams of various “modes” (identified by m,n)

to describe the generalized Gaussian beam possessing that prescribed structure
at the waist.

Physically more realistic beam models would be obtained if we
• used the mechanism described on page 321 to turn the beam on/off

(this would entail loss of strict monochromaticity)
• constructed statistical linear combinations of such beams.

But the beams thus constructed could not possibly describe laser beams: they
are scalar beams (“acoustic” beams), whereas physical laser beams must be
endowed with the transverse vectorial properties known to be characteristic of
all electromagnetic radiation. This is a circumstance we were content to set
aside on page 322, but would like now to find some way to accommodate. I
invite you to turn on Mathematica and follow along. . .

Exponential solutions of the “Schrödinger equation” (427) can be described

exp
{
i
[
− px− qy +

p2 + q2

4Z/ρ2
0

z
]}

: all real p, q

and minimal tinkering leads to the discovery that

∫∫ +∞

−∞

ρ20
4π e

− 1
4ρ

2
0(p

2+q2) · exp
{
i
[
− px− qy +

p2 + q2

4Z/ρ2
0

z
]}

dpdq (430.1)

=
1

[1− iz/Z]
exp

{
− x2 + y2

ρ2
0[1− iz/Z]

}

= ψ00(x, y, z) of page 327
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Figure 101: As ρ0 increases the Gaussian g = ρ20
4π e

− 1
4ρ

2
0(p

2+q2)

becomes narrower, while at higher frequencies the parabolic term
f = 1

4π (p2+q2)λ becomes shallower. At sufficiently high frequencies
the Gaussian discriminates against the (p, q)-values where f departs
significantly from zero, and it is this circumstance that justifies the
approximation upon which Gaussian beam theory is based.

But (see again the bottom of page 323) 4Z/ρ2
0 = 2k so we have

ϕ00(t, x, y, z) = ei(ωt−kz) · ψ00(x, y, z) with ω = kc (430.2)

=
∫∫ +∞

−∞

ρ20
4π e

− 1
4ρ

2
0(p

2+q2) · exp
{
i
[
ωt− px− qy −

(
k − p2 + q2

2k

)
z
]}

dpdq

From

(ω/c = k)2 − p2 − q2 −
(
k − p2 + q2

2k

)2

= −
(p2 + q2

2k

)2

we see that the wave vector



k0

k1

k2

k3


 =




ω/c
p
q

k − [(p2 + q2)/2k]




is not null (as the wave equation ϕ00 = 0 requires) but spacelike: we encounter
here the force of the approximation made on page 322. Notice in this connection
that (because k = 2π/λ)

p2 + q2

2k
=

p2 + q2

4π
· λ : vanishes at high frequencies

so for given ρ0 the approximation becomes better and better as λ ↑ ∞, while
for given λ the approximation becomes progressively better as the Gaussian
e−ρ

2
0(p

2+q2) becomes narrower; i.e., as ρ0 becomes larger (see the figure).

We want now to extract from (430) the description of a Gaussian light
beam. To that end we must replace the scalar plane waves encountered at (430)
with electromagnetic plane waves, and that effort presents certain problems.
I will carry this discussion only far enough to expose the problems and some
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Figure 102: To each vector kkk(p,q) we associate a pair of unit
vectors eee(p, q) and fff(p, q) in such a way that

{
k̂kk, eee, fff ≡ k̂kk×eee

}
comprise an orthonormal triad. Let kkk1 and kkk2 be two such wave
vectors. If kkk1 and kkk2 are not parallel then specification of eee1 exerts
no geometrically compelling constraint on the selection of eee2.

points of principle: to carry it farther would to risk becoming lost in bewildering
detail.

Let (430.2) be notated

ϕ00(t, xxx) =
∫∫ +∞

−∞

ρ20
4π e

− 1
4ρ

2
0(p

2+q2) · exp
{
i
[
ωt− kkk(p, q)···xxx

]}
dpdq

with

kkk(p, q) ≡


 p

q
k − [(p2 + q2)/2k]


 = k

√
1 +

(
p2+q2

2k2

)2 · k̂kk(p, q)

To every such kkk(p, q) assign unit vectors eee(p, q) and fff(p, q) in such a way that{
k̂kk(p, q), eee(p, q), fff(p, q)

}
is an orthonormal triad. The first point of interest is

that this can be accomplished in infinitely many ways: the triads erected at the
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points of (p, q)-space are independent creations (see Figure 102). Given such
an assignment, form

EEE(t, xxx) =
∫∫ +∞

−∞

ρ20
4π e

− 1
4ρ

2
0(p

2+q2) · EEE(p, q) exp
{
i
[
ωt− kkk(p, q)···xxx

]}
dpdq (431)

with
EEE(p, q) ≡ E1(p, q)eee(p, q) + E2(p, q)eiδ(p,q)fff(p, q)

where further arbitrariness enters into the design of the functions E1(p, q),
E2(p, q) and δ(p, q). The constructions

EEEp,q(t, xxx) =
{
E1(p, q)eee(p, q) + E2(p, q)eiδ(p,q)fff(p, q)

}
exp

{
i
[
ωt− kkk(p, q)···xxx

]}

BBBp,q(t, xxx) = kkk(p, q)×EEEp,q(t, xxx)

=
{
E1(p, q)fff(p, q)− E2(p, q)eiδ(p,q)eee(p, q)

}
exp

{
i
[
ωt− kkk(p, q)···xxx

]}

serve—in the approximation (p2 + q2)/2k ≈ 0—to associate a monochromatic
polarized electromagnetic plane wave (propagating in the direction k̂kk(p, q)) with
each point of (p, q)-space, and (431) describes a Gauss-weighted superposition
of such plane waves. The “bewildering detail” to which I have referred arises
(even in the simplest of the cases I have studied) when one undertakes to do
the integration.

“Electromagnetic Gaussian beams”exist, by this account, in infinite variety.
Evidently one must look to the finer particulars of laser design to discover how
the physical device “selects among options,” how to construct acceptable models
of the laser beams encountered in laboratories.

The fields

EEE(t, xxx) =
∫∫ +∞

−∞

ρ20
4π e

− 1
4ρ

2
0(p

2+q2) ·EEEp,q(t, xxx) dpdq

BBB(t, xxx) =
∫∫ +∞

−∞

ρ20
4π e

− 1
4ρ

2
0(p

2+q2) ·BBBp,q(t, xxx) dpdq

possess a property worthy of notice which I will expose by considering the
superposition of only two electromagnetic plane waves. Let

EEE1(t, xxx) = EEE1 exp
{
i(ωt− kkk1···xxx)

}
: EEE1 ⊥ kkk1

BBB1(t, xxx) = k̂kk1×EEE1 exp
{
i(ωt− kkk1···xxx)

}

describe one monochromatic plane wave, and

EEE2(t, xxx) = EEE2 exp
{
i(ωt− kkk2···xxx + δ)

}
: EEE2 ⊥ kkk2

BBB2(t, xxx) = k̂kk2×EEE2 exp
{
i(ωt− kkk2···xxx + δ)

}
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describe another. Let EEE = EEE1 +EEE2 and BBB = BBB1 +BBB2. Then

EEE ···BBB =
{
EEE1 ···(k̂kk2×EEE2) + EEE2 ···(k̂kk1×EEE1)

}
︸ ︷︷ ︸ exp

{
i(2ωt− [kkk1 + kkk2]···xxx + δ)

}
|
= (k̂kk1 − k̂kk2)···(EEE1×EEE2)
�= 000 except under obvious special conditions

shows that, in general, superimposed plane waves do not share the EEE ⊥ BBB
condition characteristic of individual plane waves. In particular: EEE ⊥ BBB will
not be found in the superpositions that produce “beams.”

Let us look to a concrete example. Working from

k̂kk(p, q) ≡ k–1


 p

q
k − [(p2 + q2)/2k]


 in the approximation

(
p2+q2

2k2

)2 ≈ 0

we complete the dimensionless orthonormal triad by writing

eee(p, q) ≡ 1√
p2+q2


 +q
−p
0




fff(p, q) ≡ 1

2k2
√
p2+q2


 p[2k2 − (p2 + q2)]

q[2k2 − (p2 + q2)]
−2k(p2 + q2)


 = k̂kk(p, q)×eee(p, q)

and to achieve tractable integrals set

E1(p, q) = E1+ ·
√
p2 + q2

E2(p, q) = E2+ ·
√
p2 + q2

δ(p, q) = constant

Here + (introduced to cancel the physical dimension of
√

p2 + q2 ) is a constant
of arbitrary value and the dimensionality of length, so E1+ and E2+ have the
dimensionality of electric potential. Working from (431) with k = 2Z/ρ2

0 and

EEE(p, q) = E1+


 +q
−p
0


 + E2+e

iδ


 p[1− (p2 + q2)/2k2]

q[1− (p2 + q2)/2k2]
− (p2 + q2)/k




BBB(p, q) = E1+


 p[1− (p2 + q2)/2k2]

q[1− (p2 + q2)/2k2]
− (p2 + q2)/k


− E2+e

iδ


 +q
−p
0




we entrust the
∫∫

’s to Mathematica, who supplies

EEE(t, xxx) = E1+ eee(t, xxx) + E2+e
iδ fff(t, xxx)

BBB(t, xxx) = E1+ fff(t, xxx)− E2+e
iδ eee(t, xxx)

}
(432)
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with

eee(t, xxx) = eG·


−Ay

+Ax
0




fff(t, xxx) = eG·


−Bx
−By

C







(433)

where

eG ≡ exp
{
− x2+y2

ρ2 [1 + i(z/Z)] + i[ωt− kz]
}

is familiar already (see again page 323) from the scalar theory of Gaussian
beams, and where

A = 2iZ2

ρ20(Z−iz)2

≡ Aeiα with A =
√

{0}2+{2Z2}2

ρ40(Z
2+z2)2

B = −2Zρ20(z+iZ)+iZ2[r2−2(z+iZ)2]

ρ20(z+iZ)4

≡ Beiβ with B =
√

{stuff}2+{more stuff}2

ρ40(Z
2+z2)4

C = 2Z2r2−2ρ20Z(Z−iz)
ρ20(Z−iz)3

≡ Ceiγ with C =
√

{stuff}2+{more stuff}2

ρ40(Z
2+z2)3

I have indicated how the invariable reality of A, B and C comes about, but
have omitted details too complicated to be informative, and have also omitted
(as irrelevant to the purposes at hand) explicit description of the phase factors
α, β and γ (which could be expressed as the arctangents of the obvious ratios).
Notice that the functions described above depend upon x and y only through
r2 ≡ x2 + y2; they are, in short, axially symmetric. Notice also that
[A ] = [B ] = (length)−2 while [C ] = (length)−1.

Returning now with (433) to (432), we have EEE(t, xxx) = EEE1(t, xxx) +EEE2(t, xxx)
with

EEE1 = E1+e
−(r/ρ)2· ei{(ωt−kz)−(r/ρ)2(z/Z)}


 Aeiα


−y+x

0







EEE2 = E2e
iδ+e−(r/ρ)2· ei{(ωt−kz)−(r/ρ)2(z/Z)}


 Beiβ


−x−y

0


 + Ceiγ


 0

0
1






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The associated magnetic fields are

BBB1 = E1+e
−(r/ρ)2· ei{(ωt−kz)−(r/ρ)2(z/Z)}


 Beiβ


−x−y

0


 + Ceiγ


 0

0
1







BBB2 = E2e
iδ+e−(r/ρ)2· ei{(ωt−kz)−(r/ρ)2(z/Z)}


−Aeiα


−y+x

0







It is understood that to extract the physical fields, and before we assemble such
quadratic constructions as (field)···(field) and (field)×(field), we must make the
replacements

ei(stuff) �−→ cos(stuff)

That done, we obtain finally

EEE1 = E1+e
−(r/ρ)2


 A cos(ϑ + α)


−y+x

0







EEE2 = E2+e
−(r/ρ)2


 B cos(ϑ + β + δ)


−x−y

0


 + C cos(ϑ + γ + δ)


 0

0
1







BBB1 = E1+e
−(r/ρ)2


 B cos(ϑ + β)


−x−y

0


 + C cos(ϑ + γ)


 0

0
1







BBB2 = E2+e
−(r/ρ)2


−A cos(ϑ + α + δ)


−y+x

0







with ϑ ≡ ωt − kz − (r/ρ)2(z/Z). It is immediately evident that at every
spacetime point

EEE1⊥ EEE2 , BBB1⊥ BBB2

EEE1⊥ BBB1 , EEE2⊥ BBB2

but from

EEE ···BBB = (EEE1 +EEE2)···(BBB1 +BBB2)

= E1E2+
2e−2(r/ρ)2

{
r2

[
B2 cos(ϑ+β) cos(ϑ+β+δ)
−A2 cos(ϑ+α) cos(ϑ+α+δ)

]
+C2 cos(ϑ+γ) cos(ϑ+γ +δ)

}
�= 0 except under non-obvious special conditions: note, however, that
↓
= 0 as r →∞ because the fields die at points far from the beam axis

we see that—consistently with the remark developed on page 332—the net fields
EEE and BBB are typically not perpendicular: at axial points (r = 0) they are, in
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fact, parallel ! The energy flux and momentum density at the spacetime point
are proportional to

EEE×BBB = (EEE1 +EEE2)×(BBB1 +BBB2) ≡ e−2(r/ρ)2 · FFF

where according to Mathematica

F1 = xAC
[
E2

1 cos(ϑ + α) cos(ϑ + γ) + E2
2 cos(ϑ + α + δ) cos(ϑ + γ + δ)

]
− yBCE1E2

[
cos(ϑ + β + δ) cos(ϑ + γ) − cos(ϑ + β) cos(ϑ + γ + δ)

]
F2 = yAC

[
E2

1 cos(ϑ + α) cos(ϑ + γ) + E2
2 cos(ϑ + α + δ) cos(ϑ + γ + δ)

]
+ xBCE1E2

[
cos(ϑ + β + δ) cos(ϑ + γ) − cos(ϑ + β) cos(ϑ + γ + δ)

]
F3 = r2AB

[
E2

1 cos(ϑ + α) cos(ϑ + β) + E2
2 cos(ϑ + α + δ) cos(ϑ + β + δ)

]
This is of the design

FFF = a


x

y
0


 + b


−y+x

0


 + c


 0

0
1




= FFF radial + FFF tangential + FFF axial

where the vectors FFF radial stand normal to the z-axis (beam-axis) and are of
constant magnitude on circles concentric about that axis, the vectors FFF tangential

are (also constant on but) tangent to such circles and have � or � handedness
according as b ≷ 0, and the vectors FFF axial (also constant on such circles) run
parallel to the z-axis. The “constants” a, b and c are in fact horribly complicated
functions of the variables

{
t, z, r

}
and of the parameters

{
ω, ρ0, Z,E1,E2, δ

}
.

We are in position now to state that the momentary momentum density of
the beam field at any designated point xxx can be described (see again page 216)

PPP = 1
ce

−2(r/ρ)2FFF

We observe that
• PPP vanishes far from the beam axis because of Gaussian attenuation
• PPP vanishes on the beam axis by the design of a, b and c

• field momentum traces a divergent spiral in the near neighborhood of the
beam axis unless b = 0.

The angular momentum density of the beam field is given by262

LLL = xxx×PPP = 1
ce

−2(r/ρ)2


−bz


x

y
0


 + (az − c)


−y+x

0


 + br2


 0

0
1







= LLLradial + LLLtangential + LLLaxial

262 Don’t be confused by the fact that c is used here to mean two entirely
different things.
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Figures 103 & 104: The upper figure portrays the spiroform
deployment of the momentum in the electromagnetic field of the
Gaussian beam described in the text. Displayed below is the resulting
angular momentum density (presented as a function of x and y at
the beam waist: z = 0). The figures show that/why it makes sense to
say that “the angular momentum lives at the fringes of the beam.”
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The first two components (by an elementary symmetry argument) can make no
net contribution to the total angular momentum of the beam, which is given
therefore by

LLL = L


 0

0
1


 with L =

∫∫∫
1
ce

−2(r/ρ)2br2 dxdydz

We notice that L vanishes if b = 0, and that this happens when δ = 0, for in
the latter circumstance the equations at near the top of page 336 assume the
much-simplified form

F1 = xAC
[
E2

1 + E2
2

]
cos(ϑ + α) cos(ϑ + γ) + no y-term

F2 = yAC
[
E2

1 + E2
2

]
cos(ϑ + α) cos(ϑ + γ) + no x-term

F3 = r2AB
[
E2

1 + E2
2

]
cos(ϑ + α) cos(ϑ + β)

One occasionally encounters the claim that “the angular momentum
transported by a laser beam lives at the fringes of the beam,” but in support
of that claim authors who possess only a scalar theory of beams must argue
rather vaguely that

i) beam angular momentum must arise from momentum circulation
ii) there can be no circulation at the axis of an axially-symmetric beam
iii) all PPP-circulation must therefore occur between the axis and the remote

regions where the EEE and BBB fields have fallen off to zero—in short: “at the
fringes” of the beam.

My effort has been to carry a vector theory of beams far enough to illuminate
the details of the matter. Having achieved that objective, I must be content
now to abandon my little “electromagnetic theory of beams”. . . but feel an
obligation to list some of the respects in which the theory remains incomplete:
• It should be feasible (by the method sketched on page 321) to turn such

beams on and off; i.e., to construct laterally confined quasi-monochromatic
Gaussian wavepackets—“classical photons,” if you will.
• It should be feasible, moreover, to construct trains of such wavepackets,

and to describe the coherence/polarization properties of such trains.
• One would like to be in position to describe the energy, momentum and

angular momentum transported by such a “classical photon,” and to
identify conditions under which they stand in the quantum relationships

E = cP = ωL

• To that end one would need to clarify certain salient properties of and
interrelationships among the complicated functions a, b and c.
• Identical values of E1, E2 and δ were assigned to each of the plane waves

from which ourGaussian beams were assembled. Do the Stokes parameters
implicit (by (399)) in

{
E1,E2, δ

}
speak usefully about the polarization

properties of the assembled beam?
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It should be borne always in mind that the theory sketched above proceeds
from an inoffensive approximation (page 322) and—within the bounds of that
approximation—from a convenient specification (page 333) of the manner in
which orthonormal vectors will be attached to k̂kk -vectors (and weighted). The
theory is rich enough to support easily the notion of “higher beam modes,” but
this question remains open: Is the theory—as I suspect—rich enough to account
for the observed properties of the optical beams encountered in laboratories?



6
SOLUTION OF FIELD EQUATIONS

Construction & application of the
electromagnetic propagators

Introduction. Working in the Lorentz gauge, our problem—acquired at (373)—is
to describe the solution of

Aν = 1
cj
ν (434)

which results when
i) the source term jν(x) and
ii) initial & boundary conditions

are prescribed. We will have then only to construct Fµν = ∂µAν − ∂νAµ to
obtain descriptions of the physical fields EEE(x) and BBB(x) that arise under the
conditions specified. Our problem is made tractable by two circumstances:
• Equations (434) are uncoupled (though the jµ are constrained by charge

conservation to satisfy ∂µjµ = 0 and the Aµ to satisfy the Lorentz gauge
condition ∂µAµ = 0). This means that it is suffient to study the generic
equation

φ(x) = ρ(x) (435)

• Equations (434) are linear . This means that we can employ Green’s
technique; i.e., that (recall the discussion on pages 16–17) we can
undertake to solve (435) by weighted superposition of the solutions of

φ(x) = δ(x) (436.1)
φ(x) = 0 (436.2)
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We anticipate on these grounds that the solution of (435) can be developed

φ(x) = φ0(x) +
∫
G(x− y)ρ(y) d4y (437)

=
{

solution of the homogeneous equation (436.2)
into which we have folded the initial value data

}

+
{
particular solution of (435)

}
and that the physical solutions of (434) admit of similar description:

Aµ(x) = Aµ0 (x) + 1
c

∫
DR(x− y)jµ(y) d4y︸ ︷︷ ︸ (438.1)

|

Here Aµ0 (x) denotes the field which has evolved from any initially present
ambient field, and

|
≡ AµR(x) (438.2)

denotes the field generated by past source activity (the subscript R stands for
“retarded”).

We look first to the detailed substance of the preceding rough remarks,
and in subsequent sections to a graded sequence of illustrative applications.

1. Green’s function techniques in classical electrodynamics: construction of the
propagators. I start with remarks that—though they may seem at first to be in
mathematical left field—will place us in position to say powerful things about
the source-independent term Aµ0 (x).

If in Gauss’ theorem ∫∫∫
R
∇∇∇···AAAd3x =

∫∫
∂R
AAA···dσdσdσ

we set AAA = ϕ∇∇∇ψ we obtain∫∫∫
R

{
ϕ∇2ψ +∇∇∇ϕ ···∇∇∇ψ

}
d3x =

∫∫
∂R
ϕ∇∇∇ψ ···dσdσdσ

from which (interchange ϕ and ψ, subtract) follows Green’s theorem∫∫∫
R

{
ϕ∇2ψ − ψ∇2ϕ

}
d3x =

∫∫
∂R

{
ϕ∇∇∇ψ − ψ∇∇∇ϕ

}
···dσdσdσ

Green’s theorem lies at the heart of many notable existence and uniqueness
theorems. And it is quite robust: it extends to spaces of any dimension, and of
non-Euclidean metric structure. In 4-dimensional spacetime it reads∫∫∫∫

R

{
ϕ ψ − ψ ϕ

}
d4x =

∫∫∫
∂R

{
ϕ∂αψ − ψ∂αϕ

}
dσα (439)

To prepare for the application specifically at hand we
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dσ′′
α

x

dσ′
α

Figure 105: Spacetime sandwich, bounded by surfaces the normals
to which are everywhere timelike and future directed (the former
by construction, the latter by convention). The upper and lower
spacelike surfaces (or timeslices) σ′ and σ′′ jointly comprise the
boundary ∂R of the region R which we bring in the text to a
distinctive application of Green’s theorem.

1 ) assume both ϕ and ψ to satisfy (436.2): ϕ = ψ = 0
2 ) assume R to be the disk-like region bounded by the everywhere-spacelike

surfaces σ′ and σ′′, where σ′′ contains x—the field point of interest.
It is out intention to spread Cauchy data (i.e.; initial data sufficient to
identify/determine a solution) on σ′. . . like so much peanut butter & jelly.

3 ) assume the surface differentials dσ′
α and dσ′′

α to be (not “outer-directed”
but) future-directed (see the figure).

Green’s equation (439), on the strength of those assumptions, becomes

0 =
∫
σ′′

{
ϕ∂αψ − ψ∂αϕ

}
dσ′′

α −
∫
σ′

{
ϕ∂αψ − ψ∂αϕ

}
dσ′

α

or∫
σ′′

{
ϕ(x′′)∂αψ(x′′)− ψ(x′′)∂αϕ(x′′)

}
dσ′′

α︸ ︷︷ ︸
=

∫
σ′

{
ϕ(x′)∂αψ(x′)− ψ(x′)∂αϕ(x′)

}
dσ′

α

Now = ϕ(x) (440)

if an appropriately specialized meaning is assigned to ψ . If we agree to write
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ψ(x′′) ≡ D0(x′′−x) and to interpret x as a “continuously adjustable parameter”
then we achieve (440) by stipulating that

D0(x′′− x) = 0∫
σ′′
f(x′′)∂αD0(x′′− x) dσ′′

α = f(x) :
{

all f , and
all timeslices σ′′ through x

D0(x′′− x) = 0 : x′′− x spacelike
D0(0) = 0




(441)

It is by no means obvious that such aD0(•) exists, but if it did (and it does!. . . as
will soon be established by construction) we would have

φ0(x) =
∫
σ′

{
φ0(x′)︸ ︷︷ ︸ ∂αD0(x′− x)−D0(x′− x) ∂αφ0(x′)︸ ︷︷ ︸

}
dσ′

α (442)

| |
—Cauchy data —more Cauchy data

which describes φ(x) in terms of the prescribed initial data; i.e., in terms of
the stipulated values assumed by φ and ∂φ on the spacelike surface σ′. The
construction of D0(•) follows (as it happens) directly from that of DR(•), so it
is to the latter—simpler—problem that I now turn:

Let φ̃(k) and ρ̃(k) be the Fourier transforms of φ(x) and ρ(x):

φ(x) =
(

1√
2π

)4
∫∫∫∫

φ̃(k)ei(k
0x0− kkk···xxx) dk0dk1dk2dk3

≡ 1
(2π)2

∫
φ̃(k)eikx d4k (443.1)

φ̃(k) = 1
(2π)2

∫
φ(x)e−ikx d4x (443.2)

ρ(x) = 1
(2π)2

∫
ρ̃(k)eikx d4k (443.3)

ρ̃(k) = 1
(2π)2

∫
ρ(x)e−ikx d4x (443.4)

The Fourier transform of φ(x) = ρ(x) is algegbraic

−k2φ̃(k) = ρ̃(k)

and admits of immediate solution:263

⇓
φ̃(k) = − 1

k2
1

(2π)2

∫
ρ(x)e−ikx d4x

263 This development is typical of the effective application of integral transform
techniques to the solution of differential equations. And it illustrates why the
inhomogeneous equation φ(x) = ρ(x) is so much easier to discuss than its
homogeneous counterpart.
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Returning with this information to (443.1), we reverse the order of integration
to obtain

φ(x) =
∫ {
− 1

(2π)4

∫
k−2eik(x− x) d4k

}
ρ(x) d4x (444)

Comparison with (437) gives

G(x− x) = − 1
(2π)4

∫
k−2eik(x− x) d4k

k2 = k2
0 − kkk···kkk

But the integrand is singular on the null-cone in k -space, so the integral is
meaningless until assigned a meaning . To that end, we write

= − 1
(2π)3

∫∫∫
e−ikkk···(xxx− xxx)

{
1
2π

∫ +∞

−∞

1
k2
0 − kkk···kkk

eik0(x
0− x0) dk0

}
d3k (445)

which serves to localize the pathology at a pair of points: k0 = ±
√
kkk···kkk . Next

we resort to some standard trickery: we complexify k0, reinterpret
∫ +∞
−∞ as a

contour integral
∮

, and circumvent the simple poles at k0 = ±
√
kkk···kkk by contour

deformation. Equation (445) is replaced thus by the meaningful but contour-
dependent equation

GC(x− x) = − i
(2π)3

∫∫∫
e−ikkk···(xxx− xxx) (446)

·
{

1
2πi

∮
C

1
k2
0 − kkk···kkk

eik0(x
0− x0) dk0

}
d3k

where (by the “method of partial fractions”)

1
k2
0 − kkk···kkk

= 1
2k

[ 1
k0 − k

− 1
k0 + k

]

with k ≡
√
kkk···kkk.

We have physical interest not in all possible GC -functions (all possible
contours C, of which there are only a handful of truly distinct options: see
relativistic classical fields () page 167) but only in that particular
GC—denoted DR(x−x)—which conforms to our conception of “retarded causal
action.” It is, therefore, for physical reasons (see below) that we take C to have
the form illustrated in Figure 106. Writing k0 = r + is, we have

eik0(x
0− x0) = e−s(x

0− x0) · eir(x
0− x0)

and it becomes clear that to achieve a finite result we must have s → ±∞
according as x0 ≷ x0; i.e., that we must close the contour on the upper or lower
half-plane according as the source point x lies in the past or the future of the field
point x. The detours around the poles (see the figure) are now dictated by the
physical requirement that present field physics shall be insensitive to future
source activity. It now follows by the residue theorem that
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contour if x0 > x0

R→∞

contour if x0 < x0

Figure 106: Causal contour, inscribed on the complex k0-plane:
close on the upper half-plane if the field point x lies in the future
of the source-point x (x0 > x0), and on the lower half-plane in the
contrary case. The upper contour encloses the poles at k0 = ±

√
kkk···kkk ;

the lower contour excludes them, so gives
∮
c = 0.

{
etc.

}
=




1
2k

[
eik(x

0− x0) − e−ik(x
0− x0)

]
= i

sin k(x0− x0)
k

if x0 > x0

0 if x0 < x0

so

DR(x− x) =




1
(2π)3

∫∫∫
sin k(x0− x0)

k
e−ikkk···(xxx− xxx) d3k

0

(447)

To facilitate evaluation of the
∫∫∫

we introduce spherical coordinates into
kkk -space (3-axis parallel to xxx− xxx) and (in the case x0 > x0) obtain

= 1
(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

sin kξ0

k
e−ik ξ cosφk2 sinφdθdφdk

where ξ0 ≡ x0− x0 and ξ ≡
√

(xxx− xxx)···(xxx− xxx) � 0. Immediately
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= 1
(2π)2

∫ ∞

0

2 sin ξ0k · sin ξk
ξ︸ ︷︷ ︸ dk

= 1
ξ

[
cos k(ξ0− ξ)− cos k(ξ0+ ξ)

]

= 1
(2π)2

1
ξ

lim
k→∞

[ sin k(ξ0− ξ)
(ξ0− ξ) − sin k(ξ0+ ξ)

(ξ0+ ξ)

]

But δ(x) = 1
π lim
k→∞

sin kx
x provides a standard parameterized representation of

the Dirac δ-function,264 so

= 1
(2π)2

π
ξ

[
δ(ξ0− ξ)− δ(ξ0+ ξ)

]
(448)

The 2nd δ-function is moot when ξ0 > 0 (i.e., when x0 and x0 stand in causal
sequence: x0> x0), while according to (447) both terms are extinguished when
x0 < x0. We come thus to the conclusion that

DR(x− x) =




1
4πξ

δ(ξ0− ξ) : ξ0 > 0

0 : ξ0 < 0

(449.1)

Were we to deform the contour C so as instead to favor advanced action (fields
responsive to future source activity!) we would, by the same analysis, be led to

DA(x− x) =




0 : ξ0 > 0

1
4πξ

δ(ξ0+ ξ) : ξ0 < 0
(449.2)

The retarded and advanced propagators (or Green’s functions)DR(•) andDA(•)
are, in an obvious sense, “natural companions.” The former, according to (448),
vanishes except on the lightcone that extends backwards from the fieldpoint x,
while DA(•) vanishes except on the forward lightcone: see Figure 107.

What about the function D0(x − x)? It has, as I will show, been sitting
quitely on the right side of (448):

D0(x− x) = 1
4πξ

[
δ(ξ0− ξ)− δ(ξ0+ ξ)

]
: all ξ0 (450)

= DR(x− x)−DA(x− x)

Note first that D0(x − x)—thus described, and thought of as a function of
x—clearly vanishes except on the lightcone that extends backward and forward

264 To see how the representation does its job, use Mathematica to Plot the
function sin kx

πx for several values of k, and also to evaluate
∫ +∞
−∞

sin kx
πx dx.
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x

ξ0

ξ x

Figure 107: The retarded propagator DR(•) harvests source data
written onto the lightcone (shown at left) that extends backward from
the fieldpoint •. The advanced propagator DA(•) looks similarly to
the forward lightcone. Source data at the • shown at left is actually
invisible to the fieldpoint •, since it lies interior to rather than on
the backward cone (but it would become visible if the photon had
mass). Ditto at right.

from x, so the 3rd of the conditions (441) is clearly satisfied. Writing

D0(x− x) ≡ D(ξ0, ξ)

we observe that D(ξ0, ξ) is, by (450), an odd function of ξ0, so

D(0, ξ) = 0 : all ξ

which serves to establish the 4th of the conditions (441). That D0(x− x) = 0
(the 1st of those conditions) follows from the remarks (i) that the functions
GC(x − x) described at (446) satisfy GC = 0 for every contour C, and (ii)
that GC → D0 if we take C to be (topologically equivalent to) the bounded
contour shown in Figure 108. Finally, we observe (see again (447))that

∂
∂x0

D0(x− x) = 1
(2π)3

∫∫∫
cos k(x0 − x0)e−ikkk···(xxx− xxx) d3k

↓
= 1

(2π)3

∫∫∫
e−ikkk···(xxx− xxx) d3k when x0 = x0

But = δ(xxx− xxx)
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Figure 108: The bounded contour that, when introduced into (446),
yields the function D0. The contours shown in Figure 106 have the
property that they are “this or that, depending on the sign of the
time,” and it is because they “flip” that they give rise to a solution
of the inhomogeneous wave equation. The contour shown above
entails no such flip, so gives rise to a solution of the homogeneous
wave equation. The point is developed in the text, and—in much
great detail—in a reference cited.

by the Fourier integral theorem,265 and this expresses the upshot of the 2nd of
the conditions (441). Further analysis would show that the D0(x−x) described
above is the unique realization of the conditions (441).

Returning with (450) to (447) we obtain

DR(x− x) = θ( x0 − x0) ·D0(x− x)
DA(x− x) = −θ(−x0 + x0) ·D0(x− x)

where θ(x) is the Heaviside step function:

θ(x) =
∫ x

−∞
δ(ξ) dξ =




0 x < 0
1
2 x = 0
1 x > 0

It’s occurance in this context can be traced to the sign-of-the-times-dependent
“contour flipping” that enters into the definitions of DR(x− x) and DA(x− x)
265 The Fourier integral theorem asserts that

φ(x)= 1√
2π

∫
eikx

{
1√
2π

∫
e−ikxφ(x) dx

}
dk

for “all” φ(x). Reversing the order of integration, we obtain the identity used
in the text

δ(x− x) = 1
2π

∫
e−ik(x−x) dk

which can be considered to lie at the heart of Fourier’s theorem and of Fourier
analysis.



350 Solution of the field equations

(see again Figure 106) but is absent from the definition of D0(x− x).266

From the fact that D0(•) is attached to both sectors of the lightcone we
conclude (see again (442)) that if we know the values assumed by the free
ambient field φ0 and its derivatives ∂φ0 on some spacelike surface σ′ then we
know the values assumed everywhere by φ0: the free field equations allow us
both to predict and to retrodict . But the field equations do not, in general,
allow us to predict source motion, which is typically of semi-extrinsic origin
(we haven’t yet decided whether to flip the light switch or not!) . . . and it
is for this reason that we have—“by hand,” not from mathematical (or deep
physical?) necessity—inserted DR(•) rather than DA(•) into (438.1).

The preceding analysis has been somewhat “heavy.” But it has yielded
results—see again (438), (442), (449) & (450)—of remarkable simplicity and
high plausibility. It has employed analytical methods which have in fact long
been standard to several branches of “linearity-dominated” physics and
engineering (though their importation into classical/quantum electrodynamics
is—oddly—of relatively recent date: it was accomplished in the late ’s
and early ’s by Julian Schwinger) . . . and which are, beneath the surface
clutter, really rather pretty (Richard Crandall’s “favorite stuff”). I turn now to
discussion of some of the specific electrodynamical implications of the material
now in hand.

2. Application: the Liénard-Wiechert potential. Let the values—values consistent
with the Lorentz gauge condition—assumed by the 4-potential Aµ and its first
derivatives ∂αAµ on some everywhere-spacelike surface σ be given/prescribed.
Then (see again (442): also Figure 109)

Aµ(x) =
∫
σ

{
Aµ(x)∂αD0(x− x)−D0(x− x)∂αAµ(x)

}
dσα (451)

describes the “evolved values” that—in forced consequence of the equations of
free-field motion—are assumed by our “ambient field” at points x which lie off
the “data surface” σ. Any particular inertial observer would in most cases find
it most natural to take σ to be a time-slice, and in place of (451) to write

=
∫∫∫ {

Aµ(x) ∂
∂x0

D0(x− x)−D0(x− x) ∂
∂x0

Aµ(x)
}
dx1dx2dx3

While every particular observer has that option (Figure 110), it must be borne in
mind that the time-slice concept is not boost invariant : the point was illustrated
in Figure 58, and is familiar as the “breakdown of non-local simultaneity.” The
preceding equation states explicitly how the value of Aµ(x) depends upon the
initial value and initial time derivative of the field, and establishes the sense in
which “launching a free electromagnetic field” is like throwing a ball.267

266 This topic is developed in unusual detail in §§3 & 4 of my “Simplified
production of Dirac δ-function identities,” ().
267 problem 70.



The Liénard-Wiechert potential 351

Figure 109: Cauchy data is written onto the dotted surface σ. The
function D0(x − x) vanishes except on the lightcone: it serves in
(451) to describe how data at the intersection of σ with the lightcone
is conflated to produce the value assumed by Aµ at the fieldpoint •.
As the temporal coordinate of • increases the intersection becomes
progressively more remote, until finally it enters a region where
(in typical cases) the initial data was null . . .which is to say: the
ambient field at any given spatial location can be expected ultimately
to die away. The die-off is reenforced by the (4πξ)−1 which was seen
at (450) to enter into the design of D0.

Figure 110: An inertial observer has exercised his non-covariant
option to deposit his Cauchy data on a time-slice. Only data at the
spherical intersect of the lightcone and the time-slice contribute to
the value assumed at • by Aµ, though “if the photon had mass” then
data interior to the sphere would also contribute.2
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We turn our attention now to the component of the Aµ-field that arises
from source activity, which according to (438/449) can be described

Aµ(x) = 1
c

∫
DR(x− x)jµ(x) d4x

DR(x− x) =




1
4πR

δ(cT−R) : T > 0

0 : T < 0

(452.1)

(452.2)

with cT ≡ x0 − x0 and R ≡ |xxx − xxx |. We can therefore state that the value
assumed by Aµ at the field point x arises (by superposition) entirely from the
source activity sampled by the lightcone which extends backward from x. In
an effort to expose more clearly the meaning of this result we consider jµ(x) to
arise from a solitary point charge e in arbitrarily prescribed motion: we assume,
in other words, that jµ(x) can be described (see again (323))

jµ(x) = ec

∫ +∞

−∞
uµ(τ)δ(x− x(τ)) dτ

Immediately

AµR(x) = e

∫
DR(x− x)

∫ +∞

−∞
uµ(τ)δ(x− x(τ)) dτd4x

= e

∫ +∞

−∞

∫
uµ(τ)DR(x− x)δ(x− x(τ)) d4xdτ

= e

∫ +∞

−∞
uµ(τ)DR(x− x(τ)) dτ

= e
4π

∫ +∞

−∞
uµ(t) 1

R(τ)
δ(G(τ)) dτ

G(τ) ≡ cT (τ)−R(τ)

An elementary change-of-variables argument268 leads to the important general
conclusion that

δ(g(x)) =
∑
α

1
|g ′(xα)|δ(x− xα) (453)

where g ′(xα) ≡ d
dxg(x) and where (see Figure 111) the xα locate the zeros of

g(x). It follows by way of application to the problem at hand that

= e
4π

∫ +∞

−∞
uµ(t) 1

R(τ)
1

|G′(τ0)|
δ(τ − τ0) dτ (454)

where τ0 is the proper time at which x(τ) punctures the backward lightcone,
and where G′ ≡ d

dτG. If t0, xxx0 and vvv0 refer to the source-particle at the instant
of puncture, then we have (borrowing a trick from page 192)

268 See electrodynamics (), page 304. An alternative argument—that
makes transparent the origin of the perplexing absolute value bars—can be
found in the little paper cited just above.264
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x1 x2 x3 x4 x5

Figure 111: Zeros xα of a function g(x). The numbers xα and
g(xα) enter into the formulation of the important identity (453).

G′(τ0) = γ0
d
dt0

{
c(t− t0)−

√
RRR···RRR

}
with RRR ≡ xxx− xxx0

= γ0
(
− c+R̂RR···vvv0

)
= −cγ0(1− β‖)0 (455)

β‖ ≡ 1
c R̂RR···vvv ≡

{
magnitude of the component
of βββ that is parallel to RRR

Returning with (455) to (454) we obtain269

AµR(x) = e
4π

[ 1
cγ(1− β‖)R

uµ
]
0

(456.1)

↑
—signifies “evaluation at the puncture point”

which—recall A =
(
ϕ
AAA

)
and u = γ

(
c
vvv

)
—can also be formulated

ϕ
R
(x) = e

4π

[ 1
(1− β‖)R

]
0

AAA
R
(x) = e

4π

[ 1
(1− β‖)R

βββ
]
0


 (456.2)

Equations (456)—which are, in view of the complexity of the argument
from which they derive, remarkably simple, and which describe the potential

269 Beware! The R on the left is intended to signify “retarded,” while on the
right R means “length of RRR.”
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fields generated by the retarded action of a moving point charge—were first
obtained by A. Liénard () and E. Wiechart (), and describe what are
universally known as the Liénard-Wiechart potentials. The “retarded potential”
idea was apparently original to B. Riemann (), and the essence of (452)
can reportedly be found in work () of Ludwig Lorenz (who, as previously
remarked, is to be distinguished from H. A. Lorentz). The work of Riemann
and of Lorenz was known to Maxwell, but one gets the impression (see Treatise
on Electricity & Magnetism, §§805 and 861–end) that Maxwell was not much
impressed. Which—though historically explicable—is too bad, for equations
(456) are, as will emerge, fundamental to the theory of radiative processes.

The “advanced analogs” of (456) can be obtained by reversing the signs of
all β‖-terms and evaluating

[
etc.

]
at the future puncture point.

The Liénard-Wiechart potential (456.2) gives back the familiar Coulomb
potential

ϕ(x) = e
4πR

AAA(x) = 000

when the source is at rest (see the figure), and the “retarded evaluation” idea

x

R

R

Figure 112: Show in red is the worldline of a charged particle at
rest (with respect to the inertial observer who drew the diagram).
The distance from the field point x to the puncture point on the
backward lightcone was seen to be R . . . and so—as yet unbeknownst
to the field point—it has remained.

conforms nicely to our physical intuition. It is, therefore, the γ(1− β‖)-term in
(456.1) and the (1 − β‖)-term in (456.2) that demand “explanation” if we are
to say that we “understand” (456). Now . . . if θ is the angle subtended by βββ
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-1 1 2 3 4

Figure 112: Polar plots showing the θ-dependence of the Doppler
factor

√
1− β2/(1− β cos θ), with β = 0, 0.2, 0.4, 0.6, 0.8, 0.95.

and RRR we have

1
γ(1− β‖)

= 1
γ(1− β cos θ)

=




√
1 + β
1− β > 1 at θ = 0

= 1 at θ = arccos
[
1−

√
1− β2

β

]

1
γ
< 1 at θ = 90◦

√
1− β
1 + β

< 1 at θ = 180◦

—results of which the preceding figure provides vivid graphic interpretations.
The expressions [(1 + β)/(1− β)]±1 are familiar (recall again problem 43) as
the eigenvalues of /\\\(β): they are found, morover, to be fundamental to the
description of the relativistic Doppler effect ,270 so

1
γ(1− β‖)

≡ Doppler factor

becomes271 a natural terminology. Looking back again to (456.1), we see that
the Doppler factor
• serves to enhance the value of AµR if the source point is seen by the field

point to be approaching at the moment of puncture:

0 � θ0 � cos–1
[

1−
√

1−β2

β

]
0

• serves in the contrary case to diminish the value of AµR
. . .which is what one would expect if (see Figure 114) the lightcone possessed
some small but finite “thickness,” for in the former case the field point would
then get a relatively “longer look” at the source point, and in the latter case a
“briefer look.” Note that it is not the Doppler factor itself but the

truncated Doppler factor ≡ 1
(1− β‖)

that stands in (456.2).

270 See electrodynamics () page 239.
271 Compare A. Sommerfeld, Electrodynamics (), page 250.
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Figure 114: If the lightcone had “thickness” then the presence
of the Doppler factor in (456) could be understood qualitatively to
result from the relatively “longer look” that the field point gets at
approaching charges, the relatively “briefer look” at receding charges.

“effective present position” present position

Reff (v‖T )0

cT0

puncture point

R0

Figure 115: Construction used to define the “effective present
distance” from source to field point:

Reff = (R− v‖T )0 = (R− β‖cT )0 = (1− β‖)0R0
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Some textbook writers make much of the curious fact that it is possible
(see Figure 115) by linear extrapolation from the puncture point data to arrive
at an “physical interpretation” of the expression [(1− β‖)R]0

[(1− β‖)R]0 = Reff ≡
{ present distance from field point to charge if

the charge had moved uniformly/rectilinearly
since the moment of puncture

and in this notation to cast (456.2) in the form

ϕ
R
(x) = e

4πReff

AAAR(x) = e
4πReff

βββ0

My own view is that the whole business, though memorably picturesque, should
be dismissed as a mere curiosity . . . on grounds that it is too alien to the spirit of
relativity—and to the letter of the principle of manifest Lorentz covariance—to
be of “deep” significance. More worthy of attention, as will soon be
demonstrated, is the fact that equations (456) admit272 of the following
manifestly covariant formulation

AµR(x) = e
4π

[
uµ

Rαu
α

]
0

(457)

where Rµ ≡ xµ − xµ(τ)

3. Field of a point source in arbitrary motion. What we want now to do is to
evaluate

FµνR (x) = ∂µAνR(x)− ∂νAµR(x)

where AµR(x) is given most conveniently by (457)

So the physics of what follows is conceptually straightforward. The point is
worth keeping in mind, for the computational details are—like the final result—
quite intricate.

Turning now, therefore, to the evaluation of

∂µAνR(x) = gµm ∂
∂xm

{
e
4π

[
uν

Rαuα

]
0

}

. . . it is critically important to notice that (see the following figure) variation of
the field point x induces a variation of the proper time of puncture; i.e., that
τ0 is x-dependent: τ0 = τ0(x). Formally,

∂
∂xm

= ∂∂∂
∂∂∂xm

+ ∂ τ
∂xm

∂
∂ τ

where ∂∂∂m senses explicit x-dependence and(∂mτ) ∂∂τ senses covert x-dependence.

272 problem 71.
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x+ dx
x

τ0(x+ dx)

τ0(x)

Figure 116: Variation of the field point x typically entails variation
also of the puncture point, and it is this circumstance that makes
evaluation of the electromagnetic field components so intricate.

Proceeding thus from

∂µAνR(x) = e
4π
gµm

[{
∂∂∂
∂∂∂xm

+ ∂ τ
∂xm

∂
∂ τ

} uν(τ)
Rα(x, τ)uα(τ)

]
0

}

Rα(x, τ) ≡ xα − xα(τ)

we are led by straightforward calculation to the following result:

= e
4π

[
1

(Rαuα)2
(
c2gµm ∂ τ

∂xm
− uµ

)
uν

]
0

+ e
4π

[
1

(Rαuα)
gµm ∂ τ

∂xm

{
aν − (Rαaα)

(Rβuβ)
uν

}]
0

(458)

Here use has been made of uαuα = c2 and also of

aµ ≡ du
µ(τ)
dτ

= 4-acceleration of the source particle
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Notational adjustments make this result easier to write, if not immediately
easier to comprehend. Let r be the Lorentz-invariant length defined270

r ≡ 1
cRαu

α = γ(1− β‖)R

and let wµ be the dimensionless 4-vector defined

wµ ≡ c∂µτ − 1
cu

µ

Then

∂µτ = cwµ + uµ

c2

Easily ∂µ(RαRα) = 2
{
Rµ − (∂µτ)(Rαuα)

}
. From this and the fact that Rµ is

(by definition of “puncture point”) invariably null at the puncture point

[
RαR

α
]
0

= 0, therefore
[
∂µ(RαRα)

]
0

= 0

it follows that [
∂µτ

]
0

=
[
Rµ/(Rαuα)

]
0

= 1
c
[
Rµ/r

]
0

from which [
uαw

α
]
0

= 0[
wαw

α
]
0

= −1

[
aα∂

ατ
]
0

=
[
Rαa

α

Rβuβ

]
0

= 1
c
[
aαw

α
]
0

follow as fairly immediate corollaries.273 When we return with this information
to (458) we obtain

∂µAνR(x) = e
4π

[
1
r2
wµbν

]
0

+ e
4πc2

[
1
r
(wµ + bµ)

(
aν − (aw)bν

)]
0

b ≡ 1
cu = γ

(
1
βββ

)

273 For detailed proof see classical radiation (), pages 523/4. But
beware! I have now altered slightly the definitions of r and wµ.
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Consequently

FµνR (x) ≡ electromagnetic field at x due to past source activity

= e
4π

[
1
r2

(wµbν− wνbµ)
]
0

(459)

+ e
4πc2

[
1
r

{
(bµaν− bνaµ) + (wµaν− wνaµ)− (aw)(wµbν− wνbµ)

}]
0

= acceleration-independent term ∼ 1/r2,
dominant near the worldline of the source

+ acceleration-dependent term ∼ 1/r,
dominant far from the worldline of the source

= “velocity field” + “acceleration field”

= “near field” + “far field”

= generalized Coulomb field + radiation field

This result is complicated (the physics is complicated!), but not “impossibly”
complicated. By working in a variety of notations, from a variety of viewpoints,
and in contact with a variety of special applications it is possible to obtain—
ultimately—a fairly sharp feeling for the extraordinarily rich physical content
of (459). As preparatory first steps toward that objective . . .

We note that, using results developed on the preceding page,

wµ = c∂µτ − bµ

becomes

=
[
Rµ/r − bµ

]
0

which when spelled out in detail reads

(
w0

www

)
=

1

γ(1−R̂RR···βββ)R

(
R
RRR

)
− γ

(
1
βββ

)

with R̂RR ≡ RRR/R. A little manipulation (use γ−2 = 1− βββ ···βββ ) brings this result to
the form

=
γ

1−R̂RR···βββ

(
(R̂RR− βββ )···βββ

R̂RR− βββ + (R̂RR···βββ )βββ − (βββ ···βββ)R̂RR︸ ︷︷ ︸
)

(460.1)

|
= βββ× (βββ×R̂RR)

It follows similarly from (270) that

a =
(
u̇0

u̇uu

)
= γ4

(
aaa···βββ

aaa+ βββ× (βββ× aaa)

)
(460.2)

where aaa ≡ dvvv/dt.
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To extract EEE(x) from (460) we have only (see again page 108) to set ν = 0
and to let µ range on

{
1, 2, 3

}
:

EEE(x) = e
4π

[
1
r2

(wwwb0 − w0bbb)
]
0

+ e
4πc2

[
1
r

{
(bbbu̇0 − b0u̇uu) + (wwwu̇0 − w0u̇uu)− (aw)(wwwb0 − w0bbb)

}]
0

It follows readily from (460) that

wwwb0 − w0bbb = 1
1−R̂RR···βββ

(R̂RR− βββ )

bbb u̇0 − b0 u̇uu = −γ3aaa

wwwu̇0 − w0u̇uu = −γ3 1
1−R̂RR···βββ

βββ ×
(
aaa× (R̂RR− βββ)

)

(aw) = −γ3 1
1−R̂RR···βββ

{
(1− β2) (R̂RR···aaa )− (1−R̂RR···βββ )(βββ ···aaa )

}

so after some unilluminating manipulation we obtain

EEE(x) = e
4π

[
1
r2

1
(1−R̂RR···βββ )

(R̂RR− βββ )
]
0

(461.1)

+ e
4πc2

[
1
r

γ

(1−R̂RR···βββ )2
R̂RR×

(
(R̂RR− βββ )× aaa

)]
0

A similar274 computation addressed to the evaluation of BBB(x) leads to a a result
which can be expressed very simply/economically:

BBB(x) =
[
R̂RR×EEE(x)

]
0

(461.2)

It should be noted that equations (459) and (461) describe precisely the same
physics: they differ only notationally. And both are exact (no approximations).
I remarked earlier, in connection with equations (456), that “the ‘retarded
evaluation’ idea

[ ]
0

conforms nicely to our physical intuition,” but must now
admit that (461) contains many non-intuitive details: in this sense it is evidently
easier to think reliably about potentials (which are “spooks”) than about fields
(which are “real”)!

Notice also that if we insert the expressions that appear on the right sides
of equations (461) into Lorentz’ FFF = q(EEE + 1

cvvv×BBB) then we obtain, in effect,
a description of the retarded position/velocity/acceleration-dependent action
on one charge upon another—a description free from any direct allusion to the
field concept! It was with the complexity of this and similar results in mind
that I suggested (page 250) that life without fields “would . . . entail more cost
than benefit.”

274 . . . and similarly tedious: generally speaking, one can expect tediousness to
increase in proportion to how radically one departs—as here—from adherence
to the principle of manifest covariance.
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We have encountered evidence (pages 240, 297) of what might be called a
“tendency toward BBB ⊥ EEE ,” but have been at pains to stress (page 332) that
BBB ⊥ EEE remains, nevertheless, an exceptional state of affairs. It is, in view of the
latter fact, a little surprising to discover that BBB ⊥ EEE does pertain—everywhere
and exactly—to the field produced by a single point source in arbitrary motion.
The key word here is “single,” as I shall now demonstrate: write
• EEE and BBB =R̂RR×EEE to describe (at x) the field generated by e;

• EEE and BBB =R̂RR×BBB to describe the field generated by e.
Clearly BBB ⊥EEE and BBB ⊥EEE. The question before us: “Is (BBB +BBB) ⊥ (EEE +EEE)?”
. . . can be formulated “Does (R̂RR×EEE + R̂RR×EEE)···(EEE + EEE) = 0?” and after a
few elementary simplifications becomes “Does (EEE ×EEE )···(R̂RR−R̂RR) = 0?” Pretty
clearly, (461.1) carries no such implication unless restrictive conditions are
imposed upon βββ, aaa, βββ and aaa .275, 276

My plan now is to describe a (remarkably simple) physical interpretation
of the acceleration-independent leading term in (461). This effort will motivate
the introduction of certain diagramatic devices that serve to clarify the meaning
also of the 2nd term. With our physical intuition thus sharpened, we will move
in the next chapter to a discussion of the “radiative process.”

4. Generalized Coulomb fields. The leading term in (459/461) provides an exact
description of EEE(x) and BBB(x) if the source—as seen from x—is unaccelerated
at the moment of puncture (i.e., if aaa0 = 000), and it becomes universally exact
(i.e., exact for all fieldpoints x) for free sources (i.e., for sources with rectilinear
worldlines). Evidently

EEE = e
4π

[
1
r2

1
(1−R̂RR···βββ )

(R̂RR− βββ )
]
0

(462.1)

r ≡ γ(1−R̂RR···βββ )R : see page 359

BBB =
[
R̂RR×EEE(x)

]
0

(462.2)

—which become “Coulombic” for sources seen to be at rest (βββ = 000)—describe
the Lorentz transform of the electrostatic field generated by an unaccelerated277

point charge. They describe, in other words, our perception of the Coulomb
field of a passing charge. Explicit proof—and interpretive commentary—is
provided below.

We are, let us suppose, certifiably inertial. So also is O, whom we see to
be drifting by with speed βββ (and whose habit it is to use red ink when writing

275 problem 72.
276 problem 73.
277 “Unaccelerated” is, we now see, redundant—implied already by the word
“electrostatic.” Readers may find it amusing/useful at this point to review the
ideas developed in §2 of Chapter 1.
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down his physical equations). It happens (let us assume) that O’s frame is
related irrotationally to ours; i.e., by a pure boost /\\\(βββ ). Then (see again §5
in Chapter 2) the coordinates which he/we assign to a spacetime point stand
in the relation

t = γt+ (γ/c2)vvv···xxx
xxx = xxx+

{
γt+ (γ − 1)(vvv···xxx)/v2

}
vvv

}
(210.1)

which can be notated (
t
x‖

)
= γ

(
1 v/c2

v 1

) (
t
x‖

)

xxx⊥ = xxx⊥


 (210.2)

while the electric/magnetic fields which he/we assign to any given spacetime
point stand in the relation

EEE = (EEE−βββ×BBB)‖ + γ(EEE−βββ×BBB)⊥
BBB = (BBB+βββ×EEE)‖ + γ(BBB+βββ×EEE)⊥

}
(263)

Let us suppose now that O sees a charge e to be sitting at his origin, and
no magnetic field: EEE = e

4πR
−2 x̂xx and BBB = 000. The latter condition brings major

simplifications to (263): we have

EEE = EEE‖ +EEE⊥ with
{
EEE‖ = EEE‖

EEE⊥ = γEEE⊥

BBB = BBB‖ +BBB⊥ with
{
BBB‖ = 000
BBB⊥ = γ(βββ×EEE)⊥ = βββ×EEE

which we see to be time-dependent (because we see the charge to be in motion).
We use the notations introduced in Figure 117 to work out the detailed meaning
of the preceding statements:

O sees a radial electric field:

E‖

E⊥
=
R‖

R⊥

But

R‖

R⊥
=
γR‖

R⊥
: the ‖-side of our space triangle is Lorentz contracted

E‖

E⊥
=

E‖

γ –1E⊥
: the ⊥-component of our EEE -field is Lorentz dilated

so
E‖

E⊥
=
R‖

R⊥
: we also see a radial electric field

But while O sees a spherical “pincushion,” we (as will soon emerge) see a
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E⊥

E‖

R⊥

α
e

R‖

E⊥

E‖

R⊥

α
e

R⊥ βββ

Figure 117: Figures drawn on the space-plane that contains the
charge •, the field-point in question, and the βββ -vector with which
the observer sees the other to be passing by. The upper figure defines
the notation used by O to describe the Coulomb field of the charge
sitting at his origin. The lower figure defines the notation we (in
the text) use to describe our perception of that field.
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flattened pincushion. More precisely: O sees the field intensity to be given by

E =
e

4πR2
, independently of α

It follows, on the other hand, from the figure that

E =
√

(E cosα)2 + ( 1
γE sinα)2 = E

√
cos2 α+ 1

γ2 sin2 α

so
E =

e

4πR2

1√
cos2 α+ 1

γ2 sin2 α

Similarly,

R =
√

(γR cosα)2 + (R sinα)2 = γR
√

cos2 α+ 1
γ2 sin2 α

so

E =
e

4πR2

1

γ2
(
cos2 α+ 1

γ2 sin2 α
) 3

2

=
e

4πR2

1− β2(
1− β2 sin2 α

) 3
2

(463.1)

which is to be inserted into

EEE = ER̂RR and BBB = βββ×EEE (463.2)

—the upshot of which is illustrated in Figures 118 & 119.

The results developed above make intuitive good sense, but do not much
resemble (462). The discrepency is illusory, and arises from the circumstance
that (462) is formulated in terms of the retarded position RRR0, while (463)
involves the present position RRR. Working from Figures 120 & 121 we have

RRR = RRR0 −R0βββ

which is readily seen278 to entail

R = R0

√
1− 2R̂RR0···βββ + β2 = R0

√
1− 2β cos θ + β2

Also278

sin2 α = (R0/R)2 sin2 θ =
1− cos2 θ

1− 2β cos θ + β2

and with this information—together with the observation that

βββ×EEE =
RRR0 −RRR
R0

× ER̂RR = R̂RR0×EEE

—it is an easy matter to recover (462) from (463).278

278 problem 74.
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βββ

Figure 118: Above: cross section of the “spherical pincushion”
that O uses to represent the Coulomb field of a charge • which he
sees to be at rest. We see the charge to be in uniform rectilinear
motion. The “flattened pincushion” in the lower figure (axially
symmetric about the βββ-vector) describes our perception of that same
electric field. Additionally, we see a solinoidal magnetic field given
by

BBB = βββ×EEE
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EEE

BBB

βββ

Figure 119:Ultrarelativistic version of the preceding figure,showing
also the solenoidal magnetic field. The “pincushion” has become a
“pancake:” the field of the rapidly-moving charge is seen to be very
nearly confined to a plane, outside of which it nearly vanishes, but
within which it has become very strong.

A curious cautionary remark is now in order. We have several times spoken
casually/informally of the Coulomb fields “seen” by O and by us. Of course,
one does not literally “see” a Coulomb field as one might see/photograph a
passing object (a literal pincushion). The photographic appearance of an object
(assume infinitely fast film and shutter) depends actually upon whether it is
continuously/intermittently illuminate/self-luminous: the remarks which follow
are (for simplicity) specific to continuously self-luminous objects. An object
traces a “worldtube” in spacetime. The worldtubes of objects in motion
(relative to us) are Lorentz-contracted in the βββ -direction. What we see/
photograph is the intersection of the Lorentz-contracted worldtube with the
lightcone that extends into the past from the eye/camera. The point—once
stated—is obvious, but its surprising consequences passed unnoticed until ,
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Figure 120: Variant of Figure 115 in which the motion of the
charge is not just “pretend unaccelerated” but really unaccelerated.
In this spacetime diagram the chosen field point is marked •, the
puncture point visible from • is marked •, while • marks the present
position of the charge.

RRR0 RRR

θ α
R0βββ

Figure 121: Representation of the spatial relationship among the
points •, • and •, which lie necessarily in a plane. A signal proceeds
• → • with speed c in time T0 = R0/c, during which time the charge
has advanced a distance vT0 = βR0 in the direction β̂ββ. This little
argument accounts for the lable that has been assigned to the red
base of the triangle (i.e., to the charge displacement vector).
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when they occurred independently to J. Terrell and R. Penrose. For discussion,
computer-generated figures and detailed references see (for example) G. D. Scott
& H. J. van Driel, “The geometrical appearance of large objects moving at
relativistic speeds,” AJP 33, 534 (1965); N. C. McGill, “The apparent shape
of rapidly moving objects in special relativity,” Contemp. Phys. 9, 33 (1968);
Ya. A. Smorodinskĭı & V. A. Ugarov, “Two paradoxes of the special theory of
relativity,” Sov. Phys. Uspekhi 15, 340 (1972). I am sure a search would turn
up also many more recent sources.

It is important to appreciate that our principal results—equations (462)
and (463)—might alternatively have been derived by a potential-theoretic line
of argument , as sketched below: O, who sees the charge e to be at rest, draws
upon (363) to write

EEE = −∇∇∇ϕ− 1
c
∂
∂tAAA

BBB = ∇∇∇×AAA
where

A =
(
ϕ
AAA

)
≡

(
e/4πR

000

)

entails
EEE = −∇∇∇ϕ = (e/4πR2)R̂RR and BBB = 000

O sees EEE to be normal to the equipotentials (surfaces of constant ϕ), which are
themselves spherical (see again the upper part of Figure 118). On the other
hand we—who see the charge to be in uniform motion—write

A = /\\\(−βββ )A = γφ

(
1
βββ

)

with
φ(x) = ϕ(xxx(xxx, t)) =

e

4π
√
γ2(xxx‖ − vvv t)···(xxx‖ − vvv t) + xxx⊥··· xxx⊥

and (drawing similarly upon (363)) obtain

EEE = −
{
∇∇∇+ βββ 1

c
∂
∂t

}
ϕ with ϕ ≡ γφ

BBB = −
{
βββ ×∇∇∇

}
ϕ

from which (462/463) can (with labor) be recovered. Note that we consider
the equipotentials to be ellipsoidal (see again the lower part of Figure 118),
and that the βββ 1

c
∂
∂tϕ -term causes the EEE -field to be no longer normal to the

equipotentials.

Useful geometrical insight into analytical results such as those developed
above (and in the next chapter) can be obtained if one looks to the structure
of the so-called “equiphase surfaces” which (see Figure 122) are inscribed on
timeslices by lightcones projected forward from source points. The points which
collectively comprise an equiphase surface “share a puncture point,” but in the
general case (i.e., except when the source is seen to be momentarily at rest)
share little else. To the experienced eye they do, however, indicate at least the
qualitative essentials of field structure . . . as will emerge.
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βββ

timeslice

worldline of a charge

Figure 122: Above: “equiphase surfaces” inscribed on a timeslice
by (in this instance) a solitary charge in uniform motion (lower
spacetime diagram). More complicated variants of the figure will be
encountered in the next chapter.



7
RADIATIVE PROCESSES

Introduction. It was established in §4 of the preceding chapter that the leading
term on the right side of (459/461)—the acceleration-independent term that
falls off as 1/r2—admits straightforwardly of interpretation as the Coulomb
field of the source, as seen from the field point, where the phrase “as seen from”
alludes to

• a “retardation effect:” the field point senses not the “present location”
of the source (a notion that relativity declares to be meaningless) but
the location of the puncture point—the point at which the worldline of
the source punctured the lightcone that extends backward from the field
point (a notion that does make relativistic good sense);

• the fact that if the field point sees the source to be moving at the moment
of puncture then it sees not the familiar “Coulomb field of a charge at
rest” but a Lorentz transform of that field.

We turn now to discussion of the structure and physical ramifications of the
remaining term on the right side of (459/461)—the acceleration-dependent term
that falls off as 1/r1. This is physics for which elementary experience provides
no sharp intuitive preparation, but which lies at the base of much that is most
characteristic of classical electrodynamics. The details are occasionally a bit
intricate, and their theoretical/phenomenological/technological consequences
remarkably diverse . . .which is why I give the subject a chapter of its own.

1. Radiation fields. Dropping the Coulombic component from the field (459) of
a moving charge we obtain the radiation field

Fµν = e
4πc2

[
1
r

{
(bµaν− bνaµ) + (wµaν− wνaµ)− (aw)(wµbν− wνbµ)

}]
0
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But (see again page 359)

wµ0 =
[Rµ

r
− bµ

]
0

bµ ≡ 1
cu

µ

r ≡ 1
cRαu

α = (Rb) = γ(1− β‖)R

so after a short calculation we find

Fµν = e
4π

[
1

(Ru)2
{

(Rµaν−Rνaµ)− (Ra)
(Ru)

(Rµuν−Rνuµ)
}]

0

= e
4π

[
1

(Ru)2
(Rµaν⊥−Rνaµ⊥)

]
0

(464.1)

where aµ⊥ ≡ aµ − (Ra)
(Ru)

uµ (464.2)

is (in the Lorentzian sense) ⊥ to Rµ: (Ra⊥) = 0. Note the manifest covariance
of this rather neat result.

3-vector notation—though contrary to the spirit of the principle of manifest
covariance, and though always uglier—is sometimes more useful. Looking back
again, therefore, to (461), we observe that279

R̂RR×
(
(R̂RR− βββ )× aaa

)
= −(1−R̂RR···βββ)

{
aaa− R̂RR···aaa

1−R̂RR···βββ
(R̂RR− βββ )

)}
︸ ︷︷ ︸

⊥ RRR

and that on this basis the radiative part of (461) can be written280

EEE = − e
4πc2

[ 1
R(1−R̂RR···βββ )2

{
aaa− R̂RR···aaa

1−R̂RR···βββ
(R̂RR− βββ )

)}]
0

(465.1)

BBB =
[
R̂RR×EEE

]
0

(465.2)

Equations (464) & (465) provide notationally distinct but physically equivalent
descriptions of the radiation field generated by an accelerated point charge.

It is instantaneously possible to have vvv = 000 but aaa �= 000; i.e., for a point
momentarily at rest to be accelerating. In such a circumstance (465.1) becomes

EEE = − e
4πc2

[ 1
R

aaa⊥

]
0

aaa⊥ = aaa− (R̂RR···aaa)R̂RR = −R̂RR× (R̂RR× aaa)

= e
4πc2

[
R̂RR× (R̂RR× aaa)

]
0

(466)

with consequences which are illustrated in Figures 123 & 124.

279 problem 75.
280 We make use here of r ≡ γ(1−R̂RR···βββ )R: see again page 359.
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Figure 123: Electric field at points that look back to the same
puncture point, where they see the charge to be momentarily at
rest but accelerating (in the direction indicated by the green arrow).
The red EEE-vectors arise from the radiative term (466). Addition of
the Coulombic component produces the black EEE-vectors. The grey
arrows are unit vectors R̂RR . The figure is deceptive in one respect:
every EEE-vector on the left should, according to (466), have the same
length as its counterpart on the right.

The intricate details of (461)are well-adapted to computer-graphic analysis.
In this connection every student of electrodynamics should study the classic
little paper by R. Y. Tsien,281 from which I have taken Figures 125–128. Tsien
assumes the source orbit to lie in every case in a plane, and it is in that plane
that he displays the “electric lines of force.” From his figures one can read off
the direction of the retarded EEE -field, but information pertaining directly to the
magnitude of the EEE -field (and all information pertaining to the BBB -field) has
been discarded. Nor does Tsien attempt to distinguish the radiative from the
Coulombic component of EEE.

281 “Pictures of Dynamic Electric Fields,” AJP 40, 46 (1972). Computers
and software have come a very long way in thirty years: the time is ripe for
someone to write (say) a Mathematica program that would permit students to
do interactively/experimentally what Tsien labored so hard to do with relatively
primitive resources. Tsien, by the way, is today a well-known biophysicist, who
in 1972 was still an undergraduate at Harvard, a student of E. M. Purcell, whose
influential Electricity & Magnetism (Berkeley Physics Course, Volume II) was
then recent.
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Figure 124: Shown below: the worldline of a charged particle—
initially at rest—that begins abruptly to accelerate to the right, then
promptly decelerates, returning again to rest. Shown above is the
resulting EEE-field. The remote radial section is concentric about the
original position, the inner radial section is concentric about the
altered position. The acceleration-dependent interpolating field has
the form shown in Figure 123. Indeed: it was from this figure—not
(466)—that I took the details of Figure 123. The next figure speaks
more precisely to the same physics.
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Figure 125: Snapshots of electric field lines derived from the
EEE-field generated by a charge which abruptly decelerates while
moving in the → direction. The initial velocity was β = 0.20 in
the upper figure, β = 0.95 in the lower figure. I am indebted to
Fred Lifton for the digitization of Tsien’s figures, and regret that
the available technology so seriously degraded the quality of Tsien’s
wonderfully sharp images. See the originals in Tsien’s paper 264. . . or
better: run Tsien’s algorithm on Mathematica to produce animated
versions of the figures.
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Figure 126: Snapshots of the electric field lines generated by a
charge undergoing simple harmonic motion in the 
 direction. In
the upper figure βmax = 0.10, in the middle figure βmax = 0.50, in
the lower figure βmax = 0.90.
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Figure 127: Snapshots (not to the same scale) of the electric field
lines generated by a charge undergoing uniform circular motion �
about the point marked •. In the upper figure β = 0.20, in the lower
figure β = 0.50. In the upper figure the field is—pretty evidently—
dominated by the Coulombic component of (459/461).
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Figure 128: Enlargement of the same physics as that illustrated in
Figure 127, except that now β = 0.95. The figure can be animated
by placing it on a phonograph turntable: since phonographs turn
� the spiral will appear to expand. Beyond a certain radius the
field lines will appear to move faster than the speed of light. That
violates no physical principle, since the field lines themselves are
diagramatic fictions: marked features of the field (for example: the
kinks) are seen not to move faster than light. At such high speeds
the field is dominated by the radiative part of (459/461). This is
“synchrotron radiation,” and (as Tsien remarks) the kinks account
for the rich harmonic content of relativistic synchrotron radiation.

2. Energetics of fields produced by a single source. To discuss this topic all
we have in principle to do is to introduce (459/461)—which describe the field
generated by a point charge in arbitrary motion—into (309, page 215)—which
describes the stress/energy/momentum associated with an arbitrarily prescribed
electromagnetic field . The program is clear-cut, but the details can easily
become overwhelming . . . and we are forced to look only at the physically most
characteristic/revealing features of the physically most important special cases.
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The experience thus gained will, however, make it relatively easy to think
qualitatively about more realistic/complex problems.

We will need to know (see again page 216) that

E = 1
2 (E2 + B2)

SSS = c(EEE ×BBB )
PPP = 1

c (EEE ×BBB )

describes energy density

describes energy flux

describes momentum density

but will have no direct need of the other nine components T of the stress-energy
tensor Sµν . Mechanical properties of the fields generated by accelerated sources
lie at the focal point of our interest, but to place that physics in context we
look first to a couple of simpler special cases:

field energy/momentum of a charge at rest In the rest frame
of an unaccelerated charge e we have

EEE = e
4π

1
R2

R̂RR and BBB = 000

giving

E = 1
2

(
e
4π

)2 1
R4

and SSS = PPP = 000

If (as in problem 10) we center a (mental) sphere of radius a on the charge we
find the field energy exterior to the sphere to be given by

W (a) =
∫ ∞

a
E(R)4πR2 dR = e2

8πa
(467)

. . .which—“self-energy problem”—becomes infinite as a ↓ 0, and which when
we set

= mc2

gives rise to the “classical radius” a = e2/8πmc2 of the massive point charge e.

field energy/momentum of a charge in uniform motion Drawing
now upon (463) we have

EEE = e
4πγ2

1(
1− β2 sin2 α

) 3
2

1
R2

R̂RR and BBB = βββ×EEE

But B2 = (βββ×EEE )···(βββ×EEE ) = (βββ ···βββ)(EEE ···EEE)− (βββ ···EEE)2 = β2E2 sin2 α, so

E = 1
2

(
e

4πγ2

)2 1 + β2 sin2 α(
1− β2 sin2 α

)3
1
R4

The momentum density PPP = 1
c (EEE ×BBB ) is oriented as shown in the first of the

following figures. From

P2 = 1
c2

{
(EEE ···EEE)(BBB ···BBB)− (EEE ···BBB)2

}
= 1

c2E
2B2 = 1

c2β
2E4 sin2 α



380 Radiative processes

EEE

R

PPP

α
βββ

Figure 127: The solinoidal BBB field is up out of page at the point
shown, so PPP = 1

c (EEE ×BBB ) lies again on the page. Only P‖—the
component parallel to βββ—survives integration over all of space..

a

r(α) α

βββ

γ –1a

Figure 130: Lorentz contracted geometry of what in the rest frame
of the charge was the familiar “sphere of radius a,” exterior to which
we compute the total energy and total momentum. The figure is
rotationally symmetric about the βββ-axis.
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we find that the magnitude of P is given by

P = 1
cβE

2 sinα = 1
cβ

(
e

4πγ2

)2 1(
1− β2 sin2 α

)3
1
R4

Turning now to the evaluation of the integrated field energy and field momentum
exterior to the spherical region considered previously—a region which appears
now to be Lorentz contracted (see the second of the figures on the preceding
page)—we have

W =
∫ π

0

∫ ∞

r(α)
E · 2πR2 sinαdRdα (468.1)

and PPP = Pβ̂ββ with

P =
∫ π

0

∫ ∞

r(α)
P sinα · 2πR2 sinαdRdα (468.2)

where r(α), as defined by the figure, is given282 by

r(α) = a
γ

1√
1− β2 sin2 α

The R -integrals are trivial: we are left with

W = π
(

e
4πγ2

)2 γ

a

∫ π

0

1
(1− β2 sin2 α)

5
2

{
sinα + β2 sin3 α

}
dα

P = β

c
2π

(
e

4πγ2

)2 γ

a

∫ π

0

1
(1− β2 sin2 α)

5
2

sin3 αdα

Entrusting the surviving integrals to Mathematica, we are led to results that
can be written283

W =
(
1− 1

4γ2

)
· γMc2 (469.1)

PPP = γMvvv (469.2)

with M ≡ 4
3

e2

8πac2
= 4

3m (470)

282 The argument runs as follows: we have

x2

(a/γ)2
+ y2

a2
= 1 whence γ2(r cosα)2 + (r sinα)2 = a2

Divide by γ2 and obtain

r2(1− sin2 α) + (1− β2)r2 sin2 α = (a/γ)2

Simplify, solve for r.
283 problem 76.
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The curious velocity-dependent factor

(
1− 1

4γ2

)
=




3
4 : β = 0

1 : β = 1

Were that factor absent (which is to say: in the approximation that
(
1− 1

4γ2

)
∼1)

we would have

P 0 ≡ 1
cW = 4

3m · γc and PPP = 4
3m · γvvv

which (see again (276) page 193) we recognize to be the relativistic relationship
between the energy and momentum of a free particle with mass 4

3m. This fact
inspired an ill-fated attempt by M. Abraham, H. Poincaré, H. A. Lorentz and
others (∼ , immediately prior to the invention of relativity) to develop an
“electromagnetic theory of mass,”284 distant echos of which can be detected in
modern theories of elementary particles. We note in passing that

• (469.1) gives back (467) in the limit v ↓ 0: the 3
4 neatly cancels the

curious 4
3 , which would not happen if (on some pretext) we yielded to the

temptation to drop the otherwise unattractive
(
1− 1

4γ2

)
-factor.

• Equations (469) and (467) are not boost-equivalent:

(
W/c
PPP

)
�= /\\\(vvv)

(
mc ≡ e2/8πac

000

)

The reason is that P 0 ≡ W/c and PPP arise by integration from a subset
Sµ0 of the sixteen components of the Sµν tensor, and the four elements
of the subset are not transformationally disjoint from the other twelve
components.

• It becomes rather natural to ask: Could a more satisfactory result be
achieved if we assumed that Maxwell’s equations must be modified in
the close proximity of charges? That relativity breaks down at small
distances?

3. Energy radiated by an accelerated charge momentarily at rest. It is in the
interest mainly of analytical simplicity that we now assume vvv = 000, a condition
that (when aaa �= 000 ) can hold only instantaneously. But the calculation is less
artificial than might at first appear: it leads to results that are nearly exact in
the non-relativistic regime v 
 c .

284 For a good general review—with bibliography—see R. L. Dendy, “A history
of the Abraham–Lorentz electromagnetic theory of mass” (Reed College, ).
See also Chapter 2 in F. Rohrlich, Classical Charged Particles () and
R. P. Feynman’s Lectures on Physics (), Volume II, Chapter 28.
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Borrowing now from (461) we have (set βββ = 000 )

EEE = e
4π

[
1
R2
R̂RR

]
0

+ e
4πc2

[
1
R
R̂RR×(R̂RR× aaa)

]
0
≡ EEE C +EEE R

BBB =
[
R̂RR×EEE

]
0
≡ BBB C +BBB R

where the superscript C identifies the “Coulombic component,” and R the
“radiative component.” We want to study energy loss (radiation from the
vicinity of the charge) so we look not to E or PPP but the energy flux vector

SSS = c(EEE ×BBB )

= SSS CC + SSS CR + SSS RC + SSS RR where



SSS CC ≡ c(EEE C ×BBB C ) ∼ 1/R4

SSS CR ≡ c(EEE C ×BBB R ) ∼ 1/R3

SSS RC ≡ c(EEE R ×BBB C ) ∼ 1/R3

SSS RR ≡ c(EEE R ×BBB R ) ∼ 1/R2

SSS CC, SSS CR and SSS RC may be of importance—even dominant importance—in the
“near zone,” but they fall off faster than geometrically : only SSS RR can pertain
to the “transport of energy to infinity”—the process of present concern. We

look therefore to

SSS RR = c(EEE R ×BBB R ) (471)

with BBB R =
[
R̂RR×EEE R

]
0

EEE R = e
4πc2

[
1
R
R̂RR×(R̂RR× aaa)

]
0

Clearly R̂RR···EEE = 0 so EEE× (R̂RR×EEE) = (EEE ···EEE)R̂RR− (R̂RR···EEE )EEE gives285

SSS =SR̂RR

S = c(EEE ···EEE ) = 1
4πc3

(
e2

4π

)(
a
R

)2

sin2 ϑ (472)

where ϑ ≡ (angle between R̂RR and aaa). The temporal rate at which field energy
is seen ultimately to stream through the remote surface differential dσdσdσ is given
by dP = SSS ···dσdσdσ. But dΩ ≡ R−2R̂RR···dσdσdσ is just the solid angle subtended (at e) by
dσdσdσ. We conclude that the power radiated into the solid angle dΩ is given by

dP =
{

1
4πc3

(
e2

4π

)
a2 sin2 ϑ

}
︸ ︷︷ ︸ dΩ (473)

|
—so-called “sine squared distribution”

The “sine squared distribution” will be shown to be characteristic of dipole
radiation, and has the form illustrated in the first of the following figures.

285 problem 77. Here and henceforth I drop the superscripts R.
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ϑ

aaa

Figure 131: The “sine squared distribution” arises when vvv ∼ 000
but aaa �= 000. The distribution is axially symmetric about the aaa-vector,
and describes the relative amounts of energy dispatched in various
ϑ-directions. The radiation is predominantly ⊥ to aaa.

Integrating over the “sphere at infinity” we find the instantaneous total radiated
power to be given by286

P = 1
4πc3

(
e2

4π

)
a2 · 2π

∫ π

0

sin2 ϑ dϑ = 2
3

(
e2

4π

)
a2

c3
(474)

This is the famous Larmor formula, first derived by Joseph Larmor in . The
following figure schematizes the physical assumptions which underlie (474). We
note that while energy may also be dispatched into the solid angle dΩ by the
SSS CC, SSS CR and SSS RC it is attenuated too rapidly to contribute to the net “energy
flux across the sphere at infinity.”

From the c−3-dependence of PLarmor we conclude that it is not easy to
radiate. Finally, I would emphasize once again that we can expect Larmor’s
formula to pertain in good approximation whatever the non-relativistic (!)
motion of the source.

4. Energy radiated by a charge in arbitrary motion. When one turns to the
general case the basic strategy (study SSS RR in the far zone) is unchanged, but
the details287 become a good deal more complicated. In the interests of brevity

286 problem 78.
287 See classical radiation (), pages 558–571.
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R ∼ ∞

aaa

Figure 132: Above: representation of the sine-squared radiation
pattern produced by a charge seen (below) at the moment of puncture
to have vvv ∼ 000 but aaa �= 000.
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βββ

dΩ

RRR

Figure 133: A charged particle e pursues an arbitrary path in
physical 3-space. We are concerned with the energy radiated into
the solid angle dΩ identified by the direction vector RRR. The vector
βββ refers to the particle’s velocity at the radiative moment, and—
adhering to the convention introduced in Figures 127 & 128—we
write

α ≡ angle between RRR and βββ

No attempt has been made here to represent the instantaneous
acceleration vector aaa.

and clarity I must therefore be content to report and discuss here only the
results of the detailed argument. It turns out that (see the preceding figure)
an accelerated charge e radiates energy into the solid angle dΩ (direction R̂RR )
at—in τ -time—a temporal rate given by

dP = 1
(1−R̂RR···βββ )5

· 1
4πc3

(
e2

4π

)∣∣R̂RR×(
(R̂RR− βββ )× aaa

)∣∣2dΩ (475)

. . .which gives back (473) when βββ = 000.

The “Dopplerean prefactor”

D(α) ≡ 1
(1−R̂RR···βββ )5

= 1
(1− β cosα)5

is plotted in Figure 134. Evidently
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5 10 15 20 25 30

α

βββ

Figure 134: Graph of the Dopplerean factorD(α), the cross-section
of a figure of revolution about the βββ-axis. Also shown, for purposes
of comparison, is the unit circle. The figure refers to the specific
case β = 0.5.

D(α)max = D (0) = 1
(1− β)5

−→ ∞ as β ↑ 1

D(α)min = D(π) = 1
(1 + β)5

−→ 1
32 as β ↑ 1

and
D(π2 ) = 1 : all β

We conclude that the (aaa-independent) Doppler factor serves to favor the forward
hemisphere:

Fast charges tend to throw their radiation forward.

Looking back again to (475), we see that the D(α)-factor competes with
(or modulates) a factor of the form

∣∣R̂RR ×(
(R̂RR − βββ ) × aaa

)∣∣2. A simple argument
shows that the latter factor vanishes if and only if (R̂RR− βββ ) ‖ aaa . This entails
that R̂RR lie in the (βββ,aaa)-plane, and that within that plane it have one or the
other of the values R̂RR1 and R̂RR2 described in Figure 135. R̂RR1 and R̂RR2 describe the
so-called “nodal directions” which are instantaneously radiation-free. Reading
from the figure, we see that
• in the non-relativistic limit R̂RR1 and R̂RR2 lie fore and aft of the aaa-vector,

independently (in lowest order) of the magnitude/direction of βββ : this is a
property of the “sine squared distribution” evident already in Figure 131.

• in the ultra-relativistic limit R̂RR1 → βββ while R̂RR2 gives rise to a “dangling
note,” the location of which depends conjointly upon βββ and aaa.

From preceding remarks we conclude that the distribution function that
describes the rate at which a charge “sprays energy on the sphere at ∞” is (in
the general case) quite complicated. Integration over the sphere can, however,
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aaa R̂RR1

βββ

R̂RR2

Figure 135: Geometrical construction of the vectors R̂RR1 and R̂RR2

that locate the nodes of the radiative distribution in the general case.

be carried out in closed form . . . and gives rise (compare (474)) to the following
description of the total power instantaneously radiated by an arbitrarily moving
source :

P = −2
3

(
e2

4π

) (aa)
c3

(476)

= 2
3

(
e2

4π

)
1
c3
·
{
γ4(aaa···aaa) + γ6(aaa···βββ)2

}
= · γ6

{
(aaa···aaa)− (aaa× βββ)···(aaa× βββ)

}

Equation (476) is manifestly Lorentz covariant , shows explicitly the sense in
which Larmor’s formula (474) is a “non-relativistic approximation,” and has
been extracted here from the relativistic bowels of electrodynamics . . .but was
first obtained by A. Liénard in , only one year after the publication of
Larmor’s result, and seven years prior to the invention of special relativity !

More detailed commentary concerning the physical implications of
(473–476) is most usefully presented in terms of special cases & applications
. . . as below:

case aaa ‖ βββ

This is the “most favorable case” in the sense that it is parallelism (aaa×βββ = 000)
that (see the last of the equations just above) maximizes P . The distribution



Radiation by a charge in arbitrary motion 389

itself can in this case be described

dP
dΩ

= sin2 α
(1− β cosα)5

1
4πc3

(
e2

4π

)
aaa···aaa (477)

= D(α) ·
[
sine squared distribution

]

α
aaa ‖ βββ

The distribution is symmetric about the (aaa‖βββ)-axis (the nodes lie fore and aft),
and has the cross section illustrated below:

αmax

aaa ‖ βββ

Figure 136: Radiation pattern in the case aaa‖βββ, to be read as the
cross section of a figure of revolution. The figure as drawn refers
to the specific case β = 0.5. The circle has radius 1

4πc3 ( e
2

4π )a2, and
sets the scale. The ears of the sine squared distribution (Figure 131)
have been thrown forward (independently of whether aaa is parallel or
antiparallel to βββ).

The ears of the sine squared distribution (Figure 131) have been thrown forward
(independently of whether aaa is parallel or antiparallel to βββ ) by action of the
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Doppler factor D(α). How much they are thrown forward is measured by

αmax = cos–1

{√
1 + 15β2 − 1

3β

}
= π

2 − 5
2β + 325

48 β
3 − · · ·

= cos–1

{
4
√

1− 15
16γ

−2 − 1

3
√

1− γ−2

}
= 1

2γ
−1 + 133

768γ
−3 + · · ·

where the former equation speaks to the non-relativistic limit β ↓ 0, and the
latter to the ultra-relativistic limit γ−1 ↓ 0. In the latter limit, the smallness of
γ−1 implies that of α: double expansion of (477)—use β =

√
1− γ−2 —gives288

dP
dΩ

= a2

4πc3
(
e2

4π

)
32γ8

{
(γα)2 − 5(γα)4 + · · ·

}

∼ a2

4πc3
(
e2

4π

)
32γ8 (γα)2

[1 + (γα)2]5

case aaa ⊥ βββ

This is the “least favorable case” in the sense that it is perpendicularity that
minimizes P : reading from (476) we have (use 1 + γ2β2 = γ2 )

P = 2
3

(
e2

4π

)
a2

c3
·
{
γ6 when aaa ‖ βββ
γ4 when aaa⊥βββ

Working from (475) we find that the angular distribution in the special case at
hand can be described

dP
dΩ

= 1
4πc3

(
e2

4π

)
1

(1−R̂RR···βββ )3

{
aaa···aaa− 1

γ2

(
R̂RR···aaa

1−R̂RR···βββ

)2}

= 1
4π

e2

4π
a2

c3
1

(1− β cosα)3
{

1− 1
γ2

sin2 α cos2 ϕ
(1− β cosα)2

}
(478)

βββ

R̂RR

α

ϕ

aaa ⊥ βββ

288 problems 79 & 80.
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βββ

aaa ⊥ βββ

Figure 137: A charge traces a circular orbit (large dashed circle)
with constant speed. The figure shows a cross section of the resulting
radiation pattern, which is now not a figure of revolution. The
short dotted lines on left and right indicate the radiation-free nodal
directions, which in a 3-dimensional figure would look like dimples
on the cheeks of an ellipsoid. The small blue circle sets the scale,
here as in Figure 136. The figure was extracted from (478) with
ϕ = 0 and, as drawn, refers to the specific case β = 0.4.

where the diagram at the bottom of the preceding page indicates the meanings
of the angles α and ϕ. Shown above is a cross section of the associated radiation
pattern. Notice that the nodal directions do not lie fore and aft: both are tipped
forward, and stand in an angular relationship to βββ that can be extracted from
Figure 135:

tan(angle between βββ and node) = a/β

The D(α)-factor has now enhanced the leading lobe of the radiation pattern,
and attenuated the trailing lobe . . . giving rise to the “synchrotron searchlight ,”
in which connection one might also look back again to Figure 128.

The radiative process just described is of major astrophysical importance
(arising when electrons spiral about magnetic field lines: ) and sets
a limit on the energy which can be achieved by particle accelerators of toroidal
geometry (whence the linear design of SLAC: today many of the toroidal
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accelerators scattered about the world are dedicated to the production of
synchrotron radiation—serve, in effect, as fancy “lightbulbs”). It is therefore
not surprising that the properties of synchrotron radiation have been studied
very closely—initially by Julian Schwinger, who asks (for example) “What are
the distinguishing spectral and polarization characteristics of the radiation seen
by an observer who looks into the synchrotron beam as it sweeps past?” For
a detailed account of the theory see Chapters 39–40 in J. Schwinger et al ,
Classical Electrodynamics ().

Synchrotron radiation would lead also to the

radiative collapse of the bohr atom

if quantum mechanical constraints did not intervene. To study the details of
this topic (which is of mainly historical interest) we look specifically to the Bohr
model of hydrogen. In the ground state the electron is imagined to pursue a
circular orbit of radius289

R = �
2

me2
= 5.292× 10−9cm

with velocity

v = e2

�
= 1

137
c = 2.188× 108cm/sec

The natural time characteristic of the system is

τ = R
v

= �
3

me4
= 2.419× 10−17sec

Reproduced below is the 3rd paragraph (§1) of Bohr’s original paper (“On the
constitution of atoms and molecules,” Phil. Mag. 26,1 (1913)):

“Let us now, however, take the effect of energy radiation into
account, calculated in the ordinary way from the acceleration of the
electron. In this case the electron will no longer describe stationary
orbits. W will continuously increase, and the electron will approach
the nucleus describing orbits of smaller and smaller dimensions,
and with greater and greater frequency; the electron on the average
gaining in kinetic energy at the same time as the whole system loses
energy. This process will go on until the dimensions of the orbit are
of the same order of magnitude as the dimensions of the electron
or those of the nucleus. A simple calculation shows that the energy
radiated out during the process considered will be enormously great
compared with that radiated out by ordinary molecular processes.

To make his model work Bohr simply/audaciously assumed the (classical)
physical ideas thus described to be “microscopically inoperative.” But I want

289 See, for example, quantum mechanics (), Chapter 2, pages 138–139.
For the duration of the present discussion I adopt rationalized units: e2/4π→ e2.
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r

R

Figure 138: Bohr atom, in which the nuclear proton and orbital
electron have been assigned their classical radii. We study the
“collapse” of the system which would follow from classical radiation
theory if quantum mechanics did not intervene.

here to pursue the issue—to inquire into the details of the “simple calculation”
to which Bohr is content merely to allude. We ask: How much energy would
be released by the radiative collapse of a Bohr atom, and how long would the
process take?

If the electron and proton were literally point particles then, clearly, the
energy released would be infinite . . .which is unphysical. So (following Bohr’s
own lead) let us assume the electron and proton to have “classical radii” given
by

r = e2/2mc2 and rp = r/1836.12� r
respectively, and the collapse “proceeds to contact.” The elementary physics of
Keplerean systems290 leads then to the conclusion that the energy released can
be described

E = 1
2
e2

{
1

r + rp
− 1
R

}
∼ 1

2
e2

{
1
r
− 1
R

}
= 1

2
e2

{
2mc2

e2
− me

2

�2

}

= mc2
{

1− 1
2

(
e2

�c

)2}
∼ mc2

290 See, for example, H. Goldstein, Classical Mechanics (2nd edition ),
page 97.
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The atom radiates at a rate given initially (Larmor’s formula) by

P = 2
3
e2

c3
a2

with a = v2

R
=

(
1

137
e
�

)2

mc2

and has therefore a lifetime given in first approximation by

T = E
P

= mc2
/

2
3
e2

c3

(
1

137
e
�

)4

(mc2)2

= 3
2 (137)5 τ

= (7.239× 1010) τ

= 1.751× 10−6sec

Despite the enormous accelerations experienced by the electron, the radiation
rate is seen thus to be “small”: the orbit shrinks in a gentle spiral and the atom
lives for a remarkably long time (1010 revlolutions corresponds, in terms of the
earth-sun system, to roughly the age of the universe!). . .but not long enough.
The preceding discussion is, of course, declared to be “naively irrelevant” by
the quantum theory (which, in the first instance, means: by Bohr) . . .which
is seen now to be “super-stabilizing” in some of its corollary effects. It can,
in fact, be stated quite generally that the stability of matter is an intrinsically
quantum mechanical phenomenon, though the “proof” of this “meta-theorem”
is both intricate and surprisingly recent.291

5. Collision-induced radiation. In many physical contexts charges move freely
except when experiencing abrupt scattering processes, as illustrated in the figure
on the facing page. We expect the energy radiated per scatter to be given in
leading approximation by

Eper scatter = 2
3
e2

4πc3
(

∆v
τ

)2

τ

where ∆v ≡ vout − vin and where τ denotes the characteristic duration of each
scattering event. Suppose we had a confined population of N such charges, and
that each charge experiences (on average) n collisions per unit time. We expect
to have τ ∼ 1/v and n ∼ v. The rough implication is that the population
should radiate at the rate

P ∼ NnEper scatter ∼ (∆v)2v2

If we could show that ∆v (∼ momentum transfer per collision) is v-independent
we would (by v2 ∼ temperature) have established the upshot of Newton’s law of
cooling . The point I want to make is that radiative cooling is a (complicated)
radiative process. The correct theory is certainly quantum mechanical (and
probably system-dependent), but the gross features of the process appear to be
within reach of classical analysis. A much more careful account of the radiation
produced by impulsive scattering processes can be found in Chapter 37 of the
Schwinger text cited on page 392.

291 See F. J. Dyson & A. Lenard, “Stability of matter. I,” J. Math. Phys. 8,
423 (1967) and subsequent papers.



The self-interaction problem 395

Figure 139: Worldline of a charged particle subject to recurrent
scattering events. Brackets mark the intervals during which the
particle is experiencing non-zero acceleration.

We have concentrated thus far mainly on single-source radiative processes,
though the theory of cooling invited us to contemplate the radiation produced
by random populations of accelerated charges. And we will want later to study
the radiation produced when multiple sources act in concert (as in an antenna).
But there are some important aspects and manifestations of single-source
radiation theory which remain to be discussed, and it is to these that I now
turn.

6. The self-interaction problem. We know that charges feel—and accelerate in
response to—impressed electromagnetic fields. But do charges feel their own
fields?. . . as (say) a motorboat may interact with the waves generated by its own
former motion? Thought about the dynamics of a free charge at rest makes it
appear semi-plausible that charges do not feel their own Coulomb fields. But the
situation as it pertains to radiation fields is much less clear . . . for when a charge
“radiates” it (by definition) “mails energy/momentum to infinity” and thus
acquires a debt which (by fundamental conservation theorems) must somehow
be paid. One might suppose that the responsibility for payment would fall to the
agency which stimulated the charge to accelerate. But theoretical/observational
arguments will be advanced which suggest that there is a sense in which
accelerated charges do feel—and recoil from—their own radiative acts.
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Compton length �/mc

Figure 140: The “classical electron” • is not, as one might expect,
larger than but much smaller than the “quantum electron.” A photon
with wavelength λ = e2/2mc2 short enough to permit one to see the
• would carry energy E = hν = hc/λ = (hc/e2)2mc2 = 137 · 2mc2
enough to create 137 electron-positron pairs . . . and in the clutter
the intended object of the measurement process would be lost!

The point at issue is made complicated by at least three interrelated
circumstances. The first stems from the fact that the structural properties
which distinguish “radiation fields” become manifest only in the “far zone,”
but it is in the “near zone” that (in a local theory like electrodynamics) any
particle/self-field interaction must occur . The second derives from the truism
that “to describe the motorboat-wake interaction one must know something
about the geometry of motorboats”: similarly, to study the electrodynamical
self-interaction problem one must be prepared to make assumptions concerning
the “structure oif charged particles.” Classical theory speaks of “point particles”
and—in the next breath—of “charged balls” of classical radius e2/2mc2, but (as
Abraham/Lorentz/Poincaré discovered: see again page 382) seems incapable of
generating a seriously-intended electron model. Which is hardly surprising, for
electrons (and charged particles generally) are quantum mechanical objects. In
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this connection it is illuminating to note that the “quantum radius” of a mass
point is (irrespective of its charge) given by �/mc. But

“classical radius” ≡ e2

mc2
= e2

�c
· �

mc
= “quantum radius”

137

. . . so the “classical electron” is much smaller than the “quantum electron.”292

Which brings us to the third complicating circumstance (Figure 140): we seek
a classical theory of processes which are buried so deeply within the quantum
regime as to make the prospects of a formally complete and self-consistent theory
seem extremely remote. From this point of view the theory described below—
imperfect though it is—acquires a semi-miraculous quality.

Limited success in this area was first achieved () by M. Abraham, who
argued non-relativistically—from energy conservation. We have

FFF + FFFR = maaa where



FFF ≡ impressed force

FFFR ≡ self-force, the nature of which we
seek to determine

FFF may act to change the energy of the (charged) particle, but we semi-expect
FFFR to conform to the energy balance condition

(work on particle by FFFR) + (energy radiated) = 0

Drawing upon Larmor’s formula (474) we are led thus to write (on a typical
time interval t1 � t � t2)

∫ t2

t1

FFFR···vvv dt+ 2
3

(
e2

4π

)
1
c3

∫ t2

t1

aaa···aaa dt
︸ ︷︷ ︸

= 0

Integration by parts gives

= aaa···vvv
∣∣∣t2
t1
−

∫ t2

t1

ȧaa···vvv dt

If it may be assumed (in consequence of periodicity or some equivalent
condition) that

aaa···vvv
∣∣∣t2
t1

= 0

then ∫ t2

t1

{
FFFR − 2

3

(
e2

4π

)
1
c3
ȧaa
}
···vvv dt = 0

292 Nor is this fact special to electrons. Since m enters identically on left and
right, it pertains also to protons, to every particle species.
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This suggests—but does not strictly entail—that FFFR may have the form

FFFR = 2
3

(
e2

4π

)
1
c3
xxx
... (479.1)

More compactly, = mτ xxx... (479.2)

where the parameter τ can be described

τ ≡ 2
3

(
e2

4π

)
1
mc3

= 4
3

(
e2

8πmc2
)

1
c

= 4
3

classical particle radius
c

∼
{

time required for light to transit from
one side of the particle to the other

The non-relativistic motion of a charged particle can—on the basis of the
assumptions that led to (479)—be described

FFF +mτxxx... = mẍxx (480.1)

or again FFF = m(ẍxx− τxxx...) (480.2)

. . .which is the so-called “Abraham-Lorentz equation.” This result has several
remarkable features:
• It contains—which is uncommon in dynamical contexts—an allusion to

the 3rd derivative. This, by the way, seems on its face to entail that
more than the usual amount of initial data is required to specify a unique
solution.
• The Abraham-Lorentz equation contains no overt allusion to particle

structure beyond that latent in the definition of the parameter τ .
• The “derivation” is susceptible to criticism at so many points293 as to

have the status of hardly more than a heuristic plausibility argument.
It is, in this light, interesting to note that the work of 75 years (by
Sommerfeld, Dirac, Rohrlich and many others) has done much to “clean
up the derivation,” to expose the “physical roots” of (480) . . .but has
at the same time shown the Abraham-Lorentz equation to be essentially
correct as it stands . . . except that
• The Abraham-Lorentz equation (480) is non-relativistic, but this is a

formal blemish which (see below) admits easily of rectification.

293 Most critically, the argument draws upoon the Larmor formula—a “far
field result”—to obtain information about “near field physics.” The first of the
“complicating circumstances” mentioned on page 396 is not only not illumi-
inated/resolved, it is not even addressed.
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We recall from page 192 that the 4-acceleration of a moving point can be
described

a(τ) ≡ d2

dτ2x(τ) =
(

1
cγ

4(aaa···vvv)
γ2aaa+ 1

c2 γ
4(aaa···vvv)vvv

)

where vvv and aaa are “garden variety” kinematic 3-variables: vvv ≡ dxxx/dt and
aaa ≡ dvvv/dt. We know also (page 192/193) that

(u, a) = c2 (481.1)
(u, a) = 0 (481.2)

and can sho by direct computation that

(a, a) = −γ4
{

(aaa···aaa) + 1
c2 γ

2(aaa···vvv)2
}

(481.3)

while a somewhat more tedious computation gives

b(τ) ≡ d
dτ a(τ) (482)

= γ3

(
1
c γ

2
[
(ȧaa···vvv) + (aaa···aaa) + 4 1

c2 γ
2(aaa···vvv)2

]
ȧaa+ 3 1

c2 γ
2(aaa···vvv)aaa+ 1

c2 γ
2
[
(ȧaa···vvv) + (aaa···aaa) + 4 1

c2 γ
2(aaa···vvv)2

]
vvv

)

where ȧaa ≡ d
dtaaa = xxx...

A final preparatory computation gives

(u, b) = γ4
{

(aaa···aaa) + 1
c2 γ

2(aaa···vvv)2
}

= −(a, a) (481.4)

We are in position also to evaluate (a, b) and (b, b), but have no immediate need
of such information . . . so won’t.294 Our immediate objective is to proceed from
FFFR = 2

3 (e2/4π) 1
c3xxx
... to its “most natural” relativistic counterpart—call it Kµ

R . It
is tempting to set KR = 2

3 (e2/4π) 1
c3 b, but such a result would—by (481.4)—be

inconsistent with the general requirement (see again page ???) that (K,u) = 0.
We are led thus—tentatively—to set

KR = 2
3

(
e2

4π

)
1
c3
b⊥ (483)

b⊥ ≡ b−
(b, u)
(u, u)

u

= b+
(a, a)
c2

u

= γ3

(
1
c γ

2
[
(ȧaa···vvv) + 3 1

c2 γ
2(aaa···vvv)2

]
ȧaa+ 3 1

c2 γ
2(aaa···vvv)aaa+ 1

c2 γ
2
[
(ȧaa···vvv) + 3 1

c2 γ
2(aaa···vvv)2

]
vvv

)

in which connection we note that

↓
=

(
0
FFFR

)
in the non-relativistic limit (as required)

294 problem 81.



400 Radiative processes

Now, the spatial part of Minkowski’s equation Kµ = md2x/dτ2 can (see again
(288) page 197) be written (1/γ)KKK = d

dt (γmvvv), and in this sense it is (not KKK
but) (1/γ)KKK which one wants to call the “relativistic force.” We are led thus
from (483) to the conclusion that the relativistic self-force

FFFR = 2
3

(
e2

4π

)
1
c3
γ2

{
ȧaa+ 3 1

c2 γ
2(aaa···vvv)aaa+ 1

c2 γ
2
[
(ȧaa···vvv) + 3 1

c2 γ
2(aaa···vvv)2

]
vvv
}

(484.1)

This result was first obtained () by Abraham, who however argued not from
relativity but from a marginally more physical refinement of the “derivation” of
(479). The “argument from relativity” was first accomplished by M. von Laue
(). The pretty notation

FFFR = 2
3

(
e2

4π

)
1
c3
γ4

{
ggg + 1

c2 vvv × (vvv × ggg)
}

(484.2)

ggg ≡ ȧaa+ 3 1
c2 γ

2(aaa···vvv)aaa

was introduced into the modern literature by David Griffiths,295 but was
reportedly original to Abraham.296

All modern self-interaction theories297 hold (483)—which can be notated

Kµ
R = 2

3

(
e2

4π

)
1
c3

{
d3xµ

dτ3
+ 1
c2

(aαaα)dx
µ

dτ

}

aα ≡ d
2xα

dτ2

—to be exact (so far as classical theory allows). Which is surprising, for we have
done no new physics, addressed none of the conceptual difficulties characteristic
of this topic. We note with surprise also that we can, in the relativistic regime,
have FFFR 	= 000 even when ȧaa = 000.

To study the physical implications of the results now in hand we retreat
(in the interest of simplicity) to the non-relativistic case: (480). If (also for
simplicity) we assume FFF to be xxx-independent (i.e., to be some arbitrarily
prescribed function of t alone) then the Abraham-Lorentz equation (480) reads

xxx
...− 1

τ ẍxx = − 1
mτ FFF (t) (485)

and entails

ẍxx(t) = et/τ
{
aaa− 1

mτ

∫ t

0

e−s/τFFF (s) ds
}

(486.1)
↑
—constant of integration

295 “Dumbbell model for the classical radiation reaction,” AJP 46 244 (1978).
296 problem 82.
297 For references see the Griffiths paper just cited.
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Successive integrations give

ẋxx(t) = vvv +
∫ t

0

ẍxx(s) ds (486.2)

and

xxx(t) = xxx+
∫ t

0

ẋxx(s) ds (486.3)

where vvv and xxx are additional constants of integration.298

In the force-free case FFF (t) ≡ 000 equations (486) promptly give

xxx(t) = xxx+ vvv t+ aaaτ2et/τ

This entails ẋxx(t) = vvv + aaaτet/τ , which is asymptotically infinite unless aaa = 000.
So we encounter right off the bat an instance of the famous run-away solution
problem, which bedevils all theories of self-interaction. It is dealt with by
conjoining to (485) the stipulation that

Run-away solutions are to be considered
“unphysical” . . . and discarded. (487)

One (not immediately obvious) effect of the asymptotic side-condition (487) is
to reduce to its familiar magnitude the amount of initial data needed to specify
a particular particle trajectory.

To gain some sense of the practical effect of (487) we look next to the
case of an impulsive force FFF (t) ≡ mτAAAδ(t− t0) . Immediately

ẍxx(t) =



et/τaaa : t < t0

et/τ
[
aaa−AAAe−t0/τ

]
: t > t0

Thbe requirement—(487)—that ẍxx(t) remain asymptotically finite entails that
the adjustable constant aaa be set equal to AAAe−t0/τ . Then

ẍxx(t) =



AAAe(t−t0)/τ : t < t0

000 : t > t0

(488)

The situation is illustated in Figure 141. The most striking fact to emerge
is that the particle starts to accelerate before it has been kicked! This is an
instance of the famous preacceleration phenomenon. It is not an artifact of the
δ-function, not a consequence of the fact that we are working at the moment
in the non-relativistic approximation . . .but a systemic feature of the classical
self-interaction problem. Roughly, preacceleration may be considered to arise

298 problem 83.
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t
t0

Figure 141: Graphs of (reading from top to bottom) the impulsive
force FFF (t) ≡ mτAAAδ(t − t0) and of the resulting acceleration ẍxx(t),
velocity ẋxx(t) and position xxx(t). The shaded rectangle identifies the
“preacceleration interval.”

because “the leading edge of the extended classical source makes advance
contact with the force field.” The characteristic preacceleration time is—
consistently with this picture—small, being given by τ (∼ 10−24 seconds for
an electron). On its face, preacceleration represents a microscoptic violation of
causality . . . and so it is, but the phenomenon lies so deep within the quantum
regime as to be (or so I believe) classical unobservable in every instance.
Preacceleration is generally considered to be (not a physical but) a merely
“mathematical phenomenon,” a symptom of an attempt to extend classical
physics beyond its natural domain of applicability.

We may “agree not to be bothered” by the preacceleration “phenomenon.”
But preacceleration comes about as a forced consequence of implementation of
the asymptotic condition (487) . . . and the fact that the equation of motion (485)
cannot stand on its own feet, but must be propped up by such a side condition,
is bothersome. Can one modify the equation of motion so as to make the
make the asymptotic condition automatic?. . . so that “run-away solutions”
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simply do not arise? The question provokes the following formal manipulation.
Let (485) be written

(1− τD)mẍxx(t) = FFF (t)

or again
mẍxx(t) = 1

1− τDFFF (t) (489)

where D ≡ d
dt . Recalling 1

λ =
∫ ∞

0

e−λθ dθ, we presume to write

1
1− τD =

∫ ∞

0

e−(1−τD)θ dθ

even though D is here not a number but a differential operator (this is heuristic
mathematics in the noble tradition of Heaviside). Then

mẍxx(t) =
∫ ∞

0

e−θeθτDFFF (t) dθ

But eθτDFFF (t) = FFF (t+ θτ) by Taylor’s theorem, so

=
∫ ∞

0

FFF (t+ θτ) dθ (490)

Notice that, since c ↑ ∞ entails τ ↓ 0, we can use
∫ ∞

0

e−θ dθ = 1 to recover

Newton’s mẍxx(t) = FFF (t) in the non-relativistic limit. Equation (490) states that
ẍxx(t) is determined by a weighted average of future force values, and therefore
provides a relatively sharp and general characterization of the preacceleration
phenomenon—encountered thus far only in connection with a single example.
Returning to that example . . . insert FFF (t) ≡ mτAAAδ(t− t0) into (490) and obtain

ẍxx(t) =
∫ ∞

0

AAAδ(t− t0 + θτ)τdθ =



AAAe(t−t0)/τ : t < t0

000 : t > t0

We have recovered (488), but by an argument that is free from any explicit
reference to the asymptotic condition. In (490) we have a formulation of the
Abraham-Lorentz equation (480) in which the “exotic” features have been
translocated into the force term . . .but we have actually come out ahead: we
have managed to describe the dynamics of a self-interacting charge by means
of an integrodifferential equation of motion that stands alone, without need of
a side condition such as (487). The general solution of (490) has, by the way,
the familiar number of adjustable constants of integration, so standard initial
data serves to identify particular solutions.

If in place of the “integral representation of 1/(1− τD)” we use

1
1− τD = 1 + τD + (τD)2 + · · ·
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then in place of (490) we obtain

mẍxx(t) = FFF (t) + τFFF
′
(t) + τ2FFF

′′
(t) + · · · (491)

= Newtonian force + Radiative corrections

Equations (490) and (491) are equivalent. The latter masks preacceleration
(acausality), but makes explicit the Newtonian limit.299

Having thus exposed the central issues, I must refer my readers to the
literature for discussion of the technical details of modern self-interaction
theory: this is good, deep-reaching physics, which has engaged the attention of
some first-rate physicists and very much merits close study.300 I turn now to
discussion of some of the observable physical consequences of self-interaction:

7. Thomson scattering. An electron in a microwave cavity or laser beam
experiences a Lorentz force of the form

FFF (t) = e(EEE + 1
c vvv×BBB) cosωt

↓
= eEEE cosωt in the non-relativistic limit

For such a harmonic driving force (486.1) becomes

ẍxx(t) = eΩt
{
aaa− e

mEEEΩ
∫ t

0

e−Ωs cosωs ds︸ ︷︷ ︸
}

where Ω ≡ 1
τ = 3

2
4π
e2mc

3. But

= e−Ωs

Ω2 + ω2

[
− Ω cosωs+ ω sinωs

]t
0

so
= e
mEEE

Ω2 cosωt− Ωω sinωt
Ω2 + ω2

+ eΩt
{
aaa− e

mEEE
Ω2

Ω2 + ω2

}

The asymptotic condition (487) requires that we set
{
etc.

}
= 000, so after some

299 For a much more elaborate discussion of the ideas sketched above see
classical radiation (), pages 600–605.
300 F. Rohrlich’s Classical Charged Particles (), Chapters 2 & 6 and
J. D. Jackson’s Classical Electrodynamics (3rd edition ), Chapter 16 are
good places to start. See also T. Erber, “The classical theories of radiation
reaction,” Fortschritte der Physik 9, 343 (1961) and G. N. Plass, “Classical
electrodynamic equations of motion with radiative reaction,” Rev. Mod. Phys.
33, 37 (1961) . . .which are excellent general reviews and provide good
bibliographies. Students should also not neglect to examine the classics: Dirac
(), Wheeler-Feynman ().
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Figure 142: A monochromatic plane wave is incident upon a free
electron •, which is stimulated to oscillate � and therefore to radiate
in the characteristic sine-squared pattern. The electron drinks energy
from the incident beam and dispatches energy in a variety of other
directions: in short, it scatters radiant energy. Scattering by this
classical mechanism—by free charges—is called Thomson scattering.

elementary algebra we obtain

ẍxx(t) = 1√
1 + (ω/Ω)2

e
mEEE cos(ωt+ δ) (492)

where the phase shift

δ = arctan(ω/Ω)

is the disguise now worn by the preacceleration phenomenon. We note in passing
that

↓
= e
mEEE cosωt in the non-relativistic limit: Ω
 ω

It is upon (492) that the classical theory of the scattering of electromagnetic
radiation by free electrons—“Thomson scattering”—rests. We inquire now into
the most important details of this important process.

Using (492) in conjunction with the Larmor formula (474) we conclude that
the energy radiated per period by the harmonically stimulated electron (see the
preceding figure) can be described

∫ T

0

P dt = 2
3

(
e2

4π

)
1
c3

(
e
m
E

)2 1
1 + (ω/Ω)2

∫ T

0

cos2 ωt dt with T ≡ 2π/ω

=
(
cE2π
ω

)
· 8π

3

(
e2

4πmc2
)2 1

1 + (ω/Ω)2
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On the other hand, we know from work on page 305 that the (time-averaged
energy flux or) intensity of the incident plane wave can be described I = 1

2cE
2

so the energy incident (per period) upon an area A becomes

ITA = 1
2cE

2(2π/ω)A =
(
cE2π
ω

)
·A

We conclude that

A free electron absorbs (only to re-radiate) energy from an
incident monochromatic wave as though it had a cross-sectional
area given by

σThomson = 8π
3 (classical electron radius)2 · 1

1 + (ω/Ω)2

The final factor can and should be dropped: it differs from unity only if

�ω 
 �Ω = 3
2

(
4π�c
e2

)
mc2 = 205mc2

and this carries us so far into the relativistic regime that we must expect our
classical results long since to have become meaningless. Neglect of the factor
amounts to neglect of the self-interaction: it entails δ = arctan(ω/Ω)→ π

2 and
causes the Thomson scattering cross-section

σThomson = 8π
3

[
e2/4πmc2

]2 (493)

to become ω-independent. Thomson scattering—which in the respect just noted
is quite atypical—may be considered to comprise the classical limit of Compton
scattering, the relativistic quantum process diagramed below. The radiation

�ωout

�ωin

Figure 143: In view of the fact that Compton scattering yields
scattered photons that have been frequency-shifted it is remarkable
that no frequency shift is associated with the Thomson scattering
process.
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ϑ

Figure 144: Representation of the axially-symmetric sine-squared
character of the Thomson scattering pattern. I invite the reader to
consider what would be the pattern if the incidentg radiation were
elliptically polarized.

field generated by a harmonically stimulated free electron has the structure
illustrated in Figure 126. The differential Thomson cross-section (Figure 144)
is readily seen to have the sine-squared structure

dσ
dΩ

∣∣∣
Thomson

=
[
e2/4πmc2

]2 sin2 ϑ

8. Rayleigh scattering. Let our electron—formerly free—be considered now to
be attached to a spring, part of a “classical molecule.” If the spring force is
written fff = −mω2

0xxx then the Abraham-Lorentz equation (480) becomes

ẍxx− τxxx...+ ω2
0xxx = e

mEEE cosωt (494)

We expect the solution of (494) to have (after transcients have died out) the
form

xxx(t) = XXX cos(ωt+ δ)

with XXX ‖ EEE, and will proceed on the basis of that assumption—an assumption
which, by the way,
• renders the asymptotic condition (487) superfluous
• entails xxx... = −ω2ẋxx.
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Our initial task, therefore, is to describe the solution

x(t) = Xei(ωt−δ)

of
ẍ+ 2bẋ+ ω2

0x = e
mEe

iωt

b ≡ 1
2τω

2

But this is precisely the harmonically driven damped oscillator problem—
painfully familiar to every sophomore—the only novel feature being that the
“radiative damping coefficient” b is now ω -dependent. Immediately

(−ω2 + 2ibω + ω2
0 )︸ ︷︷ ︸ Xe−iδ = e

mE

=
√

(ω2
0 − ω2)2 + 4b2ω2 exp

{
i tan–1 2bω

ω2
0 − ω2

}

which gives

X(ω) =
(e/m)E√

(ω2
0 − ω2)2 + 4b2ω2

= eE
mω2

0

1√
(1− ξ2)2 + k2ξ6

≡ eE
mω2

0

X(ξ, k)

δ(ω) = tan–1 2bω
ω2

0 − ω2

= tan–1 kξ3

1− ξ2 ≡ δ(ξ, k)

where
ξ ≡ ω/ω0 and k ≡ τω0

are dimensionless parameters. It is useful to note that k is, in point of physical
fact, typically quite small:

k = period of optical reverberations within the classical electron
period of molecular vibrations

∼ e
2/mc3

�3/me4
=

(
e2

�c

)3

=
(

1
137

)3

= 3.89× 10−7

Precisely the argument that led to (493) now leads to the conclusion that the
Rayleigh scattering cross-section can be described301

σRayleigh(ω) = σ0 · ω4

(ω2
0 − ω2)2 + 4b2ω2

(495)

= σ0
ξ4

(1− ξ2)2 + k2ξ6

σ0 ≡ σThomson = 8π
3

[
e2/4πmc2

]2
301 problem 84.
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1

1

Figure 145: Graphs of X(ξ, k) in which, for clarity, k has been
assigned the artificially large values k = 0.15 and k = 0.05. An easy
calculation shows that the resonant peak stands just to the left of
unity:
∂
∂ξX(ξ, k) = 0 at ξ =

[√
1 + 6k2 − 1

3k2

] 1
2

= 1− 3
4k

2 + 63
32k

4 − · · ·

and that
Xmax = k–1 + 9

8k − 189
128k

3 + · · ·

1 3 5 7

π

Figure 146: Graphs of δ(ξ, k) in which k has been assigned the
same artificially large values as described above. As k becomes
smaller the phase jump becomes steeper, δ approaches π more
closely, and hangs there longer before—at absurdly/unphysically
high frequencies ω 
 Ω—dropping to π

2 :

lim
ξ↑∞

tan–1 kξ3

1− ξ2 = lim
ξ↑∞

tan–1(−kξ) = π
2
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1 2 3 4
1

10

20

Figure 147: Graphs of the Rayleigh distribution function. In (495)
I have set σ0 = 1 and have assigned to k the artificially large values
k = 0.25 and k = 0.10. The red line at unity has been inserted to
emphasize the high-frequency asymptote. The resonant peak lies in
the very near neighborhood of ξ ≡ ω/ω0 = 1 and its height becomes
infinite when self-interactive effects are turned off : k ↓ 0. The
physical short of it : The apparent size of a “classical molecule”
depends upon the color of the light in which it is viewed.

What we have learned is that Rayleigh scattering—energy absorption and
reemission by a monochromatically stimulated and self-interactively damped
“classical molecule” (charged particle on a spring)—is frequency-dependent.
Looking to the qualitative details of that ω -dependence (Figure 147), we find
it natural to distinguish three regimes:

low-frequency regime ξ ≡ ω/ω0 � 1 so with Mathematica’s aid we
expand about ξ = 0, obtaining

ξ4

(1− ξ2)2 + k2ξ6
= ξ4 + 2ξ6 + 3ξ8 + (4− k2)ξ10 + (5− 4k2)ξ12 + · · ·

Thus are we led to the so-called “4th power law”

σRayleigh(ω) ∼ σ0(ω/ω0)
4 : ω � ω0 (496)

The accuracy of the approximation is evident in Figure 148.

It is a familiar fact that (if we may allow ourselves to speak classically
in such a connection) slight conformational/dynamical adjustments of atomic/
molecular state can result in the emission (or from the absorption) of visible
light: [∆E ≈ �∆ω0] = �ω. From this we infer that the characteristic atomic/
molecular vibrational frequencies ω0 are themselves 
 than the frequencies
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0.1 0.2 0.3

0.001

0.002

0.003

0.004

Figure 148: Graph—based upon (495)—of σRayleigh with ξ � 1,
compared with the scattering cross-section asserted by the 4th power
law (496). In both cases I have set σ0 = 1, and in the former case
I have taken k = 0.00001. Naive arguments developed in the text
suggest that atomic/molecular rotational/vibrational frequencies ω0

are typically � than the frequencies present in the visible spectrum.

characteristic of visible light,302 and that the scattering of sunlight by air is
therefore a “low-frequency phenomenon.”303

resonance regime Here ξ ∼ 1 (i.e., ω ∼ ω0) ⇒ σ ∼ σmax and
provides a classical intepretation of the phenomenon of resonance florencence.
Let (495) be written

σRayleigh = σ0
ξ4

(1 + ξ)2(1− ξ)2 + k2ξ6

≈ 1
4σ0

1
(ξ − 1)2 + ( 1

2k)2
(497)

For a comparison of the exact Rayleigh distribution function with its resonant
approximation (497), see Figure 149. The nearly Gaussian appearance of the
appoximating function leads us to observe that∫ +∞

−∞
1
4

1
(ξ − ξ0)2 + ( 1

2k)2
dξ = π

2 k
–1 : all ξ0

and on the basis of that information to introduce the definition

L(ξ − ξ0, k) ≡ 1
2π

k
(ξ − ξ0)2 + ( 1

2k)2
: k > 0 (498)

302 For the former we might borrow ω0 = 2π(me4/�3) = 2.60 × 1017Hz from
the Bohr theory of hydrogen (see again page 392). For visible light one has
4.0× 1014Hz < ω < 7.5× 1014Hz.
303 problem 85.
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Figure 149: Comparison of the exact Rayleigh cross-section with
its resonant approximation (497). In constructing the figure I have
assigned k the unphysically large value k = 0.25. The fit—already
quite good—becomes ever better as k gets smaller.

We will soon (in §9) have unexpected occasion to inquire more closely into
properties of the “Lorenz distribution function” L(ξ, k),304 but for the moment
are content to observe that in this notation

σ ≈ (π/2k)σ0 · L(ξ − 1, k) at resonance: ω ∼ ω0

and that L(ξ, k) assumes its maximal value at ξ = 0: L(0, k) = 2
πk

–1 so

σmax = σ0/k
2 = (σ0/τ

2)/ω2
0 = (σ0/τ

2)/(2πν0)
2 (499.1)

where ν0 is the literal frequency of the resonant radiation and (below) λ0 = c/ν0

its wavelength. But (look back again to pages 398 and 406 for the definitions
of τ and σ0)

σ0/τ
2 = 8π

3

[
e2/4πmc2

]2/[
2
3e

2/4πmc3
]2 = 6πc2

so

σmax = 6π(c/2πν0)
2 = 3

2πλ
2
0 (499.2)

∼
{

cross-sectional area of the smallest object
visible in radiation of resonant frequency

Radiation of resonant frequency, when incident upon a “gas” made of such
“classical molecules,” is scattered profusely (the gas becomes“florescent,” and

304 Also—and with better reason—called the “Cauchy distribution function.”
See Abramowitz & Stegun, Handbook of Mathematical Functions (), page
930.
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loses its transparency). Classically, we expect a molecule to possess a variety
of normal modes . . . a variety of “characteristic frequencies,” and resonance
florescence to occur at each. Notice that if we were to neglect the self-interaction
(formally: let τ ↓ 0 in (499.1)) then the resonant scattering cross-section
would become infinite: σmax ↑ ∞. Here as in (for example) the elementary
theory of forced damped oscillators, it is damping that accounts for finiteness
at resonance.

high-frequency regime If ξ � 1 then (495) becomes

σRayleigh = σ0 · 1
1 + k2ξ2

But kξ = (τω0)(ω/ω0) = ω/Ω � 1 except when—as previously remarked—
ω is so large as to render the classical theory meaningless. So the factor
(1 + k2ξ2)–1 can/should be abandoned. The upshot: Rayleigh scattering reverts
to Thomson scattering at frequencies ω � the molecular resonance frequency
ω0. Physically, the charge is stimulated so briskly that it does not feel its
attachment to the slow spring, and responds like a free particle. It was to
represent this fact that the red asymptote was introduced into Figure 147.

9. Radiative decay. Suppose now that the incident light beam is abruptly
switched off. We expect the oscillating electrona to radiate its energy away,
coming finally to rest. This is the process which, as explained below, gives
rise to the classical theory of spectral line shape. The radiative relaxation of a
harmonically bound classical electron is governed by

ẍxx− τ xxx
... + ω2

0xxx = 000 (500)

which is just the homogeneous counterpart of (494). Borrowing τ = k/ω0 from
page 408 and multiplying by ω0 we obtain

ω0ẍxx− kxxx
... + ω3

0xxx = 000

which proves more convenient for the purposes at hand. Looking for solutions
of the form eiωt we find that ω must be a root of the cubic polynomial

ikω3 − ω0ω + ω3
0 = 0

Mathematica provides complicated closed-form descriptions of those roots,
which when expanded in powers of the dimensionless parameter k become

ω1 = +ω0 + i 12ω0k − 5
8ω0k

2 − iω0k
3 + · · ·

ω2 = −ω0 + i 12ω0k + 5
8ω0k

2 − iω0k
3 − · · ·

ω3 = −iω0

{
k–1 + k − 2k3 + 7k5 − · · ·

}
The root ω3 we abandon as an unphysical artifact because

eiω3t = exp
[
ω0

{
k–1 + k − · · ·

}
t
]

very rapidly blows up
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That leaves us with two linearly independent solutions

e−ω0(
1
2k−k

3+···) t · e± iω0(1− 5
8ω0k

2+···) t

and with the implication that

xxx(t) = XXX e−
1
2ω0k t cos

[
(ω0 − 5

8ω0k
2)t

]
is in excellent approximation305 a particular solution of (500), and that so also
is the function got by cos �→ sin. In a standard notation

= XXX e−
1
2Γ t cos

[
(ω0 −∆ω)t

]
(501)

where

Γ ≡ ω0k describes the damping coefficient

∆ω ≡ 5
8ω0k

2 describes a small downward frequency shift

A function of the familiar design (501) is plotted in Figure 150.

Notice that it is self-interaction, as described by the small dimensionless
parameter k, that is responsible both for the slow attenuation e−

1
2Γ t and

for the slight frequency shift ∆ω, and that attenuation causes the electronic
oscillation (whence also the resulting radiation) to be not quite monochromatic.
Turning to the Fourier transform tables (which in this instance serve better
than Mathematica) we find306

e−βy cosαy = (β/π)
∫ ∞

0

{
1

(x− α)2 + β2
+ 1

(x + α)2 + β2

}
cos yx dx

The implication is that (501) can be expressed

xxx(t) = XXX

∫ ∞

0

S(ω) cosωt dω (502.1)

S(ω) ≡ Γ
2π

{
1

[ω − (ω0 −∆ω)]2 + ( 1
2Γ )2

+ 1
[ω + (ω0 −∆ω)]2 + ( 1

2Γ )2

}

The second term is small even for ω = 0 and dies rapidly as ω increases. We
therefore abandon that term, and work in the good approximation that

S(ω) ≈ Γ
2π

1
[ω − (ω0 −∆ω)]2 + ( 1

2Γ )2
(502.2)

305 How excellent? Mathematica supplies{
ω0

d2

dt2 − k d
3

dt3 + ω3
0

}
e−

1
2ω0k te± i(ω0− 5

8ω0k
2) t

= 0 + 0k + 0k2 − i2ω3
0k

3 + 103
64 ω

3
0k

4 + i 10564 ω
3
0k

5 − · · ·
306 A. Erdélyi et al (editors), Tables of Integral Transforms (), Volume I,
Table 1.2#13 (page 8) and Table 1.6#19 (page 21).
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1
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2π

Figure 150: Above: diagram of the motion of a charge-on-a-spring
(Rayleigh’s “classical molecule”) that, because it experiences periodic
acceleration, slowly radiates away its initial store of energy. The
figure derives from (501) with ω0 = 1 and k = 0.05. The modulating
exponential factor e−

1
2Γ t is shown in blue. The Fourier transform

of that curve (below) can be interpreted as a description what would
be seen by a physicist who examines the emitted radiation with the
aid of a spectroscope. The “spectral line” has a “Lorentzian” profile.

At (502.2) we encounter once again—but this time in the frequency domain—
precisely the Lorentz distribution

S(ω) ≈ L(ω − [ω0 −∆ω], Γ )

first encountered at (498), and the basis for the statement that

Classical line shape is Lorentzian (503)

We digress to acquire familiarity with some of the basic properties of the
Lorentz distribution function L(x, Γ ) ≡ Γ

2π [x2 +( 1
2Γ )2]–1. Figure 151 shows the
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Figure 151: Characteristic shaped of what physicists usually call
the “Lorentz distribution” but mathematicians know as the “Cauchy
distribution.” Arrows mark the half-max points, and Γ is shown in
the text to be the distance between those points.

characteristic shape of the Lorentz distribution. It is elementary that

L(x, Γ ) � Lmax = L(0, Γ ) = 2
πΓ

and that
L(x, Γ ) = 1

2Lmax =⇒ x = ± 1
2Γ

so the parameter Γ can be interpreted

Γ = width at half-max (504)

On casual inspection (Figure 152) the graphs of the Lorentz and Gaussian
(or “normal”) distributions appear quite similar, though the former has a
noticeably sharper central peak and relatively wide hips. Richard Crandall’s
“The Lorentz distribution is a pig—too fat!” might seem uncharitable . . .until
one looks to the moments of the two distributions. For the Gaussian the
sequence

〈x0〉, 〈x1〉, 〈x2〉, 〈x3〉, 〈x4〉, 〈x5〉, 〈x6〉, 〈x7〉, 〈x8〉, . . .
proceeds unremarkably

1, 0, 1
2a

2, 0, 3
4a

4, 0, 15
8 a

6, 0, 105
16 a

2, . . .

but in the case of the Lorentz distribution even the definition of the moments
is a bit problematic (as Mathematica is quick to remind us): if we proceed from
the definition 〈xn〉 ≡ limz↑∞

∫ +z

−z xnL(x, Γ ) dx we obtain

1, 0, ∞, 0, ∞, 0, ∞, 0, ∞, . . .

So wide are the hips of the Lorentz distribution that (in particular)

∆x ≡
√
〈(x− 〈x〉)2〉 =∞
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Figure 152: The Lorentz distribution L(x, Γ ) ≡ Γ
2π [x2 + ( 1

2Γ )2]–1

has here been superimposed upon the Gaussian distribution

G(x, a) ≡ 1
a
√
π
e−(x/a)2

of the same height (set a =
√
π

2 Γ ). The Lorentz distribution is seen
to have a relatively sharp peak, but relatively broader flanks.

The standard descriptor of the “width” of the distribution is therefore not
available: to provide such information one is forced to adopt (504). It is
remarkable that, of two distributions that—when plotted—so nearly resemble
one another,
• one is arguably “the best behaved in the world,” and
• the other one of the worst behaved.307

And it is in that light remarkable that in some other respects the Lorentz
distribution is quite unexceptional: for example, it leads straightforwardly to a
representation of the δ-function

δ(x− x0) = lim
Γ↓0

L(x− x0, Γ ) = lim
ε↓0

ε/π

(x− x0)2 + ε2

that often proves useful in applications. Returning now to the physics . . .

The classical theory of spectral line shape marks an interesting point in
the history of physics, but leads to results which are of enduring interest only
as zeroth approximations to their quantum counterparts. As such, they are

307 It was known to Poisson already in  that what came to be called
the “Cauchy distribution” is a distribution to which the fundamental “central
limit theorem” does not pertain. Cauchy himself entered the picture only in
—the year of Lorentz’ birth. My source here has been the footnote that
appears on page 183 of S. M. Stigler’s The History of Statistics ().
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remarkably good. To illustrate the point: Reading from (501) we see that our
“classical molecule” has a

characteristic lifetime = 2/Γ

while its
spectral linewidth = Γ/2

Evidently
(linewidth)·(lifetime) = 1 (505)

Quantum mechanically, spectral line shape arises in first approximation (via
E = hν = �ω) from an instance of the Heisenberg uncertainty principle,
according to which

∆E · (lifetime) � �

But ∆E = � · (linewidth) so we are, in effect, led back again to the classical
relation (505). Similar parallels could be drawn from the quantum theory of
electromagnetic scattering processes.308

10. Concluding remarks. Classical radiation theory, though latent in Maxwell’s
equations, is a subject of which Maxwell himself knew nothing. Its development
was stimulated by Hertz’ experimental production/detection of electromagnetic
waves—a development which Maxwell anticipated, but did not live long enough
to see—and especially by the technological effort which attended the invention
of radio. It is a subject of which we have only scratched the surface: we have
concentrated on the radiation produced by individual accelerated charges, and
remain as innocent as babies concerning the fields produced by the currents
that flow in the antenna arrays that several generations of radio engineers have
worked so ingeniously to devise.

The subject leads, as we have witnessed, to mathematical relationships
notable for their complexity. But those intricate relationships among EEE ’s, BBB’s,
the elements of Sµν . . . sprang from relatively simple properties of the potentials
Aµ. Indeed, the work of this entire chapter (chapter in the text, chapter in
the history of pure/applied physics) can be viewed as an exercise in applied
potential theory. It is curious that—in electrodynamics most conspicuously, but
also elsewhere in physics—it appears to be the spooks who speak the language
of God, and is in any event certainly the spooks who coordinate our effort to
account for and describe the complexity evident in the observable/tangible world
of direct experience.

. .

Our progress thus far has (in 418 pages and ∼ 60 hours) taken us in a fairly
direct path from the “beginning” or our subject to within sight of its “end”
. . . from a discussion of first principles and historical roots into the realm where

308 See, for example, W. Heitler, Quantum Theory of Radiation ().
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electrodynamics shows an ever-stronger tendency to break down. Along the
way, electrodynamics gave birth to special relativity (who has long since left
home to lead an independent existence elsewhere) . . . and as we take leave of the
lady she is clearly once again pregnant (with quantum mechanics, elementary
particle physics, general relativity, . . . ). Her best years—if no longer as a
dancer, then as a teacher of dance—lie still ahead. But that is another story
for another day. In the pages that follow we will be backtracking—discussing
miscellaneeous issues that, for all their theoretical/technological importance,
were judged to be peripheral to our initial effort.



8
DISTRIBUTED CHARGE SYSTEMS

Introduction. We have recently been studying solutions of Maxwell’s equations
—solutions in the complete absence of sources (Chapter 5) and solutions in
the presence of but a single point source (Chapters 6 & 7). But in many
physical problems and most technological applications one has interest in the
fields generated by (static or dynamic) populations of charged particles; i.e., by
spatially distributed sources.

One might suppose that such problems could be solved by application of
the principle of superposition . . .but the “application” is more easily talked
about than done, and it is not at all straightforward: it inspired much of the
mathematical invention for which the period – is remembered. And
there are (as always) unexpected physical complications. For example: the
presence of conductive materials gives rise to “induced charges,” which join the
unknowns of the problem.

We will look first to the electrostatic problem—to the description of the
description of the electrostatic potential set up by an arbitrarily constructed
blob of charge. Information of the sort we now seek would comprise our point of
departure if se sought (say) to construct an account of the Bohr orbits around
a structured nucleus, or (in gravitational terms) of the motion of a satellite
around the inhomogenous earth.

1. Multipole representation of a static source. Let ρ(xxx) describe a t-independent
(or “static”) charge distribution. The resulting electromagnetic field has no
magnetic component (BBB = 000), and its t-independent electric component (see
again page 25) can be described

EEE(xxx) = −∇∇∇ϕ(xxx)

ϕ(xxx) = 1
4π

∫∫∫
ρ(xxx) 1

|xxx− xxx| d
3x (506)
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RRR xxx

xxx

Figure 153: We use xxx to describe the constituent elements of a
distributed charge, and xxx to describe the location of a typical field
point. The vector RRR(xxx,xxx) ≡ xxx − xxx stretches from the former to
the latter, and has length R(xxx,xxx) = |xxx − xxx |. We proceed in the
assumption that r ≡

√
xxx···xxx > a, where

a ≡
{

radius of a mental sphere large enough
to enclose the entire distributed charge

The integral
∫∫∫

derives from, and expresses, the principle of superposition—as
anticipated. But our goal now is to see what we can do to sharpen the very
general result described above. We want to learn to distinquish the relevant
features of (506) from the less relevant, so that by discarding the latter we can
simplify our computational life.

Let us suppose that the source, though distributed, is “localized” in the
sense that ρ(xxx) ≡ 0 for xxx exterior to a sphere of sufficiently large but finite
radius a,309 and let us agree that our ultimate objective—what we are presently
getting in position to do—is to describe the electrostatic potential at points
external to that sphere (see Figure 153). Writing

R(xxx,xxx) = |xxx− xxx | =
√

(xxx− xxx)···(xxx− xxx)

=
√

r2 − 2rr cosϑ + r2

309 This weak assumption serves merely to exclude “infinite line charges” and
similar (unphysical) abstractions.
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with r ≡ √xxx···xxx and r ≡ √xxx···xxx , we note that the dimensionless ratios x/r,
y/r, z/r are in every instance less than unity. It becomes therefore natural to
contemplate expanding 1/R(xxx,xxx) in powers of those ratios. To that end . . .we
recall that according to Taylor’s theorem

f(x + x) = ex
∂
∂x f(x) =

∞∑
n=0

1
n!x

nf (n)(x)

In the multivariate case we expect therefore to have

f(x + x, y + y, z + z) = e
x ∂∂x + y ∂∂y + z ∂∂z f(x, y, z)

=
{

1 +
[
x ∂∂x + y ∂∂y + z ∂∂z

]
+ 1

2

[
x2 ∂2

∂x2 + 2xy ∂2

∂x∂y + 2xz ∂
2

∂x∂z

+ y2 ∂2

∂y2 + 2yz ∂2

∂y∂z + z2 ∂2

∂z2

]
+ · · ·

}
f(x, y, z)

which when applied in particular to the xxx-dependence of 1/R(xxx,xxx) gives

1
|xxx− xxx| = 1

r
+ 1

r3
·
[
xx + yy + zz

]
+ 1

r5
· 1

2

[
x2(3x2 − r2) + 6xyxy + 6xzxz

+ y2(3y2 − r2) + 6yzyz + z2(3z2 − r2)
]
+ · · ·

In a fairly natural (and quite useful) condensed notation we have

= r−1 + r−3


x

y
z


···


x

y
z




+ r−5 1
2


x

y
z


···


 3x2 − r2 3xy 3xz

3yx 3y2 − r2 3yz
3zx 3zy 3z2 − r2




x

y
z


 + · · ·

Feeding this expansion back into (506) we obtain

ϕ(xxx) = 1
4π

{
r−1q + r−3ppp···xxx + r−5 1

2xxx···Qxxx + · · ·
}

= 1
4π

{
r−1q + r−2ppp···x̂xx + r−3 1

2 x̂xx···Qx̂xx + · · ·
}

(508)
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where

q ≡
∫∫∫

ρ(xxx) d3x (508.0)

≡ so-called “monopole moment scalar” or total charge

ppp ≡
∫∫∫ 

x
y
z


 ρ(xxx) d3x (508.1)

≡ so-called “dipole moment vector”

Q ≡
∫∫∫ 

 3x2 − r2 3xy 3xz
3yx 3y2 − r2 3yz
3zx 3zy 3z2 − r2


 ρ(xxx) d3x (508.2)

≡ so-called “quadrupole moment (tensor or) matrix”

In higher order we lose the advantages of matrix notation . . .might appear in
3rd order to have to write something like

1
4π r

−4 1
3!

∑
a,b,c

a+b+c=3

Wabc x̂
ax̂bx̂c with Wabc ≡

∫∫∫
Mabc(x, y, z)︸ ︷︷ ︸ ρ(xxx) d3x

complicated cubic

but will soon be in position to proceed in a more orderly manner. As will
emerge, it is the lowest-order terms that are of highest practical importance, so
(508) is in fact quite useful as it stands: it will be useful also as a benchmark
against which to test more general formulæ as they become available. Several
comments are now in order:

1. The objects q, ppp, Q, . . . are called “scalar,”“vector,”“tensor,”. . . in recognition
of how they respond to rotations of the Cartesian frame: they are, in short,
tensorial with respect to the rotation group O(3), as one could demonstrate
without difficulty.

2. q is the 0th moment of the charge distribution ρ(xxx), ppp is assembled from
the 1st moments, Q is assembled from the 2nd moments, etc. Not surprisingly,
if one possessed the moments of all orders then one could reconstruct the ρ(xxx)
which generated those moments.310

3. Q is (like the energy/momentum tensor S: see again page 215) symmetric
and traceless. These properties are, moreover, preserved under coordinate

310 Usually, not always. The program would fail if, for example (see again
page 416), the distribution were Lorentzian

ρ(xxx) ∼ 1
x2 + y2 + z2 + a2

But such a distribution cannot be enclosed within a sphere of finite radius.
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rotation. From symmetric tracelessness it follows that Q contains (not 9, as one
would otherwise expect, but) only 5 adjustable constants (degrees of freedom).
Symmetry alone assures that Q can always be rotated to diagonal form

Q −−−−−−−−−−−−−−−−−−→
properly chosen rotation


Q1 0 0

0 Q2 0
0 0 Q3




and tracelessness requires that the eigenvalues sum to zero: Q1 +Q2 +Q3 = 0.

Figure 154: Oblate spheroidal distribution, symmetric about the
z-axis. Spinning bodies (stars, planets, atomic nuclei) commonly
possess this shape, at least in leading approximation.

If, as is quite commonly the case, ρ(xxx) is symmetric about the z-axis (see the
figure) then Q acquires the structure


− 1

2Q 0 0
0 − 1

2Q 0
0 0 Q




In such specialized contexts it is common (among nuclear physicists and others)
to speak of “the quadrupole moment,” the reference being to Q.

4. What is the origin of the monopole/dipole/. . .multipole terminology? The
answer has little/nothing to do with electrostatics per se, much to do with the
meaning of nth derivative. Look, for example, a 1-dimensional model of the
situation in hand: suppose it to be the case that

ϕ(x) =
∫

ρ(x)F (x− x) dx
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where F (•) is some prescribed differentiable function (not necessarily the 1
x−x

encountered in (506)) and where x remains “small” throughout the range of
integration. We expect then to have

ϕ(x) =
∞∑
n=0

(−)n 1
n! ·

∫
ρ(x)xndx︸ ︷︷ ︸ ·F

(n)(x)

nth moment

where F (0)(x), F (1)(x), F (2)(x), F (3)(x), . . . acquire meaning from the following
scheme:

Figure 155: Representation of the mechanism by which iteration
of

F (1)(x) = lim
ε↓0

∫
δ
(
ξ − (x + 1

2ε)
)
− δ

(
x− (x− 1

2ε)
)

ε
F (ξ) dξ

gives rise to successive derivatives of F (x). Notice that 2n spikes
contribute to the construction of F (n)(x). This is the source of the
“di/quadu/octo. . . 2n-tuple pole” terminology.

In several dimensions one encounters only this new circumstance: one can
displace a sign-reversed monopole in several directions to create a dipole, can
displace a sign-reversed dipole in several directions to create a quadrupole, etc.
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5. We are led thus to the principle that an arbitrary localized distribution ρ(xxx)
can be represented as the superposition of
• an appropriately selected monopole +
• an appropriately selected dipole +
• an appropriately selected quadrupole + etc:

= monopole + dipole + quadrupole + · · ·

6. Looking back again to (508) we notice that at sufficiently remote field points
one can drop all but the monopole term (ρ(xxx) looks like a point charge). At
less remote points one can drop all terms subsequent to the dipole term. High
order multipole terms depend upon such high powers of 1/r that they are of
quantitative importance only in the near zone.

Equation (508) carries us a long way toward our goal, as stated on page 422.
But there remains a good deal of meat to be gnawed from the bone.

2. Electrostatic potential of a dipole. Consider the two-charge configuration (no
net charge) shown in Figure 156. The associated electrostatic potential can be
described

ϕ(xxx) = 1
4π q

{ 1√
r2 − 2ra cosϑ + a2

− 1√
r2 + 2ra cosϑ + a2

}
(509.1)

= 1
4π (q/r)

{[
1− 2 a

r cosϑ +
(a
r
)2

]− 1
2 −

[
1 + 2 a

r cosϑ +
(a
r
)2

]− 1
2
}

= 1
4π

2qa cosϑ
r2

{
1 + 5 cos 2ϑ− 1

4
(a
r
)2 (509.2)

+ 63 cos 4ϑ− 28 cos 2ϑ + 29
64

(a
r
)4 + · · ·

}

This describes, as a power series in a/r, the potential of a physical dipole.
Proceeding now to the double limit

a ↓ 0 and q ↑ ∞ in such a way that p ≡ 2aq remains constant

we obtain

↓
= 1

4π

p cosϑ
r2

= 1
4π

ppp ···x̂xx
r2

= 1
4π

ppp ···xxx
r3

(510)

Notice that the dipole potential ϕ would simply vanish if q were held constant
during the compression process a ↓ 0. Equipotentials derived from (509) and
(510) are shown in Figure 157.
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xxx

+q

aaa ϑ

aaa

−q

Figure 156: Notation used in the text to describe the field of a
physical dipole •–•. A “mathematical dipole” results in the idealized
limit a ↓ 0, q ↑ ∞ with p ≡ 2aq held constant.

Figure 157: Central cross section of the equipotentials of a physical
dipole (on the left) and of an idealized dipole (on the right).
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xxx

q

xxx ϑ

Figure 158: Notation used in the text to describe the field of an
“eccentric monopole,” i.e., of an isolated charge (or charge element)
that is arbitrarily positioned with respect to the coordinate origin.
The length of xxx is r, the length of xxx is r.

3. Electrostatic potential of an eccentric monopole. In what might at first sight
appear to be a step backward, but will soon be revealed to be a long step
forward, we look now to the potential of the primitive system shown above;
i.e., to the Coulomb potential of an eccentrically-positioned charge. This we
do by systematic elaboration of methods borrowed from the preceding section.
Immediately (which is to say: by the Law of Cosines)

ϕ(xxx) = 1
4π q

1√
r2 − 2rr cosϑ + r2

(511)

which—in preparation for implementation of our plan, which is to proceed by
power series expansion—we will write

=




1
4π q

1
r ·

1√
1− 2

(r
r
)
cosϑ +

(r
r
)2

: adapted to the case r < r

1
4π q

1
r ·

1√
1− 2

(r
r
)
cosϑ +

(r
r
)2

: adapted to the case r > r

Thus do we acquire interest in the objects Pn(w) that arise as coefficients from
the series

1√
1− 2wt + t2

=
∞∑
n=0

Pn(w) tn (512.1)
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Mathematica supplies

P0(w) = 1
P1(w) = w

P2(w) = 1
2 (3w2 − 1)

P3(w) = 1
2 (5w3 − 3w)

P4(w) = 1
8 (35w4 − 30w2 + 3)

P5(w) = 1
8 (63w5 − 70w3 + 15w)




(512.2)

...

These are precisely the Legendre polynomials, the properties of which were first
described () by A. M. Legendre (–) and are summarized in every
mathematical handbook.311 Graphs of some low-order Legendre polynomials
are shown in Figure 159.

Returning with this information to (511) we have

ϕ(xxx) =




1
4π q

1
r ·

∞∑
n=0

(r
r
)n

Pn(cosϑ) in the far zone

1
4π q

1
r ·

∞∑
n=0

(r
r
)n

Pn(cosϑ) in the near zone

(513)

in which connection it becomes pertinent to notice that (ask Mathematica)

P0(cosϑ) = 1
P1(cosϑ) = cosϑ
P2(cosϑ) = 1

4 (3 cos 2ϑ + 1)
P3(cosϑ) = 1

8 (5 cos 3ϑ + 3 cosϑ)
P4(cosϑ) = 1

64 (35 cos 4ϑ + 20 cos 2ϑ + 9)
P5(cosϑ) = 1

128 (63 cos 5ϑ + 35 cos 3ϑ + 30 cosϑ)




(512.3)

...

Looking specifically/explicitly to the far zone we have

ϕ(xxx) = 1
4π

{
r−1q + r−2qrP1(cosϑ) + r−3qr2P2(cosϑ) + · · ·

}
(514)

which must comprise the multipole expansion—correct to all orders—of an
eccentrically placed monopole. How does this result compare with what (508)
has to say in such a specialized situation? Setting ρ(xxx) = qδ(xxx−xxx) and working

311 See, for example, W. Magnus & F. Oberhettinger, Formulas & Theorems
for the Functions of Mathematical Physics (), pages 50–59; J. Spanier &
K. B. Oldham, An Atlas of Functions (), Chapter 21; M. Abramowitz &
Irene Stegun, Handbook of Mathematical Functions (), Chapter 22. For
discussion of how the principal properties of the Legendre polynomials are
established see pages 471–475 in classical electrodynamics ().
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-1 1

-1

-0.5

0.5

1

-1 1

-1

-0.5

0.5

1

Figure 159: Graphs of Legendre polynomials of low odd order
(above) and low even order (below). Order can in each case be
determined by counting the number of zero-crossings. The Pn(w)
are orthogonal in the sense∫ +1

−1

Pm(w)Pn(w) dw = 2
2m+1δmn

and provide a natural basis within the space of functions defined on
the interval

[
− 1,+1

]
.

from (508), we find that

q ≡
∫∫∫

qδ(xxx− xxx) d3x = q

= qP0(cosϑ) : monopole terms agree trivially

ppp ≡
∫∫∫ 

x
y
z


 qδ(xxx− xxx) d3x

= q


x

y
z


 so ppp···x̂xx = q r cosϑ by definition of ϑ

= q rP1(cosϑ) : dipole terms agree
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and finally that

Q ≡
∫∫∫ 

 3x2 − r2 3xy 3xz
3yx 3y2 − r2 3yz
3zx 3zy 3z2 − r2


 qδ(xxx− xxx) d3x

= q


 3x2 − r2 3xy 3xz

3yx 3y2 − r2 3yz
3zx 3zy 3z2 − r2




⇓
1
2 x̂xx···Qx̂xx = q

{
3
2 (xxx···x̂xx)2 − 1

2r
2
}

= qr2 1
2 (cos2 ϑ− 1)

= qr2P2(cosϑ)

So though (508) and (514) look quite different, they do in fact say exactly the
same thing. Which is gratifying, but . . .

Equation (514) says in its complicated way what we could say quite simply
if we were to reposition our coordinate system (place the origin at the solitary
charge), so is of relatively little interest in itself. It acquires profound interest,
however, when put to its intended use:

4. Representation of an arbitrary potential by superimposed spherical harmonics.
The idea is to apply (514) to each constituent element ρ(xxx) d3x of our distributed
charge. To implement the idea we introduce spherical coordinates in the usual
way

xxx = r


 sin θ cosφ

sin θ sinφ
cos θ


 , xxx = r


 sin θ cosφ

sin θ sinφ
cos θ




where evidently θ signifies colatitude (North and South poles are coordinated
θ = 0 and θ = π, respectively). Then

cosϑ = x̂xx···x̂xx = cos θ cos θ + sin θ sin θ cos(φ− φ)

and

d3x = r2 sin θ drdθdφ

so (514) supplies

ϕ(xxx) = 1
4π r

–1

∞∑
n=0

∫∫∫ (r
r
)n

Pn
(
cos θ cos θ + sin θ sin θ cos(φ− φ)

)
· ρ(r, θ, φ)r2 sin θ drdθdφ (515)
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Thumbing through the mathematical handbooks,we discover the wonderful
identity312

Pn
(
cos θ cos θ + sin θ sin θ cos(φ− φ)

)
(516.1)

= Pn(cos θ)Pn(cos θ) + 2
n∑

m=0

(n−m)!
(n + m)!

Pm
n (cos θ)Pm

n (cos θ) cosm(φ− φ)

Here

Pm
n (w) ≡ (−)m(1− w2)

1
2m

(
d
dw

)m
Pn(w) : m = 0, 1, 2, . . . , n

Pn(w) ≡ (−)n 1
2nn!

(
d
dw

)n(1− w2)n

defines the so-called associated Legendre functions, the first few of which are
displayed below:313

P0(w) ≡ P 0
0 (w) = 1 = 1

P1(w) ≡ P 0
1 (w) = w = cos θ

P 1
1 (w) = −

√
1− w2 = − sin θ

P2(w) ≡ P 0
2 (w) = 1

2 (3w2 − 1) = 1
4 (3 cos 2θ + 1)

P 1
2 (w) = −3w

√
1− w2 = − 3

2 sin 2θ

P 2
2 (w) = −3(w2 − 1) = − 3

2 (cos 2θ − 1)

P3(w) ≡ P 0
3 (w) = 1

2 (5w3 − 3w) = 1
8 (5 cos 3θ + 3 cos θ)

P 1
3 (w) = − 3

2 (5w2 − 1)
√

1− w2 = − 3
8 (5 sin 3θ + sin θ)

P 2
3 (w) = 15w(1− w2) = − 15

4 (cos 3θ − cos θ)

P 3
3 (w) = −15(1− w2)

√
1− w2 = − 15

4 (sin 3θ − 3 sin θ)

I have written these out to demonstrate that, while Pm
n (w) is a polynomial

only if m is even, the associated Legendre functions are in all cases simple

312 Magnus & Oberhettinger,311 page 55; P. Morse & H. Feshbach, Methods of
Theoretical Physics (), page 1274. Identities of the frequently-encountered
design

f(x + y) =
∑
n

gn(x)gn(y)

are called “addition formulæ.”
313 Use Mathematica to reproduce/extend the list. The commands are

LegendreP[n,m,w] and LegendreP[n,m,Cos[θ]]//TrigReduce
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combinations of elementary functions—nothing to become nervous about. If
we now write

cosm(φ− φ) = eim(φ−φ) + e−im(φ−φ)

2

and accept the convention314 that

Pm
n (w) and P−m

n (w) are two names for the same thing

then (516.1) becomes

Pn
(
cos θ cos θ + sin θ sin θ cos(φ− φ)

)
=

m=+n∑
m=−n

Cm
n · Pm

n (cos θ)e−imφ · Pm
n (cos θ)e+imφ (516.2)

Cm
n ≡

(n− |m|)!
(n + |m|)!

in which the (θ, φ)-variables and (θ, φ)-variables have been fully disentangled,
placed in nearly identical “piles.” Further simplifications become possible when
one reflects upon the orthogonality properties of eimφ and Pm

n (w). Familiarly

∫ 2π

0

e−imφe+imφ = 2π δmm

Less familiarly—but as the handbooks inform us, and as (even in the absence
of explicit proof) we are readily convinced by a little Mathematica -assisted
experimentation—

∫ +1

−1

Pm
n (w)Pm

n (w) = 2
2n+1C

m
n δnn : 0 � m � lesser of n and n

So we construct

Ymn (w, φ) ≡(−)m
√

2n+1
4π

(n+|m|)!
(n−|m|)!P

m
n (w)eimφ : m = 0,±1,±2, . . . ,±n

↑
—a convention, fairly standard to the literature, and honored by Mathematica

which are orthonormal in the sense
∫ 2π

0

∫ +1

−1

[Ymn (w, φ)]∗Ymn (w, φ) dwdφ = δmmδnn

Or—more suitably for the matter at hand—

Y m
n (θ, φ) ≡ Ymn (cos θ, φ)

314 Beware! The designers of Mathematica adopted at this point an alternative
convention.
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which are precisely the celebrated spherical harmonics , orthonormal on the
surface of the sphere

∫ 2π

0

∫ π

0

[Y m
n (θ, φ)]∗Y m

n (θ, φ) sin θdθdφ = δmmδnn

just as the functions Em(φ) ≡ 1√
2π

eimφ were seen above to be orthonormal on
the surface of the circle. The functions Y m

n (θ, φ) are relatively more complicated
than the functions Em(φ) not so much because they have an extra argument
as because the surface of a sphere is a topologically more complicated place
than the surface of a circle (or—more aptly—than the surface of a torus).
Mathematica , upon the command SphericalHarmonicY[n,m,θ,φ], produces
the following explicit list of low-order spherical harmonics:

Y 0
0 (θ, φ) =

√
1
4π

Y −1
1 (θ, φ) = +

√
3
8π e

−iφ sin θ

Y 0
1 (θ, φ) =

√
3
4π cos θ

Y +1
1 (θ, φ) = −

√
3
8π e

+iφ sin θ

Y −2
2 (θ, φ) = +

√
15
32π e

−2iφ sin2 θ

Y −1
2 (θ, φ) = +

√
15
8π e

−iφ cos θ sin θ

Y 0
2 (θ, φ) = +

√
5

16π (3 cos2 θ − 1)

Y +1
2 (θ, φ) = −

√
15
8π e

+iφ cos θ sin θ

Y +2
2 (θ, φ) = +

√
15
32π e

+2iφ sin2 θ

There are 2n + 1 = 1, 3, 5, . . . of the things of order n = 0, 1, 2, . . .

By this point (516.2) has assumed the form

Pn
(
cos θ cos θ + sin θ sin θ cos(φ− φ)

)
=

m=+n∑
m=−n

4π
2n+1 [Y m

n (θ, φ)]∗Y m
n (θ, φ) (516.3)

which when introduced into (515) gives

ϕ(xxx) = 1
4π r

–1

∞∑
n=0

4π
2n+1

m=+n∑
m=−n

Qm
n

Y m
n (θ, φ)
rn

(517)

where Qn
m ≡

∫∫∫
[Y m
n (θ, φ)]∗ρ(r, θ, φ)rn+2 sin θ drdθdφ
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defines the multipole moments of the charge distribution :

Q0
0

Q−1
1 Q0

1 Q+1
1

Q−2
2 Q−1

2 Q0
2 Q+1

2 Q+2
2

...

Q−n
n . . . . . . . . . . . . . Q−1

n Q0
n Q+1

n . . . . . . . . . . . . . Q+n
n

To remove any element of the mystery from the situation let us look to
some of the illustrative specifics:

Q0
0 =

∫∫∫
[Y 0

0 (θ, φ)]∗ρ(r, θ, φ)r2 sin θ drdθdφ

=
√

1
4π

∫∫∫
ρ(r, θ, φ)r2 sin θ drdθdφ

=
√

1
4π q (518)00

Q0
1 =

∫∫∫
[Y 0

1 (θ, φ)]∗ρ(r, θ, φ)r3 sin θ drdθdφ

=
√

3
4π

∫∫∫
r cos θ · ρ(r, θ, φ)r2 sin θ drdθdφ

=
√

3
4π

∫∫∫
z · ρ(xxx) d3x

=
√

3
4π p3 (518)01

Q−1
1 =

∫∫∫
[Y −1

1 (θ, φ)]∗ρ(r, θ, φ)r3 sin θ drdθdφ

= +
√

3
8π

∫∫∫
r(cosφ− i sinφ)∗ sin θ · ρ(r, θ, φ)r2 sin θ drdθdφ

= +
√

3
8π

∫∫∫
(x + iy) · ρ(xxx) d3x

= +
√

3
8π (p1 + ip2) (518)−1

1

Q+1
1 = −

√
3
8π (p1 − ip2) (518)+1

1

Q0
2 =

∫∫∫
[Y 0

2 (θ, φ)]∗ρ(r, θ, φ)r4 sin θ drdθdφ

=
√

5
16π

∫∫∫
(3z2 − r2) · ρ(xxx) d3x

=
√

5
16π Q33 (518)02
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Q−1
2 =

∫∫∫
[Y −1

2 (θ, φ)]∗ρ(r, θ, φ) r4 sin θ drdθdφ

= +
√

15
8π

∫∫∫
r2(cosφ + i sinφ) cos θ sin θ · ρ(r, θ, φ)r2 sin θ drdθdφ

= +
√

15
8π

∫∫∫
(x + iy)z · ρ(xxx) d3x

= +
√

15
8π

1
3 (Q13 + iQ23) (518)−1

2

Q+1
2 = −

√
15
8π

1
3 (Q13 − iQ23) (518)+1

2

Q−2
2 =

∫∫∫
[Y −2

2 (θ, φ)]∗ρ(r, θ, φ) r4 sin θ drdθdφ

= +
√

15
32π

∫∫∫
r2 (cos 2φ + i sin 2φ)︸ ︷︷ ︸ sin2 θ · ρ(r, θ, φ)r2 sin θ drdθdφ

= cos2 φ− sin2 φ + 2i cosφ sinφ

= +
√

15
32π

∫∫∫
(x2 − y2 + 2ixy) · ρ(xxx) d3x

= +
√

15
32π

1
3 (Q11 −Q22 + 2iQ12) (518)−2

2

Q+2
2 = +

√
15
32π

1
3 (Q11 −Q22 − 2iQ12) (518)+2

2

Here the notations pa and Qab have been taken from (508) on page 424. The
point is that same physical information is folded (if in a different way) into the
designs of Qm

1 , Qm
2 , . . . as was folded into the designs of ppp, Q, . . . : equations

(517) and (508) are saying the same thing, but in different ways.

Were we to pursue the mathematical side of this subject we would want
to establish that & how the spherical harmonics Y m

n (θ, φ) spring spontaneously
into being when one undertakes to

solve ∇2ϕ = 0 in spherical coordinates by separation of variables

A little Mathematica -assisted experimentation315 may serve to convince the
reader—even in the absence of the formal demonstration—that

∇2
{
rp Y m

n (θ, φ)
}

= 0 if and only if p = n or p = −(n + 1)

315 Enter the commands

<<Calculus`VectorAnalysis`

and SetCoordinates[Spherical[r, θ, φ]]

and then test

Laplacian[rp SphericalHarmonicY[n,m,θ, φ]]

with various values of m, n and p.
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Solutions of the first type blow up as r ↑ ∞: at (517) we find ϕ(xxx) described as a
linear combination of solutions of the second type. Looking to the mathematics
of the situation from a somewhat different angle . . .

ϕ(r, θ, ϕ) =
∑
m,n

Amn
{( r

a
)n

Y m
n (θ, φ)

}

describes a solution of Laplace’s equation,316 and so also does

ψ(r, θ, ϕ) = a
r

∑
m,n

Amn
{(a

r
)n

Y m
n (θ, φ)

}

To say the same thing another way: if f(x, y, z) is a solution of Laplace’s
equation ∇2f = 0 then so also is

F (x, y, z) ≡ a
r f

(a2

r2 x,
a2

r2 y,
a2

r2 z
)

Transformations of the form

xxx −−−−−−−−−−−−→
inversion

xxx = a2

r2xxx

are called “inversions in the sphere of radius a” by geometers (they send interior
points to exterior points and visa versa, subject to the rule rr = a2), and are
self-inversive in the sense

xxx −−−−−−−−−−−−→
inversion

a2

r2xxx = r2

a2xxx = xxx

Transformations of the form

f(xxx) −−−−−−−−−−−−→
Kelvin inversion

f(xxx) ≡ a
r f(a

2

r2xxx) (519)

acquire their name from the fact that it was William Thompson (Lord Kelvin)
who first noticed () that they send “harmonic functions” (solutions of
Laplace’s equation) into harmonic functions: they are readily seen to be
self-inversive in the sense that

(Kelvin inversion)2 = identity transformation

Rotation of the charge distribution (equivalently: counter rotation of the
Cartesian frame) would clearly result in an altered set of coefficients Qm

n that
refer to an altered set of spherical harmonics:

ϕ(xxx) = 1
4π r

–1

∞∑
n=0

4π
2n+1

m=+n∑
m=−n

Qm
n

Y m
n (θ, φ)
rn∣∣

| rotation
↓
= 1

4π r
–1

∞∑
n=0

4π
2n+1

m=+n∑
m=−n

Qm
n

Y m
n (θ, φ)
rn

316 Here and below: a is a constant “length” of arbitrary value, introduced for
a dimensional reason.
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Were we to pursue the theory of spherical harmonics we would certainly want
to explore the details of the now-fairly-evident fact that the harmonics of given
order n are rotationally induced to fold among themselves




Y +n
n (θ, φ)

...
Y 0
n (θ, φ)

...
Y −n
n (θ, φ)




=




(2n + 1)× (2n + 1) matrix







Y +n
n (θ, φ)

...
Y 0
n (θ, φ)

...
Y −n
n (θ, φ)




in a why that provides a (2n+1)-dimensional representation of the 3-dimensional
rotation group O(3). When those details are approached algebraically (instead
off function-theoretically) it is found to make sense to speak also of cases

n = 1
2 ,

3
2 ,

5
2 , . . .

that give rise to even-dimensional matrix representations of O(3), and that those
have indispensible applications to the quantum theory of fractional spin. While
electrostatics served historically to inspire the initial development of the theory
of spherical harmonics, and does exploit some of the more superficial elements
of that theory, it is the quantum theory of angular momentum (equivalently: the
representation theory of O(3)) that first motivated people to explore (in order
to exploit) the riches hidden in the deeper nooks and crannies of the theory of
spherical harmonics. And it is because the theory is most naturally developed
in connection with its quantum mechanical applications317 that I am content
not to pursue it further here.318

5. A geophysical application. Though initially formulated in the language
of electrostatics, our results pertain also—obviously and quite usefully—to
gravitostatics . . . for reasons having to do with the structural similarity of the
statements

e
4πr

= electrostatic potential of a point charge e

−GM
r

= gravitostatic potential of a point mass M

Evidently the gravitational potential exterior to a sphere319 containing a blob
ρ(xxx) of matter—the earth is the “blob” of greatest interest to geophysicists—can

317 See, for example, David Griffiths, Introduction to Quantum Mechanics
(), Chapter 4 or J. Powell & B. Crasemann, Quantum Mechanics (),
Chapter 7.
318 In  I had not so much self-control: the missing details are sketched on
pages 486–510 of classical electrodynamics.
319 A mental sphere, of radius a, commonly identified with the maximal radius
of the geosphere (∼ 6.378× 103 km).
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be described

V (xxx) = −G
∫∫∫

ρ(xxx) 1
|xxx− xxx| d

3x

= −Gr–1

∞∑
n=0

4π
2n+1

m=+n∑
m=−n

Qm
n

Y m
n (θ, φ)
rn

Qn
m ≡

∫∫∫
[Y m
n (θ, φ)]∗ρ(r, θ, φ)rn+2 sin θ drdθdφ

= −GM 1
r

{
1 + 1

rPPP ···x̂xx + 1
r2

1
2 x̂xx···Gx̂xx + · · ·

}
where

M ≡
∫∫∫

ρ(xxx) d3x = monopole moment = total mass

PPP ≡ 1
M

∫∫∫
ρ(xxx) d3x =

dipole moment vector
M

= center of mass coordinates

G ≡ 1
M

∫∫∫
‖3xixj − r2δij‖ρ(xxx) d3x =

quadrupole moment matrix
M

Note that the dipole term drops away if one places the origin at the center of
mass.320 Dominant interest shifts therefore to the quadrupole term, which
“MacCullagh’s formula”

V (xxx) = −GM 1
r

{
1− A− C

2Mr2
(3 sin2ψ − 1) + · · ·

}
↑
—signifies latitude

serves to relate to the geometrical parameters (A and C) that describe the
idealized oblate sphereoidal figure of the gravitating body(see again Figure 154).
Higher moments provide information about
• irregularities in the figure of the body
• inhomogeneities of the mass distribution.

Notice that (see again the formula that serves at the top of the page to define
the coefficients Qm

n ) the higher moments depend most strongly upon details
near the surface of the body, and are of quantitative significance only in the
near zone: far away the body “looks like a monopole”:

↓
= −GM 1

r : r � a

For the earth the Qm
n have been measured through at least n = 8, and in

the post-Sputnik era satellites have been used to fill in an “island” of higher

320 That would be a natural thing to do, but a conventional thing to do
(something one might elect not to do) . . . and should not be confused with the
physical fact that—because Nature provides no “negative mass”—gravitational
dipoles do not exist .
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Figure 160: Polar orbit of a satellite in polar orbit. Resolving the
spherical harmonics into their real/imaginary parts

Y ±m
n (θ, φ) = Cmn (θ, φ)± iSmn (θ, φ)

we observe that S0
n(θ, φ) and C0

n(θ, φ) are φ-independent: they vanish
on circles parallel to the equator, thus partitioning the surface of the
sphere into “zones,” so are called “zonal harmonics.” At the other
extreme, the nodes of

Cnn (θ, φ) ∼ cosnφ sinn θ and Snn(θ, φ) ∼ sinnφ sinn θ

partition the sphere into sectors (bounded by great arcs of constant
longitude); such functions are called “sectoral harmonics,” while
spherical harmonics with 0<m<n are called “tesseral harmonics.”
Some sectors have been painted on the earth, and rotate with the
earth (because they are taken here to refer to a property of the earth).

(m,n)-values—this by the pretty method that I now sketch. The period T of a
satellite in circular orbit can, in leading approximation, be described

T = 2π

√
a3

GM

( r
a
) 3

2

which in the case of the earth becomes

= 84.5
( r
a
) 3

2 minutes
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The satellite will be in resonance with the sectoral harmonics Y n
n of the earth’s

gravitational field if T = Tn, where Tn is the time it takes for the rotating earth
to replace one of the sectors of Y n

n by the next. The sidereal day is 1436.07
minutes long, so

Tn =
1436.07 minutes

n
=




89.75 minutes : n = 16
95.74 minutes : n = 15

102.58 minutes : n = 14
110.47 minutes : n = 13
119.67 minutes : n = 12

and to achieve synchrony in those cases (solve 84.5x
3
2 = Tn for x) we must set

orbital radius =




1.0410a : resonance with Y 16
16 mode

1.0868a : resonance with Y 15
15 mode

1.1380a : resonance with Y 14
14 mode

1.1956a : resonance with Y 13
13 mode

1.2611a : resonance with Y 12
12 mode

If n � 16 the satellite burns up in the atmosphere (or its orbit becomes
subterranean!), while if n � 12 then r becomes so large that the (1/rn)-factor
makes the effects of resonance unobservably small. The case n = 15 seems to
be nearly optimal, and indeed: scientists active in the field321 have been able
by this means to estimate the values of Q15

15, Q15
17, Q15

19 and Q15
21. Since high

moments probe progressively more superficial properties of ρ(xxx), one might
hope from such orbital data to extract information about the earth’s crust and
crust-mantle interface. The technique extends in principle to planetary bodies
other than the earth. And microphysical analogs do come to mind: an atom
with nuclear charge Ze has orbital radii given typically by (see again page 392)

R = �
2

mZe2

which gets smaller when m is increased . One therefore expects that the
properties of µ-mesonic atoms might provide information about the surface
properties of complex nuclei .

6. Harmonic polynomials & Maxwell’s theory of poles. While the theory of
spherical harmonics has much to do with the representation of rotations in
3-space, it has—contrary to the impression conveyed by some of the preceding
material—only incidentally to do with spherical coordinates. Important aspects
of the theory are, in fact, brought most simply/naturally into view by the
adoption of a Cartesian perspective . . . as I undertake now to demonstrate:

321 See R. D. Eberst, “Earth satellites and the gravitational potential” and
D. G. King-Hele & H. Heller, “Equations for the 15th-order harmonics in the
geopotential,” Nature Physical Science 235, 130 (1972). Also A. E. Roy, Orbital
Motion §10.4 () and H. F. R. Schöyer & K. F. Walker, Rocket Propulsion
and Space Flight Dynamics §18.6 ().
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Introduce the (rotationally invariant!) monomial T (xxx) ≡ aaa···xxx and notice
that, by quick calculation,

∇2T n = n(n− 1)T n−2 aaa···aaa

Dismissing as trivial the cases n = 0 and n = 1, we conclude that the nth powers
of T (xxx) will be harmonic iff aaa is null . But aaa···aaa = 0 entails that aaa be complex:
aaa = bbb + iccc with b2 − c2 = 0 and bbb···ccc = 0. If aaa···aaa = 0 is formulated

a3 =
√
−(a2

1 + a2
2) = i

√
(a1 + ia2)(a1 − ia2)

then it becomes fairly natural to introduce complex parameters

u ≡
√
a1 + ia2

v ≡
√
a1 − ia2

in terms of which we can write

a1 = 1
2 (u2 + v2)

a2 = 1
2i (u

2 − v2)
a3 = iuv


 (520)

which provide a (u, v)-parameterized description of the set of all null 3-vectors aaa.
In this notation

T n(xxx) = 1
2n

[
(u2 + v2)x + 1

i (u
2 − v2)y + 2iuvz

]n
= 1

2n

[
u2(x− iy) + 2iuvz + v2(x + iy)

]n
=

{
polynomial of degree n in variables (x, y, z)
polynomial of degree 2n in parameters (u, v)

To emphasize the latter point of view we write

= 1
2n

m=+n∑
m=−n

un−mvn+mHm
n (xxx)

This, since harmonic for all values of u and v, entails that the polynomials
Hm
n (xxx) are individually harmonic:

∇2Hm
n = 0
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Arguing from

T · T n = 1
2n+1

[
u2(x− iy) + 2iuvz + v2(x + iy)

]∑
m

un−mvn+mHm
n

= 1
2n+1

∑
m

{
u(n+1)−(m−1)v(n+1)+(m−1)(x− iy)Hm

n

+ u(n+1)−m v(n+1)+m (2iz)Hm
n

+ u(n+1)−(m+1)v(n+1)+(m+1)(x + iy)Hm
m

}
= T (n+1)

= 1
2n+1

∑
m

u(n+1)−mv(n+1)+mHm
n+1

we obtain a relation

Hm
n+1 = (x− iy)Hm+1

n + 2izHm
n + (x + iy)Hm−1

n

from which—sprouting from the “seed”

Hm
0 (xxx) ≡

{
1 : m = 0
0 : m = ±1,±2, . . .

—the harmonic polynomials Hm
n (xxx) can be computed recursively: thus

H0
0 = 1

H−1
1 = x− iy

H0
1 = 2iz

H+1
1 = x + iy

H−2
2 = (x− iy)2

H−1
2 = 4i(x− iy)z

H0
2 = 2x2 + 2y2 − 4z2 = 2(r2 − 3z2)

H+1
2 = 4i(x + iy)z

H+2
2 = (x + iy)2

...

The harmonic polynomials are regular at the origin but blow up at ∞.
Kelvin inversion (519) permits us, however, to construct from them a population
of (non-polynomial) functions

Jmn (xxx) ≡ 1
rH

m
n ( 1

r2xxx)

which are assuredly also harmonic and, though singular at the origin, are
regular at ∞. Reading from the preceding list are led thus to the Kelvin
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transform of that list:

J0
0 = r−1

J−1
1 = r−3 · (x− iy)

J0
1 = r−3 · 2iz

J+1
1 = r−3 · (x + iy)

J−2
2 = r−5 · (x− iy)2

J−1
2 = r−5 · 4(x− iy)iz

J0
2 = r−5 · 2(r2 − 3z2)

J+1
2 = r−5 · 4(x + iy)iz

J+2
2 = r−5 · (x + iy)2

...

= + 1
r

= −1(∂x − i∂y) 1
r

= −2(i∂z) 1
r

= −1(∂x + i∂y) 1
r

= +1
3 · 1(∂x − i∂y)2 1

r

= +1
3 · 4(∂x − i∂y)(i∂z) 1

r

= +1
3 · 6(i∂z)2 1

r

= +1
3 · 4(∂x + i∂y)(i∂z) 1

r

= +1
3 · 1(∂x + i∂y)2 1

r
...

That the harmonic functions Jmn (xxx) can be described by the highly patterned
formulæ on the right was discovered by Maxwell, who in the general case would
have us write

J±m
n = (−)n 1

1·3·5···(2n−1)

(
2n
n−m

)
(∂x ± i∂y)m(i∂z)n−m 1

r

where now m = 0, 1, 2, . . . , n.

We are by now not surprised to discover that if we at this point use

x± iy = r sin θ · e±iφ and z = r cos θ

to pass from Cartesian to spherical coordinates, then the functions Jmn turn
out to differ only numerical factors from the functions r−(n+1)Y m

n (θ, φ). The
detailed result can be expressed in several ways:

Y ±m
n (θ, φ) = (−)n(i)n+m 1

2nn!

√
2n+1
4π (n−m)!(n+m)! · rn+1J±m

n (xxx)(
1
r
)n+1

Y ±m
n (θ, φ) = (−)n

√
2n+1
4π

1
(n−m)!(n+m)! (∂x ± i∂y)m(∂z)n−m︸ ︷︷ ︸

1
r

From the latter we conclude that

≡ D±m
n

is a differential operator natural to the theory of spherical harmonics.



446 Distributed charge systems

Which brings us back again to very nearly our point of departure. We
established at (10.2) on page 12 that the function 1

r = (x2 + y2 + z2)−
1
2 is

harmonic except at the origin, where it blows up, but in a very interesting way:

∇2 1
r = −4πδ(xxx)

Application of D±m
n gives

↓
∇2

(
1
r
)n+1

Y ±m
n (θ, φ) = −4πD±m

n δ(xxx) (521)

which shows that a similar remark pertains to the functions Y m
n (θ, φ)/rn+1,

except that these possess singularities of higher order , the latter being described
by fancy derivatives of δ-functions. When, as at (517), we display ϕ(xxx) as a
weighted superposition of the functions that appear on the left, we are in effect
claiming that ρ(xxx) is equivalent to an identically weighted superposition of the
singular functions (“distributions”) that appear on the right side of (521):

ϕ(xxx) =
∞∑
n=0

1
2n+1

m=+n∑
m=−n

Qm
n

Y m
n (θ, φ)
rn+1

↑ ↑
| |—strength of D±m

n δ(xxx) singularity
∣∣∣
—number of nth-order singularities

And we remarked already on page 426 the sense in which structured singularities
can be interpreted to refer to constellations of “poles.” We have arrived thus
at the essence of Maxwell’s “theory of poles.”

It is hard to let go of this beautiful subject. I allow myself the luxury of
one parting shot: It is an immediate implication of (520) that

aaa∗··· aaa = 1
2 (u∗u + v∗v)

The expression on the right is invariant under linear transformations(
u
v

)
−→

(
u
v

)
= U

(
u
v

)

provided U is unitary (inverse = conjugate transpose). Such transformations,
by (520), induce linear transformations

aaa −→ aaa = Raaa

which, since norm-preserving, must describe 3-dimensional rotations. From this
germ of an idea one gains direct access to the rich subject matter to which I
allude at the end of §4.322

322 Some of the details are developed in my “Algebraic theory of spherical
harmonics” (Seminar Notes ). An excellent source is A. Erdélyi et al ,
Higher Transcendental Functions (), Volume 2, Chapter 11.
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The material described above—fruit of the genius mainly of Maxwell and
his friends, and of the generation that preceded them—takes Laplace’s equation

∇2ϕ = 0

as its point of departure, but analogous methods are important in a variety of
other contexts. Look, for example, to the heat 1-dimensional equation

(∂2
x − ∂t)ϕ(x, t) = 0

It is clear that exz + tz2
describes a z-parameterized family of solutions. Taylor

expansion in z

exz + tz2
= 1 + xz + 1

2 (x2 + 2t)z2

+ 1
6 (x3 + 6xt)z3

+ 1
24 (x4 + 12x2t + 12t2)z4 + · · ·

≡
∞∑
n=0

vn(x, t) 1
n!z

n

gives rise to a population of “heat polynomials,” analogous to the harmonic
polynomials encountered on page 444.323 And corresponding to the Kelvin
transformation (519) one has the (nearly inversive) Appell transformation ()

ϕ(x, t) −−−−−−−−−−−−−−−−→
Appell transformation

ψ(x, t) ≡ e−x
2/4t

√
4πt

· ϕ(xt ,−
1
t )

where the exponential factor is itself a solution—the so-called “fundamental
solution”—of the heat equation. We have seen that the Kelvin transformation
contributes importantly to the theory of harmonic functions. Just so the Appell
transformation: I have shown elsewhere that it is an object central to the theory
of the conformal group, and that in a quantum mechanical application it serves
as the bridge that links the standard formalism to the Feynman formalism.324

323 See D. V. Widder, The Heat Equation (), pages 8–14.
324 “Appell, Galilean & Conformal Transformations in Classical/Quantum
Free Particle Dynamics” (research notes ).


