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Evaluating f(τ ) using complex integration

In class, we argued that the ~D and ~E fields in a linear, homogeneous and isotropic medium
are related by,

~D(~x, t) = ~E(~x, t) +

∫

∞

−∞

f(τ) ~E(~x, t− τ) dτ , (1)

where f(τ) = 0 for τ < 0 (since causality requires that ~D(~x, t) can only depend on the values

of ~E(~x, t′) for t′ < t). We then showed that

f(τ) =
1

2π

∫

∞

−∞

[

ǫ(ω)− 1
]

e−iωτ dω , (2)

where the index of refraction, n(ω) =
√

ǫ(ω), depends on the frequency of the Fourier mode
of the electric field (under the assumption that µ = 1).

Consider a simple model in which the electrons in the medium are bound by a harmonic
force (with natural frequency ω0) with damping factor γ > 0 acted on by an oscillating electric
field of angular frequency ω. In this model, we showed in class that

ǫ(ω) = 1 +
ω2
p

ω2
0 − ω2 − iγω

, (3)

where the so-called plasma frequency ωp depends on the properties of the medium. In the
model under consideration,

ω2

p ≡
4πNe2

m
, (4)

for a medium with N electrons per unit volume (where m is the electron mass and e is the
electron charge). Plugging eq. (3) into eq. (2),

f(τ) =
ω2
p

2π

∫

∞

−∞

e−iωτ dω

ω2
0 − ω2 − iγω

, where γ > 0. (5)

The goal of this note is to evaluate f(τ).
The first step is to factor the denominator of the integrand,

ω2

0 − ω2
− iγω = −(ω − ω1)(ω − ω2) , (6)

where

ω1,2 = −
1

2
iγ ±

√

ω2
0 −

1

4
γ2 , (7)

with Reω1 > 0 and Reω2 < 0. Note that since γ > 0 it follows that Imω1,2 < 0. Thus,

f(τ) = −
ω2
p

2π

∫

∞

−∞

e−iωτ dω

(ω − ω1)(ω − ω2)
, where Imω1,2 < 0. (8)
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To evaluate f(τ), we consider a semicircular contour in the complex ω plane. Two cases
will now be treated.

Case 1: τ < 0. Then it follows that

Reω

Imω

C

ω2 ω1

f(τ) = −
ω2
p

2π

∫

C

e−iωτ dω

(ω − ω1)(ω − ω2)

where C is the closed contour shown above, and the radius of the contour is taken to infinity.
Note that because τ < 0, the integrand is exponentially damped along the semicircular part
of the contour C and thus the contribution to the integral along the semicircular arc goes to
zero as the radius of the semicircle is taken to infinity. Note that there are no singularities
inside the closed contour C (since the two poles at ω = ω1,2 lie outside the closed contour.
Hence, by Cauchy’s Theorem of complex analysis, it follows that f(τ) = 0 for τ < 0.

Case 2: τ > 0. Then it follows that

Reω

Imω

C

ω2 ω1
f(τ) = −

ω2
p

2π

∫

C

e−iωτ dω

(ω − ω1)(ω − ω2)

where the contour C is now closed in the lower half plane. Since in this case τ > 0, the
integrand is again exponentially damped along the semicircular part of the contour C and
thus the contribution to the integral along the semicircular arc goes to zero as the radius of
the semicircle is taken to infinity. Two simple poles reside inside the clockwise contour C.
Thus, by the residue theorem of complex analysis applied to a closed clockwise contour,

∫

C

e−iωτ dω

(ω − ω1)(ω − ω2)
= −2πi

[

1

ω1 − ω2

Res

(

e−iωτ

ω − ω1

)

+
1

ω2 − ω1

Res

(

e−iωτ

ω − ω2

)]

, (9)

where Resf(z) = limz→z0(z − z0)f(z) is the residue due to a simple pole at z = z0. Note that
the minus sign in front of 2πi appears because the closed contour is a clockwise path (for a
counterclockwise path no minus sign would appear). Hence, after evaluating the residues,

∫

C

e−iωτ dω

(ω − ω1)(ω − ω2)
= −

2πi

ω1 − ω2

[

e−iω1τ − e−iω2τ
]

, for τ > 0. (10)

It is convenient to introduce the notation,

ν0 ≡
√

ω2
0 −

1

4
γ2 . (11)

Then, eq. (7) reads
ω1 = ν0 −

1

2
iγ , ω2 = −ν0 −

1

2
iγ . (12)
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Plugging the results of eq. (12) into eq. (10), we end up with
∫

C

e−iωτ dω

(ω − ω1)(ω − ω2)
= −

πi

ν0
e−γτ/2

[

e−iν0τ − eiν0τ
]

= −
2π

ν0
e−γτ/2 sin ν0τ . (13)

Combining the two cases treated above, it follows that

f(τ) =











ω2
p e

−γτ/2 sin ν0τ

ν0
, for τ > 0,

0 , for τ < 0.

(14)

We can combine the two cases more neatly by introducing the Heavyside step function,

Θ(τ) =

{

1 , if τ > 0 ,

0 , if τ < 0 .
(15)

We then conclude that,

f(τ) = Θ(τ)ω2

p e
−γτ/2 sin ν0τ

ν0
. (16)

Note that the step function ensures that our result respects causality.
The requirement of causality actually imposes an interesting constraint on the analytic

properties of ǫ(ω). First, we note that inverting the Fourier transform given in eq. (2) yields,

ǫ(ω) = 1 +

∫

∞

−∞

f(τ) eiωτ dτ . (17)

Hence, regarding ǫ(ω) as a function of a complex variable ω, it immediately follows that

ǫ(−ω) = ǫ∗(ω∗) , (18)

since f(τ) defined in eq. (1) must be a real function as it relates the real physical electric
displacement field and electric field, respectively.

Furthermore, writing ω ≡ ωR + iωI (where ωR ≡ Reω and ωI = Imω), it follows that

ǫ(ωR + iωI) = 1 +

∫

∞

0

eiωRτf(τ) e−ωIτ dτ , (19)

dn

dωn
ǫ(ω)

∣

∣

∣

∣

ω=ωR+iωI

= in
∫

∞

0

τn eiωRτf(τ) e−ωIτ dτ , for n = 1, 2, 3, . . ., (20)

where we have invoked causality in setting the lower limit of integration to zero, since f(τ) = 0
for τ < 0. Assuming that f(τ) is finite on the real axis [an assumption that is physically
sensible in light of eq. (1)], then eqs. (19) and (20) imply that:

1. ǫ(ω) is non-singular when Imω > 0,

2. dǫ/dω is non-singular when Imω > 0,

since Imω > 0 implies that the integrals of eqs. (19) and (20) converge due to the damping
factor e−ωIτ . Consequently, ǫ(ω) can be expanded in a Taylor series around any point in the
upper half complex ω plane (i.e., it is an analytic function), as a result of causality. Indeed,
the simple model employed above that yielded eq. (3) for ǫ(ω) satisfies this latter requirement
[as well as satisfying eq. (18)], as expected.
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