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PREFACE TO THE SECOND EDITION

This second edition of the book ELECTROMAGNETIC F IELD THEORY is a major revision
and expansion of the first edition that was published on the Internet (www.plasma.uu.se/CED/
Book) in an organic growth process over the years 1997–2008. The main changes are an expan-
sion of the material treated, an addition of a new chapter and several illustrative examples, and a
slight reordering of the chapters.

The main reason for attempting to improve the presentation and to add more material is that
this new edition is now being made available in printed form by Dover Publications and is used in
an extended Classical Electrodynamics course at Uppsala University, at the last-year undergradu-
ate, Master, and beginning post-graduate/doctoral level. It has also been used by the author in a
similar course at the Galilean School of Higher Education (Scuola Galileiana di Studi Superiori)
at University of Padova. It is the author’s hope that the second edition of his book will find a wid
use in Academia and elsewhere.

The subject matter starts with a description of the properties of electromagnetism when the
charges and currents are located in otherwise free space, i.e., a space that is free of matter and
external fields (e.g., gravitation). A rigorous analysis of the fundamental properties of the elec-
tromagnetic fields and radiation phenomena follows. Only then the influence of matter on the
fields and the pertinent interaction processes is taken into account. In the author’s opinion, this
approach is preferable since it avoids the formal logical inconsistency of introducing, very early
in the derivations, the effect on the electric and mangetic fields when conductors and dielectrics
are present (and vice versa) in an ad hoc manner, before constitutive relations and physical mod-
els for the electromagnetic properties of matter, including conductors and dielectrics, have been
derived from first principles. Curved-space effects on electromagnetism are not treated at all.

In addition to the Maxwell-Lorentz equations, which postulate the beaviour of electromag-
netic fields due to electric charges and currents on a microscopic classical scale, chapter chapter 1
also introduces Dirac’s symmetrised equations that incorporate the effects of magnetic charges
and currents. In chapter chapter 2, a stronger emphasis than before is put on the axiomatic found-
ation of electrodynamics as provided by the Maxwell-Lorentz equations that are taken as the
postulates of the theory. Chapter chapter 3 on potentials and gauges now provides a more com-
prehensive picture and discusses gauge invariance in a more satisfactory manner than the first
edition did. Chapter chapter 4 is new and deals with symmetries and conserved quantities in a
more rigourous, profound and detailed way than in the first edition. For instance, the presentation
of the theory of electromagnetic angular momentum and other observables (constants of motion)
has been substantially expanded and put on a firm basis. Chapter chapter 9 is a complete rewrite
and combines material that was scattered more or less all over the first edition. It also contains
new material on wave propagation in plasma and other media. When, in chapter chapter 9, the
macroscopic Maxwell equations are introduced, the inherent approximations in the derived field
quantities are clearly pointed out. The collection of formulæ in appendix F on page 213 has been
augmented quite substantially. In appendix M on page 231, the treatment of dyadic products and
tensors has been expanded significantly and numerous examples have been added throughout.

xix

www.plasma.uu.se/CED/Book
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xx PREFACE TO THE SECOND EDITION

I want to express my warm gratitude to professor CESARE BARBIERI and his entire group,
particularly FABRIZIO TAMBURINI, at the Department of Astronomy, University of Padova,
for stimulating discussions and the generous hospitality bestowed upon me during several shorter
and longer visits in 2008, 2009, and 2010 that made it possible to prepare the current major revi-
sion of the book. In this breathtakingly beautiful northern Italy where the cradle of renaissance
once stood, intellectual titan GALILEO GALILEI worked for eighteen years and gave birth to
modern physics, astronomy and science as we know it today, by sweeping away Aristotelian dog-
mas, misconceptions and mere superstition, thus most profoundly changing our conception of the
world and our place in it. In the process, Galileo’s new ideas transformed society and mankind
irreversibly and changed our view of the Universe, including our own planet, forever. It is hoped
that this book may contribute in some small, humble way to further these, once upon a time,
mind-boggling—and dangerous—ideas of intellectual freedom and enlightment.

Thanks are also due to JOHAN S JÖHOLM, KRISTOFFER PALMER, MARCUS ERIKS-
SON, and JOHAN L INDBERG who during their work on their Diploma theses suggested im-
provements and additions and to HOLGER THEN and STAFFAN YNGVE for carefully checking
some lengthy calculations and to the numerous undergraduate students, who have been exposed
to various draft versions of this second edtion. In particular, I would like to mention BRUNO

STRANDBERG.
This book is dedicated to my son MATTIAS, my daughter KAROLINA, my four grandsons

MAX , ALBIN , F IL IP and OSKAR, my high-school physics teacher, STAFFAN RÖSBY, and
my fellow members of the CAPELLA PEDAGOGICA UPSALIENSIS.

Padova, Italy BO THIDÉ

February, 2011 www.physics.irfu.se/�bt
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PREFACE TO THE FIRST EDITION

Of the four known fundamental interactions in nature—gravitational, strong, weak, and electro-
magnetic—the latter has a special standing in the physical sciences. Not only does it, together
with gravitation, permanently make itself known to all of us in our everyday lives. Electro-
dynamics is also by far the most accurate physical theory known, tested on scales running from
sub-nuclear to galactic, and electromagnetic field theory is the prototype of all other field theories.

This book, ELECTROMAGNETIC F IELD THEORY, which tries to give a modern view of
classical electrodynamics, is the result of a more than thirty-five year long love affair. In the
autumn of 1972, I took my first advanced course in electrodynamics at the Department of Theor-
etical Physics, Uppsala University. Soon I joined the research group there and took on the task
of helping the late professor PER OLOF FRÖMAN, who was to become my Ph.D. thesis ad-
viser, with the preparation of a new version of his lecture notes on the Theory of Electricity. This
opened my eyes to the beauty and intricacy of electrodynamics and I simply became intrigued by
it. The teaching of a course in Classical Electrodynamics at Uppsala University, some twenty odd
years after I experienced the first encounter with the subject, provided the incentive and impetus
to write this book.

Intended primarily as a textbook for physics and engineering students at the advanced under-
graduate or beginning graduate level, it is hoped that the present book will be useful for research
workers too. It aims at providing a thorough treatment of the theory of electrodynamics, mainly
from a classical field-theoretical point of view. The first chapter is, by and large, a descrip-
tion of how Classical Electrodynamics was established by JAMES CLERK MAXWELL as a
fundamental theory of nature. It does so by introducing electrostatics and magnetostatics and
demonstrating how they can be unified into one theory, classical electrodynamics, summarised
in Lorentz’s microscopic formulation of the Maxwell equations. These equations are used as an
axiomatic foundation for the treatment in the remainder of the book, which includes modern for-
mulation of the theory; electromagnetic waves and their propagation; electromagnetic potentials
and gauge transformations; analysis of symmetries and conservation laws describing the elec-
tromagnetic counterparts of the classical concepts of force, momentum and energy, plus other
fundamental properties of the electromagnetic field; radiation phenomena; and covariant Lag-
rangian/Hamiltonian field-theoretical methods for electromagnetic fields, particles and interac-
tions. Emphasis has been put on modern electrodynamics concepts while the mathematical tools
used, some of them presented in an Appendix, are essentially the same kind of vector and tensor
analysis methods that are used in intermediate level textbooks on electromagnetics but perhaps a
bit more advanced and far-reaching.

The aim has been to write a book that can serve both as an advanced text in Classical Elec-
trodynamics and as a preparation for studies in Quantum Electrodynamics and Field Theory, as
well as more applied subjects such as Plasma Physics, Astrophysics, Condensed Matter Physics,
Optics, Antenna Engineering, and Wireless Communications.

The current version of the book is a major revision of an earlier version, which in turn was an
outgrowth of the lecture notes that the author prepared for the four-credit course Electrodynam-

xxi
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xxii PREFACE TO THE FIRST EDITION

ics that was introduced in the Uppsala University curriculum in 1992, to become the five-credit
course Classical Electrodynamics in 1997. To some extent, parts of those notes were based on
lecture notes prepared, in Swedish, by my friend and Theoretical Physics colleague BENGT

LUNDBORG, who created, developed and taught an earlier, two-credit course called Electro-
magnetic Radiation at our faculty. Thanks are due not only to Bengt Lundborg for providing
the inspiration to write this book, but also to professor CHRISTER WAHLBERG, and professor
GÖRAN FÄLDT, both at the Department of Physics and Astronomy, Uppsala University, for
insightful suggestions, to professor JOHN LEARNED, Department of Physics and Astronomy,
University of Hawaii, for decisive encouragement at the early stage of this book project, to pro-
fessor GERARDUS T’HOOFT, for recommending this book on his web page ‘How to become
a good theoretical physicist’, and professor CECILIA JARLSKOG, Lund Unversity, for pointing
out a couple of errors and ambiguities.

I am particularly indebted to the late professor V ITALIY LAZAREVICH G INZBURG, for
his many fascinating and very elucidating lectures, comments and historical notes on plasma
physics, electromagnetic radiation and cosmic electrodynamics while cruising up and down the
Volga and Oka rivers in Russia at the ship-borne Russian-Swedish summer schools that were
organised jointly by late professor LEV M IKAHILOVICH ERUKHIMOV and the author during
the 1990’s, and for numerous deep discussions over the years.

Helpful comments and suggestions for improvement from former PhD students TOBIA CA-
ROZZI, ROGER KARLSSON, and MATTIAS WALDENVIK, as well as ANDERS ERIKSSON

at the Swedish Institute of Space Physics in Uppsala and who have all taught Uppsala students
on the material covered in this book, are gratefully acknowledged. Thanks are also due to the late
HELMUT KOPKA, for more than twenty-five years a close friend and space physics colleague
working at the Max-Planck-Institut für Aeronomie, Lindau, Germany, who not only taught me
the practical aspects of the use of high-power electromagnetic radiation for studying space, but
also some of the delicate aspects of typesetting in TEX and LATEX.

In an attempt to encourage the involvement of other scientists and students in the making of
this book, thereby trying to ensure its quality and scope to make it useful in higher university
education anywhere in the world, it was produced as a World-Wide Web (WWW) project. This
turned out to be a rather successful move. By making an electronic version of the book freely
downloadable on the Internet, comments have been received from fellow physicists around the
world. To judge from WWW ‘hit’ statistics, it seems that the book serves as a frequently used
Internet resource. This way it is hoped that it will be particularly useful for students and research-
ers working under financial or other circumstances that make it difficult to procure a printed copy
of the book. I would like to thank all students and Internet users who have downloaded and
commented on the book during its life on the World-Wide Web.

Uppsala, Sweden BO THIDÉ

December, 2008 www.physics.irfu.se/�bt
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FOUNDATIONS OF CLASSICAL

ELECTRODYNAMICS

The classical theory of electromagnetism deals with electric and magnetic fields
and their interaction with each other and with charges and currents. This theory
is classical in the sense that it assumes the validity of certain mathematical limit-
ing processes in which it is considered possible for the charge and current distri-
butions to be localised in infinitesimally small volumes of space.1 Clearly, this 1 Accepting the mere existence of

an electrically charged particle re-
quires some careful thinking. In his
excellent book Classical Charged
Particles, FRITZ ROHRLICH
writes

‘To what extent does it
make sense to talk about an
electron, say, in classical
terms? These and similar
questions clearly indicate
that ignoring philosophy
in physics means not
understanding physics.
For there is no theoretical
physics without some
philosophy; not admitting
this fact would be self-
deception.’

is in contradistinction to electromagnetism on an atomistic scale, where charges
and currents have to be described in a nonlocal quantum formalism. However,
the limiting processes used in the classical domain, which, crudely speaking, as-
sume that an elementary charge has a continuous distribution of charge density,
will yield results that agree perfectly with experiments on non-atomistic scales,
however small or large these scales may be.2

2 Electrodynamics has been tested
experimentally over a larger range
of spatial scales than any other
existing physical theory.

It took the genius of JAMES CLERK MAXWELL to consistently unify, in
the mid-1800’s, the theory of Electricity and the then distinctively different the-
ory Magnetism into a single super-theory, Electromagnetism or Classical Elec-
trodynamics (CED), and also to realise that optics is a sub-field of this super-
theory. Early in the 20th century, HENDRIK ANTOON LORENTZ took the
electrodynamics theory further to the microscopic scale and also paved the way
for the Special Theory of Relativity, formulated in its full extent by ALBERT

E INSTEIN in 1905. In the 1930’s PAUL ADRIEN MAURICE D IRAC expan-
ded electrodynamics to a more symmetric form, including magnetic as well as
electric charges. With his relativistic quantum mechanics and field quantisation
concepts, Dirac had already in the 1920’s laid the foundation for Quantum Elec-
trodynamics (QED ), the relativistic quantum theory for electromagnetic fields
and their interaction with matter for which R ICHARD PHILLIPS FEYNMAN,
JULIAN SEYMOUR SCHWINGER, and S IN- ITIRO TOMONAGA were awar-
ded the Nobel Prize in Physics in 1965. Around the same time, physicists such
as SHELDON GLASHOW, ABDUS SALAM, and STEVEN WEINBERG were
able to unify electrodynamics with the weak interaction theory, thus creating
yet another successful super-theory, Electroweak Theory, an achievement which
rendered them the Nobel Prize in Physics 1979. The modern theory of strong
interactions, Quantum Chromodynamics (QCD ), is heavily influenced by CED
and QED.

1
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2 j 1. FOUNDATIONS OF CLASSICAL ELECTRODYNAMICS

In this introductory chapter we start with the force interactions in classical
electrostatics and classical magnetostatics, introduce the corresponding static
electric and magnetic fields and postulate two uncoupled systems of differential
equations for them. We continue by showing that the conservation of electric
charge and its relation to electric current lead to a dynamic connection between
electricity and magnetism and how the two can be unified into Classical Elec-
trodynamics. This theory is described by a system of coupled dynamic field
equations — the microscopic versions of Maxwell’s differential equations intro-
duced by Lorentz — which, in chapter 2, we take as the axiomatic foundation of
the theory of electromagnetic fields and the basis for the treatment in the rest of
the book.

At the end of this chapter 1 we present Dirac’s symmetrised form of the
Maxwell-Lorentz equations that incorporate magnetic charges and magnetic cur-
rents into the theory in a symmetric way. In practical work, such as in antenna
engineering, magnetic currents have proved to be a very useful concept. We
shall make some use of this symmetrised theory of electricity and magnetism.

1.1 Electrostatics

The theory that describes physical phenomena related to the interaction between
stationary electric charges or charge distributions in a finite space with station-
ary boundaries is called electrostatics . For a long time, electrostatics, under
the name electricity, was considered an independent physical theory of its own,
alongside other physical theories such as Magnetism, Mechanics, Optics, and
Thermodynamics.3

3 The physicist, mathematician and
philosopher P IERRE MAURICE
MARIE DUHEM (1861–1916)
once wrote:

‘The whole theory of
electrostatics constitutes
a group of abstract ideas
and general propositions,
formulated in the clear
and concise language of
geometry and algebra,
and connected with one
another by the rules of
strict logic. This whole
fully satisfies the reason of
a French physicist and his
taste for clarity, simplicity
and order. . . .’

1.1.1 Coulomb’s law

It has been found experimentally that the force interaction between stationary,
electrically charged bodies can be described in terms of two-body mechanical
forces. Based on these experimental observations, Coulomb4 postulated, in

4 CHARLES-AUGUSTIN DE
COULOMB (1736–1806) was
a French physicist who in 1775
published three reports on the
forces between electrically charged
bodies.

1775, that in the simple case depicted in figure 1.1 on the facing page, the mech-
anical force on a static electric charge q located at the field point (observation
point) x, due to the presence of another stationary electric charge q0 at the source
point x0, is directed along the line connecting these two points, repulsive for
charges of equal signs and attractive for charges of opposite signs. This postu-
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q0

q

O

x0

x � x0

x

Figure 1.1: Coulomb’s law pos-
tulates that a static electric charge
q, located at a point x relative to
the origin O , will experience an
electrostatic force F es.x/ from a
static electric charge q0 located at
x0. Note that this definition is inde-
pendent of any particular choice of
coordinate system since the mech-
anical force F es is a true (polar)
vector.

late is called Coulomb’s law and can be formulated mathematically as

F es.x/ D
qq0

4�"0

x � x0

jx � x0j3
D �

qq0

4�"0
r

�
1

jx � x0j

�
D

qq0

4�"0
r 0
�

1

jx � x0j

�
(1.1)

where, in the last step, formula (F.114) on page 220 was used. In SI units , which
we shall use throughout, the electrostatic force5 F es is measured in Newton (N), 5 Massive particles also interact

gravitationally but with a force that
is typically 10�36 times weaker.

the electric charges q and q0 in Coulomb (C), i.e. Ampere-seconds (As), and
the length jx � x0j in metres (m). The constant "0 D 107=.4�c2/ Farad per
metre (Fm�1) is the permittivity of free space and c ms�1 is the speed of light
in vacuum.6 In CGS units , "0 D 1=.4�/ and the force is measured in dyne, 6 The notation c for speed stems

from the Latin word ‘celeritas’
which means ‘swiftness’. This
notation seems to have been intro-
duced by W ILHELM EDUARD
WEBER (1804–1891), and
RUDOLF KOHLRAUSCH (1809–
1858) and c is therefore sometimes
referred to as Weber’s constant .
In all his works from 1907 and
onward, ALBERT E INSTEIN
(1879–1955) used c to denote the
speed of light in free space.

electric charge in statcoulomb, and length in centimetres (cm).

1.1.2 The electrostatic field

Instead of describing the electrostatic interaction in terms of a ‘force action at a
distance’, it turns out that for many purposes it is useful to introduce the concept
of a field. Thus we describe the electrostatic interaction in terms of a static
vectorial electric field Estat defined by the limiting process

Estat.x/
def
� lim

q!0

F es.x/

q
(1.2)

where F es is the electrostatic force, as defined in equation (1.1) above, from a net
electric charge q0 on the test particle with a small net electric charge q.7 In the SI 7 If we picture the test charge as an

electrically charged particle, the
charge of such a particle cannot
tend smoothly to 0 simply because
the lowest allowable amount of
charge is that of an individual
quark, namely 1=3 jej where e is
the elementary charge

system of units, electric fields are therefore measured in NC�1 or, equivalently,
in Vm�1. Since the purpose of the limiting process is to ascertain that the test
charge q does not distort the field set up by q0, the expression for Estat does
not depend explicitly on q but only on the charge q0 and the relative position
vector x � x0. This means that we can say that any net electric charge produces
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an electric field in the space that surrounds it, regardless of the existence of a
second charge anywhere in this space.8 However, in order to experimentally8 In the preface to the first edition

of the first volume of his book
A Treatise on Electricity and
Magnetism, first published in 1873,
Maxwell describes this in the
following almost poetic manner:

‘For instance, Faraday, in
his mind’s eye, saw lines of
force traversing all space
where the mathematicians
saw centres of force
attracting at a distance:
Faraday saw a medium
where they saw nothing
but distance: Faraday
sought the seat of the
phenomena in real actions
going on in the medium,
they were satisfied that they
had found it in a power
of action at a distance
impressed on the electric
fluids.’

detect a charge, a second (test) charge that senses the presence of the first one,
must be introduced.

Using equations (1.1) and (1.2) on the previous page, and formula (F.114)
on page 220, we find that the electrostatic field Estat at the observation point x

(also known as the field point), due to a field-producing electric charge q0 at the
source point x0, is given by

Estat.x/ D
q0

4�"0

x � x0

jx � x0j3
D �

q0

4�"0
r

�
1

jx � x0j

�
D

q0

4�"0
r 0
�

1

jx � x0j

�
(1.3)

In the presence of several field producing discrete electric charges q0i , located
at the points x0i , i D 1; 2; 3; : : : , respectively, in otherwise empty space, the
assumption of linearity of vacuum9 allows us to superimpose their individual

9 In fact, a vacuum exhibits a
quantum mechanical non-linearity
due to vacuum polarisation
effects, manifesting themselves
in the momentary creation and
annihilation of electron-positron
pairs, but classically this non-
linearity is negligible.

electrostatic fields into a total electrostatic field

Estat.x/ D
1

4�"0

X
i

q0i
x � x0iˇ̌
x � x0i

ˇ̌3 (1.4)

If the discrete electric charges are small and numerous enough, we can, in
a continuum limit, assume that the total charge q0 from an extended volume
to be built up by local infinitesimal elemental charges dq0, each producing an
elemental electric field

dEstat.x/ D
1

4�"0
dq0

x � x0

jx � x0j3
(1.5)

By introducing the electric charge density �, measured in Cm�3 in SI units, at
the point x0 within the volume element d3x0 D dx01dx02dx03 (measured in m3),
the elemental charge can be expressed as dq0 D d3x0 �.x0/, and the elemental
electrostatic field as

dEstat.x/ D
1

4�"0
d3x0 �.x0/

x � x0

jx � x0j3
(1.6)

Integrating this over the entire source volume V 0, we obtain

Estat.x/ D

Z
dEstat.x/ D

1

4�"0

Z
V 0

d3x0 �.x0/
x � x0

jx � x0j3

D �
1

4�"0

Z
V 0

d3x0 �.x0/r
�

1

jx � x0j

�
D �

1

4�"0
r

Z
V 0

d3x0
�.x0/

jx � x0j
(1.7)

where we used formula (F.114) on page 220 and the fact that �.x0/ does not
depend on the unprimed (field point) coordinates on which r operates.
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V 0

q0i

q

O

x0i

x � x0i

x

Figure 1.2: Coulomb’s law for a
continuous charge density �.x0/
within a volume V 0 of limited ex-
tent. In particular, a charge dens-
ity �.x0/ D

PN
i q
0
i
ı.x0 � x0

i
/

would represent a source distri-
bution consisting of N discrete
charges q0

i
located at x0

i
, where

i D 1; 2; 3; : : : ;N .

We emphasise that under the assumption of linear superposition, equation
(1.7) on the facing page is valid for an arbitrary distribution of electric charges,
including discrete charges, in which case � is expressed in terms of Dirac delta
distributions:10 10 Since, by definition, the integralZ

V 0
d3x0 ı.x0 � x0

i
/

�

Z
V 0

d3x0 ı.x0 � x0
i
/

� ı.y0 � y0
i
/ı.z0 � z0

i
/ D 1

is dimensionless, and x has the SI
dimension m, the 3D Dirac delta
distribution ı.x0 � x0

i
/ must have

the SI dimension m�3.

�.x0/ D
X
i

q0i ı.x
0
� x0i / (1.8)

as illustrated in figure 1.2. Inserting this expression into expression (1.7) on the
facing page we recover expression (1.4) on the preceding page, as we should.

According to Helmholtz’s theorem , discussed in subsection M.3.7, any well-
behaved vector field is completely known once we know its divergence and curl
at all points x in 3D space.11 Taking the divergence of the general Estat ex-

11 HERMANN LUDWIG
FERDINAND VON HELM-
HOLTZ (1821–1894) was a
physicist, physician and philo-
sopher who contributed to wide
areas of science, ranging from
electrodynamics to ophthalmology.

pression for an arbitrary electric charge distribution, equation (1.7) on the facing
page, and applying formula (F.126) on page 222 [see also equation (M.75) on
page 246], we obtain

r �Estat.x/ D �
1

4�"0
r �r

Z
V 0

d3x0
�.x0/

jx � x0j
D
�.x/

"0
(1.9a)

which is the differential form of Gauss’s law of electrostatics . Since, according
to formula (F.100) on page 220, r � r˛.x/ � 0 for any R3 scalar field ˛.x/,
we immediately find that in electrostatics

r � Estat.x/ D �
1

4�"0
r � r

Z
V 0

d3x0
�.x0/

jx � x0j
D 0 (1.9b)

i.e. that Estat is a purely irrotational field.
To summarise, electrostatics can be described in terms of two vector partial

differential equations

r �Estat.x/ D
�.x/

"0
(1.10a)

r � Estat.x/ D 0 (1.10b)
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representing four scalar partial differential equations.

1.2 Magnetostatics

Whereas electrostatics deals with static electric charges (electric charges that do
not move), and the interaction between these charges, magnetostatics deals with
static electric currents (electric charges moving with constant speeds), and the
interaction between these currents. Here we shall discuss the theory of magneto-
statics in some detail.

1.2.1 Ampère’s law

Experiments on the force interaction between two small loops that carry static
electric currents I and I 0 (i.e. the currents I and I 0 do not vary in time) have
shown that the loops interact via a mechanical force, much the same way that
static electric charges interact. Let Fms.x/ denote the magnetostatic force on
a loop C , with tangential line vector element dl, located at x and carrying a
current I in the direction of dl, due to the presence of a loop C 0, with tangential
line element dl0, located at x0 and carrying a current I 0 in the direction of dl0

in otherwise empty space. This spatial configuration is illustrated in graphical
form in figure 1.3 on the facing page.

According to Ampère’s law the magnetostatic force in question is given by
the expression12

12 ANDRÉ-MARIE AMPÈRE
(1775–1836) was a French math-
ematician and physicist who,
only a few days after he learned
about the findings by the Danish
physicist and chemist HANS
CHRISTIAN ØRSTED (1777–
1851) regarding the magnetic
effects of electric currents, presen-
ted a paper to the Académie des
Sciences in Paris, postulating the
force law that now bears his name.

Fms.x/ D
�0II

0

4�

I
C

dl �

I
C 0

dl0 �
x � x0

jx � x0j3

D �
�0II

0

4�

I
C

dl �

I
C 0

dl0 � r

�
1

jx � x0j

� (1.11)

In SI units, �0 D 4� �10�7 Henry per metre (Hm�1) is the permeability of free
space . From the definition of "0 and �0 (in SI units) we observe that

"0�0 D
107

4�c2
(Fm�1) � 4� � 10�7 (Hm�1) D

1

c2
(s2m�2) (1.12)

which is a most useful relation.
At first glance, equation (1.11) above may appear asymmetric in terms of the

loops and therefore be a force law that does not obey Newton’s third law. How-
ever, by applying the vector triple product ‘bac-cab’ formula (F.53) on page 218,
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C 0

C

di0 D I 0dl0

di D Idl

O

x0

x � x0

x

Figure 1.3: Ampère’s law postu-
lates how a small loop C , carry-
ing a static electric current I direc-
ted along the line element dl at x,
experiences a magnetostatic force
Fms.x/ from a small loop C 0, car-
rying a static electric current I 0 dir-
ected along the line element dl0 loc-
ated at x0.

we can rewrite (1.11) as

Fms.x/ D �
�0II

0

4�

I
C 0

dl0˝

I
C

dl � r

�
1

jx � x0j

�
�
�0II

0

4�

I
C

dl �

I
C 0

dl0˝
x � x0

jx � x0j3

(1.13)

Since the integrand in the first integral over C is an exact differential, this in-
tegral vanishes and we can rewrite the force expression, formula (1.11) on the
preceding page, in the following symmetric way

Fms.x/ D �
�0II

0

4�

I
C

dl �

I
C 0

dl0˝
x � x0

jx � x0j3
(1.14)

which clearly exhibits the expected interchange symmetry between loops C and
C 0.

1.2.2 The magnetostatic field

In analogy with the electrostatic case, we may attribute the magnetostatic force
interaction to a static vectorial magnetic field Bstat. The small elemental static
magnetic field dBstat.x/ at the field point x due to a line current element di0.x0/ D

I 0dl0.x0/ D d3x0j.x0/ of static current I 0 with electric current density j, meas-
ured in Am�2 in SI units, directed along the local line element dl0 of the loop at
x0, is

dBstat.x/
def
� lim
I!0

dFms.x/

I
D
�0

4�
di0.x0/ �

x � x0

jx � x0j3

D
�0

4�
d3x0j.x0/ �

x � x0

jx � x0j3

(1.15)
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which is the differential form of the Biot-Savart law.
The elemental field vector dBstat.x/ at the field point x is perpendicular to

the plane spanned by the line current element vector di0.x0/ at the source point
x0, and the relative position vector x � x0. The corresponding local elemental
force dFms.x/ is directed perpendicular to the local plane spanned by dBstat.x/

and the line current element di.x/. The SI unit for the magnetic field, sometimes
called the magnetic flux density or magnetic induction , is Tesla (T).

If we integrate expression (1.15) on the preceding page around the entire
loop at x, we obtain

Bstat.x/ D

Z
dBstat.x/

D
�0

4�

Z
V 0

d3x0 j.x0/ �
x � x0

jx � x0j3

D �
�0

4�

Z
V 0

d3x0 j.x0/ � r
�

1

jx � x0j

�
D
�0

4�
r �

Z
V 0

d3x0
j.x0/

jx � x0j

(1.16)

where we used formula (F.114) on page 220, formula (F.87) on page 219, and
the fact that j.x0/ does not depend on the unprimed coordinates on which r
operates. Comparing equation (1.7) on page 4 with equation (1.16) above, we
see that there exists an analogy between the expressions for Estat and Bstat but
that they differ in their vectorial characteristics. With this definition of Bstat,
equation (1.11) on page 6 may be written

Fms.x/ D I

I
C

dl � Bstat.x/ D

I
C

di � Bstat.x/ (1.17)

In order to assess the properties of Bstat, we determine its divergence and
curl. Taking the divergence of both sides of equation (1.16) above and utilising
formula (F.99) on page 220, we obtain

r �Bstat.x/ D
�0

4�
r �r �

Z
V 0

d3x0
j.x0/

jx � x0j
D 0 (1.18)

since, according to formula (F.99) on page 220, r �.r � a/ vanishes for any
vector field a.x/.

With the use of formula (F.128) on page 222, the curl of equation (1.16)
above can be written

r � Bstat.x/ D
�0

4�
r � r �

Z
V 0

d3x0
j.x0/

jx � x0j

D �0j.x/ �
�0

4�

Z
V 0

d3x0 Œr 0 � j.x0/�r 0
�

1

jx � x0j

� (1.19)
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assuming that j.x0/ falls off sufficiently fast at large distances. For the stationary
currents of magnetostatics, r � j D 0 since there cannot be any charge accumu-
lation in space. Hence, the last integral vanishes and we can conclude that

r � Bstat.x/ D �0j.x/ (1.20)

We se that the static magnetic field Bstat is purely rotational .

1.3 Electrodynamics

As we saw in the previous sections, the laws of electrostatics and magnetostatics
can be summarised in two pairs of time-independent, uncoupled partial differen-
tial equations, namely the equations of classical electrostatics

r �Estat.x/ D
�.x/

"0
(1.21a)

r � Estat.x/ D 0 (1.21b)

and the equations of classical magnetostatics

r �Bstat.x/ D 0 (1.21c)

r � Bstat.x/ D �0j.x/ (1.21d)

Since there is nothing a priori that connects Estat directly with Bstat, we must
consider classical electrostatics and classical magnetostatics as two separate and
mutually independent physical theories.

However, when we include time-dependence, these theories are unified into
Classical Electrodynamics . This unification of the theories of electricity and
magnetism can be inferred from two empirically established facts:

1. Electric charge is a conserved quantity and electric current is a transport of
electric charge. As we shall see, this fact manifests itself in the equation of
continuity and, as a consequence, in Maxwell’s displacement current .

2. A change in the magnetic flux through a loop will induce an electromotive
force electric field in the loop. This is the celebrated Faraday’s law of induc-
tion .



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 32 of 298.

DRAFT

10 j 1. FOUNDATIONS OF CLASSICAL ELECTRODYNAMICS

1.3.1 The indestructibility of electric charge

Let j.t;x/ denote the time-dependent electric current density. In the simplest
case it can be defined as j D v� where v is the velocity of the electric charge
density �.1313 A more accurate model is to

assume that the individual charge
and current elements obey some
distribution function that describes
their local variation of velocity
in space and time. For instance,
j can be defined in statistical
mechanical terms as j.t;x/ DP
˛ q˛

R
d3v vf˛.t;x; v/ where

f˛.t;x; v/ is the (normalised)
distribution function for particle
species ˛ carrying an electric
charge q˛ .

The electric charge conservation law can be formulated in the equation of
continuity for electric charge

@�.t;x/

@t
C r � j.t;x/ D 0 (1.22)

or
@�.t;x/

@t
D �r � j.t;x/ (1.23)

which states that the time rate of change of electric charge �.t;x/ is balanced
by a negative divergence in the electric current density j.t;x/, i.e. an influx of
charge. Conservation laws will be studied in more detail in chapter 4.

1.3.2 Maxwell’s displacement current

We recall from the derivation of equation (1.20) on the previous page that there
we used the fact that in magnetostatics r � j.x/ D 0. In the case of non-
stationary sources and fields, we must, in accordance with the continuity equa-
tion (1.22) above, set r � j.t;x/ D �@�.t;x/=@t . Doing so, and formally re-
peating the steps in the derivation of equation (1.20) on the previous page, we
would obtain the result

r � B.t;x/ D �0j.t;x/C
�0

4�

Z
V 0

d3x0
@�.t;x0/

@t
r 0
�

1

jx � x0j

�
(1.24)

If we assume that equation (1.7) on page 4 can be generalised to time-varying
fields, we can make the identification1414 Later, we will need to consider

this generalisation and formal
identification further. 1

4�"0

@

@t

Z
V 0

d3x0 �.t;x0/r 0
�

1

jx � x0j

�
D

@

@t

�
�

1

4�"0

Z
V 0

d3x0 �.t;x0/r
�

1

jx � x0j

��
D

@

@t

�
�

1

4�"0
r

Z
V 0

d3x0
�.t;x0/

jx � x0j

�
D

@

@t
E.t;x/

(1.25)

The result is Maxwell’s source equation for the B field

r � B.t;x/ D �0

�
j.t;x/C

@

@t
"0E.t;x/

�
D �0j.t;x/C �0"0

@

@t
E.t;x/

(1.26)
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where "0@E.t;x/=@t is the famous displacement current . This, at the time, un-
observed current was introduced by Maxwell, in a stroke of genius, in order to
make also the right-hand side of this equation divergence-free when j.t;x/ is
assumed to represent the density of the total electric current. This total current
can be split up into ‘ordinary’ conduction currents, polarisation currents and
magnetisation currents. This will be discussed in subsection 9.1 on page 190.

The displacement current behaves like a current density flowing in free space.
As we shall see later, its existence has far-reaching physical consequences as it
predicts that such physical observables as electromagnetic energy, linear mo-
mentum, and angular momentum can be transmitted over very long distances,
even through empty space.

1.3.3 Electromotive force

If an electric field E.t;x/ is applied to a conducting medium, a current density
j.t;x/ will be set up in this medium. But also mechanical, hydrodynamical
and chemical processes can give rise to electric currents. Under certain physical
conditions, and for certain materials, one can assume that a linear relationship
exists between the electric current density j and E. This approximation is called
Ohm’s law:15 15 In semiconductors this approx-

imation is in general applicable
only for a limited range of E. This
property is used in semiconductor
diodes for rectifying alternating
currents.

j.t;x/ D �E.t;x/ (1.27)

where � is the electric conductivity measured in Siemens per metre (Sm�1).
We can view Ohm’s law equation (1.27) as the first term in a Taylor ex-

pansion of a general law jŒE.t;x/�. This general law incorporates non-linear
effects such as frequency mixing and frequency conversion . Examples of media
that are highly non-linear are semiconductors and plasma. We draw the atten-
tion to the fact that even in cases when the linear relation between E and j is
a good approximation, we still have to use Ohm’s law with care. The conduct-
ivity � is, in general, time-dependent (temporal dispersive media) but then it is
often the case that equation (1.27) above is valid for each individual temporal
Fourier (spectral) component of the field. In some media, such as magnetised
plasma and certain material, the conductivity is different in different directions.
For such electromagnetically anisotropic media (spatial dispersive media) the
scalar electric conductivity � in Ohm’s law equation (1.27) has to be replaced
by a conductivity tensor . If the response of the medium is not only anisotropic
but also non-linear, higher-order tensorial terms have to be included.

If the current is caused by an applied electric field E.t;x/, this electric field
will exert work on the charges in the medium and, unless the medium is super-
conducting, there will be some energy loss. The time rate at which this energy is
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expended is j �E per unit volume (Wm�3). If E is irrotational (conservative), j

will decay away with time. Stationary currents therefore require that an electric
field due to an electromotive force (EMF ) is present. In the presence of such a
field Eemf, Ohm’s law, equation (1.27) on the previous page, takes the form

j D �.Estat
C Eemf/ (1.28)

The electromotive force is defined as

E D
I
C

dl �.Estat
C Eemf/ (1.29)

where dl is a tangential line element of the closed loop C .1616 The term ‘electromotive force’
is something of a misnomer since
E represents a voltage, i.e. its SI
dimension is V. 1.3.4 Faraday’s law of induction

In subsection 1.1.2 we derived the differential equations for the electrostatic
field. Specifically, on page 5 we derived equation (1.9b) stating thatr�Estat D 0

and hence that Estat is a conservative field (it can be expressed as a gradient of a
scalar field). This implies that the closed line integral of Estat in equation (1.29)
above vanishes and that this equation becomes

E D
I
C

dl �Eemf (1.30)

It has been established experimentally that a non-conservative EMF field is
produced in a closed circuit C at rest if the magnetic flux through this circuit
varies with time. This is formulated in Faraday’s law which, in Maxwell’s gen-
eralised form, reads

E.t/ D
I
C

dl �E.t;x/ D �
d
dt
ˆm.t/

D �
d
dt

Z
S

d2x On �B.t;x/ D �
Z
S

d2x On �
@

@t
B.t;x/

(1.31)

where ˆm is the magnetic flux and S is the surface encircled by C , interpreted
as a generic stationary ‘loop’ and not necessarily as a conducting circuit. Ap-
plication of Stokes’ theorem on this integral equation, transforms it into the dif-
ferential equation

r � E.t;x/ D �
@

@t
B.t;x/ (1.32)

that is valid for arbitrary variations in the fields and constitutes the Maxwell
equation which explicitly connects electricity with magnetism.

Any change of the magnetic flux ˆm will induce an EMF. Let us therefore
consider the case, illustrated in figure 1.4 on the facing page, when the ‘loop’ is
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d2x On

B.x/ B.x/

v

dl

C

Figure 1.4: A loop C that moves
with velocity v in a spatially vary-
ing magnetic field B.x/ will sense
a varying magnetic flux during the
motion.

moved in such a way that it encircles a magnetic field which varies during the
movement. The total time derivative is evaluated according to the well-known
operator formula

d
dt
D

@

@t
C

dx

dt
� r (1.33)

This follows immediately from the multivariate chain rule for the differentiation
of an arbitrary differentiable function f .t;x.t//. Here, dx=dt describes a chosen
path in space. We shall choose the flow path which means that dx=dt D v and

d
dt
D

@

@t
C v � r (1.34)

where, in a continuum picture, v is the fluid velocity. For this particular choice,
the convective derivative dx=dt is usually referred to as the material derivative
and is denoted Dx=Dt .

Applying the rule (1.34) to Faraday’s law, equation (1.31) on the preceding
page, we obtain

E.t/ D �
d
dt

Z
S

d2x On �B D �
Z
S

d2x On �
@B

@t
�

Z
S

d2x On � .v � r /B (1.35)

Furthermore, taking the divergence of equation (1.32) on the facing page, we see
that

r �
@

@t
B.t;x/ D

@

@t
r �B.t;x/ D �r �Œr � E.t;x/� D 0 (1.36)

where in the last step formula (F.99) on page 220 was used. Since this is true for
all times t , we conclude that

r �B.t;x/ D 0 (1.37)
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also for time-varying fields; this is in fact one of the Maxwell equations. Using
this result and formula (F.89) on page 219, we find that

r � .B � v/ D .v � r /B (1.38)

since, during spatial differentiation, v is to be considered as constant, This allows
us to rewrite equation (1.35) on the previous page in the following way:

E.t/ D
I
C

dl �Eemf
D �

d
dt

Z
S

d2x On �B

D �

Z
S

d2x On �
@B

@t
�

Z
S

d2x On � r � .B � v/

(1.39)

With Stokes’ theorem applied to the last integral, we finally get

E.t/ D
I
C

dl �Eemf
D �

Z
S

d2x On �
@B

@t
�

I
C

dl �.B � v/ (1.40)

or, rearranging the terms,I
C

dl �.Eemf
� v � B/ D �

Z
S

d2x On �
@B

@t
(1.41)

where Eemf is the field induced in the ‘loop’, i.e. in the moving system. The
application of Stokes’ theorem ‘in reverse’ on equation (1.41) above yields

r � .Eemf
� v � B/ D �

@B

@t
(1.42)

An observer in a fixed frame of reference measures the electric field

E D Eemf
� v � B (1.43)

and an observer in the moving frame of reference measures the following Lorentz
force on a charge q

F D qEemf
D qEC q.v � B/ (1.44)

corresponding to an ‘effective’ electric field in the ‘loop’ (moving observer)

Eemf
D EC v � B (1.45)

Hence, we conclude that for a stationary observer, the Maxwell equation

r � E D �
@B

@t
(1.46)

is indeed valid even if the ‘loop’ is moving.



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 37 of 298.

DRAFT

1.3. Electrodynamics j 15

1.3.5 The microscopic Maxwell equations

We are now able to collect the results from the above considerations and formu-
late the equations of classical electrodynamics, valid for arbitrary variations in
time and space of the coupled electric and magnetic fields E.t;x/ and B.t;x/.
The equations are, in SI units ,17 17 In CGS units the Maxwell-

Lorentz equations are

r �E D 4��

r �B D 0

r �EC
1

c

@B

@t
D 0

r �B �
1

c

@E

@t
D
4�

c
j

in Heaviside-Lorentz units (one of
several natural units)

r �E D �

r �B D 0

r �EC
1

c

@B

@t
D 0

r �B �
1

c

@E

@t
D
1

c
j

and in Planck units (another set of
natural units)

r �E D 4��

r �B D 0

r �EC
@B

@t
D 0

r �B �
@E

@t
D 4�j

r �E D
�

"0
(1.47a)

r �B D 0 (1.47b)

r � EC
@B

@t
D 0 (1.47c)

r � B �
1

c2
@E

@t
D �0j (1.47d)

In these equations � D �.t;x/ represents the total, possibly both time and space
dependent, electric charge density, with contributions from free as well as in-
duced (polarisation) charges. Likewise, j D j.t;x/ represents the total, possibly
both time and space dependent, electric current density, with contributions from
conduction currents (motion of free charges) as well as all atomistic (polarisation
and magnetisation) currents. As they stand, the equations therefore incorporate
the classical interaction between all electric charges and currents, free or bound,
in the system and are called Maxwell’s microscopic equations . They were first
formulated by Lorentz and therefore another name frequently used for them is
the Maxwell-Lorentz equations and the name we shall use. Together with the
appropriate constitutive relations that relate � and j to the fields, and the initial
and boundary conditions pertinent to the physical situation at hand, they form a
system of well-posed partial differential equations that completely determine E

and B.

1.3.6 Dirac’s symmetrised Maxwell equations

If we look more closely at the microscopic Maxwell equations (1.47), we see
that they exhibit a certain, albeit not complete, symmetry. Dirac therefore made
the ad hoc assumption that there exist magnetic monopoles represented by a
magnetic charge density, which we denote by �m D �m.t;x/, and a magnetic
current density, which we denote by jm D jm.t;x/.18

18 JULIAN SEYMOUR
SCHWINGER (1918–1994)
once put it:

‘. . . there are strong theor-
etical reasons to believe
that magnetic charge exists
in nature, and may have
played an important role
in the development of
the Universe. Searches
for magnetic charge con-
tinue at the present time,
emphasising that electro-
magnetism is very far from
being a closed object’.

The magnetic monopole was first
postulated by P IERRE CURIE
(1859–1906) and inferred from
experiments in 2009.

With these new hypothetical physical entities included in the theory, and with
the electric charge density denoted �e and the electric current density denoted
je, the Maxwell-Lorentz equations will be symmetrised into the following two
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scalar and two coupled vectorial partial differential equations (SI units):

r �E D
�e

"0
(1.48a)

r �B D �0�
m (1.48b)

r � EC
@B

@t
D ��0j

m (1.48c)

r � B �
1

c2
@E

@t
D �0j

e (1.48d)

We shall call these equations Dirac’s symmetrised Maxwell equations or the
electromagnetodynamic equations .

Taking the divergence of (1.48c), we find that

r �.r � E/ D �
@

@t
.r �B/ � �0r � j

m
� 0 (1.49)

where we used the fact that the divergence of a curl always vanishes. Using
(1.48b) to rewrite this relation, we obtain the equation of continuity for magnetic
charge

@�m

@t
C r � jm

D 0 (1.50)

which has the same form as that for the electric charges (electric monopoles) and
currents, equation (1.22) on page 10.

1.4 Examples

BFaraday’s law derived from the assumed conservation of magnetic chargeEXAMPLE 1 .1

POSTULATE 1.1 (INDESTRUCTIBILITY OF MAGNETIC CHARGE) Magnetic charge ex-
ists and is indestructible in the same way that electric charge exists and is indestructible.

In other words, we postulate that there exists an equation of continuity for magnetic charges:

@�m.t;x/

@t
C r � jm.t;x/ D 0 (1.51)

Use this postulate and Dirac’s symmetrised form of Maxwell’s equations to derive Faraday’s
law.

The assumption of the existence of magnetic charges suggests a Coulomb-like law for mag-
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netic fields:

Bstat.x/ D
�0

4�

Z
V 0

d3x0 �m.x0/
x � x0

jx � x0j3
D �

�0

4�

Z
V 0

d3x0 �m.x0/r

�
1

jx � x0j

�
D �

�0

4�
r

Z
V 0

d3x0
�m.x0/

jx � x0j

(1.52)

[cf. equation (1.7) on page 4 for Estat] and, if magnetic currents exist, a Biot-Savart-like
law for electric fields [cf. equation (1.16) on page 8 for Bstat]:

Estat.x/ D �
�0

4�

Z
V 0

d3x0 jm.x0/ �
x � x0

jx � x0j3
D
�0

4�

Z
V 0

d3x0 jm.x0/ � r

�
1

jx � x0j

�
D �

�0

4�
r �

Z
V 0

d3x0
jm.x0/

jx � x0j

(1.53)

Taking the curl of the latter and using formula (F.128) on page 222

r � Estat.x/ D ��0jm.x/ �
�0

4�

Z
V 0

d3x0 Œr 0 � jm.x0/�r 0
�

1

jx � x0j

�
(1.54)

assuming that jm falls off sufficiently fast at large distances. Stationarity means that
r � jm D 0 so the last integral vanishes and we can conclude that

r � Estat.x/ D ��0jm.x/ (1.55)

It is intriguing to note that if we assume that formula (1.53) above is valid also for time-
varying magnetic currents, then, with the use of the representation of the Dirac delta func-
tion, equation (F.116) on page 220, the equation of continuity for magnetic charge, equation
(1.50) on the preceding page, and the assumption of the generalisation of equation (1.52)
above to time-dependent magnetic charge distributions, we obtain, at least formally,

r � E.t;x/ D ��0jm.t;x/ �
@

@t
B.t;x/ (1.56)

[cf. equation (1.24) on page 10] which we recognise as equation (1.48c) on the facing page.
A transformation of this electromagnetodynamic result by rotating into the ‘electric realm’
of charge space, thereby letting jm tend to zero, yields the electrodynamic equation (1.47c)
on page 15, i.e. the Faraday law in the ordinary Maxwell equations. This process would also
provide an alternative interpretation of the term @B=@t as a magnetic displacement current ,
dual to the electric displacement current [cf. equation (1.26) on page 10].

By postulating the indestructibility of a hypothetical magnetic charge, and assuming a dir-
ect extension of results from statics to dynamics, we have been able to replace Faraday’s
experimental results on electromotive forces and induction in loops as a foundation for the
Maxwell equations by a more fundamental one. At first sight, this result seems to be in
conflict with the concept of retardation. Therefore a more detailed analysis of it is required.
This analysis is left to the reader.

End of example 1.1C
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ELECTROMAGNETIC FIELDS AND

WAVES

As a first step in the study of the dynamical properties of the classical elec-
tromagnetic field, we shall in this chapter, as an alternative to the first-order
Maxwell-Lorentz equations, derive a set of second-order differential equations
for the fields E and B. It turns out that these second-order equations are wave
equations for the field vectors E and B, indicating that electromagnetic vector
wave modes are very natural and common manifestations of classical electro-
dynamics.1 1 In 1864, in a lecture at the

Royal Society of London, JAMES
CLERK MAXWELL (1831–1879)
himself said:

‘We have strong reason to
conclude that light itself
— including radiant heat
and other radiation, if any
— is an electromagnetic
disturbance in the form of
waves propagated through
the electro-magnetic field
according to electro-
magnetic laws.’

But before deriving these alternatives to the Maxwell-Lorentz equations, we
shall discuss the mathematical techniques of making use of complex variables to
represent physical observables in order to simplify the mathematical treatment.
In this chapter we will also describe how to make use of the single spectral
component (Fourier component) technique, which simplifies the algebra, at the
same time as it clarifies the physical content.

2.1 Axiomatic classical electrodynamics

In chapter 1 we described the historical route which led to the formulation of the
microscopic Maxwell equations. From now on we shall consider these equations
as postulates , i.e. as the axiomatic foundation of classical electrodynamics .2 As 2 FRITZ ROHRLICH writes in

Classical Charged Particles that

‘A physical theory, in
the narrow sense of the
word, is a logical structure
based on assumptions and
definitions which permits
one to predict the outcome
of a maximum number of
different experiments on
the basis of a minimum
number of postulates.
One usually desires the
postulates (or axioms) to be
as self-evident as possible;
one demands simplicity,
beauty, and even elegance.’

such, these equations postulate, in scalar and vector differential equation form,
the behaviour in time t 2 R and in space x 2 R3 of the relation between the
electric and magnetic fields E.t;x/ 2 R3 and B.t;x/ 2 R3, respectively, and
the charge density �.t;x/ 2 R and current density j.t;x/ 2 R3 [cf. equations
(1.47) on page 15]

r �E D
�

"0
(Gauss’s law) (2.1a)

r �B D 0 (No magnetic charges) (2.1b)

r � EC
@B

@t
D 0 (Faraday’s law) (2.1c)

r � B �
1

c2
@E

@t
D �0j (Maxwell’s law) (2.1d)

19
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and are not to be viewed as equations that only describe how the fields E and B

are generated by � and j, but also the other way around.
We reiterate that in these equations �.t;x/ and j.t;x/ are the total charge

and current densities, respectively. Hence, these equations are considered mi-
croscopic in the sense that all charges and currents, including the intrinsic ones
in matter, such as bound charges in atoms and molecules as well as magnetisa-
tion currents in magnetic material, are included, but macroscopic in the sense
that quantum effects are neglected. Despite the fact that the charge and cur-
rent densities may not only be considered as the sources of the fields, but may
equally well be considered being generated by the fields, we shall follow the
convention and refer to them as the source terms of the microscopic Maxwell
equations. Analogously, the two equations where they appear will be referred to
as the Maxwell-Lorentz source equations .

I we allow for magnetic charge and current densities �m and jm, respect-
ively, in addition to electric charge and current densities �e � � and je � j,
we will have to replace the Maxwell-Lorentz equations by Dirac’s symmetrised
equations

r �E D
�e

"0
(2.2a)

r �B D �0�
m
D

�m

c2"0
(2.2b)

r � EC
@B

@t
D ��0j

m (2.2c)

r � B �
1

c2
@E

@t
D �0j

e (2.2d)

and consider them to be the postulates of electromagnetodynamics.

2.2 Complex notation and physical observables

In order to simplify the mathematical treatment, we shall frequently allow the
mathematical variables that represent the fields, the charge and current densities,
and other physical quantities be analytically continued into the complex domain.
However, when we use such a complex notation we must be very careful how
to interpret the results derived within this notation. This is because every phys-
ical observable is, by definition, real-valued.3 Consequently, the mathematical

3 A physical observable is some-
thing that can, one way or another,
be ultimately reduced to an input
to the human sensory system. In
other words, physical observables
quantify (our perception of) the
physical reality and as such they
must, of course, be described by
real-valued quantities.

expression for the observable under consideration must also be real-valued to be
physically meaningful.

If a physical scalar variable, or a component of a physical vector or tensor,
is represented mathematically by the complex-valued number  , i.e. if  2 C,
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then in classical electrodynamics (in fact, in classical physics as a whole), one
makes the identification  observable D Re

˚
 mathematical

	
. Therefore, it is always

understood that one must take the real part of a complex mathematical variable
in order for it to represent a classical physical observable, i.e. something that is
observed in Nature or measured in an experiment.4 4 This is at variance with

quantum physics, where
 observable D

ˇ̌
 mathematical

ˇ̌
.

Letting � denote complex conjug-
ation, the real part can be written
Re f g D 1

2
. C �/, i.e. as

the arithmetic mean of  and its
complex conjugate  �. Similarly,
the magnitude can be written
j j D .  �/1=2, i.e. as the
geometric mean of  and  �.
Under certain conditions, also the
imaginary part corresponds to a
physical observable.

For mathematical convenience and ease of calculation, we shall in the fol-
lowing regularly use — and tacitly assume — complex notation, stating ex-
plicitly when we do not. One convenient property of the complex notation is
that differentiations often become trivial to perform. However, care must al-
ways be exercised. A typical situation being when products of two or more
quantities are calculated since, for instance, for two complex-valued variables
 1 and  2 we know that Re f 1 2g ¤ Re f 1gRe f 2g. On the other hand,
. 1 2/

�
D  1

� 2
�.

2.2.1 Physical observables and averages

As just mentioned, it is important to be aware of the limitations of the math-
ematical technique of using a complex representation for physical observables,
particularly when evaluating products of complex mathematical variables that
are to represent physical observables.

Let us, for example, consider two physical vector fields a.t;x/ and b.t;x/

represented by their Fourier components a0.x/ exp.�i!t/ and b0.x/ exp.�i!t/,
i.e. by vectors in (a domain of) 3D complex space C3. Furthermore, let ı be a
binary infix operator for these vectors, representing either the scalar product
operator �, the vector product operator �, or the dyadic product operator ˝. To
ensure that any products of a and b represent an observable in classical physics,
we must make the interpretation

a.t;x/ ıb.t;x/ � Re fag ıRe fbg

D Re
˚
a0.x/ e�i!t	

ıRe
˚
b0.x/ e�i!t	 (2.3)

We can express the real part of the complex vectors a and b as

Re fag D Re
˚
a0.x/ e�i!t	

D
1

2
Œa0.x/ e�i!t

C a0
�.x/ ei!t � (2.4a)

and

Re fbg D Re
˚
b0.x/ e�i!t	

D
1

2
Œb0.x/ e�i!t

C b0
�.x/ ei!t � (2.4b)

respectively. Hence, the physically acceptable interpretation of the scalar product
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of two complex vectors, representing classical physical observables, is

a.t;x/ ıb.t;x/ D Re
˚
a0.x/ e�i!t	

ıRe
˚
b0.x/ e�i!t	

D
1

2
Œa0.x/ e�i!t

C a0
�.x/ ei!t � ı

1

2
Œb0.x/ e�i!t

C b0
�.x/ ei!t �

D
1

4

�
a0 ıb0

�
C a0

�
ıb0 C a0 ıb0 e�2i!t

C a0
�
ıb0

� e2i!t�
D
1

2
Re fa0 ıb0

�
g C

1

2
Re
˚
a0 ıb0 e�2i!t	

D
1

2
Re
˚
a0 e�i!t

ıb0
� ei!t	

C
1

2
Re
˚
a0e�i!t

ıb0 e�i!t	
D
1

2
Re fa.t;x/ ıb�.t;x/g C

1

2
Re fa.t;x/ ıb.t;x/g

(2.5)

In physics, we are often forced to measure the temporal average (cycle aver-
age) of a physical observable. We use the notation h� � �it for such an average and
find that the average of the product of the two physical quantities represented by
a and b can be expressed as

ha ıbit � hRe fag ıRe fbgit D
1

2
Re fa ıb�g D

1

2
Re fa� ıbg

D
1

2
Re fa0 ıb0

�
g D

1

2
Re fa0� ıb0g

(2.6)

This is because the oscillating function exp.�2i!t/ in equation (2.5) above van-
ishes when averaged in time over a complete cycle 2�=! (or over infinitely many
cycles), and, therefore, ha.t;x/ ıb.t;x/it gives no contribution.

2.2.2 Maxwell equations in Majorana representation

It is often convenient to express electrodynamics in terms of the complex-field
six-vector , also known as the Riemann-Silberstein vector ,

G.t;x/ D E.t;x/C icB.t;x/ (2.7)

where G 2 C3 even if E;B 2 R3. If we use this vector, the Maxwell equations
(2.1) on page 19 can be written

r �G D
�

"0
(2.8a)

r �G �
i
c

@G

@t
D ic�0j (2.8b)

In regions where � D 0 and j D 0 these equations reduce to

r �G D 0 (2.9a)

r �G D
i
c

@G

@t
(2.9b)
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which, with the help of the linear momentum operator

yp D �i}r (2.10)

can be rewritten

yp �G D 0 (2.11a)

i}
@G

@t
D ciyp �G (2.11b)

The first equation is the transversality condition p D }k ? G where we anti-
cipate the usual quantal relation between the field momentum p and the wave
vector k,5 whereas the second equation describes the dynamics. 5 The scalar quantity } D h=.2�/

is the reduced Planck constant
where the Planck constant proper
h � 6:62606957� 10�34 Js.

Using formula (F.105) on page 220, we can rewrite equation (2.11b) above
as

i}
@G

@t
D c.S � yp/G (2.12)

where

S D

0B@0 0 0

0 0 �i
0 i 0

1CA Ox1 C
0B@ 0 0 i
0 0 0

�i 0 0

1CA Ox2 C
0B@0 �i 0

i 0 0

0 0 0

1CA Ox3 (2.13)

Then by introducing the Hamiltonian-like operator

yH D cS � yp D �ic}S � r (2.14)

we can write the Maxwell-Lorentz curl equations as

i}
@G

@t
D yHG (2.15)

i.e. as a Schrödinger/Pauli/Dirac-like equation; sometimes these are referred
to as neutrino equations . This formulation of the free-space electromagnetic
field equations is known as the Majorana representation of the Maxwell-Lorentz
equations or the Majorana formalism .6

6 It so happens that ETTORE
MAJORANA (1906-1938) used the
definition G D E � icB, but this
is no essential difference from the
definition (2.7). One may say that
Majorana used the other branch of
p
�1 as the imaginary unit.

2.3 The wave equations for E and B

The Maxwell-Lorentz equations (2.1) on page 19 are four first-order coupled
differential equations (both E and B appear in the same equations). Two of the
equations are scalar [equations (2.1a) and (2.1b)], and two are in 3D Euclidean
vector form [equations (2.1c) and (2.1d)], representing three scalar equations
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each. Hence, the Maxwell equations represent eight (1C 1C 3C 3 D 8) scalar
coupled first-order partial differential equations. However, it is well known from
the theory of differential equations that a set of first-order, coupled partial dif-
ferential equations can be transformed into a smaller set of second-order partial
differential equations that sometimes become decoupled in the process. It turns
out that in our case we will obtain one second-order differential equation for
E and one second-order differential equation for B. These second-order partial
differential equations are, as we shall see, wave equations , and we shall discuss
their properties and implications. In certain propagation media, the B wave field
can be easily obtained from the solution of the E wave equation but in general
this is not the case.

To bring the first-order differential equations (2.1) on page 19 into second or-
der one needs, of course, to operate on them with first-order differential operat-
ors. If we apply the curl vector operator (r�) to both sides of the two Maxwell-
Lorentz vector equations (2.1c) and (2.1d) on page 19, assuming that the fields
vary in such a regular way that temporal and spatial differentiation commute, we
obtain the second-order differential equations

r � .r � E/C r �
@B

@t
D r � .r � E/C

@

@t
.r � B/ D 0 (2.16a)

r � .r � B/ �
1

c2
@

@t
.r � E/ D �0r � j (2.16b)

As they stand, these second-order partial differential equations still appear to be
coupled. However, by using the Maxwell-Lorentz equations (2.1) on page 19
once again we can formally decouple them into

1

c2
@2E

@t2
C r � .r � E/ D ��0

@j

@t
(2.17a)

1

c2
@2B

@t2
C r � .r � B/ D �0r � j (2.17b)

If we use the operator triple product ‘bac-cab’ formula (F.96) on page 220, which
gives

r � .r � E/ D r .r �E/ � r2E (2.18)

when applied to E and similarly to B, Gauss’s law equation (2.1a) on page 19,
and then rearrange the terms, we obtain the two inhomogeneous vector wave
equations

1

c2
@2E

@t2
� r

2E D �2E D �
r�

"0
� �0

@j

@t
(2.19a)

1

c2
@2B

@t2
� r

2B D �2B D �0r � j (2.19b)
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where�2 is the d’Alembert operator , defined by expression (F.182) on page 228.
These are the general wave equations for the electromagnetic fields in regions
where there exist sources �.t;x/ and j.t;x/ of any kind. Simple everyday ex-
amples of such regions are electric conductors (e.g. radio and TV transmitter
antennas) or plasma (e.g. the Sun and its surrounding corona). In principle, the
sources � and j can still cause the wave equations to be coupled, but in many
important situations this is not the case.7 7 Clearly, if the current density

in the RHS (‘right-hand side’) of
equation (2.19b) is a function of
E, as is the case if, for instance,
Ohm’s law j D �E is applicable,
the coupling is not removed.

We notice that outside the source region, i.e. in free space where � D 0

and j D 0, the inhomogeneous wave equations (2.19) on the preceding page
simplify to the well-known uncoupled, homogeneous wave equations

�2E D
1

c2
@2E

@t2
� r

2E D 0 (2.20a)

�2B D
1

c2
@2B

@t2
� r

2B D 0 (2.20b)

These equations describe how the fields that were generated in the source region,
propagate as vector waves through free space. Once these waves impinge upon
another region that can sustain charges and/or currents for a long enough time,
such as a receiving antenna or other electromagnetic sensors, the fields inter-
act with the charges and the currents in this second region in accordance with
equations (2.19) on the facing page.

2.3.1 The time-independent wave equations for E and B

Often one can assume that the temporal dependency of E and B and of the
sources � and j is well-behaved enough that it can be represented by the sum
of a finite number N of temporal spectral components (temporal Fourier com-
ponents), or, in other words, in the form of a temporal Fourier series . In such
situations it is sufficient to study the properties of one arbitrary member of this
set of spectral components f!n W n D 1; 2; 3; : : : ; N g, i.e.

E.t;x/ D En.x/ cos.!nt / D En.x/Re
˚
e�i!nt

	
� En.x/e�i!nt (2.21a)

B.t;x/ D Bn.x/ cos.!nt / D Bn.x/Re
˚
e�i!nt

	
� Bn.x/e�i!nt (2.21b)

where En;Bn 2 R3 and !n; t 2 R is assumed. This is because the Maxwell-
Lorentz equations are linear, implying that the general solution is obtained by a
weighted linear superposition (summation) of the result for each such spectral
component, where the weight of the spectral component in question is given by
its Fourier amplitude , En.x/, and Bn.x/, respectively.

In a physical system, a temporal spectral component is identified uniquely by
its angular frequency !n. A wave containing only a finite number of temporal



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 48 of 298.

DRAFT

26 j 2. ELECTROMAGNETIC FIELDS AND WAVES

spectral components is called a time-harmonic wave . In the limit when only
one single frequency is present, we talk about a monochromatic wave . Strictly
speaking, purely monochromatic waves do not exist.88 When subtle classical and

quantum radiation effects are taken
into account, one finds that all
emissions suffer an unavoidable,
intrinsic line broadening . Also,
simply because the Universe has
existed for only about 13.5 billion
years, which is a finite time, no
signals in the Universe can be
observed to have a spectral width
that is smaller than the inverse of
this age.

By inserting the temporal spectral component equation (2.21a) on the previ-
ous page into equation (2.19a) on page 24 one finds that for an arbitrary com-
ponent the following equation is obtained:

r
2Ene�i!nt C

!2n
c2

Ene�i!nt C i!n�0jne�i!nt D
r�n

"0
e�i!nt (2.22)

After dividing out the common factor exp.�i!nt /, we obtain the time-independent
wave equation

r
2En C

!2n
c2

En C i!n�0jn D
r�n

"0
(2.23)

and similarly for B. Solving this equation, multiplying the solution obtained
by exp.�i!nt / and summing over all N such Fourier (spectral) components
with frequencies !n; n D 1; 2; 3; : : : ; N present in the sources, and hence in the
fields, the complete solution of the original wave equation is obtained. This is a
consequence of the superposition principle which is valid as long as nonlinear
effects can be neglected.

In the limit of very many frequency components, the Fourier sum goes over
into a Fourier integral . To illustrate this generic case, let us introduce the Fourier
transform of E.t;x/

E!.x/ D
1

2�

Z 1
�1

dt E.t;x/ ei!t (2.24a)

and the corresponding inverse Fourier transform

E.t;x/ D

Z 1
�1

d! E!.x/ e�i!t (2.24b)

where the amplitude E!.x/ 2 C3 is a continuous function of (angular) fre-
quency ! 2 R and of x 2 R3.

We see that the Fourier transform of @E.t;x/=@t becomes

1

2�

Z 1
�1

dt
�
@E.t;x/

@t

�
ei!t

D
1

2�

�
E.t;x/ ei!t �1

�1„ ƒ‚ …
D0 since E!0; t!˙1

�i!
1

2�

Z 1
�1

dt E.t;x/ ei!t

D �i! E!.x/

(2.25)

and that, consequently,

1

2�

Z 1
�1

dt
�
@2E.t;x/

@t2

�
ei!t
D �!2E!.x/ (2.26)
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Fourier transforming equation (2.19a) on page 24, and using formulæ (2.25)
and (2.26) on the facing page, we thus obtain

r
2E! C

!2

c2
E! C i!�0j! D

r�!

"0
(2.27)

which is mathematically identical to equation (2.23) on the preceding page. A
subsequent inverse Fourier transformation of the solution E! of this equation
leads to the same result as is obtained from the solution of equation (2.23) on
the facing page. Hence, by considering just one temporal Fourier component
we obtain results which are identical to those that we would have obtained by
employing the machinery of Fourier transforms and Fourier integrals. Hence,
under the assumption of linearity (superposition principle) there is usually no
need for the formal forward and inverse Fourier transform technique.

What was said above in general terms about temporal spectral components is
true also for spatial spectral components (spatial Fourier components) only that
we must use a three-dimensional Fourier representation

Ek.t/ D
1

.2�/3

Z 1
�1

d3x E.t;x/ e�ik �x (2.28a)

E.t;x/ D

Z 1
�1

d3k Ek.t/ eik �x (2.28b)

Since we always assume that the real part shall be taken (if necessary), we
can pick any pair of the spatial amplitudes in equations (2.21a) and (2.21b) on
page 25, denote the members of this pair by E0 and B0, respectively, and then
represent them as the Fourier modes

E0.x/ D e0Re
˚
eik0 �x

	
D E!;keik �x (2.29a)

B0.x/ D b0Re
˚
eik0 �x

	
D B!;keik �x (2.29b)

respectively, where k0 is the wave vector (measured in m�1) of mode 0; in the
last step we introduced a complex notation and also dropped the mode number
since the formulæ are valid for any mode n.

Now, since

@

@t
e�i!t

D �i!e�i!t (2.30a)

and

r eik �x
D Oxi

@

@xi
eikj xj D iOxikj ıij eikj xj D iOxikieikj xj D ikeik �x (2.30b)

we see that for each spectral component in equations (2.29) above, temporal
and spatial differential operators turn into algebraic operations according to the
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following scheme:

@

@t
7! �i! (2.31a)

r 7! ik (2.31b)

r � 7! ik � (2.31c)

r � 7! ik� (2.31d)

We note that

r �E D ik �E D ik �Ek (2.32a)

r � E D ik � E D ik � E? (2.32b)

r �B D ik �B D ik �Bk (2.32c)

r � B D ik � B D ik � B? (2.32d)

r� D ik� (2.32e)

r � j D ik � j D ik � jk (2.32f)

r � j D ik � j D ik � j? (2.32g)

Hence, with respect to the wave vector k, the r � operator projects out the
spatially longitudinal component, and the r� operator projects out the spatially
transverse component of the field vector in question. Put in another way,

r �E? D 0 (2.33a)

r � Ek D 0 (2.33b)

and so on for the other observables. This can be viewed as a instance in k space
of the Helmholtz’s theorem , discussed in subsection M.3.7 on page 247, saying
that if E falls off suitably rapidly at infinity, it can be written as the sum of a
rotational part Erotat and an irrotational part Eirrot:

E D Erotat
C Eirrot (2.34)

where, according to equations (M.85) on page 248,

r �Erotat
D 0 (2.35a)

r � Eirrot
D 0 (2.35b)

by making the formal identification9

9 Strictly speaking, the spatial
Fourier component is a plane wave
and plane waves do not fall off at
all at infinity as required for the
Helmholtz decomposition to be
applicable. However, only wave
packets made up of a sum of plane
waves are physically acceptable
and such packages can be localised
well enough.

E? D Erotat (2.36a)

Ek D Eirrot (2.36b)
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For the magnetic field

B D Brotat
C Birrot (2.37)

where

r �Brotat
D 0 (2.38a)

r � Birrot
D 0 (2.38b)

we make the analogous formal identification

B? D Brotat (2.39)

Bk D Birrot (2.40)

As we see from equations (2.31) on the preceding page, the Fourier transform
of a function of time t is a function of angular frequency !, and the Fourier
transform of a function of the position vector x is a function of the wave vector
k. One says that ! is a reciprocal space to t and that k spans a space that is
reciprocal to x. In the reciprocal ! and k space the Maxwell-Lorentz equations
are

ik �Ek D
�

"0
(2.41a)

ik �Bk D 0 (2.41b)

ik � E? � i!B D 0 (2.41c)

ik � B? C i
!

c2
E D �0j (2.41d)

Applying the Helmholtz decomposition, the Maxwell-Lorentz equations be-
come

r �Eirrot
D

�

"0
(2.42a)

r �Birrot
D 0 (2.42b)

r � Erotat
C
@B

@t
D 0 (2.42c)

r � Brotat
�
1

c2
@E

@t
D �0j (2.42d)
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2.4 Examples

BProducts of Riemann-Silberstein vectors with themselves for E;B 2 R3EXAMPLE 2 .1

One fundamental property of the 3D complex vector space C3, to which the Riemann-
Silberstein vector G D E C icB belongs, is that inner (scalar) products in this space are
invariant under rotations just as they are in R3. However, as discussed in example M.4 on
page 255, products in C3 can be defined in two different ways. Considering the special
case of the scalar product of G with itself, assuming that E 2 R3 and B 2 R3, we have the
following two possibilities:

1. The inner (scalar) product defined as G scalar multiplied with itself

G �G D .EC icB/ �.EC icB/ D E �E � c2B �BC 2icE �B (2.43)

Since ‘length’ is a scalar quantity that is invariant under rotations, we find that

E2 � c2B2 D Const (2.44a)

E �B D Const (2.44b)

2. The inner (scalar) product defined as G scalar multiplied with the complex conjugate of
itself

G �G� D .EC icB/ �.E � icB/ D E �EC c2B �B � E2 C c2B2 (2.45)

is also an invariant scalar quantity. As we shall see in chapter chapter 4, this quantity is
proportional to the electromagnetic field energy density.

3. As with any 3D vector, the cross product of G with itself vanishes:

G �G D .EC icB/ � .EC icB/

D E � E � c2B � BC ic.E � B/C ic.B � E/

D 0C 0C ic.E � B/ � ic.E � B/ D 0

(2.46)

4. The cross product of G with the complex conjugate of itself does, however, not vanish.
Instead it is

G �G� D .EC icB/ � .E � icB/

D E � EC c2B � B � ic.E � B/C ic.B � E/

D 0C 0 � ic.E � B/ � ic.E � B/ D �2ic.E � B/

(2.47)

which is proportional to the electromagnetic energy flux (the so called Poynting vector
or the electromagnetic linear momentum density), to be introduced in chapter chapter 4.

5. The dyadic product of G with itself is

G˝G D .EC icB/.EC icB/ D E˝E � c2B˝BC ic.E˝BC B˝E/ (2.48)

or, in component form,

.G˝G/ij D EiEj � c
2BiBj C ic.EiBj C BiEj / (2.49)

6. The dyadic product of G� with itself is
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G�˝G� D .E � icB/.E � icB/ D E˝E � c2B˝B � ic.E˝BC B˝E/ D .G˝G/�

(2.50)

7. The dyadic product of G with its own complex conjugate from the right is

G˝G� D .EC icB/.E � icB/ D E˝EC c2B˝B � ic.E˝B � B˝E/ (2.51)

and from the left it is

G�˝G D .E � icB/.EC icB/ D E˝EC c2B˝BC ic.E˝B � B˝E/ D .G˝G�/
�

(2.52)

End of example 2.1C

BWave polarisation EXAMPLE 2 .2

Since electromagnetic waves are vector waves they exhibit wave polarisation . Let us con-
sider a single plane wave that propagates in free space,10 i.e. a wave where the electric and

10 A single plane wave is a math-
ematical idealisation. In reality,
plane waves appear as building
blocks of wave packets , i.e. super-
positions of a (possibly infinite)
number of individual plane waves
with different properties (frequen-
cies, directions,. . . ). E.g. a radio
beam from a transmitting antenna
is a superposition (Fourier sum or
integral) of many plane waves with
slightly different angles relative to
a fixed, given axis or a plane.

magnetic field vectors are restricted to a two-dimensional plane that is perpendicular to the
propagation direction. Let us choose this plane to be the x1x2 plane and the propagation
vector (wave vector) k to be along the x3 axis: k D k Ox3. A generic temporal Fourier
mode of the electric field vector E with (angular) frequency ! is therefore described by the
real-valued expression

E.t;x/ D E1 cos.!t � kx3 C ı1/ Ox1 CE2 cos.!t � kx3 C ı2/ Ox2 (2.53)

where the amplitudes Ei and phases ıi , can take any value. In complex notation we can
write this as

E.t;x/ D E1eiı1 ei.kx3�!t/ Ox1 CE2eiı2 ei.kx3�!t/ Ox2

D
�
E1eiı1 Ox1 CE2eiı2 Ox2

�
ei.kx3�!t/

D
�
E1 Ox1 CE2eiı0 Ox2

�
ei.kx3�!tCı1/

(2.54)

where ı0 D ı2 � ı1. When this phase difference ı0 vanishes, the electric field oscillates
along a line directed at an angle arctan .E2=E1/ relative to the x1 axis. This is called linear
wave polarisation . When ı0 ¤ 0 the wave is in general in a state of elliptical wave polar-
isation . Later, in subsection 4.2.5, we will show that wave polarisation is a manifestation of
the fact that the electromagnetic field carries angular momentum.

For the special cases ı0 D ˙�=2 and E1 D E2 D E0 the wave can, in complex notation,
be described as

E.t;x/ D E0 ei.kx3�!tCı1/
�
Ox1 ˙ iOx2

�
(2.55)

As discussed in example M.1 on page 250, this shows that the field vector E rotates around
the x3 axis as it propagates along this axis. This rotation is called circular wave polarisation .

For ı1 D 0 in equation (2.55), the linear superpostion 1=2.EC C E�/ represents a wave
that is linearly polarised along Ox1 and for ı1 D �=2 the superposition 1=2.EC � E�/

represents a wave that is linearly polarised along Ox2.

The helical base vectors

Oh˙ D
1
p
2

�
Ox1 ˙ iOx2/ (2.56)

which are fixed unit vectors, allow us to write equation (2.55) above
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E.t;x/ D
p
2E0ei.kx3�!tCı1/ Oh˙ (2.57)

We use the convention that OhC represents left-hand circular polarisation and Oh� right-hand
circular polarisation .11 Left-hand (right-hand) circular polarised waves are said to have

11 In physics, two different con-
ventions are used. The handedness
refers to the rotation in space of the
electric field vector, either when
viewed as the wave propagates
away from the observer or toward
the observer. positive helicity (negative helicity) with respect to the direction of propagation (along k).

End of example 2.2C

BWave equations expressed in terms of Riemann-Silberstein vectorsEXAMPLE 2 .3

If we use the Maxwell-Lorentz equations expressed in the Riemann-Silberstein vector
G D EC icB, i.e. equations (2.8) on page 22, we can perform similar steps as we did
when deriving equations (2.19) on page 24. We then find that

�2G D �
r�

"0
� �0

@j

@t
C i�0cr � j (2.58)

Taking the real and imaginary parts of this equation, assuming that E;B 2 R3, we recover
the wave equations (2.17) on page 24, as expected.

End of example 2.3C
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ELECTROMAGNETIC POTENTIALS

AND GAUGES

As described in chapter 1 the concepts of electric and magnetic fields were in-
troduced such that they are intimately related to the mechanical forces between
(static) charges and currents given by Coulomb’s law and Ampère’s law, respect-
ively. Just as in mechanics, it turns out that in electrodynamics it is often more
convenient to express the theory in terms of potentials rather then in terms of
the electric and magnetic fields (Coulomb and Ampère forces) themselves. This
is particularly true for problems related to radiation and relativity. As we shall
see in chapter 7, the potentials play a central rôle in the formulation of relativist-
ically covariant electromagnetism. And at the quantum level, electrodynamics
is almost exclusively formulated in terms of potentials rather than electric and
magnetic fields.

In this chapter we introduce and study the properties of such potentials and
find that they exhibit some remarkable properties that elucidate the fundamental
aspects of electromagnetism, lead naturally to the special theory of relativity,
and pave the way for gauge field theories.

3.1 The electrostatic scalar potential

As we saw in equation (1.9b) on page 5, the time-independent electric (electro-
static) field Estat.x/ is irrotational. According to formula (F.100) on page 220 we
may therefore express it in terms of the gradient of a scalar field. If we denote
this scalar field by �ˆstat.x/, we get

Estat.x/ D �rˆstat.x/ (3.1)

Taking the divergence of this and using equation (1.9a) on page 5, we obtain
Poisson’s equation

r
2ˆstat.x/ D �r �Estat.x/ D �

�.x/

"0
(3.2)

33
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If we compare with the definition of Estat, namely equation (1.7) on page 4, we
see that this equation has the solution

ˆstat.x/ D
1

4�"0

Z
V 0

d3x0
�.x0/

jx � x0j
(3.3)

where the integration is taken over all source points x0 at which the charge dens-
ity �.x0/ is non-zero. The scalar function ˆstat.x/ in equation (3.3) above is
called the electrostatic scalar potential .

3.2 The magnetostatic vector potential

Let us consider the equations of magnetostatics, equations (1.21c) on page 9.
According to formula (F.99) on page 220 any vector field a has the property that
r �.r � a/ � 0 and in the derivation of equation (1.18) on page 8 in magneto-
statics we found that r �Bstat.x/ D 0. We therefore realise that we can always
write

Bstat.x/ D r �Astat.x/ (3.4)

where Astat.x/ is called the magnetostatic vector potential . In the magnetostatic
case, we may start from Biot-Savart’s law as expressed by equation (1.16) on
page 8. Identifying this expression with equation (3.4) above allows us to define
the static vector potential as

Astat.x/ D
�0

4�

Z
V 0

d3x0
j.x0/

jx � x0j
(3.5)

From equations (3.1) and (3.4) on pages 33–34 we conclude that if we trans-
form equations equations (3.3) and (3.5) above in the following way

ˆstat.x/ 7! ˆstat0.x/ D ˆstat.x/C ˛.x/ (3.6a)

Astat.x/ 7! Astat0.x/ D Astat.x/C a.x/ (3.6b)

the fields Estat and Bstat will be unaffected provided

r˛.x/ D 0 (3.7a)

r � a.x/ D 0 (3.7b)

i.e. if ˛ is an arbitrary scalar function that is not dependent on x, e.g. a constant,
and a.x/ is an arbitrary vector field whose curl vanishes. According to formula
(F.100) on page 220 such a vector field can always be written as the gradient of a
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scalar field. In other words, the fields are unaffected by the transformation (3.6)
if

˛.x/ D Const (3.8a)

a.x/ D rˇ.x/ (3.8b)

where ˇ is an arbitrary, at least twice continuously differentiable function of x.

3.3 The electrodynamic potentials

Let us now generalise the static analysis above to the electrodynamic case, i.e.
the case with temporal and spatial dependent sources �.t;x/ and j.t;x/, and
the pertinent fields E.t;x/ and B.t;x/, as described by the Maxwell-Lorentz
equations (2.1) on page 19. In other words, let us study the electrodynamic
potentials ˆ.t;x/ and A.t;x/.

According to the non-source Maxwell-Lorentz equation (2.1b), the magnetic
field B.t;x/ is divergence-free also in electrodynamics (if magnetic charges are
not included). Because of this divergence-free nature of the time- and space-
dependent magnetic field, we can express it as the curl of an electromagnetic
vector potential :

B.t;x/ D r �A.t;x/ (3.9)

Inserting this expression into the other non-source Maxwell-Lorentz equation
(2.1c) on page 19, we obtain

r � E.t;x/ D �
@

@t
Œr �A.t;x/� D �r �

@

@t
A.t;x/ (3.10)

or, rearranging the terms,

r �

�
E.t;x/C

@

@t
A.t;x/

�
D 0 (3.11)

As before we utilise the vanishing curl of a vector expression to write this
vector expression as the gradient of a scalar function. If, in analogy with the
electrostatic case, we introduce the electromagnetic scalar potential function
�ˆ.t;x/, equation (3.11) above becomes equivalent to

E.t;x/C
@

@t
A.t;x/ D �rˆ.t;x/ (3.12)

This means that in electrodynamics, E.t;x/ is calculated from the potentials
according to the formula

E.t;x/ D �rˆ.t;x/ �
@

@t
A.t;x/ (3.13)
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and B.t;x/ from formula (3.9) on the preceding page. Hence, it is a matter of
convention (or taste) whether we want to express the laws of electrodynamics in
terms of the potentials ˆ.t;x/ and A.t;x/, or in terms of the fields E.t;x/ and
B.t;x/. However, there is an important difference between the two approaches:
in classical electrodynamics the only directly observable quantities are the fields
themselves (and quantities derived from them) and not the potentials. On the
other hand, the treatment becomes significantly simpler if we use the potentials
in our calculations and then, at the final stage, use equation (3.9) on the previous
page and equation (3.13) on the preceding page to calculate the fields or physical
quantities expressed in the fields. This is the strategy we shall follow.

3.4 Gauge conditions

Inserting (3.13) and (3.9) on the previous page into Maxwell’s equations (2.1)
on page 19, we obtain, after some simple algebra and the use of equation (1.12)
on page 6 and formula (F.96) on page 220, the equations

�r
2ˆC

@

@t
.r �A/ D

�.t;x/

"0
(3.14a)

1

c2
@2A

@t2
� r

2AC r .r �A/ D �0j.t;x/ �
1

c2
r
@ˆ

@t
(3.14b)

Subtracting .1=c2/@2ˆ=@t2 from both sides of the first equation and rearranging,
the above two equations turn into the following general inhomogeneous wave
equations

�2ˆ D
�.t;x/

"0
C
@

@t

�
r �AC

1

c2
@ˆ

@t

�
(3.15a)

�2A D �0j.t;x/ � r

�
r �AC

1

c2
@ˆ

@t

�
(3.15b)

where �2 is the d’Alembert operator , defined by formula (F.182) on page 228.
These two second-order, coupled, partial differential equations, representing in
all four scalar equations (one for ˆ and one each for the three components
Ai ; i D 1; 2; 3 of A), are completely equivalent to the formulation of electro-
dynamics in terms of Maxwell’s equations, which represent eight scalar first-
order, coupled, partial differential equations.

As they stand, equations (3.14) and (3.15) look complicated and may seem
to be of limited use. However, if we write equation (3.9) on the previous page in
the form r �A.t;x/ D B.t;x/ we can consider this as a specification of r �A.
But we know from Helmholtz’s theorem [see subsection M.3.7 on page 247]
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that in order to determine the (spatial) behaviour of A completely, we must also
specify r �A. Since this divergence does not enter the derivation above, we are
free to choose r �A in whatever way we like and still obtain the same physical
results. This illustrates the power of formulating electrodynamics in terms of
potentials.

3.4.1 Lorenz-Lorentz gauge

If we choose r �A to fulfil the so called Lorenz-Lorentz gauge condition1 1 In fact, the Dutch physicist
HENDRIK ANTOON LORENTZ
(1853-1928), who in 1903 demon-
strated the covariance of Max-
well’s equations, was not the
original discoverer of the gauge
condition (3.16). It had been dis-
covered by the Danish physicist
LUDVIG VALENTIN LORENZ
(1829-1891) already in 1867. This
fact has sometimes been over-
looked in the literature and the
condition was earlier referred to as
the Lorentz gauge condition. Prior
to that, BERNHARD R IEMANN,
had discussed this condition in a
lecture in 1858.

r �AC
1

c2
@ˆ

@t
D 0 (3.16)

the coupled inhomogeneous wave equations (3.15) on page 36 simplify to the
following set of uncoupled inhomogeneous wave equations:

�2ˆ D
�.t;x/

"0
(3.17a)

�2A D �0j.t;x/ (3.17b)

Each of these four scalar equations is an inhomogeneous wave equation of the
following form:

�2‰.t;x/ D s.t;x/ (3.18)

where ‰ denotes for either ˆ or one of the components Ai ; i D 1; 2; 3 of the
vector potential A, and s is a shorthand for the pertinent source component,
�.t;x/="0 or �0ji .t;x/; i D 1; 2; 3, respectively.

We assume that our sources are well-behaved enough in time t so that the
Fourier transform pair for the generic source function s

s.t;x/ D

Z 1
�1

d! s!.x/ e�i!t (3.19a)

s!.x/ D
1

2�

Z 1
�1

dt s.t;x/ ei!t (3.19b)

exists, and that the same is true for the generic potential component ‰:

‰.t;x/ D

Z 1
�1

d! ‰!.x/ e�i!t (3.20a)

‰!.x/ D
1

2�

Z 1
�1

dt ‰.t;x/ ei!t (3.20b)

Inserting the Fourier representations (3.19) and (3.20) into equation (3.18) above,
and using the vacuum dispersion relation for electromagnetic waves relating the
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angular frequency !, the speed of light c, and the wave number k D .2�/=�

where � is the vacuum wavelength ,

! D ck (3.21)

the generic 3D inhomogeneous wave equation (3.18) on the preceding page,
turns into

r
2‰!.x/C k

2‰!.x/ D �s!.x/ (3.22)

which is the 3D inhomogeneous time-independent wave equation , often called
the 3D inhomogeneous Helmholtz equation .

As postulated by Huygens’s principle , each point on a wave front acts as a
point source for spherical wavelets of varying amplitude (weight). A new wave
front is formed by a linear superposition of the individual weighted wavelets
from each of the point sources on the old wave front. The solution of (3.22) can
therefore be expressed as a weighted sum of solutions of an equation where the
source term has been replaced by a single point source

r
2G.x;x0/C k2G.x;x0/ D �ı.x � x0/ (3.23)

and the solution of equation (3.22) above which corresponds to the frequency !
is given by the weighted superposition

‰!.x/ D

Z
V 0

d3x0 s!.x0/G.x;x0/ (3.24)

(plus boundary conditions) where s!.x0/ is the wavelet amplitude at the source
point x0. The function G.x;x0/ is called the Green function or the propagator .

Due to translational invariance in space,G.x;x0/ D G.x�x0/. Furthermore,
in equation (3.23) above, the Dirac generalised function ı.x�x0/, which repres-
ents the point source, depends only on x�x0 and there is no angular dependence
in the equation. Hence, the solution can only be dependent on r D jx � x0j and
not on the direction of x � x0. If we interpret r as the radial coordinate in a
spherically polar coordinate system, and recall the expression for the Laplace
operator in such a coordinate system, equation (3.23) above becomes

d2

dr2
.rG/C k2.rG/ D �rı.r/ (3.25)

Away from r D jx � x0j D 0, i.e. away from the source point x0, this equation
takes the form

d2

dr2
.rG/C k2.rG/ D 0 (3.26)
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with the well-known general solution

G D CC
eikr

r
C C�

e�ikr

r
� CC

eikjx�x0j

jx � x0j
C C�

e�ikjx�x0j

jx � x0j
(3.27)

where C˙ are constants.
In order to determine the constants C˙, we insert the general solution, equa-

tion (3.27) above, into equation (3.23) on the preceding page and integrate over
a small volume around r D jx � x0j D 0. Since

G.
ˇ̌
x � x0

ˇ̌
/ � CC

1

jx � x0j
C C�

1

jx � x0j
;

ˇ̌
x � x0

ˇ̌
! 0 (3.28)

the volume integrated equation (3.23) on the facing page can be approximated
by

.CC C C�/

Z
V 0

d3x0 r2
�

1

jx � x0j

�
C k2 .CC C C�/

Z
V 0

d3x0
1

jx � x0j
D �

Z
V 0

d3x0 ı.
ˇ̌
x � x0

ˇ̌
/

(3.29)

In virtue of the fact that the volume element d3x0 in spherical polar coordinates
is proportional to r2 D jx � x0j

2 [see formula (F.19) on page 216], the second
integral vanishes when jx � x0j ! 0. Furthermore, from equation (F.116)
on page 220, we find that the integrand in the first integral can be written as
�4�ı.jx � x0j/ and, hence, that the two constants C˙ must fulfil the condition

CC C C� D
1

4�
(3.30)

Now that we have determined the relation between CC and C�, we insert
the general solution equation (3.27) above into equation (3.24) on the preceding
page and obtain the general solution in the ! domain:

‰!.x/ D CC

Z
V 0

d3x0 s!.x0/
eikjx�x0j

jx � x0j
C C�

Z
V 0

d3x0 s!.x0/
e�ikjx�x0j

jx � x0j
(3.31)

In order to find the solution in the t domain, we take the inverse Fourier trans-
form of this by inserting the above expression for ‰!.x/ into equation (3.20) on
page 37:

‰.t;x/ D CC

Z
V 0

d3x0
Z 1
�1

d! s!.x0/
exp

h
�i!

�
t � kjx�x0j

!

�i
jx � x0j

C C�

Z
V 0

d3x0
Z 1
�1

d! s!.x0/
exp

h
�i!

�
t C kjx�x0j

!

�i
jx � x0j

(3.32)
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If we introduce the retarded time t 0ret and the advanced time t 0adv in the following
way [using the fact that k=! D 1=c in free space, according to formula (3.21)
on page 38]:

t 0ret D t
0
ret.t;

ˇ̌
x � x0

ˇ̌
/ D t �

k
ˇ̌
x � x0.t 0ret/

ˇ̌
!

D t �

ˇ̌
x � x0.t 0ret/

ˇ̌
c

(3.33a)

t 0adv D t
0
adv.t;

ˇ̌
x � x0

ˇ̌
/ D t C

k
ˇ̌
x � x0.t 0adv/

ˇ̌
!

D t C

ˇ̌
x � x0.t 0adv/

ˇ̌
c

(3.33b)

and use equation (3.19) on page 37, we obtain

‰.t;x/ D CC

Z
V 0

d3x0
f .t 0ret;x

0/

jx � x0j
C C�

Z
V 0

d3x0
f .t 0adv;x

0/

jx � x0j
(3.34)

This is a solution to the generic inhomogeneous wave equation for the potential
components equation (3.18) on page 37. We note that the solution at time t at the
field point x is dependent on the behaviour at other times t 0 of the source at x0

and that both retarded and advanced t 0 are mathematically acceptable solutions.
However, if we assume that causality requires that the potential at .t;x/ is set
up by the source at an earlier time, i.e. at .t 0ret;x

0/, we must in equation (3.34)
above set C� D 0 and therefore, according to equation (3.30) on the previous
page, CC D 1=.4�/.22 In fact, inspired by ideas put

forward by PAUL ADRIEN
MAURICE D IRAC (1902–
1984), JOHN ARCHIBALD
WHEELER (1911–2008) and
R ICHARD PHILLIPS FEYNMAN
(1918–1988) derived, in 1945,
a consistent electrodynamics
based on both the retarded and the
advanced potentials.

From the above discussion about the solution of the inhomogeneous wave
equations in the Lorenz-Lorentz gauge we conclude that, if we discard the ad-
vanced potentials, the electrodynamic potentials in free space can be written

ˆ.t;x/ D
1

4�"0

Z
V 0

d3x0
�
�
t 0ret;x

0.t 0ret/
�

jx.t/ � x0.t 0ret/j
(3.35a)

A.t;x/ D
1

4�"0c2

Z
V 0

d3x0
j
�
t 0ret;x

0.t 0ret/
�

jx.t/ � x0.t 0ret/j
(3.35b)

These retarded potentials were obtained as solutions to the Lorenz-Lorentz in-
homogeneous wave equations (3.17). The expressions (3.35) are therefore valid
only in the Lorenz-Lorentz gauge.3 scalar first-order, coupled, partial differen-3 In 1897, TULLIO LEVI-C IVITA

(1873–1941) showed that the
retarded Lorenz-Lorentz potentials
solves equations (3.14).

tial equations. In other gauges (other choices of r �A) the expressions for the
potentials are analytically different but will, of course, yield the very same phys-
ical fields E and B as the expressions (3.35) do. As they stand, we shall use
expressions (3.35) quite frequently in the sequel.

3.4.2 Coulomb gauge

In Coulomb gauge , often employed in quantum electrodynamics , one chooses
r �A D 0 so that equations (3.14) or equations (3.15) on page 36 become

r
2ˆ D �

�.t;x/

"0
(3.36a)
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r
2A �

1

c2
@2A

@t2
D ��0j.t;x/C

1

c2
r
@ˆ

@t
(3.36b)

The first of these two is the time-dependent Poisson’s equation which, in analogy
with equation (3.3) on page 34, has the solution

ˆ.t;x/ D
1

4�"0

Z
V 0

d3x0
�.t;x0.t/

jx.t/ � x0.t/j
(3.37)

We see that in the scalar potential expression, the charge density source is evalu-
ated at time t . Hence, the scalar potential does not exhibit any retardation, which
means that the effect of the charge shows up in the potential instantaneously, as
if the propagation speed were infinite. This is not in disagreement with the laws
of nature since in classical physics potentials are not physical observables.

Since in the Coulomb gauge the scalar potential ˆ does not suffer any re-
tardation (or advancement) but the fields E and B themselves must be physical
and therefore must exhibit retardation effects, all retardation must occur in the
vector potential A, i.e. the solution of the inhomogeneous wave equation (3.36b)
above. As we see, the last term in the RHS of this equation contains the scalar
potential ˆ, which, according to equation (3.37) above, in turn depends on the
charge density �. The continuity equation (1.22) on page 10 provides a relation
between � and j on which we can apply Helmholtz decomposition and find that

j D jrotat
C jirrot (3.38)

where

r � jrotat
D 0 (3.39a)

r � jirrot
D 0 (3.39b)

[cf. equations (2.36) on page 28]. Then the equation of continuity becomes

@�

@t
C r � jirrot

D
@

@t

�
�"0r

2ˆ
�
C r � jirrot

D r �

��
�"0r

@ˆ

@t

�
C jirrot

�
D 0

(3.40)

Furthermore, since r � r D 0 and r � jirrot D 0, one finds that

r �

��
�"0r

@ˆ

@t

�
C jirrot

�
D 0 (3.41)

According to Helmholtz’s theorem, this implies that

"0r
@ˆ

@t
D jirrot (3.42)
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The inhomogeneous wave equation (3.36b) on the preceding page thus becomes

r
2A �

1

c2
@2A

@t2
D ��0j C

1

c2
r
@ˆ

@t
D ��0j C �0j

irrot
D ��0j

rotat (3.43)

which shows that in Coulomb gauge the source of the vector potential A is the
rotational (transverse) component of the current, jrotat. The irrotational (longit-
udinal) component of the current jirrot does not contribute to the vector potential.
The retarded (particular) solution in Coulomb gauge of equations (3.14) on page
36 is therefore [cf. equations (3.35) on page 40]:

ˆ.t;x/ D
1

4�"0

Z
V 0

d3x0
�
�
t;x0.t/

�
jx.t/ � x0.t/j

(3.44a)

A.t;x/ D
�0

4�

Z
V 0

d3x0
jrotat

�
t 0ret;x

0.t 0ret/
�

jx.t/ � x0.t 0ret/j
(3.44b)

The Coulomb gauge is also called the transverse gauge or the radiation gauge .

3.4.3 Velocity gauge

If r �A fulfils the velocity gauge condition , sometimes referred to as the com-
plete ˛-Lorenz gauge ,

r �AC
˛

c2
@ˆ

@t
D 0; ˛ D

c2

v2
(3.45)

we obtain the Lorenz-Lorentz gauge condition in the limit v D c, i.e. ˛ D 1,
and the Coulomb gauge condition in the limit v !1, i.e. ˛ D 0, respectively,
where v is the propagation speed of the scalar potential. Hence, the velocity
gauge is a generalisation of both these gauges.4 Inserting equation (3.45) above4 The value ˛ D �1, corres-

ponding to an imaginary speed
v D ic, gives the Kirchhoff gauge ,
introduced already in 1857 by
GUSTAV ROBERT K IRCHHOFF
(1824–1884).

into the coupled inhomogeneous wave equations (3.15) on page 36 they become

�2ˆ D �
�.t;x/

"0
�
1 � ˛

c2
@

@t

@ˆ

@t
(3.46a)

�2A D ��0j.t;x/C
1 � ˛

c2
r
@ˆ

@t
(3.46b)

3.5 Gauge transformations

We saw in section 3.1 on page 33 and in section 3.2 on page 34 that in electro-
statics and magnetostatics we have a certain mathematical degree of freedom, up
to terms of vanishing gradients and curls, to pick suitable forms for the potentials
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and still get the same physical result. In fact, the way the electromagnetic scalar
potential ˆ.t;x/ and the vector potential A.t;x/ are related to the physical ob-
servables gives leeway for similar manipulation of them also in electrodynamics.

In analogy with equations (3.6) on page 34 we introduce

ˆ.t;x/ 7! ˆ0.t;x/ D ˆ.t;x/C ˛.t;x/ (3.47a)

A.t;x/ 7! A0.t;x/ D A.t;x/C a.t;x/ (3.47b)

By inserting these transformed potentials into equation (3.13) on page 35 for the
electric field E.t;x/ and into equation (3.9) on page 35 for the magnetic field
B.t;x/, we see that the fields will be unaffected provided

r˛.t;x/C
@a.t;x/

@t
D 0 (3.48a)

r � a.t;x/ D 0 (3.48b)

If we introduce an arbitrary, sufficiently differentiable scalar function �.t;x/,
the second condition is fulfilled if we require that

a.t;x/ D r�.t;x/ (3.49a)

which, when inserted into the first condition in turn requires that

˛.t;x/ D �
@�.t;x/

@t
(3.49b)

Hence, if we simultaneously transform both ˆ.t;x/ and A.t;x/ into new
ones ˆ0.t;x/ and A0.t;x/ according to the scheme

ˆ.t;x/ 7! ˆ0.t;x/ D ˆ.t;x/ �
@�.t;x/

@t
(3.50a)

A.t;x/ 7! A0.t;x/ D A.t;x/C r�.t;x/ (3.50b)

and insert the transformed potentials into equation (3.13) on page 35 for the
electric field and into equation (3.9) on page 35 for the magnetic field, we obtain
the transformed fields

E0 D �rˆ0 �
@A0

@t
D �rˆC r

�
@�

@t

�
�
@A

@t
�
@.r�/

@t

D �rˆ �
@A

@t
C
@.r�/

@t
�
@.r�/

@t
D �rˆ �

@A

@t

(3.51a)

B0 D r �A0 D r �AC r � .r�/ D r �A (3.51b)

where, once again equation (F.100) on page 220 was used. This explicit calcu-
lation clearly demonstrates that the fields E and B are unaffected by the gauge
transformation (3.50). The function �.t;x/ is called the gauge function .
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A transformation of the potentialsˆ and A which leaves the fields, and hence
Maxwell’s equations, invariant is called a gauge transformation . Any physical
law that does not change under a gauge transformation is said to be gauge in-
variant . It is only those quantities (expressions) that are gauge invariant that are
observable and therefore have experimental significance. Trivially, the electro-
magnetic fields and the Maxwell-Lorentz equations themselves are gauge invari-
ant and electrodynamics is therefore a gauge theory and as such the prototype
for all gauge theories.5

5 A very important extension is
the Yang-Mills theory, introduced
in 1954. This theory has had
a profound impact on modern
physics.

As just shown, the potentials ˆ.t;x/ and A.t;x/ calculated from equations
(3.14) on page 36, with an arbitrary choice of r �A, can be gauge transformed
according to (3.50) on the previous page. If, in particular, we choose r �A ac-
cording to the Lorenz-Lorentz condition, equation (3.16) on page 37, and apply
the gauge transformation (3.50) on the resulting Lorenz-Lorentz potential equa-
tions (3.17) on page 37, these equations will be transformed into

1

c2
@2ˆ

@t2
� r

2ˆC
@

@t

�
1

c2
@2�

@t2
� r

2�

�
D
�.t;x/

"0
(3.52a)

1

c2
@2A

@t2
� r

2A � r

�
1

c2
@2�

@t2
� r

2�

�
D �0j.t;x/ (3.52b)

We notice that if we require that the gauge function �.t;x/ itself be restricted to
fulfil the wave equation

1

c2
@2�

@t2
� r

2� D 0 (3.53)

these transformed Lorenz-Lorentz equations will keep their original form. The
set of potentials which have been gauge transformed according to equation (3.50)
on the preceding page with a gauge function �.t;x/ restricted to fulfil equation
(3.53) above, or, in other words, those gauge transformed potentials for which
the equations (3.17) on page 37 are invariant, comprise the Lorenz-Lorentz
gauge .

3.5.1 Other gauges

Other useful gauges are

� The Poincaré gauge (multipolar gauge , radial gauge)

ˆ0.t;x/ D �

Z 1

0

d˛ x �E.t; ˛x/ (3.54a)

A0.t;x/ D �

Z 1

0

d˛ ˛x � B.t; ˛x/ (3.54b)

where ˛ is a scalar parameter. We note that in Poincaré gauge A0 and x are
orthogonal.
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� The Weyl gauge , also known as the temporal gauge or Hamilton gauge ,
defined by ˆ0 D 0.

� The axial gauge , defined by A03 D 0.

The process of choosing a particular gauge condition is known as gauge fixing .
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3.6 Examples

BMultipole expansion of the electrostatic potentialEXAMPLE 3 .1

The integral in the electrostatic potential formula

ˆstat.x/ D
1

4�"0

Z
V 0

d3x0
�.x0/

jx � x0j
(3.55)

where � is the charge density introduced in equation (1.9a) on page 5, is not always pos-
sible to evaluate analytically. However, for a charge distribution source �.x0/ that is well
localised in a small volume V 0 around x0, a series expansion of the integrand in such a way
that the dominant contributions are contained in the first few terms can be made. E.g. if we
Taylor expand the inverse distance 1=

ˇ̌
x � x0

ˇ̌
with respect to the point x0 D x0 we obtain

1

jx � x0j
D

1

j.x � x0/ � .x0 � x0/j

D
1

jx � x0j
C

1X
nD1

1

nŠ

3X
i1D1

� � �

3X
inD1

�

@n 1
jx�x0j

@xi1 � � � @xin
Œ�.x0i1 � x0i1

/� � � � Œ�.x0in � x0in /�

D
1

jx � x0j
C

1X
nD1

X
n1Cn2Cn3Dn

ni�0

.�1/n

n1Šn2Šn3Š

�

@n 1
jx�x0j

@x
n1
1 @x

n2
2 @x

n3
3

.x01 � x01/
n1.x02 � x02/

n2.x03 � x03/
n3

(3.56)

Inserting this into the integral in formula (3.55), we obtain the expansion

ˆstat.x/ D
1

4�"0

"
1

jx � x0j

Z
V 0

d3x0 �.x0/C
1X
nD1

X
n1Cn2Cn3Dn

ni�0

.�1/n

n1Šn2Šn3Š

�

@n 1
jx�x0j

@x
n1
1 @x

n2
2 @x

n3
3

Z
V 0

d3x0 .x01 � x01/
n1.x02 � x02/

n2.x03 � x03/
n3�.x0/

# (3.57)

Clearly, the first integral in this expansion is nothing but the static net charge

q D

Z
V 0

d3x0 �.x0/ (3.58)

If we introduce the electrostatic dipole moment vector

d.x0/ D

Z
V 0

d3x0 .x0 � x0/ �.x
0/ (3.59)

with components pi , i D 1; 2; 3, and the electrostatic quadrupole moment tensor

Q.x0/ D
Z
V 0

d3x0 .x0 � x0/˝.x
0
� x0/ �.x

0/ (3.60)

with components Qij ; i; j D 1; 2; 3, and use the fact that
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@ 1
jx�x0j

@xi
D �

xi � x0i

jx � x0j
3

(3.61)

and that

@2 1
jx�x0j

@xi@xj
D
3.xi � x0i /.xj � x0j / � jx � x0j

2 ıij

jx � x0j
5

(3.62)

then we can write the first three terms of the expansion of equation (3.55) on the preceding
page as

ˆstat.x/ D
1

4�"0

"
q

jx � x0j
C

1

jx � x0j
2

d �
x � x0

jx � x0j

C
1

jx � x0j
3
Qij

�3
2

xi � x0i
jx � x0j

xj � x0j

jx � x0j
�
1

2
ıij

�
C : : :

#
(3.63)

where Einstein’s summation convention over i and j is implied. We see that at large dis-
tances from a localised charge distribution, the electrostatic potential can, to the lowest
order, be approximated by the (Coulomb) potential from a single point charge q located at
the moment point x0. We also see that

d.x0/ D

Z
V 0

d3x0 .x0 � x0/ �.x
0/ D

Z
V 0

d3x0 x0 �.x0/ � x0

Z
V 0

d3x0 �.x0/

D

Z
V 0

d3x0 x0 �.x0/ � x0q (3.64)

from which we draw the conclusion that if q ¤ 0, it is always possible to choose the moment
point x0 such that d D 0, and if q D 0, then d is independent of the choice of moment
point x0. Furthermore, one can show that

˛
1

2
ıij
3.xi � x0i /.xj � x0j / � jx � x0j

2 ıij

jx � x0j
5

D 0 (3.65)

where ˛ is an arbitrary constant. Choosing it to be

˛ D
1

3

Z
V 0

d3x0
ˇ̌
x0 � x0

ˇ̌2
�.x0/ (3.66)

we can transform Qij into

Q0ij D Qij � ˛ıij D

Z
V 0

d3x0
��
.x0i � x0i /.x

0
j � x0j / �

1

3

ˇ̌
x0 � x0

ˇ̌2
ıij
�
�.x0/

�
(3.67)

or

Q0 D Q � 13˛ D
Z
V 0

d3x0
��
.x0 � x0/˝.x

0
� x0/ � 13

1

3

ˇ̌
x0 � x0

ˇ̌2�
�.x0/

�
(3.68)

where 13 D Oxi Oxi is the unit tensor. It follows immediately that Q0i i D 0 (Einstein summa-
tion), i.e. that Q0 is traceless . Rotating the coordinate system, it is possible to diagonalise
the tensors Q and Q0. For any spherical symmetric distribution of charge, all components
of Q0 vanish if the moment point x0 is chosen as the symmetry centre of the distribution.

If the charge distribution �.x/ is made up of discrete point charges qn with coordinates xn,
the definitions above of q;d;Q and Q0 become
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q D
X
n

qn (3.69a)

d D
X
n

qn.xn � x0/ (3.69b)

Q D
X
n

qn.xn � x0/˝.xn � x0/ (3.69c)

Q0 D
X
n

qn
�
.xn � x0/˝.xn � x0/ � 13

1

3
jxn � x0j

2
�

(3.69d)

End of example 3.1C

BElectromagnetodynamic potentialsEXAMPLE 3 .2

In Dirac’s symmetrised form of electrodynamics (electromagnetodynamics), Maxwell’s
equations are replaced by [see also equations (2.2) on page 20]:

r �E D
�e

"0
(3.70a)

r �B D �0�
m (3.70b)

r � EC
@B

@t
D ��0jm (3.70c)

r � B �
1

c2
@E

@t
D �0je (3.70d)

In this theory, one derives the inhomogeneous wave equations for the usual ‘electric’ scalar
and vector potentials .ˆe;Ae/ and their ‘magnetic’ counterparts .ˆm;Am/ by assuming
that the potentials are related to the fields in the following symmetrised form:

E D �rˆe.t;x/ �
@

@t
Ae.t;x/ � r �Am (3.71a)

B D �
1

c2
rˆm.t;x/ �

1

c2
@

@t
Am.t;x/C r �Ae (3.71b)

In the absence of magnetic charges, or, equivalently for ˆm � 0 and Am � 0, these for-
mulæ reduce to the usual Maxwell theory, formulæ (3.9) and (3.13) on page 35 respectively,
as they should.

Inserting the symmetrised expressions (3.71) above into equations (3.70) above, one obtains
[cf., equations (3.14) on page 36]

r
2ˆe
C
@

@t

�
r �Ae�

D �
�e.t;x/

"0
(3.72a)

r
2ˆm

C
@

@t

�
r �Am�

D �
�m.t;x/

"0
(3.72b)

1

c2
@2Ae

@t2
� r

2Ae
C r

�
r �Ae

C
1

c2
@ˆe

@t

�
D �0je.t;x/ (3.72c)

1

c2
@2Am

@t2
� r

2Am
C r

�
r �Am

C
1

c2
@ˆm

@t

�
D �0jm.t;x/ (3.72d)

By choosing the conditions on the divergence of the vector potentials as the generalised
Lorenz-Lorentz condition [cf. equation (3.16) on page 37]
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r �Ae
C

1

c2
@

@t
ˆe
D 0 (3.73a)

r �Am
C

1

c2
@

@t
ˆm
D 0 (3.73b)

these coupled wave equations simplify to

�2ˆe
D
�e.t;x/

"0
(3.74a)

�2Ae
D �0je.t;x/ (3.74b)

�2ˆm
D
�m.t;x/

"0
(3.74c)

�2Am
D �0jm.t;x/ (3.74d)

exhibiting, once again, the striking properties of Dirac’s symmetrised Maxwell theory.

End of example 3.2C

BLongitudinal and transverse components in gauge transformations EXAMPLE 3 .3

If we represent the vector potential A.t;x/ in the reciprocal k space as described at the
end of subsection 2.3.1 on page 25, the gauge transformation equation (3.50b) on page 43
becomes

Ak.t/ 7! A0k.t/ D Ak.t/ � ik�k.t/ (3.75)

we can separate it into its longitudinal and transverse components

A0
k
D Ak C ik�k.t/ D Ak C r�.t;x/ D Ak C ik�k.t/e

ik �x (3.76a)

A0
?
D A? (3.76b)

A Helmholtz decomposition [see formula (M.83) on page 248]

A D Arotat
CAirrot (3.77)

shows that

A0
rotat
D Arotat (3.78a)

A0
irrot
D Airrot

C r� (3.78b)

Hence, a law (expression) that depends on A only through its transverse/rotational com-
ponent A? D Arotat is gauge invariant, whereas a law that depends on the longitud-
inal/irrotational component Ak D Airrot is in general not gauge invariant and, if so, it
does not represent a physical observable.

With the caveat about plane waves mentioned near formulæ (2.36) on page 28, the following
then applies for the electric field and the magnetic field E D E? C Ek and B D B? C Bk,
respectively:

E? D �
@A?

@t
(3.79a)

Ek D �rˆ �
@Ak

@t
(3.79b)

B? D r �A? (3.79c)

Bk D 0 (3.79d)
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In terms of rotational and irrotational parts, the electric and magnetic fields are given by the
sums E D Erotat C Eirrot and B D Brotat C Birrot, respectively, where the individual terms
are

Erotat
D �

@Arotat

@t
(3.80a)

Eirrot
D �rˆ �

@Airrot

@t
(3.80b)

Brotat
D r �Arotat (3.80c)

Birrot
D 0 (3.80d)

End of example 3.3C

BGauge transformations and quantum mechanicsEXAMPLE 3 .4

As discussed in section 2.2 on page 20, quantum theory requires that we take the magnitude
rather than the real part of our mathematical variables in order to turn them into quantities
that represent physical observables. In non-relativistic quantum mechanics, the physical
observable probability density is   � D j j2, where the wave function  2 C solves the
Schrödinger equation

i}
@ 

@t
D yH (3.81)

and yH is the Hamilton operator .

The non-relativistic Hamiltonian for a classical particle with charge q in an electromagnetic
field, described by the scalar potential ˆ and vector potential A, is

H D
1

2m
.p � qA/2 C qˆ (3.82)

where p is the linear momentum. The corresponding quantal Hamilton operator is obtained
from the correspondence principle , viz., by replacing p by the operator yp D �i}r , referred
to as minimal coupling . This gives the Schrödinger equation

i}
@ 

@t
D

1

2m
.�i}r � qA/2  C qˆ (3.83)

The idea is to perform a gauge transformation from the potentials ˆ.t;x/ and A.t;x/ to
new potentials

ˆ 7! ˆ0.t;x/ D ˆ.t;x/C
@�.t;x/

@t
(3.84a)

A 7! A0.t;x/ D A.t;x/ � r�.t;x/ (3.84b)

and then find a �.t;x/, expressed in the gauge function �.t;x/, so that the transformed
Schrödinger equation can be written

i}
@.ei� /

@t
D

1

2m
.�i}r � qA/2 ei� C qˆei� (3.85)

Under the gauge transformation equation (3.84) above, the Schrödinger equation (3.83)
transforms into

i}
@ 0

@t
D

1

2m
Œ�i}r � qAC .qr�/�2  0 C qˆ 0 C q

@�

@t
 0 (3.86)
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Now, setting

 0.t;x/ D ei�.t;x/ .t;x/ (3.87)

we see that�
� i}r � qAC .qr�/

�2
 0

D Œ�i}r � qAC .qr�/� Œ�i}r � qAC .qr�/� ei� 

D Œ�i}r � qAC .qr�/�

�

h
� i}ei� .r / � i}ei� .r i�/ � qAei� C .qr�/eı� 

i
D Œ�i}r � qAC .qr�/� ei� Œ�i}r � i}.r i�/ � qAC .qr�/�  

D

h
�i}.r i�/ei�

� i}ei�r � qAei�
C .qr�/ei�

i
� Œ�i}r � i}.r i�/ � qAC .qr�/�  

D ei� Œ�i}r � i}.r i�/ � qAC .qr�/�2  

D ei� Œ�i}r � qAC }.r �/C .qr�/�2  

(3.88)

Clearly, the gauge transformed Hamilton operator is unchanged iff }.r �/ D �q.r�/, or,
equivalently, iff �.t;x/ D �q�.t;x/=}. This has as a consequence that

i}
@ 0

@t
� q

@�

@t
 0 D i}

@ 0

@t
C }

@�

@t
 0 D i}

@

@t
.ei� /C }

@�

@t
ei� 

D i2}
@�

@t
ei� C i}ei� @ 

@t
C }

@�

@t
ei� D ei� i}

@ 

@t

(3.89)

Inserting this into the transformed Schrödinger equation (3.86) on the preceding page, we
recover the untransformed Schrödinger equation (3.83).

We conclude that under a gauge transformation of the potentialsˆ and A and with minimal
coupling as in equation (3.83) on the facing page, the wave function changes from to ei� 

where the phase angle � is real-valued. Hence, even if the wavefunction is not invariant, the
quantum physical observable j j2 is unaffected by a gauge transformation of the classical
potentials ˆ and A that appear in the Hamilton operator. The fact that �.t;x/ is coordinate
dependent, means that we are dealing with a local gauge transformation .

Since the probability density   � D j j2 and the probability current �i}. �r �
 r �/=.2m/ � qA j j2=m do not change under a gauge transformation of ˆ and A,
the charge density � D q j j2 and therefore also the charge

R
V 0d

3x0� are conserved. In
other words, electromagnetic gauge symmetry corresponds to electric charge conservation
and vice versa.

For the gauge transformation given by formulæ (3.84) on the preceding page, WOLFGANG

PAULI introduced the notation gauge transformation of the second kind whereas he called
a wavefunction phase change, expression (3.87) above, a gauge transformation of the first
kind .

End of example 3.4C
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FUNDAMENTAL PROPERTIES OF

THE ELECTROMAGNETIC FIELD

In this chapter we shall explore a number of fundamental properties of the elec-
tromagnetic fields themselves as well as of the physical observables constructed
from them. Of particular interest are symmetries (‘principles of simplicity’),
since they have a striking predictive power and are essential ingredients of the
physics. This includes both discrete and continuous geometric symmetries (con-
jugation, reflection, reversion, translation, rotation) and intrinsic symmetries
(duality, reciprocity). Intimately related to symmetries are conserved quantities
(constants of motion) of which our primary interest will be the electromagnetic
energy, linear momentum, centre of energy, and angular momentum. These ten
conserved quantities, one scalar, two vectors and one pseudovector,1 can carry 1 The concomitant symmetries

comprise the ten-parameter
Poincaré group P.10/.

information over large distances and are all more or less straightforwardly re-
lated to their counterparts in classical mechanics (indeed in all field theories).
But we will also consider other conserved quantities where the relation classical
mechanics is less straightforward.

To derive useful mathematical expressions for the physical observables that
we want to study, we will take the microscopic Maxwell-Lorentz equations (2.1)
on page 19 as our axiomatic starting point.

4.1 Discrete symmetries

An analysis of the discrete (non-continuous) symmetries of a physical system
provides deep insight into the system’s most fundamental characteristics. In this
section we find out how the electromagnetic fields behave under certain discrete
symmetry transformations.

4.1.1 Charge conjugation, spatial inversion, and time re-
versal

Let us first investigate the transformation properties of the charge density �, the
current density j, and the associated fields E and B under charge conjugation ,

53
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i.e. a change of sign of charge q 7! q0 D �q, called C symmetry; under spatial
inversion , i.e. a change of sign of the space coordinates x 7! x0 D �x, called
parity transformation or P symmetry; and under time reversal , i.e. a change of
sign of the time coordinate t 7! t 0 D �t , called T symmetry.

Let us study the C, P, and T symmetries one by one, following the standard
convention that t , q, c and "0 are ordinary scalars (not pseudoscalars) and are
therefore unaffected by coordinate changes, and that the position vector x is, by
definition, the prototype of all ordinary (polar) vectors against which all other
vectors are benchmarked. In our study, we use the fact that

� / q (4.1a)

and that

j D �vmech
D �

dx

dt
(4.1b)

The transformation properties follow directly from the Maxwell-Lorentz equa-
tions (2.1) on page 19.

4.1.2 C symmetry

A charge conjugation q 7! q0 D �q results in the following changes:

� 7! �0 D �� (4.2a)

j 7! j0 D �0
dx0

dt 0
D ��

dx0

dt 0
D ��

dx

dt
D �j (4.2b)

r 7! r 0 D r (4.2c)

@

@t
7!

@

@t 0
D

@

@t
(4.2d)

When we apply them to the Maxwell-Lorentz equation (2.1a) we see that

r 0 �E0.t 0;x0/ D
�0

"0
D
.��/

"0
D �

�

"0
D �r �E.t;x/ (4.3a)

Since r 0 D r , and "0 is unaffected by the changes described by equations (4.2),
we conclude that that r �E0 D �r �E, as postulated by the Maxwell-Lorentz
equations, can be true only if E0 D �E. In other words, the Maxwell-Lorentz
equations postulate that the electric field must change direction if the sign of the
charge is changed, in agreement with Coulomb’s law in electrostatics.

If we use this when the transformation is applied to equation (2.1c) on page
19, we obtain

r 0 � E0.t 0;x0/ D �
@B0.t 0;x0/

@t 0
D r � Œ�E.t;x/� D

@B.t;x/

@t
(4.3b)
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implying that under charge conjugation, the fields transform as

E0.t 0;x0/ D �E.t;x/ (4.4a)

B0.t 0;x0/ D �B.t;x/ (4.4b)

Consequently, all terms in the Maxwell-Lorentz equations change sign under
charge conjugation. This means that these equations are invariant under the
C symmetry. No breaking of the charge conjugation symmetry has sofar been
observed in Nature.

4.1.3 P symmetry

A 3D spatial inversion x 7! x0 D �x results in the following changes:

� 7! �0 D � (4.5a)

j 7! j0 D �0
dx0

dt 0
D �

d.�x/

dt
D ��

dx

dt
D �j (4.5b)

r 7! r 0 D �r (4.5c)

@

@t
7!

@

@t 0
D

@

@t
(4.5d)

When applied to the Maxwell-Lorentz equations (2.1a) and (2.1c) on page 19,
we see that

r 0 �E0.t 0;x0/ D �r �E0.t 0;�x/ D
�0

"0
D

�

"0
D �r �Œ�E.t;x/� (4.6a)

r 0 � E0.t 0;x0/ D �
@B0.t 0;x0/

@t 0
D �r � Œ�E.t;x/� D �

@B.t;x/

@t
(4.6b)

implying that under parity transformation the fields transform as

E.t 0;x0/ D �E.t;x/ (4.7a)

B0.t 0;x0/ D B.t;x/ (4.7b)

Hence, the Maxwell-Lorentz postulates imply that E is an ordinary vector (polar
vector), as it should be, and that B is a pseudovector (axial vector) with proper-
ties as described in subsection M.2.2 on page 239.

4.1.4 T symmetry

A time reversal t 7! t 0 D �t results in the following changes:

� 7! �0 D � (4.8a)

j 7! j0 D �j (4.8b)

r 7! r 0 D r (4.8c)

@

@t
7!

@

@t 0
D �

@

@t
(4.8d)
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When we apply them to the Maxwell-Lorentz equations equation (2.1a) and
equation (2.1c) on page 19, we see that

r 0 �E0.t 0;x0/ D r �E0.�t;x/ D
�0

"0
D

�

"0
D r �E.t;x/ (4.9a)

r 0 � E0.t 0;x0/ D �
@B0.t 0;x0/

@t 0
D �

@B0.�t;x0/

@.�t /
D
@B0.�t;x0/

@t

D r � E.t;x/ D �
@B.t;x/

@t

(4.9b)

implying that under time reversal

E0.t 0;x0/ D E.t;x/ (4.10a)

B0.t 0;x0/ D �B.t;x/ (4.10b)

We see that E is even and B odd under the T symmetry. The Universe as a
whole is asymmetric under time reversal. On quantum scales this is manifested
by the uncertainty principle and on classical scales by the arrow of time which
is related to the increase of thermodynamic entropy in a closed system.

The CPT theorem states that the combined CPT symmetry must hold for all
physical phenomena. No violation of this law has been observed to date. How-
ever, in 1964 it was experimentally discovered that the combined CP symmetry
is violated in neutral kaon decays .22 This discovery led to the Nobel

Prize in Physics 1980.

4.2 Continuous symmetries

It is well established that a deeper understanding of a physical system can be
obtained if one finds the system’s conserved quantities (constants of motion),
i.e. those observables of the system that do not change with time. According
to Noether’s theorem ,3 a system’s conserved quantities is closely related to its3 AMALIE EMMY NOETHER

(1882–1935) made important
contributions to mathematics and
theoretical physics. Her (first)
theorem, which states that any
differentiable symmetry of (the
action of) a physical system has a
corresponding conservation law,
is considered to be a fundamental
tool of theoretical physics.

continuous symmetries .

4.2.1 General conservation laws

Consider a certain physical substance, quantity, property or other such entity
that flows, in a time-dependent way, in 3D space. This can, for instance, be
a fluid, electric charge, or quantum mechanical probability. Let us denote the
volume density of this entity by %.t;x/ and its flow velocity by v.t;x/. Let
us also introduce a closed volume V , fixed in space and enclosed by a perfectly
permeable surface S with an infinitesimally small directed area element d2x On D
dxidxj On, where dxi and dxj are two coordinates that span the local tangent
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plane of the surface and On is an outward directed unit vector, orthogonal to the
tangent plane. The closed volume V is called the control volume . In the special
case that V is spherical, it is usually referred to as the control sphere .

If the velocity of the entity in question is v , it flows with a velocity across the
surface S of the volume V at the rate %v per unit time and unit area. Clearly, an
inward flow (antiparallel to On) will increase the amount of entity in V . We also
have to allow for an increase due to the production of the entity inside V . This
increase is quantified by the source density s. Recalling that the normal vector
On points outward, the following balance equation must then hold:

d
dt

Z
V

d3x %„ ƒ‚ …
Total change within V

D �

I
S

d2x On � %v„ ƒ‚ …
Flow into V

C

Z
V

d3x s„ ƒ‚ …
Production inside V

(4.11)

With the help of the divergence theorem, identity (F.121b) on page 221, this
balance equation can be writtenZ

V

d3x
�@%
@t
C r �.%v/ � s

�
D 0 (4.12)

where %v is the flux density of the entity under consideration. Since this balance
equation must hold for any volume V , the integrand must vanish and we obtain
the continuity equation

@%

@t
C r �.%v/ D s (4.13)

This inhomogeneous, linear partial differential equation expresses the local bal-
ance between the explicit temporal change of the density of the entity, the flow
of it across the surface of a control volume, and the local production of the en-
tity within the control volume. In the absence of such a production, i.e. if s D 0,
equation shows that the amount of entity

R
V

d3x % in V is only changed if the
entity flows in or out of V .

In fact, since, according to formula (F.99) on page 220, r �.r � a/ D 0

for any arbitrary, continuously differentiable vector field a, we can generalise
equation (4.13) above to

@%

@t
C r �.%v C r � a/ D s (4.14)

Furthermore, since the time derivative d=dt operating on a scalar, vector or
tensor field, dependent on t and x.t/, is

d
dt
D

@

@t
C v � r (4.15)
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according to the chain rule [cf. equation (1.34) on page 13], and since [cf..
identity (F.81) on page 219]

r �.%v/ D %r � v C v � r% (4.16)

we can rewrite the equation of continuity as

d%
dt
C %r �.v C r � a/ D s (4.17)

where, again, a is an arbitrary, differentiable pseudovector field with dimension
m2s�1, e.g. the moment of velocity with respect to x0, i.e. .x � x0/ � v .

4.2.2 Conservation of electric charge

If we multiply both members of the Maxwell-Lorentz equation (2.1a) on page 19
by "0 and apply partial differentiation with respect to time t , we get

@�.t;x/

@t
D "0

@

@t
r �E.t;x/ (4.18)

and if we divide both members of the Maxwell-Lorentz equation (2.1d) by �0
and take the divergence, we get

r � j.t;x/ D
1

�0
r �

�
r � B.t;x/

�„ ƒ‚ …
D0

�
1

�0c2„ƒ‚…
D"0

r �
@E.t;x/

@t
D �"0r �

@E.t;x/

@t

(4.19)

Since the electromagnetic fields are assumed to be well-behaved so that differ-
entiation with respect to time and space commute when they operate on E.t;x/,
we see that it follows from the two Maxwell-Lorentz equations used that

@�.t;x/

@t
C r � j.t;x/ D 0 (4.20)

This is a differential (local) balance equation of the same type as equation
(4.13) on the previous page where now the entity density % represents the elec-
tric charge density �,4 and where s D 0. Equation (4.20) above shows that the4 Note that the density of charge

and the (number) density of
charges are two different things!

total electric charge within the control volume V at time t , q D
R
V

d3x �.t;x/,
changes if and only if a charge density flux, or, equivalently, an electric current
density (amount of current per unit area), j passes across the surface enclosing
the control volume V at time t . Hence, it postulates that electric charge can
neither be created nor destroyed. Consequently, the Maxwell-Lorentz equations
postulate that electric charge is indestructible .5

5 That electricity is indestructible
was postulated already 1747 by
BENJAMIN FRANKLIN (1706–
1770), printer, scientist, inventor,
philosopher, statesman, and one of
the founding fathers of the United
States of America.

This is the first conservation law that we have derived from the microscopic
Maxwell equations (2.1) on page 19 and it can be shown to be a manifestation
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of the gauge symmetry of electrodynamics. This result is, of course, consistent
a posteriori with the fact that these axiomatic laws were formulated under the a
priori assumption that the continuity equation (1.22) on page 10 was valid. As
shown in example 3.4 on page 50, the symmetry that is associated with charge
conservation is the gauge symmetry.

4.2.3 Conservation of energy

The continuity equation (4.20) on the facing page contains the divergence of
the first-order vector quantity j. As an example of the divergence of a second
order vector quantity, let us study the divergence of E � B. Using the Maxwell
equations (2.1c) and (2.1d) on page 19, we obtain the balance equation

r �.E � B/ D B �.r � E/ � E �.r � B/

D �B �
@B

@t
� �0E � j � "0�0E �

@E

@t

D ��0

� @
@t

"0

2

�
E �EC c2B �B

�
C j �E

� (4.21)

where formula (F.83) on page 219 was used.
Let us define the electromagnetic field energy density6

6 This expression was derived in
1853 by W ILLIAM THOMSON,
knighted LORD KELVIN, (1824–
1927), Scottish mathematical
physicist and engineer.ufield.t;x/ D

"0

2
.E �EC c2B �B/ (Jm�3) (4.22)

and the electromagnetic energy flux (also known as the Poynting vector)7 7 This expression was derived
in 1884 by the English physi-
cist JOHN HENRY POYNTING
(1882–1914) and in 1885 by
OLIVER HEAVISIDE (1850–
1925), a self-taught English
mathematician, physicist and elec-
trical engineer who was in many
ways ahead of his contemporaries
and had a remarkable impact on
how we look at physics today.

S.t;x/ D
1

�0
E � B D "0c

2E � B (Wm�2) (4.23)

which can also be viewed as the electromagnetic energy current density.
With the help of these two definitions we can write the balance equation

(4.21) above as

@ufield

@t
C r �S D �j �E (4.24)

i.e. as a continuity equation with a source density

s D �j �E D ��vmech �E (4.25)

If we compare equation (4.24) with the generic continuity equation (4.13) on
page 57, we see that if we let % D ufield and S D ufieldvfield, we see that we can
interpret the quantity

vfield
D

S

ufield D "c
2E � B

ufield (4.26)
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as the energy density velocity,
From the definition of E, we conclude that �E represents force per unit

volume (Nm�3) and that �E � vmech therefore represents work per unit volume
or, in other words, power density (Wm�3). It is known as the Lorentz power
density and is equivalent to the time rate of change of the mechanical kinetic
energy density (Jm�3) of the current carrying particles

@umech

@t
D j �E D �vmech �E (4.27)

Equation (4.24) on the previous page can therefore be written

@umech

@t
C
@ufield

@t
C r �S D 0 (4.28)

This is the energy density balance equation in local (differential) form.
Expressing the Lorentz power ,

R
V

d3x j �E, as the time rate of change of the
mechanical energy:

dUmech

dt
D

Z
V

d3x
@

@t
umech.t;x/ D

Z
V

d3x j �E (4.29)

and introducing the electromagnetic field energy

U field
D U e

C Um (4.30)

where, as follows from formula (4.22) on the preceding page,

U e.t/ D
"0

2

Z
V

d3x E �E (4.31)

is the electric field energy and

Um.t/ D
"0

2

Z
V

d3x c2B �B (4.32)

is the magnetic field energy, we can write the integral version of the balance
equation (4.28) above as

dUmech

dt
C

dU field

dt
C

I
S

d2x On �S D 0 (4.33)

This is the energy theorem in Maxwell’s theory , also known as Poynting’s the-
orem .

Allowing for an EMF and assuming that Ohm’s law

j D �.EC Eemf/ (4.34)

is a valid approximation, or, equivalently, that

E D
j

�
� Eemf (4.35)
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we obtain the relationZ
V

d3x j �E D

Z
V

d3x
j � j

�
�

Z
V

d3x j �Eemf (4.36)

which, when inserted into equation (4.33) on the facing page and use is made of
equation (4.29) on the preceding page, yieldsZ

V

d3x j �Eemf„ ƒ‚ …
Supplied electric power

D
dU field

dt„ƒ‚…
Field power

C

I
S

d2x On �S„ ƒ‚ …
Radiated power

C

Z
V

d3x
j � j

�„ ƒ‚ …
Joule heat

(4.37)

This shows how the supplied power (left-hand side, LHS) is expelled in the form
of a time rate change of electric and magnetic field energy , radiated electromag-
netic power , and Joule heat power (Ohmic losses) in the system (right-hand side,
RHS).

The conservation of energy is a manifestation of the temporal translational
invariance of the Maxwell-Lorentz equations.

4.2.4 Conservation of linear (translational) momentum

The derivation of the energy conservation formula (4.24) on page 59 started with
a study of the divergence of E�B. We now seek a balance equation involving the
time derivative of E � B and find, using the Maxwell-Lorentz equations (2.1c)
and (2.1d) on page 19, that

@.E � B/

@t
D
@E

@t
� BC E �

@B

@t
D E �

@B

@t
� B �

@E

@t

D �E � .r � E/ � c2B � .r � B/C
1

"0

D�j�B‚…„ƒ
B � j (4.38)

A combination of the identities (F.79) and (F.86) on page 219 yields

E � .r � E/ D 1
2r .E �E/ � r �.E˝E/C .r �E/E (4.39a)

B � .r � B/ D 1
2r .B �B/ � r �.B˝B/C .r �B/B (4.39b)

Using the Maxwell-Lorentz equations (2.1a) and (2.1b) on page 19, and the
identity (F.102) on page 220 allows us to write

E � .r � E/ D r �
�
1
2 .E �E/13 � E˝E

�
C
�

"0
E (4.40a)

B � .r � B/ D r �
�
1
2 .B �B/13 � B˝B

�
C 0 (4.40b)

Let us introduce the electromagnetic linear momentum flux tensor , also known
as (the negative of) the Maxwell stress tensor or the electromagnetic linear mo-
mentum current density,

T D 1
2"0.E �EC c

2B �B/13 � .E˝EC c2B˝B/ (4.41)
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measured in Pa, i.e. Nm�2 in SI units. In tensor component form, T is

Tij D u
fieldıij � "0EiEj � "0c

2BiBj (4.42)

where ufield is the electromagnetic energy density, defined in formula (4.22) on
page 59. The component Tij is the electromagnetic linear momentum flux in the
i th direction that passes across a surface element in the j th direction per unit
time, per unit area. The tensor T has the properties

Tij D Tj i (4.43a)

Tr.T/ D Ti i D ufield (4.43b)

det.T/ D ufield�.cgfield/2 � .ufield/2
�

(4.43c)

We can now rewrite equation (4.38) on the preceding page as

@.E � B/

@t
D �

1

"0

�
r �TC �EC j � B

�
(4.44)

If we introduce the electromagnetic linear momentum density gfield by mak-
ing the identification88 This follows from Planck’s

relation S D gfieldc2. Since the
LHS of this equation is (energy
density) � (velocity) and the RHS
is (mass density) � (velocity)
� c2, we see that this relation
forebodes the relativistic relation
E D mc2, whereE is energy and
m is mass.

gfield.t;x/ D "0E � B D
S

c2
(4.45)

we can therefore write equation (4.38) on the previous page as

@gfield

@t
C f C r �T D 0 (4.46)

where

f D �EC j � B (4.47)

This polar vector f has the dimension Nm�3 and we therefore identify it as a
force density and call it the Lorentz force density.

According to classical mechanics (Newton’s second law, Euler’s first law),
the mechanical force density f .t;x/must equal the time rate change of the mech-
anical linear momentum density

gmech.t;x/ D %m.x/v
mech.t;x/ (4.48)

where %m is the (volumetric) mass density (kgm�3). We are therefore able to
write the linear momentum density balance equation (4.38) on the preceding
page as a local (differential) continuity equation in the standard form

@gmech

@t
C
@gfield

@t
C r �T D 0 (4.49)
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Integration of equation (4.49) on the preceding page over the control volume V ,
enclosed by the surface S , yields, with the help of the divergence theorem, the
conservation law for linear momentum

dpmech

dt
C

dpfield

dt
C

I
S

d2x On �T D 0 (4.50)

where

pmech.t/ D

Z
V

d3x gmech
D

Z
V

d3x %mvmech (4.51a)

and

pfield.t/ D

Z
V

d3x gfield
D

Z
V

d3x "0.E � B/ (4.51b)

or Z
V

d3x f„ ƒ‚ …
Force on the matter

C
d
dt

Z
V

d3x "0.E � B/„ ƒ‚ …
EM field momentum

C

I
S

d2x On �T„ ƒ‚ …
Linear momentum flow

D 0 (4.52)

This is the linear momentum theorem in Maxwell’s theory which shows that not
only the mechanical particles (charges) but also the electromagnetic field itself
carries linear momentum (translational momentum) and can thus be assumed to
be particle- or fluid-like.

If we assume that we have a single localised charge q, such that the charge
density is given in terms of a Dirac distribution as in equation (1.8) on page 5,
with the summation running over one particle only, the evaluation of the first
integral in equation (4.52) above shows that the force on this charge is

F D

Z
V

d3x f D

Z
V

d3x .�EC j � B/ D q.EC vmech
� B/ (4.53)

which is the Lorentz force; see also equation (1.44) on page 14. Note that equa-
tion (4.53) above follows directly from a conservation law, and therefore is a
consequence of a symmetry of the Maxwell-Lorentz postulates equations (2.1).
Hence, the Lorentz force does not have to be separately postulated.

4.2.4.1 Gauge-invariant operator formalism

Taking equation (4.51b) above as a starting point and using the fact that the E

and B fields are assumed to behave in such a way that the can be Helmholtz
decomposed as [cf. formula (F.129) on page 222]

E.t;x/ D Eirrot.t;x/C Erotat.t;x/ (4.54a)

B.t;x/ D Brotat.t;x/ (4.54b)
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we see that we can write the field momentum in the following manifestly gauge-
invariant form:

pfield.t/ D "0

Z
V

d3x Eirrot
� .r �Arotat/C "0

Z
V

d3x Erotat
� .r �Arotat/

(4.55)

Let us first evaluate the first integral in the RHS of this expression. Apply-
ing identities (F.79) and (F.86) on page 219, with a 7! Eirrot and b 7! Arotat,
recalling from the Helmholtz decomposed Maxwell-Lorentz equations (2.42) on
page 29 thatr �Eirrot D �="0 and thatr�Eirrot D 0, the first integrand becomes

Eirrot
� .r �Arotat/ D

�

"0
Arotat

�Arotat �.r ˝Eirrot/ (4.56)

C r .Eirrot �Arotat/ � r �Eirrot˝Arotat (4.57)

Performing the integration and using identities (F.121) on page 221, we find that
the first integral can be expressed as the sum of four integrals:Z

V

d3x Eirrot
� .r �Arotat/ D

1

"0

Z
V

d3x �Arotat
�

Z
V

d3xArotat �.r ˝Eirrot/

C

I
S

d2x On.Eirrot �Arotat/ �

I
S

d2x On � .Eirrot˝Arotat/ (4.58)

The second integral in the RHS of this equation can be integrated by parts by
using identity (F.86) on page 219, with a 7! Arotat and b 7! Eirrot. The result isZ

V

d3xArotat �.r ˝Eirrot/ D

I
S

d2x On.Eirrot �Arotat/ �

Z
V

d3x .r �Arotat/Eirrot

(4.59)

Inserting this, using the fact that, by definition, r �Arotat D 0, we find that the
first integral in equation (4.55) is

"0

Z
V

d3x Eirrot
� .r �Arotat/ D

Z
V

d3x �Arotat
� "0

I
S

d2x On �Eirrot˝Arotat

(4.60)

We evaluate the second integral in equation (4.55) exactly analogously and find
that

"0

Z
V

d3x Erotat
� .r �Arotat/ D � "0

Z
V

d3xArotat
� .r � Erotat/

� "0

I
S

d2x On �Erotat˝Arotat
(4.61)

Putting all of this together, we find that the electromagnetic linear (translational)
momentum is given by the exact,9 manifestly gauge-invariant formula

9 Strictly speaking, in the expres-
sion for Erotat and Arotat, we have
neglected the respective surface
integrals that must be retained if
V � R3.
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pfield.t/ D

Z
V

d3x �Arotat
� "0

Z
V

d3xArotat
� .r � Erotat/

� "0

I
S

d2x On �E˝Arotat
(4.62)

If we restrict ourselves to consider a single temporal Fourier component of
the rotational (‘transverse’) component of E in a region where � D 0, and use
the results in example 3.3 on page 49, we find that in complex representation

Erotat
D �

@A

@t

rotat

D i!Arotat (4.63)

which allows us to replace Arotat by �iErotat=!, yielding, after applying identity
(F.93) on page 220 and equation (2.6) on page 22,˝

pfield˛
t
D Re

�
�i
"0

2!

Z
V

d3x .r ˝Erotat/ � .Erotat/
�

�
C Re

�
i
"0

2!

I
S

d2x On �E˝ .Erotat/
�

� (4.64)

If the tensor (dyadic) E˝ .Erotat/
� is regular and falls off sufficiently rapidly at

large distances (or if On �E D 0), we can discard the surface integral term and find
that the cycle averaged linear momentum carried by the rotational components
of the fields, Erotat and Brotat � B D r �Arotat, is˝

pfield˛
t
D Re

�
�i
"0

2!

Z
V

d3x .r ˝Erotat/ � .Erotat/
�

�
(4.65)

In complex tensor notation, with Einstein’s summation convention applied, this
can be written˝

pfield˛
t
D �i

"0

2!

Z
V

d3x .Erotat
j /

��
Oxi@iE

rotat
j

�
D �i

"0

2!

Z
V

d3x .Erotat
j /

�
rE rotat

j

(4.66)

Making use of the quantal linear momentum operator

yp D �i}r (4.67)

we see that we can write the expression for the linear momentum of the electro-
magnetic field in terms of this operator as

˝
pfield˛

t
D

"0

2}!

3X
iD1

Z
V

d3x .Erotat
i /

�
ypE rotat

i (4.68)
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If we introduce the vector

‰ D ‰i Oxi D

r
"0

2}!
Erotat

D

r
"0

2}!
E rotat
i Oxi (4.69)

we can write ˝
pfield˛

t
D

3X
iD1

Z
V

d3x ‰�i yp‰i (4.70)

or, if we assume Einstein’s summation convention,˝
pfield˛

t
D h‰i j yp j‰i i (4.71)

That is, we can represent the cycle (temporal) averaged linear momentum carried
by a monochromatic electromagnetic field as a sum of diagonal quantal matrix
elements (expectation values) where the rotational (‘transverse’) component of
the (scaled) electric field vector behaves as a vector wavefunction.

The conservation of linear (translational) momentum is a manifestation of
the spatial translational invariance of the Maxwell-Lorentz equations.

4.2.5 Conservation of angular (rotational) momentum

Euler10 showed in 1775 that the most general dynamical state of a mechanical10 LEONHARD EULER, 1707–
1783, Swiss mathematician
and physicist and one of the
most prolific and influential
mathematicians in history.

system is the sum of its translational motion, described by the system’s mech-
anical linear momentum pmech, and its rotational motion, described by the sys-
tem’s mechanical moment of momentum , or mechanical angular momentum
Jmech.x0/ about a moment point x0, and that these two momenta are in general
independent of each other.1111 Rational mechanist, math-

ematician and physics historian
CLIFFORD AMBROSE TRUES-
DELL I I I (1919–2000) wrote
several excellent accounts on
how this result was arrived at by
Euler in the latter half of the 18th
century.

In the special case of a classical rigid body for which the contribution from
internal angular momenta cancel,12 the angular momentum around x0 is given

12 This ‘fact’ is really an empirical
law that cannot in general be
derived from Newton’s laws.

by the pseudovector Jmech.x0/ D .x � x0/ � pmech. For a closed system of
rotating and orbiting bodies, e.g. a spinning planet orbiting a (non-rotating) star,
the total mechanical angular momentum of the system is the vectorial sum of
two contributions:

Jmech.x0/ D †
mech
C Lmech.x0/ (4.72)

where †mech is the intrinsic mechanical spin angular momentum , describing
the spin of the planet around its own axis, and Lmech is the extrinsic mechanical
orbital angular momentum , describing the motion of the planet in an orbit around
the star. As is well known from mechanics, Jmech of a closed mechanical system
is conserved and to change it one has to apply a mechanical torque

N D
dJmech

dt
(4.73)
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Starting from the definition of the mechanical linear momentum density
gmech, formula (4.48) on page 62, we define the mechanical angular momentum
density about a fixed moment point x0 as

hmech.t;x;x0/ D .x � x0/ � gmech.t;x/ (4.74)

Analogously, we define the electromagnetic moment of momentum density or
electromagnetic angular momentum density about a moment point x0 as the
pseudovector

hfield.t;x;x0/ D .x � x0/ � gfield.t;x/ (4.75)

where gfield is given by equation (4.45) on page 62. Partial differentiation with
respect to time yields

@hfield.t;x;x0/

@t
D

@

@t

�
.x � x0/ � gfield�

D
dx

dt
� gfield

C .x � x0/ �
@gfield

@t

D .x � x0/ �
@gfield.t;x/

@t

(4.76)

where we used the fact that dx=dt is the energy density velocity vfield and, hence,
is parallel to gfield; see equation (4.26) on page 59. We use equation (4.46) on
page 62 to immediately find that

@hfield.t;x;x0/

@t
C .x � x0/ � f .t;x/C .x � x0/ � r �T.t;x/ D 0 (4.77)

Identifying

@hmech.t;x;x0/

@t
D .x � x0/ � f .t;x/ (4.78)

as the Lorentz torque density and introducing the electromagnetic angular mo-
mentum flux tensor

K.t;x;x0/ D .x � x0/ � T.t;x/ (4.79)

where T is the electromagnetic linear momentum flux tensor given by expression
(4.41) on page 61, we see that the local (differential) form of the balance equa-
tion for angular momentum density can be written (discarding the arguments t
and x from now on)

@hmech.x0/

@t
C
@hfield.x0/

@t
C r �K.x0/ D 0 (4.80)
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where the symmetric pseudotensor K.x0/ represents the electromagnetic angular
momentum current density around x0 and we used the fact that .x � x0/ �

Œr �T.t;x/� D r �Œ.x � x0/ � T.t;x/� D r �K.t;x;x0/ [see example 4.4 on
page 76].

Integration over the entire volume V , enclosed by the surface S , yields the
conservation law for angular momentum

dJmech.x0/

dt
C

dJfield.x0/

dt
C

I
S

d2x On �K.x0/ D 0 (4.81)

where the mechanical and electromagnetic angular momentum pseudovectors
are

Jmech.x0/ D

Z
V

d3x hmech.x0/ (4.82a)

and

Jfield.x0/ D

Z
V

d3x hfield.x0/ D

Z
V

d3x .x � x0/ � gfield

D "0

Z
V

d3x .x � x0/ � .E � B/

(4.82b)

respectively. We can formulate — and interpret — this conservation law in the
following way:Z

V

d3x .x � x0/ � f„ ƒ‚ …
Torque on the matter

C
d
dt
"0

Z
V

d3x .x � x0/ � .E � B/„ ƒ‚ …
Field angular momentum

C

I
S

d2x On �K.x0/„ ƒ‚ …
Angular momentum flow

D 0

(4.83)

This angular momentum theorem is the angular analogue of the linear mo-
mentum theorem, equation (4.52) on page 63. It shows that the electromagnetic
field, like any physical field, can carry angular momentum , also known as rota-
tional momentum .

For a single localised charge q, i.e. for a charge density given by equation
(1.8) on page 5 with summation over one particle only, the evaluation of the first
integral in equation (4.83) above shows that the mechanical torque on this charge
is

N.x0/ D

Z
V

d3x .x � x0/ � f D

Z
V

d3x .x � x0/ � .�EC j � B/

D .x � x0/ � q.EC vmech
� B/ D .x � x0/ � F

(4.84)

where F is the Lorentz force given by expression (4.53) on page 63. The phys-
ical observable N.x0/ is known as the Lorentz torque .
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4.2.5.1 Gauge-invariant operator formalism

Using the fact that we can always express the magnetic field as B D r �Arotat if
A is regular enough and falls off sufficiently fast at large distances [cf. example
3.3 on page 49], we can write

Jfield.t;x0/ D "0

Z
V

d3x .x � x0/ � ŒE.t;x/ � B.t;x//�

D "0

Z
V

d3x .x � x0/ �
�
E.t;x/ � Œ.r �Arotat.t;x/�

� (4.85)

Employing the vector identity (F.92) on page 219, we can rewrite this as

Jfield.t;x0/ D "0

Z
V

d3x .x � x0/ � Œ.r ˝Arotat/ �E�

� "0

Z
V

d3x .x � x0/ � ŒE �.r ˝Arotat/�

(4.86)

Partial integration of this yields the manifestly gauge invariant expression

Jfield.t;x0/ D "0

Z
V

d3x E �Arotat

C "0

Z
V

d3x .x � x0/ � Œ.r ˝Arotat/ �E�

� "0

Z
V

d3x r �.E˝.x � x0/ �Arotat/

C "0

Z
V

d3x Œ.x � x0/ �Arotat�.r �E/

(4.87)

which consists of one intrinsic term (a term that is not dependent on the choice
of moment point x0):

†field.t/ D "0

Z
V

d3x E.t;x/ �Arotat.t;x/ (4.88a)

and three extrinsic terms that do depend on the choice of x0:

Lfield.t;x0/ D

Z
V

d3x .x � x0/ � �Arotat.t;x/

C "0

Z
V

d3x .x � x0/ �
�
Œr ˝Arotat.t;x/� �E.t;x/

�
� "0

I
S

d2x On � ŒE.t;x/˝.x � x0/ �Arotat.t;x/�

(4.88b)

where use was made of the Maxwell-Lorentz equation (2.1a) on page 19. Hence,
the total field angular momentum Jfield is the sum of two manifestly gauge in-
variant components, one intrinsic (†field) and one extrinsic (Lfield):

Jfield.t;x0/ D †
field.t/C Lfield.t;x0/ (4.89)
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in perfect analogy with the total mechanical angular momentum; cf. equation
(4.82a) on page 68.

If there is no net electric charge density � in the integration volume, the first
integral in the RHS of equation (4.88b) on the previous page vanishes, and if
E˝.x � x0/ � Arotat is regular and falls off sufficiently rapidly with jxj, the
contribution from the surface integral in equation (4.88b) on the preceding page
can be neglected if we make the enclosing volume V large enough. Furthermore,
for a single temporal Fourier component and in complex notation, we obtain the
expressions ˝

†field˛
t
D �i

"0

2!

Z
V

d3x .E� � E/ (4.90a)˝
Lfield.x0/

˛
t
D� i

"0

2!

Z
V

d3x E�i Œ.x � x0/ � r �Ei

D� i
"0

2!

Z
V

d3x E�i .x � r /Ei

C i
"0

2!
x0 �

Z
V

d3x E�i rEi

D
˝
Lfield.0/

˛
t
� x0 �

˝
pfield˛

t

(4.90b)

where
˝
pfield

˛
t

is the cycle averaged EM field linear momentum given by expres-
sion (4.66) on page 65.

Recalling that in quantum mechanics the spin angular momentum operator
is b†jk D �i}�ijk Oxi (4.91)

which, with the help of the matrix vector expression (M.26) on page 238 can be
written b††† D �}S (4.92)

and the quantal orbital angular momentum operator is

yL D �i}x � r D �i}�ijkxj @k Oxi (4.93)

we can write (Einstein summation convention assumed)˝
†field˛

t
D

"0

2}!

Z
V

d3x E�j b†jkEk (4.94a)˝
Lfield.0/

˛
t
D

"0

2}!

Z
V

d3x E�i yLEi (4.94b)

or, with the use of the vector ‰ introduced in equation (4.69) on page 66,˝
†field˛

t
D

Z
V

d3x ‰�i b†‰i D h‰i jb† j‰i i (4.95a)˝
Lfield.0/

˛
t
D

Z
V

d3x ‰�i yL‰i D h‰i j yL j‰i i (4.95b)
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Hence, under the assumptions made above, we can interpret †field as the
electromagnetic spin angular momentum and Lfield as the electromagnetic orbital
angular momentum .

The conservation of angular (rotational) momentum is a manifestation of the
rotational invariance of the Maxwell-Lorentz equations.

4.2.6 Electromagnetic duality

We notice that Dirac’s symmetrised Maxwell-Lorentz equations (2.2) on page 20
have the following transformation property (recall that "0�0 D 1=c2):

E 7! cB (4.96a)

cB 7! �E (4.96b)

c�e
7! �m (4.96c)

�m
7! �c�e (4.96d)

cje
7! jm (4.96e)

jm
7! �cje (4.96f)

which is a particular case (� D �=2) of the general duality transformation , also
known as the Heaviside-Larmor-Rainich transformation (indicated by the Hodge
star operator ? in the upper left-hand corner of the symbol in question)

?E D E cos � C cB sin � (4.97a)

c?B D �E sin � C cB cos � (4.97b)

c?�e
D c�e cos � C �m sin � (4.97c)

?�m
D �c�e sin � C �m cos � (4.97d)

c?je
D cje cos � C jm sin � (4.97e)

?jm
D �cje sin � C jm cos � (4.97f)

This transformation leaves the symmetrised Maxwell equations, and hence the
physics they describe (often referred to as electromagnetodynamics), invariant.
Since E and je are true (polar) vectors, B a pseudovector (axial vector), and �e

a (true) scalar, we conclude that the magnetic charge density �m as well as the
angle � , which behaves as a mixing angle in a two-dimensional charge space ,
must be pseudoscalars13 and the magnetic current density jm a pseudovector.

13 Recall that the Taylor expansion
of cos � contains only even
powers of � and therefor is an
ordinary (true) scalar, whereas
the expansion of sin � contains
only odd powers and therefore is a
pseudoscalar.

The invariance of Dirac’s symmetrised Maxwell equations under the duality
transformation (4.97) means that the amount of magnetic monopole density �m

is irrelevant for the physics as long as the ratio �m=�e D tan � is kept constant.
So whether we assume that charged particles are only electrically charged or
also have an amount of magnetic charge with a given, fixed ratio between the
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two types of charges, is a matter of convention, as long as we assume that this
fraction is the same for all charged particles. Such particles are called dyons ,
a concept introduced by Schwinger. By varying the mixing angle � we can
change the fraction of magnetic monopoles at will without changing the laws of
electrodynamics. For � D 0 we recover the usual Maxwell electrodynamics.

4.2.7 Electromagnetic virial theorem

If instead of vector multiplying the linear momentum densities gmech and gfield

by the position vector relative to a fix point x0 as we did in subsection 4.2.5
on page 66, we scalar multiply, the following differential balance equation is
obtained:

@
�
.x � x0/ �g

mech
�

@t
C
@
�
.x � x0/ �g

field
�

@t
C r �

�
.x � x0/ �T

�
D ufield

(4.98)

This is the electromagnetic virial theorem , analogous to the virial theorem of
Clausius in mechanics. The quantity .x � x0/ �g

field is the electromagnetic
virial density. When integrated over space and time averaged, this theorem is a
statement of the partitioning of energy in electrodynamics and finds use in, e.g.
plasma physics .

4.3 Examples

BC, P, and T symmerties for the electromagnetic potentialsEXAMPLE 4 .1

The CPT symmetries of the electromagnetic potentials ˆ.t;x/ and A.t;x/ can be found
trivially by using either expressions (3.35) or expressions (3.44) for the potentials. They
can also be found by combining the results in subsection 4.1.1 and formulæ (F.141) on
page 224. The result is

CHARGE CONJUGATION

C W ˆ 7! �ˆ (4.99a)

C W A 7! �A (4.99b)

SPACE INVERSION (PARITY)

P W ˆ 7! ˆ (4.100a)

P W A 7! �A (4.100b)
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TIME REVERSAL

T W ˆ 7! ˆ (4.101a)

T W A 7! �A (4.101b)

End of example 4.1C

BConservation of the total energy in a closed system EXAMPLE 4 .2

Show, by explicit calculation, that the total energy U D Umech C U field of a closed system
comprising N non-relativistic particles of mass mi , speed vi and charge qi , and pertinent
electromagnetic fields E and B,

U D
1

2

NX
iD1

miv
2
i C

"0

2

Z
V

d3x .E �EC c2B �B/ (4.102)

is conserved.

To show that the total energy U of the closed system is conserved, i.e. is constant in time,
is to show that the derivative of U with respect to time t vanishes. Direct differentiation
yields

dU
dt
D

NX
iD1

mivi �
dvi

dt
C "0

Z
V

d3x
�
E �

@E

@t
C c2B �

@B

@t

�
(4.103)

From the Lorentz force equation (4.53) on page 63 and Newton’s second law we find that

mi
dvi

dt
D qi

�
E.t;xi /C vi � B.t;xi /

�
which means that
NX
iD1

mivi �
dvi

dt
D

NX
iD1

qivi �E.t;xi /C

NX
iD1

qi vi �
�
vi � B.t;xi /

�„ ƒ‚ …
�0

D

NX
iD1

qivi �E.t;xi /

Furthermore, from the Maxwell-Lorentz equations (2.1) on page 19 we find that

@E

@t
D c2r � B �

1

"0
j (4.104a)

@B

@t
D �r � E (4.104b)

Substitution into equation (4.103) above yields, after some rearrangement of terms,

dU
dt
D

NX
iD1

qivi �E.t;xi / �

Z
V

d3x j �E.t;x/

C
1

�0

Z
V

d3x
�
E �.r � B/ � B �.r � E/

� (4.105)

Since the current is carried by discrete charged particles i D 1; 2; : : : ; N , the current density
can be represented as

j D

NX
iD1

qivi ı
�
x � xi .t/

�
(4.106)



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 96 of 298.

DRAFT

74 j 4. FUNDAMENTAL PROPERTIES OF THE ELECTROMAGNETIC FIELD

and therefore the two first terms in equation (4.105) on the preceding page cancel. If we
use also formula (F.83) on page 219 we see that equation (4.105) can be written

dU
dt
D �

1

�0

Z
V

d3x r �.E � B/ D �

Z
V

d3x r �S D �
I
S

d2x On �S (4.107)

where in the last step the divergence theorem, formula (F.121b) on page 221, was used.

This result shows that the rate at which the total energy is lost in a volume equals the
amount of energy flux that flows outward across a closed surface enclosing this volume.
Of course, this is nothing but what is stated in the energy theorem (Poynting’s theorem),
formula (4.33) on page 60. Now, if the surface lies entirely outside the boundaries of the
system under study, and this system is closed, no energy flux passes through the surface and
hence

dU
dt
D 0

showing that the total energy U D UmechCU field of a closed system is indeed a conserved
quantity. QED�

Put in another way: If we observe a change in the radiated energy from a given system, we
can deduce that there has been a similar change, but with opposite sign, of the mechanical
energy of the system. This can be useful to know if we want to study the dynamics of a
remote system, e.g. in the Universe.

End of example 4.2C

BConservation of the total linear momentum in a closed systemEXAMPLE 4 .3

Show, by explicit calculation, that the total linear momentum p D pmechCpfield of a closed
electromechanical system comprising N non-relativistic particles of massmi , speed vi and
charge qi , and pertinent electromagnetic fields E and B,

p D

NX
iD1

mivi C "0

Z
V

d3x .E � B/ (4.108)

is conserved.

To show that the total linear momentum p of the closed system is conserved, i.e. is con-
stant in time, is to show that the derivative of p with respect to time t vanishes. Direct
differentiation yields

dp

dt
D

NX
iD1

mi
dvi

dt
C "0

Z
V

d3x
�@E
@t
� BC E �

@B

@t

�
(4.109)

From the Lorentz force equation (4.53) on page 63 and Newton’s second law we find that

dvi

dt
D
qi

mi

�
E.t;xi /C vi � B.t;xi /

�
Substitution of this expression and equations (4.104) on the previous page into equation
(4.109) yields, after some rearrangement of terms,

dp

dt
D

NX
iD1

�
qiE.t;xi /C

�
vi � B.t;xi /

��
�

Z
V

d3x j � B.t;x/

� "0

Z
V

d3x
�
E �.r � E/C c2B �.r � B/

� (4.110)



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 97 of 298.

DRAFT

4.3. Examples j 75

By first applying formula (F.93) on page 220 and then formula (F.86) on page 219 on the
last term, we find that

dp

dt
D

NX
iD1

�
qiE.t;xi /C vi � B.t;xi /

�
�

Z
V

d3x j � B.t;x/

� "0

Z
V

d3x .E˝r �EC c2B˝r �B/

� "0

Z
V

d3x
�
1
2r .E �EC c

2B �B/ � r �.E˝EC c2B˝B/
�

(4.111)

We can now use the Maxwell-Lorentz equations to make the substitutions "0r �E D � and
r �B D 0 to obtain

dp

dt
D

NX
iD1

�
qiE.t;xi /C vi � B.t;xi /

�
�

Z
V

d3x
�
�EC j � B.t;x/

�
� "0

Z
V

d3x r �
�
1
2 .E �EC c

2B �B/13 � .E˝EC c2B˝B/
� (4.112)

Since the current is carried by discrete charged particles the current density j can be rep-
resented as formula (4.106) and the charge density as

� D

NX
iD1

qi ı.x � xi / (4.113)

the two first terms in equation (4.112) above cancel and, after applying the divergence
formula (F.121b) on page 221, we are left with

dp

dt
D �"0

I
S

d2x On �
�
1
2 .E �EC c

2B �B/13 � .E˝EC c2B˝B/
�
D �"0

I
S

d2x On �T

(4.114)

where the tensor T is the electromagnetic linear momentum current density (the negative of
the Maxwell stress tensor); cf. equation (4.41) on page 61.

This result shows that the rate at which the total linear momentum is lost in a volume equals
the amount of linear momentum flux that flows outward across a closed surface enclosing
this volume. If the surface lies entirely outside the boundaries of the system under study,
and this system is closed, no linear momentum flux passes through the surface and hence

dp

dt
D 0

showing that indeed the total linear momentum p D pmech C pfield of a closed system is a
conserved quantity. QED�

If our system under study can be considered to be a closed electromechanical system and
we observe a change in the electromagnetic linear momentum in this system, we can de-
duce that there has been a similar change, but with opposite sign, of the mechanical linear
moment of the system. This allows us to determine mechanical properties of a system by
analysing the radiation (radio, light, . . . ) from it.

In the quantum picture the linear momentum of a photon is }k where k D jkj D 2�=� is
the wavenumber and � the radiated wavelength. The shift in � is the translational Doppler
shift . Since! D ck for a photon in free space, we experience the change of electromagnetic
linear momentum as an associated frequency shift, a redshift if it is to the long wavelength
(low frequency) side and a blueshift if it is to the short wavelength (high frequency) side.
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This vocabulary is used regardless of whether the radiation falls in the optical range or not.

End of example 4.3C

BProperties of the angular momentum flux tensor KEXAMPLE 4 .4

In the derivation of the conservation law for the angular momentum, we used the fact that
.x� x0/� Œr �T.t;x/� D r �Œ.x� x0/� T.t;x/� D r �K.t;x;x0/. Show this by explicit
calculation.

According to identity (F.36) on page 218

.x � x0/ � .r �T/ D �klm Oxk.xl � x0l /.r �T/m (4.115)

In tensor notation

r �T D Oxi@i � Oxj OxkTjk D ıij Oxk@iTjk D Oxk@iTik � Oxj @iTij (4.116)

where, in the last step, we made a summation (dummy) index replacement k 7! j so that
we recognise this as identity (F.72) on page 219 for A D T.

By definition

.r �T/m � .Oxj @iTij /m D .Oxj @iTij / � Oxm D ıjm@iTij D @iTim (4.117)

which means that

.x � x0/ � .r �T/ D �klm Oxk.xl � x0l /@iTim
D �klm Oxk

�
Œ@i .xl � x0l /Tim� � ıilTim„ƒ‚…

Tlm

�
D @i Œ�klm Oxk.xl � x0l /Tim� � Oxk �klmTlm„ ƒ‚ …

D0

D r �Œ.x � x0/ � T� D r �K

(4.118)

where we used the fact that T is symmetric, i.e. that Tlm D Tml [see formula (4.43a) on
page 62] whereas �klm D ��mlk [see formula (M.24) on page 237]. QED�

End of example 4.4C

BConservation of the total angular momentum of a closed systemEXAMPLE 4 .5

Show, by explicit calculation, that the total angular momentum around a momentum point
x0, J.x0/ D Jmech.x0/C Jfield.x0/, of a closed electromechanical system comprising N
non-relativistic particles of massmi , speed vi and charge qi , and pertinent electromagnetic
fields E and B,

J.t;x0/ D

NX
iD1

.xi � x0/ �mivi C "0

Z
V

d3x .x � x0/ � .E � B/ (4.119)

is conserved.

To show that the total angular momentum J of the closed system is conserved, i.e. is con-
stant in time, is to show that the derivative of J with respect to time t vanishes.

For simplicity we put the origin of our coordinate system at the moment point x0 and then
follow the same procedure as for the proof of the constancy of linear momentum in example



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 99 of 298.

DRAFT

4.3. Examples j 77

4.5 on the preceding page. Direct differentiation then yields

dJ

dt
D

NX
iD1

mi

� dxi

dt
� vi„ ƒ‚ …
�0

Cxi �
dvi

dt

�

C "0

Z
V

d3x
h dx

dt
� .E � B/„ ƒ‚ …
�0

Cx �
�@E
@t
� B

�
C x �

�
E �

@B

@t

�i

D

NX
iD1

mixi �
dvi

dt
C "0

Z
V

d3x x �
h�@E
@t
� B

�
C

�
E �

@B

@t

�i
(4.120)

From the Lorentz force equation (4.53) on page 63 and Newton’s second law we find that

dvi

dt
D
qi

mi

�
E.t;xi /C vi � B.t;xi /

�
Substitution of this expression and equations (4.104) on page 73 into equation (4.120)
yields, after some rearrangement of terms,

dJ

dt
D

NX
iD1

�
qixi � E.t;xi /C xi �

�
vi � B.t;xi /

��
�

Z
V

d3x x � .j � B/ � "0

Z
V

d3x x �
�
E �.r � E/C c2B �.r � B/

� (4.121)

By first applying formula (F.93) on page 220, and then formula (F.86) on page 219 on the
last term, we find that

dJ

dt
D

NX
iD1

xi �
�
qiE.t;xi /C vi � B.t;xi /

�
�

Z
V

d3x x � .j � B/ � "0

Z
V

d3x x � .E˝r �EC c2B˝r �B/

� "0

Z
V

d3x x �
�
1
2r .E �EC c

2B �B/ � r �.E˝EC c2B˝B/
�

(4.122)

We then use the Maxwell-Lorentz equations to make the substitutions "0r �E D � and
r �B D 0 and obtain

dJ

dt
D

NX
iD1

xi �
�
qiE.t;xi /C vi � B.t;xi /

�
�

Z
V

d3x x �
�
�EC .j � B/

�
� "0

Z
V

d3x x � r �
�
1
2 .E �EC c

2B �B/13 � .E˝EC c2B˝B/
� (4.123)

The electric current is carried by discrete charged particles so that the current density j is
given by formula (4.106) on page 73 and the charge density by formula (4.113) on page 75.
Hence, the two first terms in equation (4.123) above cancel. After applying the divergence
theorem, formula (F.121b) on page 221, on the remaining third term, we are left with

dJ

dt
D �"0

I
S

d2x On �K (4.124)
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where the tensor K is the electromagnetic angular momentum current density; cf. equation
(4.79) on page 67.

This result shows that the rate at which the total angular momentum is lost (gained) in a
volume is equal to the amount of angular momentum flux that flows outward (inward) across
a closed surface enclosing this volume. If the surface lies entirely outside the boundaries
of the system under study, and this system is closed, no angular momentum flux passes
through the surface and hence

dJ

dt
D 0

Hence, we have shown that the total angular momentum J D Jmech C Jfield of a closed
system is conserved. QED�

If we observe a change in the electromagnetic angular momentum in a given system, we
can deduce that there has been a similar change, but with opposite sign, of the mechanical
angular moment of the system.

End of example 4.5C

BSpin angular momentum and wave polarisationEXAMPLE 4 .6

Consider a generic temporal Fourier mode of the electric field vector E of a circularly
polarised wave with (angular) frequency !. According to equation (2.57) on page 32 it can
be written

E.t;x/ D E.t;x/ Oh˙ (4.125)

where

E.t;x/ D
p
2E0 ei.kx3�!tCı1/ (4.126)

and

Oh˙ D
1
p
2

�
Ox1 ˙ iOx2/ (4.127)

As before, we use the convention that OhC represents left-hand circular polarisation and Oh�
right-hand circular polarisation . Noting that

. Oh˙/
�
� Oh˙ D ˙iOz (4.128)

we see that

E� � E D ˙i jEj2 Oz D ˙iE2 Oz (4.129)

When we insert this into equation (4.90a), we find that the cycle averaged spin angular
momentum of a circularly polarised wave isD

†field
E
t
D ˙

"0

2!

Z
V

d3x E2 Oz D ˙

˝
U field˛

t

!
Oz (4.130)

where U field is the field energy. Considering the fact that the wave-particle duality shows
that the wave can be considered to be a gas with N photons so that the kinetic energy of the
field is U field D N}!. This means that the spin of the wave is
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D
†field

E
t
D ˙

˝
U field˛

t

!
Oz D ˙

N}!
!
Oz D ˙N} Oz (4.131)

Hence, each photon of a right-hand or a left-hand circular polarised wave carries a spin
angular momentum of } or �}, respectively.

End of example 4.6C

BOrbital angular momentum EXAMPLE 4 .7

The Cartesian components of the quantal orbital angular momentum operator (OAM) yL D
i}x � r , as given by expression (4.93) on page 70, are

yLx D �i}
�
y
@

@z
� z

@

@y

�
(4.132a)

yLy D �i}
�
z
@

@x
� x

@

@z

�
(4.132b)

yLz D �i}
�
x
@

@y
� y

@

@x

�
(4.132c)

as is well known from Quantum Mechanics.

In cylindrical coordinates .�; '; z/ the components are

yLx D �i}
�

sin'
�
z
@

@�
� �

@

@z

�
C
z

�
cos'

@

@'

�
(4.133a)

yLy D �i}
�

cos'
�
z
@

@�
� �

@

@z

�
�
z

�
sin'

@

@'

�
(4.133b)

yLz D �i}
@

@'
(4.133c)

and in spherical coordinates .r; '; �/ they are

yLx D �i}
�

sin'
@

@�
C cos' cot �

@

@'

�
(4.134a)

yLy D �i}
�

cos'
@

@�
� sin' cot �

@

@'

�
(4.134b)

yLz D �i}
@

@'
(4.134c)

For an electric field E that depends on the azimuthal angle ' in such a way that

E D E0.t;x/ˆ.'/ (4.135)

we find that

yLzE.t;x/ D �i}
�@E0.t;x/

@'
ˆ.'/ � E0.t;x/

@ˆ.'/

@'

�
(4.136)

If E0.t;x/ is rotationally symmetric around the the z axis, so that E0 D E0.t; �; z/ in
cylindrical coordinates, E0 D E0.t; r; �/ in spherical (polar) coordinates etc. the first
term in the RHS vanishes.

If the azimuthal part is expressed in a Fourier series

ˆ.'/ D

1X
mD�1

cm eim' (4.137)
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we see that

yLzE.t;x/ D

1X
mD�1

cmm}E0 eim'
D

1X
mD�1

cmm}Em (4.138)

i.e. a weighted superposition of OAM Lz eigenstates Em D E0 eim' . Furthermore,

yLzEm D m}Em (4.139)

which means that for a rotationally symmetric beam with an azimuthal phase dependence
given by exp.im'/ one deduces, according to formula (4.90b) on page 70, that the z com-
ponent of the orbital angular momentum of each photon in this beam is m}.

End of example 4.7C

BDuality of the electromagnetodynamic equationsEXAMPLE 4 .8

Show that the symmetric, electromagnetodynamic Maxwell-Lorentz equations (2.2) on
page 20 (Dirac’s symmetrised Maxwell equations) are invariant under the duality trans-
formation (4.97).

Explicit application of the transformation yields

r � ?E D r �.E cos � C cB sin �/ D
�e

"0
cos � C c�0�m sin �

D
1

"0

�
�e cos � C

1

c
�m sin �

�
D

?�e

"0

(4.140a)

r � ?B D r �.�
1

c
E sin � C B cos �/ D �

�e

c"0
sin � C �0�m cos �

D �0
�
�c�e sin � C �m cos �

�
D �0

?�m
(4.140b)

r � ?EC
@?B

@t
D r � .E cos � C cB sin �/C

@

@t

�
�
1

c
E sin � C B cos �

�
D ��0jm cos � �

@B

@t
cos � C c�0je sin � C

1

c

@E

@t
sin �

�
1

c

@E

@t
sin � C

@B

@t
cos � D ��0jm cos � C c�0je sin �

D ��0.�cj
e sin � C jm cos �/ D ��0?jm

(4.140c)

r � ?B �
1

c2
@?E

@t
D r � .�

1

c
E sin � C B cos �/ �

1

c2
@

@t
.E cos � C cB sin �/

D
1

c
�0jm sin � C

1

c

@B

@t
cos � C �0je cos � C

1

c2
@E

@t
cos �

�
1

c2
@E

@t
cos � �

1

c

@B

@t
sin �

D �0

�
1

c
jm sin � C je cos �

�
D �0

?je

(4.140d)

QED�

End of example 4.8C
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BDuality expressed in Riemann-Silberstein formalism EXAMPLE 4 .9

Expressed in the Riemann-Silberstein complex field vector, introduced in equation (2.7) on
page 22, the duality transformation equations (4.97) on page 71 become

?G D ?EC ic?B D E cos � C cB sin � � iE sin � C icB cos �

D E.cos � � i sin �/C icB.cos � � i sin �/ D .EC icB/e�i�
D Ge�i�

(4.141)

from which it is easy to see that for � 2 R

?G � ?G� D
ˇ̌
?G
ˇ̌2
D Ge�i� �

�
Ge�i� ��

D Ge�i� �G�ei�
D jGj2 (4.142)

whereas

?G � ?G D G �Ge�2i� (4.143)

If this transformation were local, i.e. if � D �.t;x/, we see that spatial and temporal differ-
entiation of ?G would lead to

@?G

@t
D �i

@�

@t
e�i�G C e�i� @G

@t
D �i

@�

@t
?G C e�i� @G

@t
(4.144a)

r � ?G D �i.r �/ � e�i�G C e�i�r �G D �i.r �/ � ?G C e�i�r �G (4.144b)

r � ?G D �i.r �/ � e�i�G C e�i�r �G D �i.r �/ � ?G C e�i�r �G (4.144c)

However, if we require that the physics be unaffected by a duality transformation, the free-
space Maxwell-Lorentz equations (2.9) on page 22 must hold also for ?G. I.e.

r � ?G D 0 (4.145a)

r � ?G D
i
c

@?G

@t
(4.145b)

Then, using formulæ (4.144), as well as equations (2.9), we find that this would mean that

.r �/ � ?G D 0 (4.146a)

.r �/ � ?G D
i
c

@�

@t
?G (4.146b)

which can be fulfilled only if

@�

@t
D 0 (4.147a)

r � D 0 (4.147b)

Hence, the mixing angle � must be independent of time and space.

End of example 4.9C
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BExamples of other conservation lawsEXAMPLE 4.10

In addition to the conservation laws for energy, linear momentum and angular momentum,
a large number of other electromagnetic conservation laws can be derived.

CONSERVATION OF CHIRALITY DENSITY

For instance, as can be derived directly from the Maxwell-Lorentz equations, the following
conservation law holds in free space (vacuum):

@�

@t
C r �X D 0 (4.148)

where the pseudoscalar

�
def
� E �.r � E/C c2B �.r � B/ (4.149)

is the chirality density, and the pseudovector

X
def
� E �

@E

@t
C c2B �

@B

@t
(4.150)

is the chirality flow.

CONSERVATION OF TOTAL ELECTRIC CURRENT

If we use the notation jcond for the conduction current associated with the actual motion
of electric charges, both free and bound, i.e. jcond D jfree C jbound, and jdisp for the
displacement current "0@.E/=@t , the Maxwell-Lorentz equation (2.1d) on page 19 can be
written

1

�0
r � B D jcond

C jdisp
D jtot (4.151)

Differentiating this with respect to time t and using the Maxwell equation (2.1c) on page 19
and formula (F.104) on page 220, we obtain the following local conservation law for the
total current

@jtot

@t
C r �

�
13 �

1

�0
.r � E/

�
D 0 (4.152)

which is a rather obfuscated way of writing the wave equation for the electric field vector
E. Normally it is written as in equation (2.19a) on page 24.

We note that the global (i.e. volume integrated) version of this wave-equation-turned-
conservation-law formula can, with the help of the rank two tensor

W D 13 � .r � E/ (4.153)

be written

d
dt

Z
V

d3x jtot
C

1

�0

I
S

d2x On �W D 0 (4.154)

and hence as a conservation law for the integrated curl of the magnetic field:

d
dt

Z
V

d3x .r � B/C

I
S

d2x On �W D 0 (4.155)
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or, using the identity (F.121c) on page 221,

d
dt

I
S

d2x On � BC

I
S

d2x On �W D 0 (4.156)

End of example 4.10C
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FIELDS FROM ARBITRARY CHARGE

AND CURRENT DISTRIBUTIONS

The electric and magnetic fields E and B generated by prescribed charge and
current sources � and j can — at least in principle — be obtained by directly
solving the Maxwell-Lorentz differential equations given at the beginning of
chapter 2, or the wave equations given later in the same chapter. However, it is
often technically easier and physically more lucid to calculate the fields from the
electromagnetic potentials ˆ and A that we introduced in chapter 3. We saw in
that chapter that these potentials can, in a suitable gauge, be readily obtained in
the form of a volume integral over the spatial distribution of the source elements,
divided by the distance between the actual source element and the observer.

In this chapter we will use electromagnetic potentials to derive exact, closed-
form, analytic expressions for the electric and magnetic fields generated by pre-
scribed but completely arbitrary charge and current sources at rest, distributed
arbitrarily within a volume of finite extent in otherwise free space. As we shall
find, both the electric and magnetic field vectors are actually a sum of several
vector composants, each characterized by its particular vectorial property and
fall-off behaviour with respect to distance from the source elements. This means
that different field vector composants have different magnitudes, directions and
phases in different zones. These zones are customarily — and self-explanatorily
— referred to as the near zone , the intermediate zone , and the far zone , respect-
ively.

Those composants of the field vectors that have the slowest fall-off with dis-
tance from the source and therefore dominate in the far zone, will be referred
to as the far fields . Because of their importance, a special analysis of these
far fields is given at the end of the chapter. Surprising as it may seem, it will
be shown in chapter 6 that certain physical observables receive their far-zone
contributions not from the dominant far fields but from a combination of far
fields and sub-dominant near-zone and intermediate-zone fields. For complete-
ness, we therefore include a derivation of approximate expressions for all field
composants, dominant as well as sub-dominant, valid at large distances from an
arbitrary source.

85
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5.1 Fourier component method

As discussed earlier, the linearity of the Maxwell-Lorentz equations means that
the complete solution of them can be found in terms of a superposition of Four-
ier components, each of which individually solves these equations; the resulting
superposition (the sum of several such Fourier components) is called a wave-
packet .

We recall from the treatment in chapter 3 that in order to use the Fourier
component method to find the solution (3.34) on page 40 for the generic in-
homogeneous wave equation (3.18) on page 37, we presupposed the existence
of the temporal Fourier transform pair (3.19) for the generic source term. That
such transform pairs exist is not always the case, but it is true for reasonably
well-behaved, non-erratic physical variables which are neither strictly monoton-
ically increasing nor strictly monotonically decreasing with time. For charge and
current densities that vary in time, we can therefore, without loss of generality,
work with individual temporal Fourier components �!.x/ and j!.x/, respect-
ively. Strictly speaking, the existence of a signal represented by a single Fourier
component assumes a monochromatic source (i.e. a source containing only one
single frequency component), which requires that this source must have existed
for an infinitely long time. However, by taking the proper limits, we may still
use this approach even for sources and fields of finite temporal duration.

This is the method we shall utilise in this chapter in order to derive the elec-
tric and magnetic fields in vacuum from arbitrary given charge densities �.t;x/
and current densities j.t;x/, defined by the temporal Fourier transform pairs

�.t;x/ D

Z 1
�1

d! �!.x/ e�i!t (5.1a)

�!.x/ D
1

2�

Z 1
�1

dt �.t;x/ ei!t (5.1b)

and

j.t;x/ D

Z 1
�1

d! j!.x/ e�i!t (5.2a)

j!.x/ D
1

2�

Z 1
�1

dt j.t;x/ ei!t (5.2b)

respectively. The derivation will be completely general except we keep only
retarded potentials and assume that the source region is at rest (no bulk motion)
relative to the observer.

The temporal Fourier transform pair for the retarded scalar potential can then
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be written

ˆ.t;x/ D

Z 1
�1

d! ˆ!.x/ e�i!t (5.3a)

ˆ!.x/ D
1

2�

Z 1
�1

dt ˆ.t;x/ ei!t
D

1

"0

Z
V 0

d3x0 �!.x0/G.
ˇ̌
x � x0

ˇ̌
/ (5.3b)

where, in the last step, we made use of the explicit expression for the temporal
Fourier transform of the generic potential component ‰!.x/, equation (3.31) on
page 39, and introduced the Green function

G.
ˇ̌
x � x0

ˇ̌
/ D

eikjx�x0j

4� jx � x0j
(5.4)

Similarly, we must require that the following Fourier transform pair for the
vector potential exists:

A.t;x/ D

Z 1
�1

d!A!.x/ e�i!t (5.5a)

A!.x/ D
1

2�

Z 1
�1

dt A.t;x/ ei!t
D

1

"0c2

Z
V 0

d3x0 j!.x0/G.
ˇ̌
x � x0

ˇ̌
/ (5.5b)

Analogous transform pairs must exist for the fields themselves.
In the limit that the sources can be considered monochromatic, containing

one single frequency !0 only, we can safely assume that �! D �0ı.! � !0/,
j! D j0ı.! �!0/ etc.. Our Fourier integrals then become trivial and we obtain
the simpler expressions

�.t;x/ D �0.x/e�i!0t (5.6a)

j.t;x/ D j0.x/e�i!0t (5.6b)

ˆ.t;x/ D ˆ0.x/e�i!0t (5.6c)

A.t;x/ D A0.x/e�i!0t (5.6d)

where the real-valuedness of all these quantities is implied. As discussed above,
all formulæ derived for a general temporal Fourier representation of the source
(general distribution of frequencies in the source) are valid in these limiting
cases. In this context, we can therefore, without any essential loss of stringency,
formally identify �0 with the Fourier amplitude �! and so on.

In order to simplify the computations, we will work in ! space and, at the
final stage, inverse Fourier transform back to ordinary t space. We shall be
using the Lorenz-Lorentz gauge and note that, in ! space, the Lorenz-Lorentz
condition, equation (3.16) on page 37, takes the form

r �A! � i
k

c
ˆ! D 0 (5.7)

This provides a relation between (the temporal Fourier transforms of) the vector
and scalar potentials A! and ˆ! .
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5.2 The retarded electric field

In order to calculate the retarded electric field, we use the temporally Fourier
transformed version of formula (3.13) on page 35, with equations (5.3) on the
previous page and equations (5.5) on the preceding page as the explicit expres-
sions for the Fourier transforms of ˆ and A, respectively:

E!.x/ D � rˆ!.x/C i!A!.x/

D �
1

"0
r

Z
V 0

d3x0 �!.x0/G.
ˇ̌
x � x0

ˇ̌
/

C
i!
"0c2

Z
V 0

d3x0 j!.x0/G.
ˇ̌
x � x0

ˇ̌
/

D
1

4�"0

Z
V 0

d3x0
�!.x

0/eikjx�x0j.x � x0/

jx � x0j3

�
ik
4�"0

Z
V 0

d3x0
�!.x

0/eikjx�x0j.x � x0/

jx � x0j2

C
ik

4�"0c

Z
V 0

d3x0 j!.x0/
eikjx�x0j

jx � x0j

(5.8)

Taking the inverse Fourier transform of this expression, the following expression
for the retarded electric field is obtained:

E.t;x/ D
1

4�"0

Z
V 0

d3x0
�.t 0ret;x/

jx � x0j2
x � x0

jx � x0j

C
1

4�"0c

Z
V 0

d3x0
P�.t 0ret;x

0/

jx � x0j

x � x0

jx � x0j

�
1

4�"0c2

Z
V 0

d3x0
Pj.t 0ret;x

0/

jx � x0j

(5.9)

Letting dq0 D d3x0�.t 0ret;x
0/ and di0 D I 0dl0 D d3x0j.t 0ret;x

0/, the corresponding
formula in infinitesimal differential form becomes

dE.t; x/ D
1

4�"0

�
dq0

x � x0

jx � x0j3
C
1

c
d Pq0

x � x0

jx � x0j2
�
1

c2
dPi0

1

jx � x0j

�
(5.10)

which in the static limit reduces to the infinitesimal Coulomb law, formula (1.5)
on page 4.

We shall now further expand equation (5.9) above. To this end we first note
that the Fourier transform of the continuity equation (4.20) on page 58

r 0 � j!.x
0/ � i!�!.x0/ D 0 (5.11)

can be used to express �! in terms of j! as follows

�!.x
0/ D �

i
!
r 0 � j!.x

0/ (5.12)
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Doing so in the last term of equation (5.8) on the facing page, and also using the
fact that k D !=c, we can rewrite this equation as

E!.x/ D
1

4�"0

� Z
V 0

d3x0
�!.x

0/eikjx�x0j.x � x0/

jx � x0j3

�
1

c

Z
V 0

d3x0
�
Œr 0 � j!.x

0/�.x � x0/

jx � x0j
� ikj!.x

0/

�
eikjx�x0j

jx � x0j„ ƒ‚ …
K!

�

(5.13)

The last vector-valued integral can be further rewritten in the following way
(where l and m are summation indices and Einstein’s summation convention is
assumed):

K! D

Z
V 0

d3x0
�
Œr 0 � j!.x

0/�.x � x0/

jx � x0j
� ikj!.x

0/

�
eikjx�x0j

jx � x0j

D

Z
V 0

d3x0
�
@j!;l

@x0
l

xm � x
0
m

jx � x0j
� ikj!m.x0/

�
Oxm

eikjx�x0j

jx � x0j

(5.14)

But, since

@

@x0
l

�
j!;l

xm � x
0
m

jx � x0j2
eikjx�x0j

�
D

�
@j!;l

@x0
l

�
xm � x

0
m

jx � x0j2
eikjx�x0j

C j!;l
@

@x0
l

�
xm � x

0
m

jx � x0j2
eikjx�x0j

� (5.15)

we can rewrite K! as

K! D �

Z
V 0

d3x0
"
j!;l

@

@x0
l

�
xm � x

0
m

jx � x0j2
Oxm eikjx�x0j

�
C ikj!
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jx � x0j

#
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Z
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d3x0
@

@x0
l

�
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xm � x
0
m

jx � x0j2
Oxm eikjx�x0j

�
D �

Z
V 0

d3x0
"

j!.x
0/ � r 0

�
x � x0

jx � x0j2
eikjx�x0j

�
C ikj!.x

0/
eikjx�x0j

jx � x0j

#

C

Z
V 0

d3x0 r 0 �
�

j!.x
0/

x � x0

jx � x0j2
eikjx�x0j

�
(5.16)

where, according to identity (F.121e) on page 221, the last term vanishes if the
dyadic inside the big parentheses is regular and tends to zero at large distances.



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 112 of 298.

DRAFT

90 j 5. FIELDS FROM ARBITRARY CHARGE AND CURRENT DISTRIBUTIONS

Further evaluation of the derivative in the first term makes it possible to write

K! D � 2

Z
V 0

d3x0
�
j!.x

0/ �.x � x0/
�
.x � x0/

eikjx�x0j

jx � x0j4

C ik
Z
V 0

d3x0
�
j!.x

0/ �.x � x0/
�
.x � x0/

eikjx�x0j

jx � x0j3

C

Z
V 0

d3x0 j!.x0/
eikjx�x0j

jx � x0j2

� ik
Z
V 0

d3x0 j!.x0/
eikjx�x0j

jx � x0j

(5.17)

Using the triple product ‘bac-cab’ formula (F.53) on page 218 backwards, and
inserting the resulting expression for K! into equation (5.13) on the previous
page, we arrive at the following final expression for the temporal Fourier trans-
form of the total E field:

E!.x/ D �
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4�"0
r

Z
V 0

d3x0 �!.x0/
eikjx�x0j

jx � x0j

C
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Z
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jx � x0j

D
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� Z
V 0
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�!.x

0/eikjx�x0j.x � x0/

jx � x0j3

C
1
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Z
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d3x0
Œj!.x
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C
1

c

Z
V 0

d3x0
Œj!.x

0/eikjx�x0j � .x � x0/� � .x � x0/

jx � x0j4

�
ik
c

Z
V 0

d3x0
Œj!.x

0/eikjx�x0j � .x � x0/� � .x � x0/

jx � x0j3

�

(5.18)

Taking the inverse Fourier transform of equation (5.18) above, once again
using the vacuum relation! D kc, we find, at last, the expression in time domain
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for the total electric field:

E.t;x/ D

Z 1
�1

d! E!.x/ e�i!t

D
1

4�"0

Z
V 0

d3x0
�.t 0ret;x

0/.x � x0/

jx � x0j3„ ƒ‚ …
Retarded Coulomb field

C
1

4�"0c

Z
V 0

d3x0
Œj.t 0ret;x

0/ �.x � x0/�.x � x0/

jx � x0j4„ ƒ‚ …
Intermediate field

C
1

4�"0c

Z
V 0

d3x0
Œj.t 0ret;x

0/ � .x � x0/� � .x � x0/

jx � x0j4„ ƒ‚ …
Intermediate field

C
1

4�"0c2

Z
V 0

d3x0
Œ Pj.t 0ret;x

0/ � .x � x0/� � .x � x0/

jx � x0j3„ ƒ‚ …
Far field

(5.19)

where, as before,

Pj.t 0ret;x
0/

def
�

�
@j

@t

�
tDt 0ret

(5.20)

Here, the first term represents the retarded Coulomb field and the last term rep-
resents the far field which dominates at very large distances. The other two
terms represent the intermediate field which contributes significantly only to the
fields themselves in the near zone and must be properly taken into account there.

5.3 The retarded magnetic field

Let us now compute the magnetic field from the vector potential, defined by
equation (5.5) and equation (5.5b) on page 87, and formula (3.9) on page 35:

B.t;x/ D r �A.t;x/ (5.21)

Using the Fourier transformed version of this equation and equation (5.5b) on
page 87, we obtain

B!.x/ D r �A!.x/ D
1

4�"0c2
r �

Z
V 0

d3x0 j!.x0/
eikjx�x0j

jx � x0j
(5.22)
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Utilising formula (F.87) on page 219 and recalling that j!.x
0/ does not depend

on x, we can rewrite this as

B!.x/ D �
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Z
V 0

d3x0 j!.x0/ �

"
r
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!#
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C
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jx � x0j
eikjx�x0j

�
1

jx � x0j

�
D

1

4�"0c2

� Z
V 0

d3x0
j!.x

0/eikjx�x0j � .x � x0/

jx � x0j3

C

Z
V 0

d3x0
.�ik/j!.x0/eikjx�x0j � .x � x0/

jx � x0j2

�

(5.23)

From this expression for the magnetic field in the frequency (!) domain, we
finally obtain the total magnetic field in the temporal (t ) domain by taking the
inverse Fourier transform (using the identity �ik D �i!=c):

B.t;x/ D

Z 1
�1

d! B!.x/ e�i!t

D
1

4�"0c2

� Z
V 0

d3x0

hR1
�1
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� .x � x0/

jx � x0j3

C
1

c

Z
V 0

d3x0

hR1
�1

d! .�i!/j!.x0/e�i.!t�kjx�x0j/
i
� .x � x0/

jx � x0j2

�
(5.24)

Comparing with equations (3.33) on page 40, we can identify the exponents
of the exponentials in the integrands as �i!t 0ret and find that the total retarded
magnetic field can be written as the sum of two terms11 Equation (5.9) and equation

(5.25) seem to have been first
introduced by Panofsky and
Phillips. Later they were given by
Jefimenko and they are therefore
sometimes called the Jefimenko
equations .

B.t;x/ D
1

4�"0c2

Z
V 0

d3x0
j.t 0ret;x

0/ � .x � x0/

jx � x0j3„ ƒ‚ …
Retarded induction field

C
1

4�"0c3

Z
V 0

d3x0
Pj.t 0ret;x

0/ � .x � x0/

jx � x0j2„ ƒ‚ …
Far field

(5.25)

where

Pj.t 0ret;x
0/

def
�

�
@j

@t

�
tDt 0ret

(5.26)
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The first term, the retarded induction field that dominates near the current source
but falls off rapidly with distance from it, is the electrodynamic version of the
Biot-Savart law in electrostatics, formula (1.16) on page 8. The second term, the
far field , dominates at large distances. The spatial derivatives (r ) gave rise to
a time derivative (P) so this term represents the part of the magnetic field that is
generated by the time rate of change of the current, i.e. accelerated charges, at
the retarded time.

In infinitesimal differential form, formula (5.25) on the preceding page be-
comes

dB.t;x/ D
1

4�"0c2

�
di0.t 0;x0/ �

x � x0

jx � x0j3
C
1

c
dPi0.t;x0/ �

x � x0

jx � x0j2

�
(5.27)

where

di0.t 0;x0/ D d3x0j.t 0ret;x
0/ (5.28a)

and

dPi0.t 0;x0/
def
�

�
@.di/

@t

�
tDt 0ret

D d3x0
�
@j

@t

�
tDt 0ret

(5.28b)

Equation (5.27) is the dynamic generalisation of the static infinitesimal Biot-
Savart law, equation (1.15) on page 7, to which it reduces in the static limit.

With this we have achieved our goal of finding closed-form analytic expres-
sions for the electric and magnetic fields when the sources of the fields are com-
pletely arbitrary, prescribed distributions of charges and currents. The only as-
sumption made is that the advanced potentials have been discarded [recall the
discussion following equation (3.34) on page 40 in chapter chapter 3].

5.4 The total electric and magnetic fields at large dis-
tances from the sources

For many purposes it is convenient to have access to approximate expressions
for the electric and magnetic fields that are valid in the far zone , i.e. very far
away from the source region. Let us therefore derive such expressions.

As illustrated in figure 5.1 on the following page we assume that the sources
� and j are located at stationary points x0 near a fixed point x0 inside a volume
V 0 that is not moving relative to the observer. Hence the distance from each
source point x0 to the observation point (field point) x is assumed to be constant
in time. The non-moving source volume V 0 is located in free space and has



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 116 of 298.

DRAFT

94 j 5. FIELDS FROM ARBITRARY CHARGE AND CURRENT DISTRIBUTIONS

Figure 5.1: Relation between the
unit vector On, anchored at the ob-
servation point x and directed along
x � x0, and hence normal to the
surface S.x0/ which has its centre
at x0 and passes through x, and the
wave vector k.x0/, directed along
x � x0, of fields generated at the
source point x0 near the point x0 in
the source volume V 0. At distances
jx� x0j much larger than the ex-
tent of V 0, the unit vector Ok.x0/

and the unit vector On
def
� Ok.x0/ are

nearly coincident.

V 0

O

x0

x

x � x0

On

x0

x � x0

S.x0/

Ok.x0/

x0 � x0

such a limited spatial extent that sup jx0 � x0j � inf jx � x0j, and the integration
surface S.x0/, centred on x0 and with an outward pointing normal unit vector
On D x̂ � x0, has a large enough radius jx � x0j � sup jx0 � x0j.

The exact wave vector of fields generated at x0 reaching an observer at x can
be written

k.x0/ D k Ok.x0/ � kx̂�x0 D k
x � x0

jx � x0j
(5.29)

expressing the fact that its magnitude k D !=c is constant but its direction is
along x� x0 and thus is dependent on the location of the source element at x0 in
V 0. Now,ˇ̌
x � x0

ˇ̌
�
ˇ̌
.x � x0/ � .x

0
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2

sin2‚C : : :
�

(5.30)

where we made a binomial expansion . We can, for the geometry just described,
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make the magnitude approximation

k
ˇ̌
x � x0

ˇ̌
� k jx � x0j � k.x0/ �.x0 � x0/ (5.31)

in the phases (exponentials) and the cruder approximation

ˇ̌
x � x0

ˇ̌
� jx � x0j (5.32)

in the amplitudes (denominators) in equation (5.18) on page 90 and in equation
(5.23) on page 92. We then get the following approximate expressions for the
Fourier amplitudes of the electric and magnetic fields, valid at sufficiently large
distances from the bounded source volume:

E!.x/ �
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eikjx�x0j

jx � x0j
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Z
V 0
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Z
V 0

d3x0 Œj!.x0/e�ik.x0/ �.x0�x0/ � Ok.x0/� Ok.x0/

C
1

4�"0c

eikjx�x0j

jx � x0j
2

Z
V 0

d3x0 Œj!.x0/e�ik.x0/ �.x0�x0/ � Ok.x0/� � Ok.x0/

�
ik

4�"0c

eikjx�x0j

jx � x0j

Z
V 0

d3x0 Œj!.x0/e�ik.x0/ �.x0�x0/ � Ok.x0/� � Ok.x0/

(5.33a)

B!.x/ �
1

4�"0c2
eikjx�x0j

jx � x0j
2

Z
V 0

d3x0 j!.x0/e�ik.x0/ �.x0�x0/ � Ok.x0/

�
ik

4�"0c2
eikjx�x0j

jx � x0j

Z
V 0

d3x0 j!.x0/e�ik.x0/ �.x0�x0/ � Ok.x0/

(5.33b)

At a field (observation) point x located sufficiently far away from the source
volume V 0 such that inf jx � x0j � sup jx0 � x0j, and jx � x0j � sup jx0 � x0j,
we can assume that the direction of all wave vectors from the sources in V 0 are
parallel to each other. I.e. we can make the paraxial approximation

Ok.x0/ D
x � x0

jx � x0j
D x̂�x0 � Ok.x0/ D

x � x0

jx � x0j
D x̂ � x0 � On (5.34)

where On is the constant unit vector normal to the surface S.x0/ of a large sphere
centred on x0 and passing through the (fixed) field point x (see figure 5.1 on the
preceding page). Then formulæ (5.33) on page 95 can be further approximated
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as

E!.x/ �
1
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(5.35a)
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(5.35b)

which, after reordering of scalar and vector products, using the fact that On is a
constant unit vector, can be written
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B!.x/ �
1
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where

Q!.x0/
def
�

Z
V 0

d3x0 �!.x0/ e�ik On �.x0�x0/

D eik On �x0

Z
V 0

d3x0 �!.x0/ e�ik On �x0
(5.38a)

and

I!.x0/
def
�

Z
V 0

d3x0 j!.x0/ e�ik On �.x0�x0/

D eik On �x0

Z
V 0

d3x0 j!.x0/ e�ik On �x0
(5.38b)

Inverse Fourier transforming these expressions we find that the total retarded
E and B fields very far away from a source are, to a good approximation, given
by

E.t;x/ �
1

4�"0 jx � x0j
2

Z
V 0

d3x0 �.t 0;x0/ On

C
1

4�"0c jx � x0j
2

Z
V 0

d3x0 Œj.t 0;x0/ � On� On

C
1

4�"0c jx � x0j
2

Z
V 0

d3x0 Œj.t 0;x0/ � On� � On

C
1

4�"0c2 jx � x0j

Z
V 0

d3x0 Œ Pj.t 0;x0/ � On� � On

(5.39a)

and

B.t;x/ �
1

4�"0c2 jx � x0j
2

Z
V 0

d3x0 j.t 0;x0/ � On

�
1

4�"0c3 jx � x0j

Z
V 0

d3x0 Pj.t 0;x0/ � On
(5.39b)

In these expressions we can use equation (5.31) to consistently approximate
t 0 as follows (the fields propagate in free space where k=! D 1=c):

t 0.x0/ � t �
k jx � x0j

!
C

k.x0/ �.x0 � x0/

!
D t �

jx � x0j

c
C
jx0 � x0j cos � 00

c

D t �
jx � x0j

c

�
1 �
jx0 � x0j

jx � x0j
cos � 00

�
(5.40)

where � 00 is the angle between Ok.x0/ and x0 � x0.
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5.4.1 The far fields

When jx � x0j ! 1 and the source region is of finite extent, the only surviving
composants in expression (5.19) and expression (5.25) are the far fields

Efar.t;x/ D
1

4�"0c2

Z
V 0

d3x0
Œ Pj.t 0ret;x

0/ � .x � x0/� � .x � x0/

jx � x0j3
(5.41a)

Bfar.t;x/ D
1

4�"0c3

Z
V 0

d3x0
Pj.t 0ret;x

0/ � .x � x0/

jx � x0j2
(5.41b)

In the frequency (temporal Fourier) domain, these far fields are represented ex-
actly by

Efar
! .x/

D �ik
1

4�"0c

Z
V 0

d3x0
Œj!.x

0/eikjx�x0j � .x � x0/� � .x � x0/

jx � x0j3

D �ik
1

4�"0c

Z
V 0

d3x0
eikjx�x0j

jx � x0j
Œj!.x

0/ � Ok.x0/� � Ok.x0/

(5.42a)

Bfar
! .x/

D �ik
1

4�"0c2

Z
V 0

d3x0
j!.x

0/eikjx�x0j � .x � x0/

jx � x0j2

D �ik
1

4�"0c2

Z
V 0

d3x0
eikjx�x0j

jx � x0j
j!.x

0/ � Ok.x0/

(5.42b)

respectively.
Within the approximation (5.31), the expressions (5.42) above for the far

fields can be simplified to

Efar
! .x/ �� ik

1

4�"0c

eikjx�x0j

jx � x0j

�

Z
V 0

d3x0 Œj!.x0/e�ik.x0/ �.x0�x0/ � Ok.x0/� � Ok.x0/

(5.43a)

Bfar
! .x/ �� ik

1

4�"0c2
eikjx�x0j

jx � x0j

�

Z
V 0

d3x0 Œj!.x0/e�ik.x0/ �.x0�x0/ � Ok.x0/�

(5.43b)

Assuming that also the paraxial approximation (5.34) is applicable, the ap-
proximate expressions (5.43) above for the far fields can be further simplified to
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Efar
! .x/ � �ik

1

4�"0c

eikjx�x0j

jx � x0j

��Z
V 0

d3x0 Œj!.x0/e�ik �.x0�x0/

�
� On

�
� On

(5.44a)

Bfar
! .x/ � �ik

1

4�"0c2
eikjx�x0j

jx � x0j

�Z
V 0

d3x0 Œj!.x0/e�ik �.x0�x0/

�
� On (5.44b)

We see that at very large distances r D jx � x0j the fields fall off as 1=rare, are
purely transverse (perpendicular to On) and mutually orthogonal.
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5.5 Examples

BAlternative expressions for E and BEXAMPLE 5 .1

One can express the fields E and B directly in integrals of arbitrary source terms in several
ways. For instance, by the electromagnetic field density vector

‚.t 0;x0;x/ D
�.t 0;x0/

4�"0 jx � x0j2
x � x0

jx � x0j

C
1

4�"0c jx � x0j2

�
j.t 0;x0/ �

x � x0

jx � x0j

�
x � x0

jx � x0j

C
1

4�"0c jx � x0j2

�
j.t 0;x0/ �

x � x0

jx � x0j

�
�

x � x0

jx � x0j

C
1

4�"0c2 jx � x0j

�
Pj.t 0;x0/ �

x � x0

jx � x0j

�
�

x � x0

jx � x0j

(5.45)

where

t 0 D t 0ret D t �

ˇ̌
x � x0

ˇ̌
c

(5.46)

one can, for non-moving sources, express the infinitesimal differential fields as

dE.t;x/ D ‚.t 0;x0;x/ (5.47a)

dB.t;x/ D
x � x0

c jx � x0j
�‚.t 0;x0;x/ (5.47b)

The fields themselves are in this case given by

E.t;x/ D

Z
V 0

d3x0‚.t 0;x0;x/ (5.48a)

B.t;x/ D
1

c

Z
V 0

d3x0
x � x0

jx � x0j
�‚.t 0;x0;x/ (5.48b)

Denoting x � x0 D r 0 D r 0 Or 0, formula (5.45) can be written

‚.t 0;x0;x/ D
1

4�"0r 02

�
�.t 0;x0/C

1

c
j.t 0;x0/ � Or 0

�
Or 0

C
1

4�"0cr 0

�
1

r 0
j.t 0;x0/ � Or 0 C

1

c
Pj.t 0;x0/ � Or 0

�
� Or 0

(5.49)

where

t 0 D t 0ret D t �
r 0

c
(5.50)

End of example 5.1C
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RADIATION AND RADIATING

SYSTEMS

In chapter 3 we were able to derive general expressions for the scalar and vec-
tor potentials from which we later (in chapter 5) derived exact analytic expres-
sions of general validity for the total electric and magnetic fields generated by
completely arbitrary distributions of charge and current sources that are located
within a certain region in space. The only limitation in the calculation of the
fields was that the advanced potentials were discarded on — admittedly not
totally convincing — physical grounds.

In chapter 4 we showed that the electromagnetic energy, linear momentum,
and angular momentum are all conserved quantities and in this chapter we will
show that these quantities can be radiated all the way to infinity and therefore
be used in wireless communications over long distances and for observing very
remote objects in Nature, including electromagnetic radiation sources in the Uni-
verse. Radiation processes are irreversible in that the radiation does not return
to the radiator but is lost from it forever.1 However, the radiation can, of course, 1 This is referred to as time arrow

of radiation .be sensed by other charges and currents that are located in free space, possibly
very far away from the sources. This is precisely what makes it possible for our
eyes to observe light, and even more so our our telescope to observe and analyse
optical and radio signals, from extremely distant stars and galaxies. This con-
sequence of Maxwell’s equations, with the displacement current included, was
verified experimentally by HEINRICH RUDOLF HERTZ about twenty years
after Maxwell had made his theoretical predictions. Hertz’s experimental and
theoretical studies paved the way for radio and TV broadcasting, radar, wireless
communications, radio astronomy and a host of other applications and techno-
logies.

Thus, one can, at least in principle, calculate the radiated fields, flux of en-
ergy, linear momentum and angular momentum, as well as other electromagnetic
observables at any time at any point in space generated by an arbitrary charge
and current density of the source. However, in practice it is often difficult to
evaluate the source integrals, at least analytically, unless the charge and current
densities have a simple distribution in space. In the general case, one has to
resort to approximations. We shall consider both these situations in this chapter.

103
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6.1 Radiation of linear momentum and energy

Let us consider an electromagnetic field .E;B/ that during a finite time interval
�t is emitted from a localised source distribution in a volume V around a point
x0 into surrounding free space. After a certain time t0 this electromagnetic pulse
(signal) has propagated such a long distance radially outward from x0 that the
field is wholly located within two concentric spheres of radii r0 D ct0 and r0 C
�r D ct0 C c�t , respectively. The total linear momentum carried by this
electromagnetic pulse (signal) is the volume integral of the linear momentum
density gfield D S=c2 D "0E � B [cf. equation (4.45) on page 62]. In spherical
polar coordinates with the origin chosen at x0 this volume integral becomes

pfield
D

Z
V

drd�r2gfield
D "0

Z �

0

d� sin �
Z 2�

0

d'
Z r0C�r

r0

dr r2.E � B/

(6.1)

In chapter 5 we derived the two expressions (5.44) on page 99 for the E

and B fields, respectively. These expressions show that at large distances r 0 D
jx0 � x0j from the source, the leading order contributions to these fields are
purely transverse, mutually orthogonal, and fall off as 1=r . As a result, at
large distances r , the dominating component of the linear momentum density
gfield D Sfar=c2 D "0E

far � Bfar, which is purely radial and falls off as 1=r2.
The total linear momentum pfield is obtained when gfield is integrated over

a large spherical shell (centred on the source) of width dr D cdt , where dt
is the short duration of the signal, and for which the directed area element is
d2x On D r2d� Or D r2 sin � d� d' Or [cf. formula (F.18) on page 215]. But the
total integrated power, as given by the surface integral

H
S

d2x On �S in equation
(4.33) on page 60, tends to a constant at infinity, showing that energy U field

and electromagnetic linear momentum pfield is carried all the way to infinity
and is irreversibly lost there. This is the physical foundation of the well-known
fact that pfield and U field can be transmitted over extremely long distances. The
force action on charges in one region in space can therefore cause a force ac-
tion on charges in a another region in space; see equation (4.50) on page 63.
Today’s wireless communication technology, be it classical or quantal, is based
almost exclusively on the utilisation of this translational degree of freedom of
the charges (currents) and the fields.
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6.1.1 Monochromatic signals

If the source is strictly monochromatic, we can obtain the temporal average of
the radiated power P directly, simply by averaging over one period so that

hSit D
1

�0
hE � Bit D

1

2�0
Re fE � B�g

D
1

2�0
Re
˚
E!e�i!t

� .B!e�i!t /�
	
D

1

2�0
Re fE! � B�!g

(6.2)

From formula (F.17) and formula (F.18) on page 215 we see that

d2x D r2d� D jx � x0j
2 d� D jx � x0j

2 sin � d� d'

We also note from figure 5.1 on page 94 that Ok and On are nearly parallel. Hence,
we can approximate

Ok � d2x On

jx � x0j
2
�

d2x

jx � x0j
2
Ok � On � d� Ok � On � d� (6.3)

Using the far-field approximations (??) for the fields and the fact that 1=c D
p
"0�0, and also introducing the characteristic impedance of vacuum

R0
def
�

r
�0

"0
� 376:7� (6.4)

we obtain

˝
Sfar˛

t
D

1

32�2
R0

1

jx � x0j
2

ˇ̌̌̌Z
V 0

d3x0 .j! � k/e�ik �.x0�x0/

ˇ̌̌̌2
On (6.5)

Consequently, the amount of power per unit solid angle d� that flows across an
infinitesimal surface element r2d� D jx � x0j

2 d� of a large spherical shell
with its origin at x0 and enclosing all sources, is

dP
d�
D

1

32�2
R0

ˇ̌̌̌Z
V 0

d3x0 .j! � k/e�ik �.x0�x0/

ˇ̌̌̌2
(6.6)

This formula is valid far away from the sources and shows that the radiated
power is given by an expression which is resistance (R0) times the square of
the supplied current (the integrated current density j!), as expected. We note
that the emitted power is independent of distance r D jx � x0j and is therefore
carried all the way to infinity. The possibility to transmit electromagnetic power
over large distances, even in empty space, is the physical foundation for the
extremely important wireless communications technology. Besides determining
the strength of the radiated power, the integral in formula (6.6) also determines
its angular distribution.
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6.1.2 Finite bandwidth signals

A signal with finite pulse width in time (t ) domain has a certain spread in fre-
quency (!) domain. To calculate the total radiated energy we need to integrate
over the whole bandwidth. The total energy transmitted through a unit area is
the time integral of the Poynting vector:Z 1

�1

dt S.t/ D
1

�0

Z 1
�1

dt .E � B/

D
1

�0

Z 1
�1

d!
Z 1
�1

d!0
Z 1
�1

dt .E! � B!0/ e�i.!C!0/t
(6.7)

If we carry out the temporal integration first and use the fact thatZ 1
�1

dt e�i.!C!0/t
D 2�ı.! C !0/ (6.8)

equation (6.7) above can be writtenZ 1
�1

dt S.t/ D
2�

�0

Z 1
�1

d! .E! � B�!/

D
2�

�0

�Z 1
0

d! .E! � B�!/C

Z 0

�1

d! .E! � B�!/

�
D
2�

�0

�Z 1
0

d! .E! � B�!/ �

Z �1
0

d! .E! � B�!/

�
D
2�

�0

�Z 1
0

d! .E! � B�!/C

Z 1
0

d! .E�! � B!/

�
D
2�

�0

Z 1
0

d! .E! � B�! C E�! � B!/

D
2�

�0

Z 1
0

d! .E! � B�! C E�! � B!/

(6.9)

where the last step follows from physical requirement of real-valuedness of E!

and B! . We insert the Fourier transforms of the field components which domin-
ate at large distances, i.e. the far fields (??) and (??). The result, after integration
over the area S of a large sphere which encloses the source volume V 0, is

U D
1

4�

r
�0

"0

I
S

d2x On �
Z 1
0

d!
ˇ̌̌̌Z
V 0

d3x0
j! � k

jx � x0j
eikjx�x0j

ˇ̌̌̌2
Ok (6.10)

Inserting the approximations (5.31) and (6.3) into equation (6.10) above, in-
troducing the spectral energy density U! via the definition

U
def
�

Z 1
0

d!U! (6.11)
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and recalling the definition (6.4) on page 105, we obtain

dU!
d�

d! �
1

4�
R0

ˇ̌̌̌Z
V 0

d3x0 .j! � k/e�ik �.x0�x0/

ˇ̌̌̌2
d! (6.12)

which, at large distances, is a good approximation to the energy that is radiated
per unit solid angle d� in a frequency band d!. It is important to notice that For-
mula (6.12) includes only source coordinates. This means that the total amount
of energy that is being radiated is independent on the distance to the source (as
long as it is large).

6.2 Radiation of angular momentum

Not only electromagnetic linear momentum (Poynting vector) can be radiated
from a source and transmitted over very long distances, but the same is also true
for electromagnetic angular momentum Jfield. Then torque action (the time rate
of change of Jfield) in one region causes torque action on charges. The use of this
rotational degree of freedom of the fields has only recently been put to practical
use even if it has been known for more than a century.

After straightforward calculations, based on the results obtained in chapter 5,
one finds that the complete cycle averaged far-zone expression for a frequency
component ! of the electromagnetic angular momentum density generated by
arbitrary charge and current sources can be approximated by

˝
hfield.x0/

˛
t
D

1

32�2"0c3

�
On � Re

˚
.cq C In/PI

�
	

c jx � x0j
2

C
On � Re f.cq C In/I�g

jx � x0j
3

�
(6.13)

where, in complex notation,

I.t 0/ �

Z
V 0

d3x0 j.t 0;x0/ (6.14)

and

PI.t 0/ �

Z
V 0

d3x0 Pj.t 0;x0/ (6.15)

We see that at very large distances r , the angular momentum density hfield

falls off as 1=r2, i.e. it has precisely the same behaviour in the far zone as the
linear momentum density and can therefore also transfer information wirelessly
over large distances. The only difference is that while the direction of the linear
momentum (Poynting vector) becomes purely radial at infinity, the angular mo-
mentum becomes perpendicular to the linear momentum, i.e. purely transverse,
there.



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 130 of 298.

DRAFT

108 j 6. RADIATION AND RADIATING SYSTEMS

6.3 Radiation from a localised source at rest

In the general case, and when we are interested in evaluating the radiation far
from a source at rest and which is localised in a small volume, we can introduce
an approximation which leads to a multipole expansion where individual terms
can be evaluated analytically. Here we use Hertz’s method , which focuses on
the physics rather than on the mathematics, to obtain this expansion.

6.3.1 Electric multipole moments

Let us assume that the charge distribution � determining the potential in equation
(3.35a) on page 40 has such a small extent that all the source points x0 can be
assumed to be located very near a point x0. At a large distance jx � x0j, one
can then, to a good approximation, approximate the retarded potential by the
Taylor expansion (Einstein’s summation convention over i and j is implied); cf.
example 3.1 on page 46

ˆ.t;x/ D
1

4�"0

"
q.t 0ret/

jx � x0j
C

1

jx � x0j
2

d.t 0ret;x0/ �
x � x0

jx � x0j

C
1

jx � x0j
3
Qij .t

0
ret;x0/

�3
2

xi � x0i
jx � x0j

xj � x0j

jx � x0j
�
1

2
ıij

�
C : : :

#
(6.16)

where

q.t 0ret/ D

Z
V 0

d3x0 �.t 0ret;x
0/ (6.17a)

is the total charge or electric monopole moment ,

d.t 0ret;x0/ D

Z
V 0

d3x0 .x0 � x0/ �.t
0
ret;x

0/ (6.17b)

with components di , i D 1; 2; 3 is the electric dipole moment vector , and

Q.t 0ret;x0/ D

Z
V 0

d3x0 .x0 � x0/˝.x
0
� x0/ �.t

0
ret;x

0/ (6.17c)

with componentsQij ; i; j D 1; 2; 3 , is the electric quadrupole moment tensor .
The source volume is at rest and is so small that internal retardation effects

can be neglected, i.e. that we can set t 0ret � t � jx � x0j =c. Then

t D t .t 0ret/ � t
0
ret C Const (6.18)

where

Const D
jx � x0j

c
(6.19)
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Hence the transformation between t and t 0ret is a trivial. In the subsequent ana-
lysis in this subsection we shall use t 0 to denote this approximate t 0ret.

For a normal medium, the major contributions to the electrostatic interactions
come from the net charge and the lowest order electric multipole moments in-
duced by the polarisation due to an applied electric field. Particularly important
is the dipole moment. Let P denote the electric dipole moment density (elec-
tric dipole moment per unit volume; unit: C m�2), also known as the electric
polarisation , in some medium. In analogy with the second term in the expan-
sion equation (6.16) on the facing page, the electric potential from this volume
distribution P .t;x0/ of electric dipole moments d at the source point x0 can be
written

ˆd.t;x/ D
1

4�"0

Z
V 0

d3x0 P .t 0;x0/ �
x � x0

jx � x0j3

D �
1

4�"0

Z
V 0

d3x0 P .t 0;x0/ � r
�

1

jx � x0j

�
D

1

4�"0

Z
V 0

d3x0 P .t 0;x0/ � r 0
�

1

jx � x0j

� (6.20)

Using expression (M.155a) on page 258 and applying the divergence theorem,
we can rewrite this expression for the potential as follows:

ˆd.t;x/ D
1

4�"0

�Z
V 0

d3x0 r 0 �
�

P .t 0;x0/

jx � x0j

�
�

Z
V 0

d3x0
r 0 �P .t 0;x0/

jx � x0j

�
D

1

4�"0

�I
S 0

d2x0 On0 �
P .t 0;x0/

jx � x0j
�

Z
V 0

d3x0
r 0 �P .t 0;x0/

jx � x0j

� (6.21)

where the first term, which describes the effects of the induced, non-cancelling
dipole moment on the surface of the volume, can be neglected, unless there is
a discontinuity in On �P at the surface. Doing so, we find that the contribution
from the electric dipole moments to the potential is given by

ˆd.t;x/ D
1

4�"0

Z
V 0

d3x0
�r 0 �P .t 0;x0/

jx � x0j
(6.22)

Comparing this expression with expression equation (3.35a) on page 40 for the
potential from a charge distribution �.t;x/, we see that �r �P .t;x/ has the
characteristics of a charge density and that, to the lowest order, the effective
charge density becomes �.t;x/ � r �P .t;x/, in which the second term is a
polarisation term that we call �pol.t;x/.

6.3.2 The Hertz potential

In section 6.3.1 on page 108 we introduced the electric polarisation P .t;x/ such
that the polarisation charge density

�pol
D �r �P (6.23)
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If we adopt the same idea for the ‘true’ charge density due to free charges and
introduce a vector field �.t;x/, analogous to P .t;x/, but such that

�true def
� �r �� (6.24a)

which means that the associated ‘polarisation current’ now is the true current:
@�

@t
D jtrue (6.24b)

As a consequence, the equation of continuity for ‘true’ charges and currents [cf.
expression (1.22) on page 10] is satisfied:

@�true.t;x/

@t
C r � jtrue.t;x/ D �

@

@t
r �� C r �

@�

@t
D 0 (6.25)

The vector � is called the polarisation vector because, formally, it treats also the
‘true’ (free) charges as polarisation charges. Since in the microscopic Maxwell-
Lorentz equation (2.1a) on page 19, the charge density �must include all charges,
we can write this equation

r �E D
�

"0
D
�true C �pol

"0
D
�r �� � r �P

"0
(6.26)

i.e. in a form where all the charges are considered to be polarisation charges.
We now introduce a further potential…e with the following property

r �…e
D �ˆ (6.27a)

1

c2
@…e

@t
D A (6.27b)

whereˆ and A are the electromagnetic scalar and vector potentials, respectively.
As we see, …e acts as a ‘super-potential ’ in the sense that it is a potential from
which we can obtain other potentials. It is called the Hertz vector or polarisation
potential . Requiring that the scalar and vector potentials ˆ and A, respectively,
satisfy their inhomogeneous wave equations, equations (3.15) on page 36, one
finds, using (6.24) and (6.27), that the Hertz vector must satisfy the inhomogen-
eous wave equation

�2…e
D

1

c2
@2

@t2
…e
� r

2…e
D
�

"0
(6.28)

This equation is of the same type as equation (3.18) on page 37, and has
therefore the retarded solution

…e.t;x/ D
1

4�"0

Z
V 0

d3x0
�.t 0ret;x

0/

jx � x0j
(6.29)
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x

x � x0

x0

V 0

O

‚
x0 x0 � x0

x � x0 Figure 6.1: Geometry of a typical
multipole radiation problem where
the field point x is located some dis-
tance away from the finite source
volume V 0 centred around x0. If
k jx0 � x0j � 1 � k jx� x0j,
then the radiation at x is well ap-
proximated by a few terms in the
multipole expansion.

with Fourier components

…e
!.x/ D

1

4�"0

Z
V 0

d3x0
�!.x

0/eikjx�x0j

jx � x0j
(6.30)

Assume that the source region is a limited volume around some central point
x0 far away from the field (observation) point x illustrated in figure 6.1. Under
these assumptions, we can expand the Hertz vector, expression (6.30) above,
due to the presence of non-vanishing �.t 0ret;x

0/ in the vicinity of x0, in a formal
series. For this purpose we recall from potential theory that

eikjx�x0j

jx � x0j
�

eikj.x�x0/�.x
0�x0/j

j.x � x0/ � .x0 � x0/j

D ik
1X
nD0

.2nC 1/Pn.cos‚/jn.k
ˇ̌
x0 � x0

ˇ̌
/h.1/n .k jx � x0j/

(6.31)

where (see figure 6.1)

eikjx�x0j

jx � x0j
is a Green function or propagator

‚ is the angle between x0 � x0 and x � x0

Pn.cos‚/ is the Legendre polynomial of order n

jn.k
ˇ̌
x0 � x0

ˇ̌
/ is the spherical Bessel function of the first kind of order n

h.1/n .k jx � x0j/ is the spherical Hankel function of the first kind of order n

According to the addition theorem for Legendre polynomials

Pn.cos‚/ D
nX

mD�n

.�1/mPmn .cos �/P�mn .cos � 0/eim.'�'0/ (6.32)

where Pmn is an associated Legendre polynomial of the first kind , related to the
spherical harmonic Y mn as

Y mn .�; '/ D

s
2nC 1

4�

.n �m/Š

.nCm/Š
Pmn .cos �/ eim'
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and, in spherical polar coordinates,

x0 � x0 D .
ˇ̌
x0 � x0

ˇ̌
; � 0; '0/ (6.33a)

x � x0 D .jx � x0j ; �; '/ (6.33b)

If we introduce the help vector C such that

C D r �…e (6.34)

we see that we can calculate the magnetic and electric fields, respectively, as
follows

B D
1

c2
@C

@t
(6.35a)

E D r �C (6.35b)

Clearly, the last equation is valid only if r �E D 0 i.e. if we are outside the
source volume. Since we are mainly interested in the fields in the far zone, a
long distance away from the source region, this is no essential limitation.

Inserting equation (6.31) on the previous page, together with formula (6.32)
on the preceding page, into equation (6.30) on the previous page, we can in a
formally exact way expand the Fourier component of the Hertz vector as

…e
! D

ik
4�"0

1X
nD0

nX
mD�n

.2nC 1/.�1/mh.1/n .k jx � x0j/ P
m
n .cos �/ eim'

�

Z
V 0

d3x0 �!.x0/ jn.k
ˇ̌
x0 � x0

ˇ̌
/ P�mn .cos � 0/ e�im'0

(6.36)

We notice that there is no dependence on x�x0 inside the integral; the integrand
is only dependent on the relative source vector x0 � x0.

We are interested in the case where the field point is many wavelengths away
from the well-localised sources, i.e. when the following inequalities

k
ˇ̌
x0 � x0

ˇ̌
� 1� k jx � x0j (6.37)

hold. Then we may to a good approximation replace h.1/n with the first term in
its asymptotic expansion:

h.1/n .k jx � x0j/ � .�i/nC1
eikjx�x0j

k jx � x0j
(6.38)

and replace jn with the first term in its power series expansion:

jn.k
ˇ̌
x0 � x0

ˇ̌
/ �

2nnŠ

.2nC 1/Š

�
k
ˇ̌
x0 � x0

ˇ̌�n (6.39)
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Inserting these expansions into equation (6.36) on the facing page, we obtain the
multipole expansion of the Fourier component of the Hertz vector

…e
! �

1X
nD0

…e
!
.n/ (6.40a)

where

…e
!
.n/
D .�i/n

1

4�"0

eikjx�x0j

jx � x0j

2nnŠ

.2n/Š

�

Z
V 0

d3x0 �!.x0/ .k
ˇ̌
x0 � x0

ˇ̌
/n Pn.cos‚/ (6.40b)

This expression is approximately correct only if certain care is exercised; if many
…e
!
.n/ terms are needed for an accurate result, the expansions of the spherical

Hankel and Bessel functions used above may not be consistent and must be
replaced by more accurate expressions. Furthermore, asymptotic expansions as
the one used in equation (6.38) on page 112 are not unique.

Taking the inverse Fourier transform of …e
! will yield the Hertz vector in

time domain, which inserted into equation (6.34) on the preceding page will
yield C. The resulting expression can then in turn be inserted into equations
(6.35) on the facing page in order to obtain the radiation fields.

For a linear source distribution along the polar axis, ‚ D � in expression
(6.40b) above, and Pn.cos �/ gives the angular distribution of the radiation. In
the general case, however, the angular distribution must be computed with the
help of formula (6.32) on page 111. Let us now study the lowest order contribu-
tions to the expansion of the Hertz vector.

6.3.3 Electric dipole radiation

Choosing n D 0 in expression (6.40b) above, we obtain

…e
!
.0/
D

eikjx�x0j

4�"0 jx � x0j

Z
V 0

d3x0 �!.x0/ D
1

4�"0

eikjx�x0j

jx � x0j
d! (6.41)

Since � represents a dipole moment density for the ‘true’ charges (in the same
vein as P does so for the polarised charges), d! D

R
V 0

d3x0 �!.x0/ is, by defini-
tion, the Fourier component of the electric dipole moment

d.t;x0/ D

Z
V 0

d3x0 �.t 0;x0/ D
Z
V 0

d3x0 .x0 � x0/�.t
0;x0/ (6.42)
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Figure 6.2: If a spherical polar co-
ordinate system .r; �; ') is chosen
such that the electric dipole moment
d (and thus its Fourier transform
d! ) is located at the origin and dir-
ected along the polar axis, the cal-
culations are simplified.

�

x1

x3

Efar

x2

'

Or

x

Ok

Bfar

d

[cf. equation (6.17b) on page 108]. If a spherical coordinate system is chosen
with its polar axis along d! as in figure 6.2, the components of…e

!
.0/ are

…e
r

def
� …e

!
.0/ � Or D

1

4�"0

eikjx�x0j

jx � x0j
d! cos � (6.43a)

…e
�

def
� …e

!
.0/ � O™ D �

1

4�"0

eikjx�x0j

jx � x0j
d! sin � (6.43b)

…e
'

def
� …e

!
.0/ � O® D 0 (6.43c)

Evaluating formula (6.34) on page 112 for the help vector C, with the spher-
ically polar components (6.43) of…e

!
.0/ inserted, we obtain

C! D C
.0/
!;' O® D

1

4�"0

�
1

jx � x0j
� ik

�
eikjx�x0j

jx � x0j
d! sin � O® (6.44)

Applying this to equations (6.35) on page 112, we obtain directly the Fourier
components of the fields

B! D �i
!�0

4�

�
1

jx � x0j
� ik

�
eikjx�x0j

jx � x0j
d! sin � O® (6.45a)

E! D
1

4�"0

"
2

�
1

jx � x0j
2
�

ik
jx � x0j

�
cos �

x � x0

jx � x0j

C

�
1

jx � x0j
2
�

ik
jx � x0j

� k2
�

sin � O™

#
eikjx�x0j

jx � x0j
d!

(6.45b)

Keeping only those parts of the fields which dominate at large distances (the
radiation fields) and recalling that the wave vector k D k.x � x0/= jx � x0j
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where k D !=c, we can now write down the Fourier components of the radiation
parts of the magnetic and electric fields from the dipole:

Bfar
! D �

!�0

4�

eikjx�x0j

jx � x0j
d!k sin � O® D �

!�0

4�

eikjx�x0j

jx � x0j
.d! � k/ (6.46a)

Efar
! D �

1

4�"0

eikjx�x0j

jx � x0j
d!k

2 sin � O™ D �
1

4�"0

eikjx�x0j

jx � x0j
Œ.d! � k/ � k�

(6.46b)

These fields constitute the electric dipole radiation , also known as E1 radiation .

6.3.4 Magnetic dipole radiation

The next term in the expression (6.40b) on page 113 for the expansion of the
Fourier transform of the Hertz vector is for n D 1:

…e
!
.1/
D �i

eikjx�x0j

4�"0 jx � x0j

Z
V 0

d3x0 k
ˇ̌
x0 � x0

ˇ̌
�!.x

0/ cos‚

D �ik
1

4�"0

eikjx�x0j

jx � x0j
2

Z
V 0

d3x0 Œ.x � x0/ �.x
0
� x0/��!.x

0/

(6.47)

Here, the term Œ.x � x0/ �.x
0 � x0/��!.x

0/ can be rewritten

Œ.x � x0/ �.x
0
� x0/��!.x

0/ D .xi � x0;i /.x
0
i � x0;i /�!.x

0/ (6.48)

and introducing

�i D xi � x0;i (6.49a)

�0i D x
0
i � x0;i (6.49b)

the j th component of the integrand in…e
!
.1/ can be broken up into

fŒ.x � x0/ �.x
0
� x0/��!.x

0/gj D
1

2
�i
�
�!;j�

0
i C �!;i�

0
j

�
C
1

2
�i
�
�!;j�

0
i � �!;i�

0
j

� (6.50)

i.e. as the sum of two parts, the first being symmetric and the second antisym-
metric in the indices i; j . We note that the antisymmetric part can be written
as

1

2
�i
�
�!;j�

0
i � �!;i�

0
j

�
D
1

2
Œ�!;j .�i�

0
i / � �

0
j .�i�!;i /�

D
1

2
Œ�!.� ��

0/ � �0.� ��!/�j

D
1

2

˚
.x � x0/ � Œ�! � .x

0
� x0/�

	
j

(6.51)
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The utilisation of equations (6.24) on page 110, and the fact that we are
considering a single Fourier component,

�.t;x/ D �!e�i!t (6.52)

allow us to express �! in j! as

�! D i
j!

!
(6.53)

Hence, we can write the antisymmetric part of the integral in formula (6.47) on
the preceding page as

1

2
.x � x0/ �

Z
V 0

d3x0 �!.x0/ � .x0 � x0/

D i
1

2!
.x � x0/ �

Z
V 0

d3x0 j!.x0/ � .x0 � x0/

D �i
1

!
.x � x0/ �m!

(6.54)

where we introduced the Fourier transform of the magnetic dipole moment

m! D
1

2

Z
V 0

d3x0 .x0 � x0/ � j!.x
0/ (6.55)

The final result is that the antisymmetric, magnetic dipole, part of…e
!
.1/ can

be written

…e, antisym
!

.1/
D �

k

4�"0!

eikjx�x0j

jx � x0j
2
.x � x0/ �m! (6.56)

In analogy with the electric dipole case, we insert this expression into equation
(6.34) on page 112 to evaluate C, with which equations (6.35) on page 112 then
gives the B and E fields. Discarding, as before, all terms belonging to the near
fields and transition fields and keeping only the terms that dominate at large
distances, we obtain

Bfar
! .x/ D �

�0

4�

eikjx�x0j

jx � x0j
.m! � k/ � k (6.57a)

Efar
! .x/ D

k

4�"0c

eikjx�x0j

jx � x0j
m! � k (6.57b)

which are the fields of the magnetic dipole radiation (M1 radiation).

6.3.5 Electric quadrupole radiation

The symmetric part …e, sym
!

.1/ of the n D 1 contribution in the equation (6.40b)
on page 113 for the expansion of the Hertz vector can be expressed in terms
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of the electric quadrupole tensor , which is defined in accordance with equation
(6.17c) on page 108:

Q.t;x0/ D
Z
V 0

d3x0 .x0 � x0/˝.x
0
� x0/�.t

0
ret;x

0/ (6.58)

Again we use this expression in equation (6.34) on page 112 to calculate the
fields via equations (6.35) on page 112. Tedious, but fairly straightforward al-
gebra (which we will not present here), yields the resulting fields. The compon-
ents of the fields that dominate in the far field zone (wave zone) are given by

Bfar
! .x/ D

i�0!
8�

eikjx�x0j

jx � x0j
.k �Q!/ � k (6.59a)

Efar
! .x/ D

i
8�"0

eikjx�x0j

jx � x0j
Œ.k �Q!/ � k� � k (6.59b)

This type of radiation is called electric quadrupole radiation or E2 radiation .

6.4 Radiation from an extended source volume at rest

Certain radiating systems have a symmetric geometry or are in any other way
simple enough that a direct (semi-)analytic calculation of the radiated fields and
energy is possible. This is for instance the case when the radiating current flows
in a finite, conducting medium of simple geometry at rest such as in a stationary
antenna .

6.4.1 Radiation from a one-dimensional current distribu-
tion

We describe the radiation in a standard spherical polar coordinate system as in
figure 6.4 on page 120, i.e. a system where the polar axis coincides with the z
axis, the polar angle � is calculated relative to the direction of the positive z
axis, and the azimuthal angle ' is calculated relative to the direction of positive
x axis toward the positive y axis in a right-handed sense. In this polar coordinate
system the observation (field) point is located at x D .r; �; '/with r D jx � x0j.
The origin is chosen at x0 so that x � x0 D x D r D r Or and the wave vector
k D k Ok D k Or .

The Fourier amplitude of the far-zone electric field generated by the antenna
current density

j.t 0;x0/ D j!.x
0/e�i!t 0 (6.60)
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is

Efar
! .x/ D � i

1

4�"0c

eikjx�x0j

jx � x0j
Or �

Z
V 0

d3x0 e�ik �.x0�x0/j!.x
0/ � k.x0/

Bfar
! .x/ D � i

1

4�"0c2
eikjx�x0j

jx � x0j

Z
V 0

d3x0 e�ik �.x0�x0/j!.x
0/ � k.x0/

(6.61)

In the paraxial approximation described by equation (5.34) on page 95 one as-
sumes that the distant observer views all parts of the antenna under one and the
same fixed polar angle � , i.e. that all wave vectors has the same constant direc-
tion as that coming from the midpoint x0 D 0. In this approximation

Efar
! D �

i
4�"0c

eikr

r
Or �

�
k �

Z
V 0

d3x0 e�ik �x0j!.x
0/

�
(6.62)

where j!.x
0/ � k D �k � j!.x

0/ was used. In the chosen geometry, the 1D
antenna current flows along Oz :

Let us apply equation (6.6) on page 105 to calculate the radiated EM power
from a one-dimensional, time-varying current. Such a current can be set up
by feeding the EMF of a generator (e.g. a transmitter) onto a stationary, linear,
straight, thin, conducting wire across a very short gap at its centre. Due to the
applied EMF, the charges in this thin wire of finite length L are set into linear
motion to produce a time-varying antenna current which is the source of the
EM radiation. Linear antennas of this type are called dipole antennas . For sim-
plicity, we assume that the conductor resistance and the energy loss due to the
electromagnetic radiation are negligible.

Choosing our coordinate system such that the x3 axis is along the antenna
axis, the antenna current density can be represented, in complex notation, by
j.t 0;x0/ D ı.x01/ı.x

0
2/J.t

0; x03/ Ox3 (measured in Am�2) where J.t 0; x03/ is the
current (measured in A) along the antenna wire. Since we can assume that the
antenna wire is infinitely thin, the antenna current must vanish at the endpoints
�L=2 andL=2. At the midpoint, where the antenna is fed across a very short gap
in the conducting wire, the antenna current is, of course, equal to the supplied
current.

For each Fourier frequency component !0, the antenna current J.t 0; x03/ can
be written as I.x03/ exp.�i!0t 0/ so that the antenna current density can be written
as j.t 0;x0/ D j0.x

0/ exp.�i!0t 0/ [cf. equations (5.6) on page 87] where

j0.x
0/ D ı.x01/ı.x

0
2/I.x

0
3/ Ox3 (6.63)

and where the spatially varying Fourier amplitude I.x03/ of the antenna current
fulfils the time-independent wave equation (Helmholtz equation)

d2I
dx023

C k2I.x03/ D 0 ; I.�L=2/ D I.L=2/ D 0 ; I.0/ D I0 (6.64)
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�
L
2

sinŒk.L=2 �
ˇ̌
x03
ˇ̌
/�

L
2

j.t 0;x0/

Figure 6.3: A linear antenna used
for transmission. The current in
the feeder and the antenna wire is
set up by the EMF of the generator
(the transmitter). At the ends of the
wire, the current is reflected back
with a 180ı phase shift to produce
a antenna current in the form of a
standing wave.

This second-order ordinary differential equation with constant coefficients has
the well-known solution

I.x03/ D I0
sinŒk.L=2 �

ˇ̌
x03
ˇ̌
/�

sin.kL=2/
(6.65)

where I0 is the amplitude of the antenna current (measured in A), assumed to
be constant and supplied, via a non-radiating transmission line by the gener-
ator/transmitter at the antenna feed point (in our case the midpoint of the antenna
wire) and 1= sin.kL=2/ is a normalisation factor. The antenna current forms a
standing wave as indicated in figure 6.3.2 2 This rather accurate model of the

antenna current was introduced
in 1987 by HENRY CABOURN
POCKLINGTON (1870–1952).

When L is much smaller than the wavelength �, we can approximate the
current distribution formula (6.65) by the first term in its Taylor expansion:

I.x03/ � I0.1 � 2jx
0
3j=L/; kL� 1: (6.66)

Hence, in the most general case of a straight, infinitely thin antenna of fi-
nite, arbitrary length L directed along the x03 axis, the Fourier amplitude of the
antenna current density is

j0.x
0/ D I0ı.x

0
1/ı.x

0
2/

sinŒk.L=2 �
ˇ̌
x03
ˇ̌
/�

sin.kL=2/
Ox3 (6.67)

For a half-wave dipole antenna (L D �=2), the antenna current density is

j0.x
0/ D I0ı.x

0
1/ı.x

0
2/ cos.kx03/Ox3 (6.68)

while for a short antenna (L� �) it can be approximated by

j0.x
0/ D I0ı.x

0
1/ı.x

0
2/.1 � 2

ˇ̌
x03
ˇ̌
=L/Ox3 (6.69)

In the case of a travelling wave antenna, in which one end of the antenna is
connected to ground via a resistance so that the current at this end does not
vanish, the Fourier amplitude of the antenna current density is

j0.x
0/ D I0ı.x

0
1/ı.x

0
2/ exp.kx03/Ox3 (6.70)
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Figure 6.4: We choose a spher-
ical polar coordinate system .r D
jxj ; �; ') and arrange it so that the
linear electric dipole antenna axis
(and thus the antenna current dens-
ity j! ) is along the polar axis with
the feed point at the origin.

�

x1

x3 D z

x2

x

j!.x
0/

'

Ok

Or

�
L
2

L
2

O®

O™

In order to evaluate formula (6.6) on page 105 with the explicit monochro-
matic current (6.67) inserted, we use a spherical polar coordinate system as in
figure 6.4 to evaluate the source integral

I D
ˇ̌̌̌Z
V 0

d3x0 j0 � k e�ik �.x0�x0/

ˇ̌̌̌2
D

ˇ̌̌̌
ˇ
Z L

2

�L2

dx03I0
sinŒk.L=2 �

ˇ̌
x03
ˇ̌
/�

sin.kL=2/
k sin �e�ikx0

3
cos �eikx0 cos �0

ˇ̌̌̌
ˇ
2

D I 20
k2 sin2 �

sin2.kL
2
/

ˇ̌̌
eikx0 cos �0

ˇ̌̌2 ˇ̌̌̌ˇ2
Z L

2

0

dx03 sin.kL=2 � kx03/ cos.kx03 cos �/

ˇ̌̌̌
ˇ
2

D 4I 20

�
cosŒ.kL=2/ cos �� � cos.kL=2/

sin � sin.kL=2/

�2
(6.71)

Inserting this expression and d� D 2� sin � d� into formula (6.6) on page 105
and integrating over � , we find that the total radiated power from the antenna is

P.L/ D R0I
2
0

1

4�

Z �

0

d�
�

cosŒ.kL=2/ cos �� � cos.kL=2/
sin � sin.kL=2/

�2
sin � (6.72)
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One can show that

lim
kL!0

P.L/ D
�

12

�
L

�

�2
R0I

2
0 (6.73)

where � is the vacuum wavelength.
The quantity

Rrad.L/ D
P.L/

I 2eff
D
P.L/
1
2
I 20
D R0

�

6

�
L

�

�2
� 197

�
L

�

�2
� (6.74)

is called the radiation resistance . For the technologically important case of a
half-wave antenna, i.e. for L D �=2 or kL D � , formula (6.72) on the facing
page reduces to

P.�=2/ D R0I
2
0

1

4�

Z �

0

d�
cos2

�
�
2

cos �
�

sin �
(6.75)

The integral in (6.75) can always be evaluated numerically. But, it can in fact
also be evaluated analytically as follows:Z �

0

cos2
�
�
2

cos �
�

sin �
d� D Œcos � 7! u� D

Z 1

�1

cos2
�
�
2
u
�

1 � u2
du D�

cos2
��
2
u
�
D
1C cos.�u/

2

�
D
1

2

Z 1

�1

1C cos.�u/
.1C u/.1 � u/

du

D
1

4

Z 1

�1

1C cos.�u/
.1C u/

duC
1

4

Z 1

�1

1C cos.�u/
.1 � u/

du

D
1

2

Z 1

�1

1C cos.�u/
.1C u/

du D
h
1C u 7!

v

�

i
D
1

2

Z 2�

0

1 � cos v
v

dv D
1

2
Œ C ln 2� � Ci.2�/�

� 1:22

(6.76)

where in the last step the Euler-Mascheroni constant  D 0:5772 : : : and the co-
sine integral Ci.x/ were introduced. Inserting this into the expression equation
(6.75) above we obtain the value Rrad.�=2/ � 73 �.

6.5 Radiation from a localised charge in arbitrary mo-
tion

The derivation of the radiation fields for the case of the source moving relative
to the observer is considerably more complicated than the stationary cases that
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Figure 6.5: Signals that are ob-
served at time t at the field point x
were generated at time t 0 at source
points x0 on a sphere, centred
on x and expanding, as time in-
creases, with velocity c D �c.x�
x0/= jx� x0j outward from the
centre. The source charge element
moves with an arbitrary velocity v 0

and gives rise to a source ‘leakage’
out of the volume dV 0 D d3x0.
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x � x0

x0.t 0/

dS0

dV 0

dr 0

c

x.t/

dq0

v 0.t 0/

we have studied so far. In order to handle this non-stationary situation, we start
from the retarded potentials (3.35) on page 40 in chapter 3

ˆ.t;x/ D
1

4�"0

Z
V 0

d3x0
�
�
t 0ret;x

0.t 0ret/
�

jx.t/ � x0.t 0ret/j
(6.77a)

A.t;x/ D
�0

4�

Z
V 0

d3x0
j
�
t 0ret;x.t

0
ret/
�

jx.t/ � x0.t 0ret/j
(6.77b)

and consider a source region with such a limited spatial extent that the charges
and currents are well localised. Specifically, we consider a charge q0, for in-
stance an electron, which, classically, can be thought of as a localised, unstruc-
tured and rigid ‘charge distribution’ with a small, finite radius. The part of this
‘charge distribution’ dq0 which we are considering is located in dV 0 D d3x0

in the sphere in figure 6.5. Since we assume that the electron (or any other
similar electric charge) moves with a velocity v 0 whose direction is arbitrary
and whose magnitude can even be comparable to the speed of light, we can-
not say that the charge and current to be used in (6.77) is

R
V 0

d3x0 �.t 0ret;x
0/ andR

V 0
d3x0 v�.t 0ret;x

0/, respectively, because in the finite time interval during which
the observed signal is generated, part of the charge distribution will ‘leak’ out of
the volume element d3x0.
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6.5.1 The Liénard-Wiechert potentials

In figure 6.5 on page 122 the charge distribution that contributes to the field at
x.t/ is located at x0.t 0/ on a sphere with radius r D jx � x0j D c.t � t 0/. The
radius interval of this sphere from which radiation is received at the field point
x during the time interval .t 0; t 0 C dt 0/ is .r 0; r 0 C dr 0/ and the net amount of
charge in this radial interval is

dq0 D �.t 0ret;x
0/ dS 0 dr 0 � �.t 0ret;x

0/
.x � x0/ � v 0.t 0/

jx � x0j
dS 0 dt 0 (6.78)

where the last term represents the amount of ‘source leakage’ due to the fact that
the charge distribution moves with velocity v 0.t 0/ D dx0=dt 0. Since dt 0 D dr 0=c
and dS 0 dr 0 D d3x0 we can rewrite the expression for the net charge as

dq0 D �.t 0ret;x
0/ d3x0 � �.t 0ret;x

0/
.x � x0/ � v 0

c jx � x0j
d3x0

D �.t 0ret;x
0/

�
1 �

.x � x0/ � v 0

c jx � x0j

�
d3x0

(6.79)

or

�.t 0ret;x
0/ d3x0 D

dq0

1 � .x�x0/ � v 0

cjx�x0j

(6.80)

which leads to the expression

�.t 0ret;x
0/

jx � x0j
d3x0 D

dq0

jx � x0j � .x�x0/ � v 0

c

(6.81)

This is the expression to be used in the formulæ (6.77) on the facing page for the
retarded potentials. The result is (recall that j D �v )

ˆ.t;x/ D
1

4�"0

Z
dq0

jx � x0j � .x�x0/ � v 0

c

(6.82a)

A.t;x/ D
1

4�"0c2

Z
v 0 dq0

jx � x0j � .x�x0/ � v 0

c

(6.82b)

where we used the relation "0�0 D 1=c2.
For a sufficiently small and well localised charge distribution we can, as-

suming that the integrands do not change sign in the integration volume, use the
mean value theorem of calculus to evaluate these expressions to become

ˆ.t;x/ D
1

4�"0

1

jx � x0j � .x�x0/ � v 0

c

Z
dq0 D

q0

4�"0

1

s
(6.83a)

A.t;x/ D
1

4�"0c2
v 0

jx � x0j � .x�x0/ � v 0

c

Z
dq0 D

q0

4�"0c2
v 0

s

D
v 0

c2
ˆ

(6.83b)
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Figure 6.6: Signals that are ob-
served at time t at the field point
x were generated at time t 0 at the
source point x0.t 0/. After this
time t 0 the particle, which moves
with nonuniform velocity, has fol-
lowed a so far (i.e. at t ) unknown
trajectory. Extrapolating tangen-
tially the trajectory from x0.t 0/,
based on the velocity v 0.t 0/ D
dx0=dt 0, defines the virtual sim-
ultaneous virtual simultaneous co-
ordinate x0.t/.

v 0.t 0/q0

x0.t 0/

x.t/

x � x0

jx�x0j
c

v 0 x0.t/

x � x0

� 0
�0

?

where

s D s.t 0;x/ D
ˇ̌
x � x0.t 0/

ˇ̌
�
Œx � x0.t 0/� � v 0.t 0/

c
(6.84a)

D
ˇ̌
x � x0.t 0/

ˇ̌ �
1 �

x � x0.t 0/

jx � x0.t 0/j
�

v 0.t 0/

c

�
(6.84b)

D Œx � x0.t 0/� �

�
x � x0.t 0/

jx � x0.t 0/j
�

v 0.t 0/

c

�
(6.84c)

is the retarded relative distance . The potentials (6.83) are the Liénard-Wiechert
potentials .3 In section 7.3.2 on page 165 we shall derive them in a more elegant

3 These results were derived
independently by ALFRED-
MARIE L IÉNARD (1869–1958)
in 1898 and EMIL JOHANN
W IECHERT (1861–1928) in
1900. When v 0 k .x � x0/ and
v ! c, the potentials become
singular. This was first pointed
out by ARNOLD JOHANNES
W ILHELM SOMMERFELD
(1868–1951) in 1904.

and general way by using a relativistically covariant formalism.
It should be noted that in the complicated derivation presented above, the

observer is in a coordinate system that has an ‘absolute’ meaning and the velocity
v 0 is that of the localised charge q0, whereas, as we shall see later in the covariant
derivation, two reference frames of equal standing are moving relative to each
other with v 0.

The Liénard-Wiechert potentials are applicable to all problems where a spa-
tially localised charge in arbitrary motion emits electromagnetic radiation, and
we shall now study such emission problems. The electric and magnetic fields
are calculated from the potentials in the usual way:

B.t;x/ D r �A.t;x/ (6.85a)

E.t;x/ D �rˆ.t;x/ �
@A.t;x/

@t
(6.85b)
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6.5.2 Radiation from an accelerated point charge

Consider a localised charge q0 and assume that its trajectory is known experi-
mentally as a function of retarded time

x0 D x0.t 0/ (6.86)

(in the interest of simplifying our notation, we drop the subscript ‘ret’ on t 0 from
now on). This means that we know the trajectory of the charge q0, i.e. x0, for all
times up to the time t 0 at which a signal was emitted in order to precisely arrive
at the field point x at time t . Because of the finite speed of propagation of the
fields, the trajectory at times later than t 0 cannot be known at time t .

The retarded velocity and acceleration at time t 0 are given by

v 0.t 0/ D
dx0

dt 0
(6.87a)

a0.t 0/ DD
dv 0

dt 0
D

d2x0

dt 02
(6.87b)

As for the charge coordinate x0 itself, we have in general no knowledge of the
velocity and acceleration at times later than t 0, and definitely not at the time of
observation t ! If we choose the field point x as fixed, the application of (6.87)
to the relative vector x � x0 yields

d
dt 0
Œx � x0.t 0/� D �v 0.t 0/ (6.88a)

d2

dt 02
Œx � x0.t 0/� D �a0.t 0/ (6.88b)

The retarded time t 0 can, at least in principle, be calculated from the implicit
relation

t 0 D t 0.t;x/ D t �
jx � x0.t 0/j

c
(6.89)

and we shall see later how this relation can be taken into account in the calcula-
tions.

According to formulæ (6.85) on the facing page, the electric and magnetic
fields are determined via differentiation of the retarded potentials at the observa-
tion time t and at the observation point x. In these formulæ the unprimed r , i.e.
the spatial derivative differentiation operator r D Oxi@=@xi means that we dif-
ferentiate with respect to the coordinates x D .x1; x2; x3/ while keeping t fixed,
and the unprimed time derivative operator @=@t means that we differentiate with
respect to t while keeping x fixed. But the Liénard-Wiechert potentialsˆ and A,
equations (6.83) on page 123, are expressed in the charge velocity v 0.t 0/ given
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by equation (6.87a) on page 125 and the retarded relative distance s.t 0;x/ given
by equation (6.84) on page 124. This means that the expressions for the po-
tentials ˆ and A contain terms that are expressed explicitly in t 0, which in turn
is expressed implicitly in t via equation (6.89) on the previous page. Despite
this complication, it is possible, as we shall see below, to determine the electric
and magnetic fields and associated quantities at the time of observation t . To
this end, we need to investigate meticulously the action of differentiation on the
potentials.

6.5.2.1 The differential operator method

We introduce the convention that a differential operator embraced by parentheses
with an index x or t means that the operator in question is applied at constant x

and t , respectively. With this convention, we find that�
@

@t 0

�
x

ˇ̌
x � x0.t 0/

ˇ̌p
D p

x � x0

jx � x0j2�p
�

�
@

@t 0

�
x

�
x � x0.t 0/

�
D �p

.x � x0/ � v 0.t 0/

jx � x0j2�p

(6.90)

Furthermore, by applying the operator .@=@t/x to equation (6.89) on the preced-
ing page we find that�

@t 0

@t

�
x

D 1 �

�
@

@t

�
x

jx � x0.t 0.t;x//j

c

D 1 �

��
@

@t 0

�
x

jx � x0j

c

��
@t 0

@t

�
x

D 1C
.x � x0/ � v 0.t 0/

c jx � x0j

�
@t 0

@t

�
x

(6.91)

This is an algebraic equation in .@t 0=@t/x that we can solve to obtain�
@t 0

@t

�
x

D
jx � x0j

jx � x0j � .x � x0/ � v 0.t 0/=c
D
jx � x0j

s
(6.92)

where s D s.t 0;x/ is the retarded relative distance given by equation (6.84) on
page 124. Making use of equation (6.92) above, we obtain the following useful
operator identity�

@

@t

�
x

D

�
@t 0

@t

�
x

�
@

@t 0

�
x

D
jx � x0j

s

�
@

@t 0

�
x

(6.93)

Likewise, by applying .r /t to equation (6.89) on the previous page we ob-
tain

.r t 0/t D �

�
r
jx � x0.t 0.t;x//j

c

�
t

D �
x � x0

c jx � x0j
�
�
r .x � x0/

�
t

D �
x � x0

c jx � x0j
C
.x � x0/ � v 0.t 0/

c jx � x0j
.r t 0/t

(6.94)
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This is an algebraic equation in .r t 0/t with the solution

.r t 0/t D �
x � x0

cs
(6.95)

that gives the following operator relation when .r /t is acting on an arbitrary
function of t 0 and x:

.r /t D .r t
0/t

�
@

@t 0

�
x

C .r /t 0 D �
x � x0

cs

�
@

@t 0

�
x

C .r /t 0 (6.96)

With the help of the rules (6.96) and (6.93) we are now able to replace t by t 0 in
the operations that we need to perform. We find, for instance, that

rˆ � .rˆ/t D r

�
1

4�"0

q0

s

�
t

D �
q0

4�"0s2

�
x � x0

jx � x0j
�

v 0.t 0/

c
�

x � x0

cs

�
@s

@t 0

�
x

� (6.97a)

and, from equation (6.83b) on page 123 and equation (6.93) on the preceding
page,

@A

@t
�

�
@A

@t

�
x

D

�
@

@t

�
�0

4�

q0v 0.t 0/

s

��
x

D
q0

4�"0c2s3

�ˇ̌
x � x0

ˇ̌
sa0.t 0/ �

ˇ̌
x � x0

ˇ̌
v 0.t 0/

�
@s

@t 0

�
x

� (6.97b)

Utilising these relations in the calculation of the E field from the Liénard-Wiechert
potentials, equations (6.83) on page 123, we obtain

E.t;x/ D �rˆ.t;x/ �
@

@t
A.t;x/

D
q0

4�"0s2.t 0;x/

"
Œx � x0.t 0/� � jx � x0.t 0/j v 0.t 0/=c

jx � x0.t 0/j

�
Œx � x0.t 0/� � jx � x0.t 0/j v 0.t 0/=c

cs.t 0;x/

�
@s.t 0;x/

@t 0

�
x

�
jx � x0.t 0/j a0.t 0/

c2

#
(6.98)

Starting from expression (6.84a) on page 124 for the retarded relative distance
s.t 0;x/, we see that we can evaluate .@s=@t 0/x in the following way�

@s

@t 0

�
x

D

�
@

@t 0

� ˇ̌
x � x0

ˇ̌
�
.x � x0/ � v 0.t 0/

c

��
x

D

�
@

@t 0

ˇ̌
x � x0.t 0/

ˇ̌ �
x

�
1

c

��
@Œx � x0.t 0/�

@t 0

�
x

� v 0.t 0/C Œx � x0.t 0/� �

�
@v 0.t 0/

@t 0

�
x

�
D �

.x � x0.t 0// � v 0.t 0/

jx � x0.t 0/j
C
v02.t 0/

c
�
.x � x0.t 0// � a0.t 0/

c

(6.99)
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where equation (6.90) on page 126 and equations (6.87) on page 125, respect-
ively, were used. Hence, the electric field generated by an arbitrarily moving
localised charge at x0.t 0/ is given by the expression

E.t;x/ D
q0

4�"0s3.t 0;x/

�
Œx � x0.t 0/� �

jx � x0.t 0/j v 0.t 0/

c

��
1 �

v02.t 0/

c2

�
„ ƒ‚ …

Velocity field (tends to the Coulomb field when v ! 0)

C
q0

4�"0s3.t 0;x/

(
x � x0.t 0/

c2
�

��
Œx � x0.t 0/� �

jx � x0.t 0/j v 0.t 0/

c

�
� a0.t 0/

�)
„ ƒ‚ …

Acceleration (radiation) field
(6.100)

The first part of the field, the velocity field , tends to the ordinary Coulomb field
when v0 ! 0 and does not contribute to the radiation. The second part of the
field, the acceleration field , is radiated into the far zone and is therefore also
called the radiation field .

From figure 6.6 on page 124 we see that the position the charged particle
would have had if at t 0 all external forces would have been switched off so that
the trajectory from then on would have been a straight line in the direction of
the tangent at x0.t 0/ is x0.t/, the virtual simultaneous coordinate . During the
arbitrary motion, we interpret x � x0.t/ as the coordinate of the field point x

relative to the virtual simultaneous coordinate x0.t/. Since the time it takes for
a signal to propagate (in the assumed free space) from x0.t 0/ to x is jx � x0j =c,
this relative vector is given by

x � x0.t/ D x � x0.t 0/ �
jx � x0.t 0/j v 0.t 0/

c
(6.101)

This allows us to rewrite equation (6.100) above in the following way

E.t;x/ D
q0

4�"0s3

"�
x � x0.t/

��
1 �

v02.t 0/

c2

�

C
�
x � x0.t 0/

�
�

�
x � x0.t/

�
� a0.t 0/

c2

# (6.102)

The magnetic field can be computed in a similar manner:

B.t;x/ D r �A.t;x/ �
�
r �A

�
t
D
�
r �A

�
t 0
�

x � x0

cs
�

�
@A

@t 0

�
x

D �
q0

4�"0c2s2
x � x0

jx � x0j
� v 0 �

x � x0

c jx � x0j
�

�
@A

@t

�
x

(6.103)
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where we made use of equation (6.83) on page 123 and formula (6.93) on
page 126. But, according to (6.97a),

x � x0

c jx � x0j
�
�
rˆ

�
t
D

q0

4�"0c2s2
x � x0

jx � x0j
� v 0 (6.104)

so that

B.t;x/ D
x � x0

c jx � x0j
�

�
�
�
rˆ

�
t
�

�
@A

@t

�
x

�
D

x � x0.t 0/

c jx � x0.t 0/j
� E.t;x/

(6.105)

The electric far field is obtained from the acceleration field in formula (6.100)
on the facing page as

Efar.t;x/ D
q0

4�"0c2s3
.x � x0/ �

��
.x � x0/ �

jx � x0j v 0

c

�
� a0

�
D

q0

4�"0c2s3
Œx � x0.t 0/� � fŒx � x0.t/� � a0.t 0/g

(6.106)

where in the last step we again used formula (6.101) on the preceding page.
Combining this formula and formula (6.105), the radiation part of the magnetic
field can be written

Bfar.t;x/ D
x � x0.t 0/

c jx � x0.t 0/j
� Efar.t;x/ (6.107)

6.5.2.2 The direct method

An alternative to the differential operator transformation technique just described
is to try to express all quantities in the potentials directly in t and x. An example
of such a quantity is the retarded relative distance s.t 0;x/. According to equation
(6.84) on page 124, the square of this retarded relative distance can be written

s2.t 0;x/ D
ˇ̌
x � x0.t 0/

ˇ̌2
� 2

ˇ̌
x � x0.t 0/

ˇ̌ Œx � x0.t 0/� � v 0.t 0/

c

C

�
Œx � x0.t 0/� � v 0.t 0/

c

�2 (6.108)

If we use identity (F.37) on page 218 we find that�
.x � x0/ � v 0

c

�2
D
jx � x0j

2
v02

c2
�

�
.x � x0/ � v 0

c

�2
(6.109)

Furthermore, from equation (6.101) on the preceding page, we obtain the iden-
tity

Œx � x0.t 0/� � v 0 D Œx � x0.t/� � v 0 (6.110)



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 152 of 298.

DRAFT

130 j 6. RADIATION AND RADIATING SYSTEMS

which, when inserted into equation (6.109) on the preceding page, yields the
relation �

.x � x0/ � v 0

c

�2
D
jx � x0j

2
v02

c2
�

�
.x � x0/ � v 0

c

�2
(6.111)

Inserting the above into expression (6.108) on the previous page for s2, this
expression becomes

s2 D
ˇ̌
x � x0

ˇ̌2
� 2

ˇ̌
x � x0

ˇ̌ .x � x0/ � v 0

c
C
jx � x0j

2
v02

c2
�

�
.x � x0/ � v 0

c

�2
D

�
.x � x0/ �

jx � x0j v 0

c

�2
�

�
.x � x0/ � v 0

c

�2
D .x � x0/

2
�

�
.x � x0/ � v 0

c

�2
� jx � x0.t/j

2
�

�
Œx � x0.t/� � v 0.t 0/

c

�2
(6.112)

where in the penultimate step we used equation (6.101) on page 128.
What we have just demonstrated is that if the particle velocity at time t can

be calculated or projected from its value at the retarded time t 0, the retarded
distance s in the Liénard-Wiechert potentials (6.83) can be expressed in terms
of the virtual simultaneous coordinate x0.t/, viz., the point at which the particle
will have arrived at time t , i.e. when we obtain the first knowledge of its existence
at the source point x0 at the retarded time t 0, and in the field coordinate x D

x.t/, where we make our observations. We have, in other words, shown that all
quantities in the definition of s, and hence s itself, can, when the motion of the
charge is somehow known, be expressed in terms of the time t alone. I.e. in this
special case we are able to express the retarded relative distance as s D s.t;x/

and we do not have to involve the retarded time t 0 or any transformed differential
operators in our calculations.

Taking the square root of both sides of equation (6.112) above, we obtain
the following alternative final expressions for the retarded relative distance s in
terms of the charge’s virtual simultaneous coordinate x0.t/ and velocity v 0.t 0/:

s.t 0;x/ D

s
jx � x0.t/j

2
�

�
Œx � x0.t/� � v 0.t 0/

c

�2
(6.113a)

D jx � x0.t/j

s
1 �

v02.t 0/

c2
sin2 �0.t/ (6.113b)

D

s
jx � x0.t/j

2

�
1 �

v02.t 0/

c2

�
C

�
Œx � x0.t/� � v

0.t 0/

c

�2
(6.113c)



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 153 of 298.

DRAFT

6.5. Radiation from a localised charge in arbitrary motion j 131

If we know what velocity the particle will have at time t , expression (6.113) on
the facing page for s will not be dependent on t 0.

Using equation (6.113c) on the preceding page and standard vector analytic
formulae, we obtain

r s2 D r

"
jx � x0j

2

�
1 �

v02

c2

�
C

�
.x � x0/ � v

0

c

�2#

D 2

�
.x � x0/

�
1 �

v02

c2

�
C

v 0˝ v 0

c2
�.x � x0/

�
D 2

�
.x � x0/C

v 0

c
�

�
v 0

c
� .x � x0/

�� (6.114)

We shall use this result in example 6.3 on page 148 for a uniform, unaccelerated
motion of the charge.

6.5.2.3 Small velocities

If the charge moves at such low speeds that v0=c � 1, formula (6.84) on
page 124 simplifies to

s D
ˇ̌
x � x0

ˇ̌
�
.x � x0/ � v 0

c
�
ˇ̌
x � x0

ˇ̌
; v0 � c (6.115)

and formula (6.101) on page 128

x � x0 D .x � x0/ �
jx � x0j v 0

c
� x � x0; v0 � c (6.116)

so that the radiation field equation (6.106) on page 129 can be approximated by

Efar.t;x/ D
q0

4�"0c2 jx � x0j3
.x � x0/ � Œ.x � x0/ � a0�; v0 � c (6.117)

from which we obtain, with the use of formula (6.105) on page 129, the magnetic
field

Bfar.t;x/ D
q0

4�"0c3 jx � x0j2
Œa0 � .x � x0/�; v0 � c (6.118)

It is interesting to note the close correspondence that exists between the non-
relativistic fields (6.117) and (6.118) and the electric dipole field equations (6.46)
on page 115 if we introduce the electric dipole moment for a localised charge
[cf. formula (6.42) on page 113]

d D q0x0.t 0/ (6.119)
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Figure 6.7: Polar diagram of the en-
ergy loss angular distribution factor
sin2 �=.1 � v cos �=c/5 during
bremsstrahlung for particle speeds
v0 D 0, v0 D 0:25c, and v0 D
0:5c. v D 0

v

v D 0:5c

v D 0:25c

and at the same time make the transitions

q0a0 D Rd 7! �!2d! (6.120a)

x � x0 D x � x0 (6.120b)

The energy flux in the far zone is described by the Poynting vector as a
function of Efar and Bfar. We use the close correspondence with the dipole case
to find that it becomes

Sfar
D

�0q
02.a0/2

16�2c jx � x0j2
sin2 �

x � x0

jx � x0j
(6.121)

where � is the angle between a0 and x�x0. The total radiated power (integrated
over a closed spherical surface) becomes

P D
�0q

02.a0/2

6�c
D

q0
2
a02

6�"0c3
(6.122)

which is the Larmor formula for radiated power from an accelerated charge.
Note that here we are treating a charge with v0 � c but otherwise totally un-
specified motion while we compare with formulæ derived for a stationary oscil-
lating dipole. The electric and magnetic fields, equation (6.117) on the previous
page and equation (6.118) on the preceding page, respectively, and the expres-
sions for the Poynting flux and power derived from them, are here instantaneous
values, dependent on the instantaneous position of the charge at x0.t 0/. The an-
gular distribution is that which is ‘frozen’ to the point from which the energy is
radiated.

6.5.3 Bremsstrahlung

An important special case of radiation is when the velocity v 0 and the accelera-
tion a0 are collinear (parallel or anti-parallel) so that v 0 � a0 D 0. This condition
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(for an arbitrary magnitude of v 0) inserted into expression (6.106) on page 129
for the radiation field, yields

Efar.t;x/ D
q0

4�"0c2s3
.x � x0/ � Œ.x � x0/ � a0�; v 0 k a0 (6.123)

from which we obtain, with the use of formula (6.105) on page 129, the magnetic
field

Bfar.t;x/ D
q0 jx � x0j

4�"0c3s3
Œa0 � .x � x0/�; v 0 k a0 (6.124)

The difference between this case and the previous case of v0 � c is that the
approximate expression (6.115) on page 131 for s is no longer valid; instead we
must use the correct expression (6.84) on page 124. The angular distribution of
the energy flux (Poynting vector) far away from the source therefore becomes

Sfar
D

�0q
02a02

16�2c jx � x0j2
sin2 ��

1 � v0

c
cos �

�6 x � x0

jx � x0j
(6.125)

It is interesting to note that the magnitudes of the electric and magnetic fields are
the same whether v 0 and a0 are parallel or anti-parallel.

We must be careful when we compute the energy (S integrated over time).
The Poynting vector is related to the time t when it is measured and to a fixed
surface in space. The radiated power into a solid angle element d�, measured
relative to the particle’s retarded position, is given by the formula

dU rad.�/

dt
d� D S �.x � x0/

ˇ̌
x � x0

ˇ̌
d� D

�0q
02a02

16�2c

sin2 ��
1 � v0

c
cos �

�6 d�

(6.126)

On the other hand, the radiation loss due to radiation from the charge at retarded
time t 0 :

dU rad

dt 0
d� D

dU rad

dt

�
@t

@t 0

�
x

d� (6.127)

Using formula (6.92) on page 126, we obtain

dU rad

dt 0
d� D

dU rad

dt
s

jx � x0j
d� D S �.x � x0/s d� (6.128)

Inserting equation (6.125) above for S into (6.128), we obtain the explicit
expression for the energy loss due to radiation evaluated at the retarded time

dU rad.�/

dt 0
d� D

�0q
02a02

16�2c

sin2 ��
1 � v0

c
cos �

�5 d� (6.129)
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Figure 6.8: Location of radiation
between two spheres as the charge
moves with velocity v 0 from x01 to
x02 during the time interval .t 0; t 0C
dt 0/. The observation point (field
point) is at the fixed location x.

x01x02
vdt 0

ˇ̌
x � x02

ˇ̌
C c dt 0

dS

dr
x

�

d�
q0

The angular factors of this expression, for three different particle speeds, are
plotted in figure 6.7 on page 132.

Comparing expression (6.126) on the preceding page with expression (6.129)
on the previous page, we see that they differ by a factor 1�v0 cos �=c that comes
from the extra factor s= jx � x0j introduced in (6.128). Let us explain this in
geometrical terms.

During the interval .t 0; t 0 C dt 0/ and within the solid angle element d� the
particle radiates an energy ŒdU rad.�/=dt 0� dt 0d�. As shown in figure 6.8 this
energy is at time t located between two spheres, one outer with its origin at x01.t

0/

and radius c.t� t 0/, and one inner with its origin at x02.t
0Cdt 0/ D x01.t

0/Cv 0 dt 0

and radius cŒt � .t 0 C dt 0/� D c.t � t 0 � dt 0/.
From Figure 6.8 we see that the volume element subtending the solid angle

element

d� D
d2xˇ̌

x � x02
ˇ̌2 (6.130)

is

d3x D d2x dr D
ˇ̌
x � x02

ˇ̌2 d� dr (6.131)

Here, dr denotes the differential distance between the two spheres and can be
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evaluated in the following way

dr D
ˇ̌
x � x02

ˇ̌
C c dt 0 �

ˇ̌
x � x02

ˇ̌
�

x � x02ˇ̌
x � x02

ˇ̌ � v 0„ ƒ‚ …
v0 cos �

dt 0

D

 
c �

x � x02ˇ̌
x � x02

ˇ̌ � v 0! dt 0 D
csˇ̌

x � x02
ˇ̌ dt 0

(6.132)

where formula (6.84) on page 124 was used in the last step. Hence, the volume
element under consideration is

d3x D d2x dr D
sˇ̌

x � x02
ˇ̌ d2x cdt 0 (6.133)

We see that the energy that is radiated per unit solid angle during the time interval
.t 0; t 0 C dt 0/ is located in a volume element whose size is � dependent. This
explains the difference between expression (6.126) on page 133 and expression
(6.129) on page 133.

Let the radiated energy, integrated over �, be denoted QU rad. After tedious,
but relatively straightforward integration of formula (6.129) on page 133, one
obtains

d QU rad

dt 0
D
�0q

02a02

6�c

1�
1 � v02

c2

�3 D 2

3

q0
2
a02

4�"0c3

�
1 �

v02

c2

��3
(6.134)

If we know v 0.t 0/, we can integrate this expression over t 0 and obtain the total
energy radiated during the acceleration or deceleration of the particle. This way
we obtain a classical picture of bremsstrahlung (braking radiation , free-free ra-
diation). Often, an atomistic treatment is required for obtaining an acceptable
result.

6.5.4 Cyclotron and synchrotron radiation (magnetic
bremsstrahlung)

Formula (6.105) and formula (6.106) on page 129 for the magnetic field and the
radiation part of the electric field are general, valid for any kind of motion of the
localised charge. A very important special case is circular motion, i.e. the case
v 0 ? a0.



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 158 of 298.

DRAFT

136 j 6. RADIATION AND RADIATING SYSTEMS

Figure 6.9: Coordinate system
for the radiation from a charged
particle at x0.t 0/ in circular mo-
tion with velocity v 0.t 0/ along the
tangent and constant acceleration
a0.t 0/ toward the origin. The x1x2
axes are chosen so that the relative
field point vector x � x0 makes an
angle ˛ with the x3 axis, which is
normal to the plane of the orbital
motion. The radius of the orbit is b. �

v 0

x1

x3

x2

'.t 0/

0
˛

a0

x � x0

x

q0

b
x0.t 0/

With the charged particle orbiting in the x1x2 plane as in figure 6.9, an orbit
radius b, and an angular frequency !0, we obtain

'.t 0/ D !0t
0 (6.135a)

x0.t 0/ D bŒOx1 cos'.t 0/C Ox2 sin'.t 0/� (6.135b)

v 0.t 0/ D Px0.t 0/ D b!0Œ�Ox1 sin'.t 0/C Ox2 cos'.t 0/� (6.135c)

v0 D
ˇ̌
v 0
ˇ̌
D b!0 (6.135d)

a0 D Pv 0.t 0/ D Rx0.t 0/ D �b!20 ŒOx1 cos'.t 0/C Ox2 sin'.t 0/� (6.135e)

v0 D
ˇ̌
a0
ˇ̌
D b!20 (6.135f)

Because of the rotational symmetry we can, without loss of generality, rotate
our coordinate system around the x3 axis so the relative vector x � x0 from the
source point to an arbitrary field point always lies in the x2x3 plane, i.e.

x � x0 D
ˇ̌
x � x0

ˇ̌
.Ox2 sin˛ C Ox3 cos˛/ (6.136)

where ˛ is the angle between x � x0 and the normal to the plane of the particle
orbit (see Figure 6.9). From the above expressions we obtain

.x � x0/ � v 0 D
ˇ̌
x � x0

ˇ̌
v0 sin˛ cos' (6.137a)

.x � x0/ � a0 D �
ˇ̌
x � x0

ˇ̌
a0 sin˛ sin' D

ˇ̌
x � x0

ˇ̌
a0 cos � (6.137b)

where in the last step we simply used the definition of a scalar product and the
fact that the angle between a0 and x � x0 is � .
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The energy flux is given by the Poynting vector, which, with the help of
formula (6.105) on page 129, can be written

S D
1

�0
.E � B/ D

1

c�0
jEj2

x � x0

jx � x0j
(6.138)

Inserting this into equation (6.128) on page 133, we obtain

dU rad.˛; '/

dt 0
D
jx � x0j s

c�0
jEj2 (6.139)

where the retarded distance s is given by expression (6.84) on page 124. With
the radiation part of the electric field, expression (6.106) on page 129, inserted,
and using (6.137a) and (6.137b) on the preceding page, one finds, after some
algebra, that

dU rad.˛; '/

dt 0
D
�0q

02a02

16�2c

�
1 � v0

c
sin˛ cos'

�2
�

�
1 � v02

c2

�
sin2 ˛ sin2 '�

1 � v0

c
sin˛ cos'

�5
(6.140)

The angles � and ' vary in time during the rotation, so that � refers to a moving
coordinate system. But we can parametrise the solid angle d� in the angle ' and
the angle ˛ so that d� D sin˛ d˛ d'. Integration of equation (6.140) above over
this d� gives, after some cumbersome algebra, the angular integrated expression

d QU rad

dt 0
D
�0q

02a02

6�c

1�
1 � v02

c2

�2 (6.141)

In equation (6.140) above, two limits are particularly interesting:

1. v0=c � 1 which corresponds to cyclotron radiation .

2. v0=c . 1 which corresponds to synchrotron radiation .

6.5.4.1 Cyclotron radiation

For a non-relativistic speed v0 � c, equation (6.140) above reduces to

dU rad.˛; '/

dt 0
D
�0q

02a02

16�2c
.1 � sin2 ˛ sin2 '/ (6.142)

But according to equation (6.137b) on the preceding page

sin2 ˛ sin2 ' D cos2 � (6.143)

where � is defined in figure 6.9 on the facing page. This means that we can write

dU rad.�/

dt 0
D
�0q

02a02

16�2c
.1 � cos2 �/ D

�0q
02a02

16�2c
sin2 � (6.144)

Consequently, a fixed observer near the orbit plane (˛ � �=2) will observe
cyclotron radiation twice per revolution in the form of two equally broad pulses
of radiation with alternating polarisation.



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 160 of 298.

DRAFT

138 j 6. RADIATION AND RADIATING SYSTEMS

6.5.4.2 Synchrotron radiation

When the particle is relativistic, v0 . c, the denominator in equation (6.140)
on the previous page becomes very small if sin˛ cos' � 1, which defines the
forward direction of the particle motion (˛ � �=2; ' � 0). The equation
(6.140) on the preceding page becomes

dU rad.�=2; 0/

dt 0
D
�0q

02a02

16�2c

1�
1 � v0

c

�3 (6.145)

which means that an observer near the orbit plane sees a very strong pulse fol-
lowed, half an orbit period later, by a much weaker pulse.

The two cases represented by equation (6.144) on the previous page and
equation (6.145) above are very important results since they can be used to de-
termine the characteristics of the particle motion both in particle accelerators
and in astrophysical objects where a direct measurement of particle velocities
are impossible.

In the orbit plane (˛ D �=2), equation (6.140) on the previous page gives

dU rad.�=2; '/

dt 0
D
�0q

02a02

16�2c

�
1 � v0

c
cos'

�2
�

�
1 � v02

c2

�
sin2 '�

1 � v0

c
cos'

�5 (6.146)

This vanishes for angles '0 such that

cos'0 D
v0

c
(6.147a)

sin'0 D

s
1 �

v02

c2
(6.147b)

Hence, the angle '0 is a measure of the synchrotron radiation lobe width �� ;
see figure 6.10 on the facing page. For ultra-relativistic particles, defined by

 D
1s

1 �
v02

c2

� 1;

s
1 �

v02

c2
� 1; (6.148)

one can approximate

'0 � sin'0 D

s
1 �

v02

c2
D
1


(6.149)

We see that synchrotron radiation from ultra-relativistic charges is character-
ized by a radiation lobe width which is approximately

�� �
1


(6.150)
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q0

��

'.t 0/

x0.t 0/
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Figure 6.10: If the observation
point x is in the plane of the particle
orbit, i.e. if ˛ D �=2, the synchro-
tron radiation lobe width is given by
�� .

This angular interval is swept by the charge during the time interval

�t 0 D
��

!0
(6.151)

during which the particle moves a length interval

�l 0 D v0�t 0 D v0
��

!0
(6.152)

in the direction toward the observer. The observer therefore measures a com-
pressed pulse width of length

�t D �t 0 �
�l 0

c
D �t 0 �

v0�t 0

c
D

�
1 �

v0

c

�
�t 0

D

�
1 �

v0

c

�
��

!0
�

�
1 �

v0

c

�
1

!0
D

�
1 � v0

c

� �
1C v0

c

�
1C

v0

c„ƒ‚…
� 2

1

!0

�

�
1 �

v02

c2

�
„ ƒ‚ …
1=2

1

2!0
D

1

23
1

!0

(6.153)

Typically, the spectral width of a pulse of length�t is�! . 1=�t . In the ultra-
relativistic synchrotron case one can therefore expect frequency components up
to

!max �
1

�t
D 23!0 (6.154)
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A spectral analysis of the radiation pulse will therefore exhibit a (broadened)
line spectrum of Fourier components n!0 from n D 1 up to n � 23.

When many charged particles, N say, contribute to the radiation, we can
have three different situations depending on the relative phases of the radiation
fields from the individual particles:

1. AllN radiating particles are spatially much closer to each other than a typical
wavelength. Then the relative phase differences of the individual electric and
magnetic fields radiated are negligible and the total radiated fields from all
individual particles will add up to become N times that from one particle.
This means that the power radiated from the N particles will be N 2 higher
than for a single charged particle. This is called coherent radiation .

2. The charged particles are perfectly evenly distributed in the orbit. In this case
the phases of the radiation fields cause a complete cancellation of the fields
themselves. No radiation escapes.

3. The charged particles are somewhat unevenly distributed in the orbit. This
happens for an open ring current, carried initially by evenly distributed charged
particles, which is subject to thermal fluctuations. From statistical mechanics
we know that this happens for all open systems and that the particle densities
exhibit fluctuations of order

p
N . This means that out of the N particles,

p
N will exhibit deviation from perfect randomness — and thereby perfect

radiation field cancellation — and give rise to net radiation fields which are
proportional to

p
N . As a result, the radiated power will be proportional to

N , and we speak about incoherent radiation . Examples of this can be found
both in earthly laboratories and under cosmic conditions.

6.5.4.3 Radiation in the general case

We recall that the general expression for the radiation E field from a moving
charge concentration is given by expression (6.106) on page 129. This expres-
sion in equation (6.139) on page 137 yields the general formula

dU rad.�; '/

dt 0
D
�0q

02 jx � x0j

16�2cs5
.x � x0/ �

��
.x � x0/ �

jx � x0j v 0

c

�
� a0

�2
(6.155)

Integration over the solid angle � gives the totally radiated power as

d QU rad

dt 0
D
�0q

02a02

6�c

1 � v02

c2
sin2  �

1 � v02

c2

�3 (6.156)

where  is the angle between v 0 and a0.
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B

b

vt

E? Ox3

q0
v D v Ox1

jx � x0j

�0

Figure 6.11: The perpendicular
electric field of a charge q0 moving
with velocity v 0 D v0 Ox isE? Oz.

If v 0 is collinear with a0, so that sin D 0, we get bremsstrahlung . For
v 0 ? a0, sin D 1, which corresponds to cyclotron radiation or synchrotron
radiation .

6.5.4.4 Virtual photons

Let us consider a charge q0 moving with constant, high velocity v 0.t 0/ along
the x1 axis. According to formula (6.198) on page 149 and figure 6.11, the
perpendicular component along the x3 axis of the electric field from this moving
charge is

E? D E3 D
q0

4�"0s3

�
1 �

v02

c2

�
.x � x0/ � Ox3 (6.157)

Utilising expression (6.113) on page 130 and simple geometrical relations, we
can rewrite this as

E? D
q0

4�"0

b

2 Œ.v0t 0/2 C b2=2�
3=2

(6.158)

This represents a contracted Coulomb field, approaching the field of a plane
wave. The passage of this field ‘pulse’ corresponds to a frequency distribution
of the field energy. Fourier transforming, we obtain

E!;? D
1

2�

Z 1
�1

dt E?.t/ ei!t
D

q0

4�2"0bv0

��
b!

v0

�
K1

�
b!

v0

��
(6.159)

Here, K1 is the Kelvin function (Bessel function of the second kind with ima-
ginary argument) which behaves in such a way for small and large arguments
that

E!;? �
q0

4�2"0bv0
; b! � v0 ,

b

v0
! � 1 (6.160a)

E!;? � 0; b! � v0 ,
b

v0
! � 1 (6.160b)
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Figure 6.12: Diagrammatic rep-
resentation of the semi-classical
electron-electron interaction
(Møller scattering).

�

p1

p2

p01

p02

showing that the ‘pulse’ length is of the order b=.v0/.
Due to the equipartitioning of the field energy into the electric and magnetic

fields, the total field energy can be written

QU D "0

Z
V

d3x E2? D "0

Z bmax

bmin

db 2�b
Z 1
�1

dt v0E2? (6.161)

where the volume integration is over the plane perpendicular to v 0. With the use
of Parseval’s identity for Fourier transforms, formula (6.9) on page 106, we can
rewrite this as

QU D

Z 1
0

d! QU! D 4�"0v0
Z bmax

bmin

db 2�b
Z 1
0

d! E2!;?

�
q02

2�2"0v0

Z 1
�1

d!
Z v0=!

bmin

db
b

(6.162)

from which we conclude that

QU! �
q02

2�2"0v0
ln
�
v0

bmin!

�
(6.163)

where an explicit value of bmin can be calculated in quantum theory only.
It is intriguing to quantise the energy into photons. We then find that

N! d! �
2˛

�
ln
�

c

bmin!

�
d!
!

(6.164)

where ˛ D e2=.4�"0}c/ � 1=137 is the fine structure constant .
Let us consider the interaction of two (classical) electrons, 1 and 2. The result

of this interaction is that they change their linear momenta from p1 to p01 and p2

to p02, respectively. Heisenberg’s uncertainty principle gives bmin � }=
ˇ̌
p1 � p01

ˇ̌
so that the number of photons exchanged in the process is of the order

N! d! �
2˛

�
ln
� c
}!

ˇ̌
p1 � p01

ˇ̌� d!
!

(6.165)
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Since this change in momentum corresponds to a change in energy }! D E1 �E 01
and E1 D m0c2, we see that

N! d! �
2˛

�
ln

 
E1

m0c2

ˇ̌
cp1 � cp

0
1

ˇ̌
E1 �E

0
1

!
d!
!

(6.166)

a formula which gives a reasonable semi-classical account of a photon-induced
electron-electron interaction process. In quantum theory, including only the low-
est order contributions, this process is known as Møller scattering . A diagram-
matic representation of (a semi-classical approximation of) this process is given
in figure 6.12 on the preceding page.

6.6 Examples

BLinear and angular momenta radiated from an electric dipole in vacuum EXAMPLE 6 .1

The Fourier amplitudes of the fields generated by an electric dipole, d! , oscillating at the
angular frequency !, are given by formulæ (6.45) on page 114. Inverse Fourier transform-
ing to the time domain, and using a spherical coordinate system .r; �; '/, the physically
observable fields are readily found to be

B.t;x/ D
!�0

4�
d! sin �

�
1

r2
sin.kr � !t/ �

k

r
cos.kr � !t/

�
O® (6.167a)

E.t;x/ D
1

4�"0
d! sin �

 
1

r3
cos.kr � !t/C

k

r2
sin.kr � !t/ �

k2

r
cos.kr � !t/

!
O™

C
1

2�"0
d! cos �

�
1

r3
cos.kr � !t/C

k

r2
sin.kr � !t/

�
Or (6.167b)

Applying formula (4.45) on page 62 for the electromagnetic linear momentum density to
the fields from a pure electric dipole, equations (6.167) above, one obtains

gfield.t;x/ D "0E.t;x/ � B.t;x/ D �
!�0

8�2
d2! sin � cos �

�
1

r5
sin.kr � !t/ cos.kr � !t/

C
k

r4

�
sin2.kr � !t/ � cos2.kr � !t/

�
�
k2

r3
sin.kr � !t/ cos.kr � !t/

�
O™

C
!�0

16�2
d2! sin2 �

�
1

r5
sin.kr � !t/ cos.kr � !t/

C
k

r4

�
sin2.kr � !t/ � cos2.kr � !t/

�
� 2

k2

r3
sin.kr � !t/ cos.kr � !t/

C
k3

r2
cos2.kr � !t/

�
Or

(6.168)

Using the well-known double-angle trigonometric relations, this can be put in the form
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gfield.t;x/ D �
!�0

16�2
d2! sin � cos �

�
1

r5
sinŒ2.kr � !t/� � 2

k

r4
cosŒ2.kr � !t/�

�
k2

r3
sinŒ2.kr � !t/�

�
O™

C
!�0

32�2
d2! sin2 �

�
1

r5
sinŒ2.kr � !t/� � 2

k

r4
cosŒ2.kr � !t/�

� 2
k2

r3
sinŒ2.kr � !t/�C

k3

r2

�
1C cosŒ2.kr � !t/�

��
Or

(6.169)

We see that the linear momentum density gfield, and hence the Poynting vector S D gfieldc2

[recall identity (4.45) on page 62], has a perpendicular component (along O™) and therefore
performs, in general, a spiralling motion.

Consequently, at finite distances from the source the linear momentum has a perpendicular
component. It is only at infinity that it is strictly radial (along Or).

Applying formula (4.75) on page 67 for the electromagnetic angular momentum density
around the momentum point x0, i.e.

hfield.t;x;x0/ D .x � x0/ � gfield (6.170)

and using equation (6.169) above, we find that for a pure electric dipole

hfield
D�

!�0

8�2
d2! sin � cos �

�
1

r4
sin.kr � !t/ cos.kr � !t/

C
k

r3

�
sin2.kr � !t/ � cos2.kr � !t/

�
�
k2

r2
sin.kr � !t/ cos.kr � !t/

�
O®

(6.171)

or

hfield
D�

!�0

16�2
d2! sin � cos �

�
1

r4
sinŒ2.kr � !t/�

� 2
k

r3
cosŒ2.kr � !t/� �

k2

r2
sinŒ2.kr � !t/�

�
O® (6.172)

The total electromagnetic linear momentum is (cf. formula (4.51b) on page 63)

pfield
D

Z
V 0

d3x0 gfield.t 0;x0/ (6.173)

and the total electromagnetic angular momentum is (cf. formula (4.89) on page 69)

Jfield
D

Z
V 0

d3x0 hfield.t 0;x0/ (6.174)

In order to get a total net Jfield, it is convenient to superimpose several individual dipoles of
(possibly) different strengths and relative phases. Perhaps the most common configuration
yielding a total net Jfield is two orthogonal co-located dipoles with �=2 phase shift between
them.

We note that in the far zone the linear and angular momentum densities tend to
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Figure 6.13: For the loop an-
tenna the spherical coordinate sys-
tem .r; �; '/ describes the field
point x (the radiation field) and
the cylindrical coordinate system
.�0; '0; z0/ describes the source
point x0 (the antenna current).

gfield,far.t;x/ �
!�0

16�2
d2!
k3

r2
sin2 � cos2.kr � !t/Or

D
!�0

32�2
d2!
k3

r2
sin2 �

�
1C cosŒ2.kr � !t/�

�
Or (6.175)

and

hfield,far.t;x/ �
!�0

8�2
d2!
k2

r2
sin � cos � sin.kr � !t/ cos.kr � !t/ O®

D
!�0

16�2
d2!
k2

r2
sin � cos � sinŒ2.kr � !t/� O® (6.176)

respectively. I.e. to leading order, both the linear momentum density gfield and the angular
momentum density hfield fall off as � 1=r2 far away from the source region. This means
that when they are integrated over a spherical surface / r2 located at a large distance from
the source [cf. the last term in the LHS of formula (4.33) on page 60], there can be a net flux
so that the integrated momenta do not fall off with distance and can therefore be transported
all the way to infinity.

End of example 6.1C

BRadiation from a two-dimensional current distribution EXAMPLE 6 .2

As an example of a two-dimensional current distribution we consider a circular loop an-
tenna of radius a and calculate the far-zone Efar and Bfar fields from such an antenna. We
choose the Cartesian coordinate system x1x2x3 with its origin at the centre of the loop as
in figure 6.13.

According to equation (5.33b) on page 95 the Fourier component of the radiation part of
the magnetic field generated by an extended, monochromatic current source is
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Bfar
! D

�i�0eikjxj

4� jxj

Z
V 0

d3x0 e�ik �x0 j! � k (6.177)

In our case the generator produces a single frequency ! and we feed the antenna across a
small gap where the loop crosses the positive x1 axis. The circumference of the loop is
chosen to be exactly one wavelength � D 2�c=!. This means that the antenna current
oscillates in the form of a sinusoidal standing current wave around the circular loop with a
Fourier amplitude

j! D I0 cos'0ı.�0 � a/ı.z0/ O®0 (6.178)

For the spherical coordinate system of the field point, we recall from subsection F.1.2 on
page 215 that the following relations between the base vectors hold:

Or D sin � cos' Ox1 C sin � sin' Ox2 C cos � Ox3
O™ D cos � cos' Ox1 C cos � sin' Ox2 � sin � Ox3
O® D � sin' Ox1 C cos' Ox2

and

Ox1 D sin � cos' Or C cos � cos' O™ � sin' O®

Ox2 D sin � sin' Or C cos � sin' O™C cos' O®

Ox3 D cos � Or � sin � O™

With the use of the above transformations and trigonometric identities, we obtain for the
cylindrical coordinate system which describes the source:

O¡0 D cos'0 Ox1 C sin'0 Ox2

D sin � cos.'0 � '/Or C cos � cos.'0 � '/ O™C sin.'0 � '/ O®
(6.179)

O®0 D � sin'0 Ox1 C cos'0 Ox2

D � sin � sin.'0 � '/Or � cos � sin.'0 � '/ O™C cos.'0 � '/ O®
(6.180)

Oz0 D Ox3 D cos � Or � sin � O™ (6.181)

This choice of coordinate systems means that k D k Or and x0 D a O¡0 so that

k �x0 D ka sin � cos.'0 � '/ (6.182)

and

O®0 � k D kŒcos.'0 � '/ O™C cos � sin.'0 � '/ O®� (6.183)

With these expressions inserted, recalling that in cylindrical coordinates d3x0 D
�0d�0d'0dz0, the source integral becomesZ

V 0
d3x0 e�ik �x0 j! � k D a

Z 2�

0
d'0 e�ika sin � cos.'0�'/I0 cos'0 O®0 � k

D I0ak

Z 2�

0
e�ika sin � cos.'0�'/ cos.'0 � '/ cos'0 d'0 O™

C I0ak cos �
Z 2�

0
e�ika sin � cos.'0�'/ sin.'0 � '/ cos'0 d'0 O®

(6.184)

Utilising the periodicity of the integrands over the integration interval Œ0; 2��, introducing
the auxiliary integration variable '00 D '0 � ', and utilising standard trigonometric identit-
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ies, the first integral in the RHS of (6.184) can be rewrittenZ 2�

0
e�ika sin � cos'00 cos'00 cos.'00 C '/ d'00

D cos'
Z 2�

0
e�ika sin � cos'00 cos2 '00 d'00 C a vanishing integral

D cos'
Z 2�

0
e�ika sin � cos'00

�
1

2
C
1

2
cos 2'00

�
d'00

D
1

2
cos'

Z 2�

0
e�ika sin � cos'00 d'00

C
1

2
cos'

Z 2�

0
e�ika sin � cos'00 cos.2'00/ d'00

(6.185)

Analogously, the second integral in the RHS of (6.184) can be rewrittenZ 2�

0
e�ika sin � cos'00 sin'00 cos.'00 C '/ d'00

D
1

2
sin'

Z 2�

0
e�ika sin � cos'00 d'00

�
1

2
sin'

Z 2�

0
e�ika sin � cos'00 cos 2'00 d'00

(6.186)

As is well-known from the theory of Bessel functions ,

Jn.��/ D .�1/
nJn.�/

Jn.��/ D
ı�n

�

Z �

0
e�i� cos' cosn' d' D

ı�n

2�

Z 2�

0
e�i� cos' cosn' d'

(6.187)

which means that Z 2�

0
e�ika sin � cos'00 d'00 D 2�J0.ka sin �/Z 2�

0
e�ika sin � cos'00 cos 2'00 d'00 D �2�J2.ka sin �/

(6.188)

Putting everything together, we find thatZ
V 0

d3x0 e�ik �x0 j! � k D I� O™C I' O®

D I0ak� cos' ŒJ0.ka sin �/ � J2.ka sin �/� O™

C I0ak� cos � sin' ŒJ0.ka sin �/C J2.ka sin �/� O®

(6.189)

so that, in spherical coordinates where jxj D r ,

Bfar
! .x/ D

�i�0eikr

4�r

�
I� O™C I' O®

�
(6.190)

To obtain the desired physical magnetic field in the radiation (far) zone we must Fourier
transform back to t space and take the real part:
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Bfar.t;x/ D Re

(
�i�0e.ikr�!t

0/

4�r

�
I� O™C I' O®

�)
D

�0

4�r
sin.kr � !t 0/

�
I� O™C I' O®

�
D
I0ak�0

4r
sin.kr � !t 0/

�
cos' ŒJ0.ka sin �/ � J2.ka sin �/� O™

C cos � sin' ŒJ0.ka sin �/C J2.ka sin �/� O®
�

(6.191)

From this expression for the radiated B field, we can obtain the radiated E field with the
help of Maxwell’s equations.

End of example 6.2C

BThe fields from a uniformly moving chargeEXAMPLE 6 .3

In the special case of uniform motion,4 the localised charge moves in a field-free, isolated4 This problem was first solved by
OLIVER HEAVISIDE in 1888. space and we know that it will not be affected by any external forces. It will therefore move

uniformly in a straight line with the constant velocity v 0. This gives us the possibility to
extrapolate its position at the observation time, x0.t/, from its position at the retarded time,
x0.t 0/. Since the particle is not accelerated, Pv 0 � 0, the virtual simultaneous coordinate
x0 will be identical to the actual simultaneous coordinate of the particle at time t , i.e.
x0.t/ D x0.t/. As depicted in figure 6.6 on page 124, the angle between x � x0 and v 0 is
�0 while then angle between x � x0 and v 0 is � 0.

In the case of uniform velocity v 0, i.e. a velocity that does not change with time, any
physical observable f .t;x/ has the same value at time t and position x as it has at time
t C dt and position xC v 0dt . Hence,

f .t;x/ D f .t C dt;xC v 0dt / (6.192)

Taylor expanding f .tCdt;xCv 0dt ), keeping only linear terms in the infinitesimally small
dt , we obtain

f .t C dt;xC v 0dt / D f .t;x/C
@f

@t
dt C v 0 � rf dt CO

�
.dt /2

�
(6.193)

From this we conclude that for uniform motion

@f

@t
D �v 0 � rf (6.194)

Since f is an arbitrary physical observable, the time and space derivatives must be related
in the following way when they operate on any physical observable dependent on x.t/ [cf.
equation (1.34) on page 13]:

@

@t
D �v 0 � r (6.195)

Hence, the E and B fields can be obtained from formulæ (6.85) on page 124, with the
potentials given by equations (6.83) on page 123 as follows:
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E D �r� �
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D �r� �
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@v 0�
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v 0
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D �r� C
v 0

c

�
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(6.196a)

B D r �A D r �

�
v 0

c2
�

�
D r� �

v 0

c2
D �

v 0

c2
� r�

D
v 0

c2
�

��
v 0

c
� r�

�
v 0

c
� r�

�
D

v 0

c2
�

�
v 0˝ v 0

c2
� 13

�
� r�

D
v 0

c2
� E

(6.196b)

Here 13 D Oxi Oxi is the unit dyad and we used the fact that v 0 � v 0 � 0. What remains is
just to express r� in quantities evaluated at t and x.

From equation (6.83a) on page 123 and equation (6.114) on page 131 we find that

r� D
q0

4�"0
r

�
1

s

�
D �

q0

8�"0s3
r s2

D �
q0

4�"0s3

�
.x � x0/C

v 0

c
�

�
v 0

c
� .x � x0/

�� (6.197)

When this expression for r� is inserted into equation (6.196a) above, the following result

E.t;x/ D

�
v 0˝ v 0

c2
� 13

�
� r� D �

q0

8�"0s3

�
v 0˝ v 0

c2
� 13

�
� r s2

D
q0

4�"0s3

(
.x � x0/C

v 0

c
�

�
v 0

c
� .x � x0/

�

�
v 0

c

�
v 0

c
�.x � x0/

�
�

v 0˝ v 0

c2
�

�
v 0

c
�

�
v 0

c
� .x � x0/

��)

D
q0

4�"0s3

"
.x � x0/C

v 0

c

�
v 0

c
�.x � x0/

�
� .x � x0/

v02

c2

�
v 0

c

�
v 0

c
�.x � x0/

�#

D
q0

4�"0s3
.x � x0/

 
1 �

v02

c2

!

(6.198)

obtains. Of course, the same result also follows from equation (6.102) on page 128 with
Pv 0 � 0 inserted.

From equation (6.198) above we conclude that E is directed along the vector from the
simultaneous coordinate x0.t/ to the field (observation) coordinate x.t/. In a similar way,
the magnetic field can be calculated and one finds that

B.t;x/ D
�0q
0

4�s3

 
1 �

v02

c2

!
v 0 � .x � x0/ D

1

c2
v 0 � E (6.199)
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From these explicit formulae for the E and B fields and formula (6.113b) on page 130 for
s, we can discern the following cases:

1. v0 ! 0) E goes over into the Coulomb field ECoulomb

2. v0 ! 0) B goes over into the Biot-Savart field

3. v0 ! c ) E becomes dependent on �0
4. v0 ! c; sin �0 � 0) E! .1 � v02=c2/ECoulomb

5. v0 ! c; sin �0 � 1) E! .1 � v02=c2/�1=2ECoulomb

End of example 6.3C

BBremsstrahlung for low speeds and short acceleration timesEXAMPLE 6 .4

Calculate the bremsstrahlung when a charged particle, moving at a non-relativistic speed, is
accelerated or decelerated during an infinitely short time interval.

We approximate the velocity change at time t 0 D t0 by a delta function:

Pv 0.t 0/ D �v 0 ı.t 0 � t0/ (6.200)

which means that

�v 0.t0/ D

Z 1
�1

dt 0 Pv 0 (6.201)

Also, we assume v=c � 1 so that, according to formula (6.84) on page 124,

s �
ˇ̌
x � x0

ˇ̌
(6.202)

and, according to formula (6.101) on page 128,

x � x0 � x � x0 (6.203)

From the general expression (6.105) on page 129 we conclude that E ? B and that it
suffices to consider E �

ˇ̌
Efar

ˇ̌
. According to the ‘bremsstrahlung expression’ for Efar,

equation (6.123) on page 133,

E D
q0 sin � 0

4�"0c2 jx � x0j
�v0 ı.t 0 � t0/ (6.204)

In this simple case B �
ˇ̌
Bfar

ˇ̌
is given by

B D
E

c
(6.205)

Because of the Dirac ı behaviour in time, Fourier transforming expression (6.204) above
for E is trivial, yielding

E! D
q0 sin � 0

4�"0c2
1

2�

Z 1
�1

dt 0
�v 0ı.t 0 � t0/

jx � x0.t 0/j
ei!t 0

D
q0 sin � 0

8�2"0c2 jx � x0.t0/j
�v0.t0/ e

i!t0

(6.206)

We note that the magnitude of this Fourier component is independent of !. This is a con-
sequence of the infinitely short ‘impulsive step’ ı.t 0�t0/ in the time domain which produces
an infinite spectrum in the frequency domain.

The total radiation energy is given by the expression
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QU rad
D

Z 1
�1

dt 0
d QU rad

dt 0
D

Z 1
�1

dt 0
I
S 0

d2x0 On0 �
�

E �
B

�0

�
D

1

�0

I
S 0

d2x0
Z 1
�1

dt 0EB D
1

�0c

I
S 0

d2x0
Z 1
�1

dt 0E2

D "0c

I
S 0

d2x0
Z 1
�1

dt 0E2

(6.207)

According to Parseval’s identity [cf. equation (6.9) on page 106] the following equality
holds: Z 1

�1

dt 0E2 D 4�
Z 1
0

d! jE! j2 (6.208)

which means that the radiated energy in the frequency interval .!; ! C d!/ is

QU rad
! d! D 4�"0c

�I
S 0

d2x0 jE! j2
�

d! (6.209)

For our infinite spectrum, equation (6.206) on the facing page, we obtain

QU rad
! d! D

q0
2
.�v0/2

16�3"0c3

I
S 0

d2x0
sin2 � 0

jx � x0j2
d!

D
q0
2
.�v0/2

16�3"0c3

Z 2�

0
d'0

Z �

0
d� 0 sin � 0 sin2 � 0 d!

D
q0
2

3�"0c

�
�v0

c

�2 d!
2�

(6.210)

We see that the energy spectrum QU rad
! is independent of frequency !. This means that if we

would integrate it over all frequencies ! 2 Œ0;1/, a divergent integral would result.

In reality, all spectra have finite widths, with an upper cutoff limit set by the quantum
condition

}!max D
1

2
m.v0 C�v0/2 �

1

2
mv02 (6.211)

which expresses that the highest possible frequency !max in the spectrum is that for which
all kinetic energy difference has gone into one single field quantum (photon) with energy
}!max. If we adopt the picture that the total energy is quantised in terms of N! photons
radiated during the process, we find that

QU rad
! d!
}!

D dN! (6.212)

or, for an electron where q0 D � jej, where e is the elementary charge,

dN! D
e2

4�"0}c
2

3�

�
�v0

c

�2 d!
!
�

1

137

2

3�

�
�v0

c

�2 d!
!

(6.213)

where we used the value of the fine structure constant ˛ D e2=.4�"0}c/ � 1=137.

Even if the number of photons becomes infinite when ! ! 0, these photons have negligible
energies so that the total radiated energy is still finite.

End of example 6.4C
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RELATIVISTIC ELECTRODYNAMICS

We saw in chapter chapter 3 how the introduction of electrodynamic potentials
led, in a most natural way, to the existence of a characteristic, finite speed of
propagation of electromagnetic fields (and related quantities) in free space (va-
cuum) that equals the speed of light c D 1=

p
"0�0 and which can be considered

a constant of Nature. To take this finite speed of propagation of information into
account, and to ensure that our laws of physics be independent of any specific
coordinate frame, requires a treatment of electrodynamics in a relativistically
covariant (coordinate independent) form. This is the objective of this chapter.1

1 The Special Theory of Relativity,
by the physicist and philosopher
DAVID JOSEPH BOHM (1917–
1992), opens with the following
paragraph:

‘The theory of relativity
is not merely a scientific
development of great
importance in its own right.
It is even more significant
as the first stage of a
radical change in our basic
concepts, which began
in physics, and which is
spreading into other fields
of science, and indeed,
even into a great deal of
thinking outside of science.
For as is well known, the
modern trend is away
from the notion of sure
‘absolute’ truth, (i.e. one
which holds independently
of all conditions, contexts,
degrees, and types of
approximation etc.) and
toward the idea that a given
concept has significance
only in relation to suitable
broader forms of reference,
within which that concept
can be given its full
meaning.’

The technique we shall use to study relativity is the mathematical apparatus
developed for non-Euclidean spaces of arbitrary dimensions, here specialised to
four dimensions. It turns out that this theory of Riemannian spaces, derived for
more or less purely mathematical reasons only, is ideal for a formal description
of relativistic physics. For the simple case of the special theory of relativity ,
the mathematics is quite simple, whereas for the general theory of relativity it
becomes more complicated.

7.1 The special theory of relativity

An inertial system , or inertial reference frame , is a system of reference, or rigid
coordinate system, in which the law of inertia (Galileo’s law, Newton’s first
law) holds. In other words, an inertial system is a system in which free bodies
move uniformly and do not experience any acceleration. The special theory of
relativity describes how physical processes are interrelated when observed in
different inertial systems in uniform, rectilinear motion relative to each other
and is based on two postulates:

POSTULATE 7.1 (Relativity principle; POINCARÉ, 1905) All laws of physics
(except the laws of gravitation) are independent of the uniform translational
motion of the system on which they operate.

POSTULATE 7.2 (EINSTEIN, 1905) The velocity of light in empty space is in-
dependent of the motion of the source that emits the light.

153
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Figure 7.1: Two inertial systems †
and †0 in relative motion with ve-
locity v along the x D x0 axis. At
time t D t 0 D 0 the origin O 0 of
†0 coincided with the origin O of
†. At time t , the inertial system
†0 has been translated a distance vt
along the x axis in †. An event
represented by P.t; x; y; z/ in †
is represented by P.t 0; x0; y0; z0/
in†0.

P.t 0; x0; y0; z0/

vt

P.t; x; y; z/

z0

x x0

z

O O 0

† †0
y y0

v

A consequence of the first postulate is that all geometrical objects (vectors,
tensors) in an equation describing a physical process must transform in a covari-
ant manner, i.e. in the same way.

7.1.1 The Lorentz transformation

Let us consider two three-dimensional inertial systems † and †0 in free space.
They are in rectilinear motion relative to each other in such a way that †0 moves
with constant velocity v along the x axis of the † system. The times and the
spatial coordinates as measured in the two systems are t and .x; y; z/, and t 0

and .x0; y0; z0/, respectively. At time t D t 0 D 0 the origins O and O 0 and
the x and x0 axes of the two inertial systems coincide and at a later time t they
have the relative location as depicted in figure 7.1, referred to as the standard
configuration .

For convenience, let us introduce the two quantities

ˇ D
v

c
(7.1a)

 D
1q
1 � ˇ2

(7.1b)

where v D jv j. In the following, we shall make frequent use of these shorthand
notations.

As shown by Einstein, the two postulates of special relativity require that the
spatial coordinates and times as measured by an observer in † and †0, respect-
ively, are connected by the following transformation:

ct 0 D .ct � xˇ/ (7.2a)

x0 D .x � vt/ (7.2b)

y0 D y (7.2c)
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z0 D z (7.2d)

Taking the difference between the square of (7.2a) and the square of (7.2b) we
find that

c2t 02 � x02 D 2
�
c2t2 � 2xcˇt C x2ˇ2 � x2 C 2xvt � v2t2

�
D

1

1 �
v2

c2

�
c2t2

�
1 �

v2

c2

�
� x2

�
1 �

v2

c2

��

D c2t2 � x2

(7.3)

From equations (7.2) on the facing page we see that the y and z coordinates are
unaffected by the translational motion of the inertial system †0 along the x axis
of system†. Using this fact, we find that we can generalise the result in equation
(7.3) above to

c2t2 � x2 � y2 � z2 D c2t 02 � x02 � y02 � z02 (7.4)

which means that if a light wave is transmitted from the coinciding originsO and
O 0 at time t D t 0 D 0 it will arrive at an observer at .x; y; z/ at time t in† and an
observer at .x0; y0; z0/ at time t 0 in†0 in such a way that both observers conclude
that the speed (spatial distance divided by time) of light in vacuum is c. Hence,
the speed of light in † and †0 is the same. A linear coordinate transformation
which has this property is called a (homogeneous) Lorentz transformation .

7.1.2 Lorentz space

Let us introduce an ordered quadruple of real numbers, enumerated with the help
of upper indices � D 0; 1; 2; 3, where the zeroth component is ct (c is the speed
of light and t is time), and the remaining components are the components of the
ordinary R3 position vector x defined in equation (M.1) on page 233:

x� D .x0; x1; x2; x3/ D .ct; x; y; z/ � .ct;x/ (7.5)

In order that this quadruple x� represent a physical observable , it must transform
as (the component form of) a position four-vector (radius four-vector) in a real,
linear, four-dimensional vector space .2 We require that this four-dimensional

2 The British mathematician and
philosopher ALFRED NORTH
WHITEHEAD (1861–1947) writes
in his book The Concept of Nature:

‘I regret that it has been
necessary for me in this
lecture to administer
a large dose of four-
dimensional geometry. I do
not apologise, because I am
really not responsible for
the fact that Nature in its
most fundamental aspect is
four-dimensional. Things
are what they are. . . .’

space be a Riemannian space , i.e. a metric space where a ‘distance’ and a scalar
product are defined. In this space we therefore define a metric tensor , also known
as the fundamental tensor , which we denote by g�� .
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7.1.2.1 Radius four-vector in contravariant and covariant form

The position four-vector x� D .x0; x1; x2; x3/ D .ct;x/, as defined in equation
(7.5) on the previous page, is, by definition, the prototype of a contravariant
vector (or, more accurately, a vector in contravariant component form). To every
such vector there exists a dual vector . The vector dual to x� is the covariant
vector x�, obtained as

x� D g��x
� (7.6)

where the upper index � in x� is summed over and is therefore a dummy index
and may be replaced by another dummy index �, say. This summation process
is an example of index contraction and is often referred to as index lowering .

7.1.2.2 Scalar product and norm

The scalar product of x� with itself in a Riemannian space is defined as

g��x
�x� D x�x

� (7.7)

This scalar product acts as an invariant ‘distance’, or norm , in this space.
In order to put the physical property of Lorentz transformation invariance,

described by equation (7.4) on the preceding page, into a convenient mathemat-
ical framework, we perceive this invariance as the manifestation of the conser-
vation of the norm in a 4D Riemannian space.

7.1.2.3 Metric tensor

In L4 one can choose the metric tensor g�� to take the simple form

g�� D ��� D

8̂̂<̂
:̂
1 if � D � D 0

�1 if � D � D i D j D 1; 2; 3

0 if � ¤ �

(7.8)

or, in matrix representation,

.���/ D

0BBB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCCA (7.9)

i.e. a matrix with a main diagonal that has the sign sequence, or signature ,
fC;�;�;�g. As we see, the index lowering operation in our flat 4D space
L4 is nearly trivial.
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In matrix representation the lowering of the indices of x� becomes0BBB@
x0

x1

x2

x3

1CCCA D
0BBB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCCA
0BBB@
x0

x1

x2

x3

1CCCA D
0BBB@
x0

�x1

�x2

�x3

1CCCA (7.10)

I four-tensor notation, this can be written

x� D ���x
�
D .ct;�x/ (7.11)

Hence, if the metric tensor is defined according to expression (7.8) on the preced-
ing page, the covariant position four-vector x� is obtained from the contravariant
position four-vector x� simply by changing the sign of the last three compon-
ents. These components are referred to as the space components; the zeroth
component is referred to as the time component .

As we see, for this particular choice of metric, the scalar product of x� with
itself becomes

x�x
�
D .ct;x/ �.ct;�x/ D c2t2 � x2 � y2 � z2 (7.12)

which indeed is the desired Lorentz transformation invariance as required by
equation (7.12) above. Without changing the physics, one can alternatively
choose a signature f�;C;C;Cg. The latter has the advantage that the transition
from 3D to 4D becomes smooth, while it will introduce some annoying minus
signs in the theory. In current physics literature, the signature fC;�;�;�g
seems to be the most commonly used one. Note that our space, regardless of
signature chosen, will have an indefinite norm , i.e. a norm which can be positive
definite, negative definite or even zero. This means that we deal with a non-
Euclidean space and we call our four-dimensional space (or space-time) with
this property Lorentz space and denote it L4. A corresponding real, linear 4D
space with a positive definite norm which is conserved during ordinary rotations
is a Euclidean vector space . We denote such a space R4.

The L4 metric tensor equation (7.8) on the preceding page has a number of
interesting properties: firstly, we see that this tensor has a trace Tr��� D �2
whereas in R4, as in any vector space with definite norm, the trace equals the
space dimensionality. Secondly, we find, after trivial algebra, that the following
relations between the contravariant, covariant and mixed forms of the metric
tensor hold:

��� D ��� (7.13a)

��� D ��� (7.13b)

����
��
D ��� D ı

�
� (7.13c)

������ D �
�
� D ı

�
� (7.13d)
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Here we have introduced the 4D version of the Kronecker delta ı�� , a mixed
four-tensor of rank 2 that fulfils

ı�� D ı
�
� D

(
1 if � D �

0 if � ¤ �
(7.14)

Clearly, the matrix representation of this tensor is

.ı�� / D

0BBB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCCA (7.15)

i.e. the 4 � 4 unit matrix.

7.1.2.4 Invariant line element and proper time

The differential distance ds between the two points x� and x�C dx� in L4 can
be calculated from the Riemannian metric , given by the quadratic differential
form

ds2 D ���dx�dx� D dx�dx� D .dx0/2 � .dx1/2 � .dx2/2 � .dx3/2 (7.16)

where the metric tensor is as in equation (7.8) on page 156. As we see, this
form is indefinite as expected for a non-Euclidean space. The square root of this
expression is the invariant line element

ds D c dt

q

1 �
1

c2

24 dx
dt

1
!2
C

 
dx
dt

2
!2
C

 
dx
dt

3
!235

D c dt

r
1 �

1

c2

�
.vx/

2
C .vy/

2
C .vz/

2
�
D c dt

s
1 �

v2

c2

D c dt
q
1 � ˇ2 D c

dt

D c d�

(7.17)

where we introduced

d� D dt= (7.18)

Since d� measures the time when no spatial changes are present, i.e. by a clock
that is fixed relative the given frame of reference, it is called the proper time .
As equation (7.18) above shows, the proper time of a moving object is always
less than the corresponding interval in the rest system. One may say that moving
clocks go slower than those at rest.
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Expressing the property of the Lorentz transformation described by equa-
tions (7.4) on page 155 in terms of the differential interval ds and comparing
with equation (7.16) on the preceding page, we find that

ds2 D c2dt2 � dx2 � dy2 � dz2 (7.19)

is invariant, i.e. remains unchanged, during a Lorentz transformation. Con-
versely, we may say that every coordinate transformation which preserves this
differential interval is a Lorentz transformation.

If in some inertial system

dx2 C dy2 C dz2 < c2dt2 (7.20)

ds is a time-like interval , but if

dx2 C dy2 C dz2 > c2dt2 (7.21)

ds is a space-like interval , whereas

dx2 C dy2 C dz2 D c2dt2 (7.22)

is a light-like interval ; we may also say that in this case we are on the light cone .
A vector which has a light-like interval is called a null vector . The time-like,
space-like or light-like aspects of an interval ds are invariant under a Lorentz
transformation. I.e. it is not possible to change a time-like interval into a space-
like one or vice versa via a Lorentz transformation.

7.1.2.5 Four-vector fields

Any quantity which relative to any coordinate system has a quadruple of real
numbers and transforms in the same way as the position four-vector x� does, is
called a four-vector . In analogy with the notation for the position four-vector we
introduce the notation a� D .a0; a/ for a general contravariant four-vector field
in L4 and find that the ‘lowering of index’ rule, formula (7.6) on page 156, for
such an arbitrary four-vector yields the dual covariant four-vector field

a�.x
�/ D ���a

�.x�/ D .a0.x�/;�a.x�// (7.23)

The scalar product between this four-vector field and another one b�.x�/ is

���a
�.x�/b�.x�/ D .a0;�a/ �.b0;b/ D a0b0 � a �b (7.24)

which is a scalar field , i.e. an invariant scalar quantity ˛.x�/ which depends on
time and space, as described by x� D .ct; x; y; z/.
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7.1.2.6 The Lorentz transformation matrix

Introducing the transformation matrix

�
ƒ��

�
D

0BBB@
 �ˇ 0 0

�ˇ  0 0

0 0 1 0

0 0 0 1

1CCCA (7.25)

the linear Lorentz transformation (7.2) on page 154, i.e. the coordinate trans-
formation x� ! x0� D x0�.x0; x1; x2; x3/, from one inertial system † to
another inertial system †0 in the standard configuration, can be written

x0� D ƒ��x
� (7.26)

7.1.2.7 The Lorentz group

It is easy to show, by means of direct algebra, that two successive Lorentz trans-
formations of the type in equation (7.26) above, and defined by the speed para-
meters ˇ1 and ˇ2, respectively, correspond to a single transformation with speed
parameter

ˇ D
ˇ1 C ˇ2

1C ˇ1ˇ2
(7.27)

This means that the nonempty set of Lorentz transformations constitutes a closed
algebraic structure with a binary operation (multiplication) that is associative .
Furthermore, one can show that this set possesses at least one identity element
and at least one inverse element . In other words, this set of Lorentz transform-
ations constitutes a mathematical group . However tempting, we shall not make
any further use of group theory .

7.1.3 Minkowski space

Specifying a point x� D .x0; x1; x2; x3/ in 4D space-time is a way of saying
that ‘something takes place at a certain time t D x0=c and at a certain place
.x; y; z/ D .x1; x2; x3/’. Such a point is therefore called an event . The tra-
jectory for an event as a function of time and space is called a world line . For
instance, the world line for a light ray that propagates in vacuum (free space) is
the trajectory x0 D x1.
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�

�

X 00

x01

x1

X0 Figure 7.2: Minkowski space can
be considered an ordinary Euc-
lidean space where a Lorentz trans-
formation from .x1;X0 D ict/
to .x01;X 00 D ict 0/ corresponds
to an ordinary rotation through an
angle � . This rotation leaves

the Euclidean distance
�
x1
�2
C�

X0
�2
D x2 � c2t2 invariant.

Introducing

X0 D ix0 D ict (7.28a)

X1 D x1 (7.28b)

X2 D x2 (7.28c)

X3 D x3 (7.28d)

dS D ids (7.28e)

where i D
p
�1, we see that equation (7.16) on page 158 transforms into

dS2 D .dX0/2 C .dX1/2 C .dX2/2 C .dX3/2 (7.29)

i.e. into a 4D differential form that is positive definite just as is ordinary 3D
Euclidean space R3. We shall call the 4D Euclidean space constructed in this
way the Minkowski space M4.3 3 The fact that our Riemannian

space can be transformed in this
way into a Euclidean one means
that it is, strictly speaking, a
pseudo-Riemannian space .

As before, it suffices to consider the simplified case where the relative motion
between † and †0 is along the x axes. Then

dS2 D .dX0/2 C .dX1/2 D .dX0/2 C .dx1/2 (7.30)

and we consider the X0 and X1 D x1 axes as orthogonal axes in a Euclidean
space. As in all Euclidean spaces, every interval is invariant under a rotation of
the X0x1 plane through an angle � into X 00x01:

X 00 D �x1 sin � CX0 cos � (7.31a)

x01 D x1 cos � CX0 sin � (7.31b)

See figure 7.2.
If we introduce the angle ' D �i� , often called the rapidity or the Lorentz

boost parameter , and transform back to the original space and time variables by
using equation (7.28) above backwards, we obtain

ct 0 D �x sinh' C ct cosh' (7.32a)

x0 D x cosh' � ct sinh' (7.32b)
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Figure 7.3: Minkowski diagram
depicting geometrically the trans-
formation (7.32) from the unprimed
system to the primed system. Here
w denotes the world line for an
event and the line x0 D x1 ,
x D ct the world line for a light
ray in vacuum. Note that the event
P is simultaneous with all points
on the x1 axis (t D 0), including
the origin O . The event P 0, which
is simultaneous with all points on
the x0 axis, including O 0 D O ,
to an observer at rest in the primed
system, is not simultaneous withO
in the unprimed system but occurs
there at time jP �P 0j =c.

x0 D ct

ct

x01

x00

x1 D x
O D O 0

'

P

P 0

'

x0 D x1

w†

which are identical to the original transformation equations (7.2) on page 154 if
we let

sinh' D ˇ (7.33a)

cosh' D  (7.33b)

tanh' D ˇ (7.33c)

It is therefore possible to envisage the Lorentz transformation as an ‘ordinary’
rotation in the 4D Euclidean space M4. Such a rotation in M4 corresponds to a
coordinate change in L4 as depicted in figure 7.3. Equation (7.27) on page 160
for successive Lorentz transformation then corresponds to the tanh addition for-
mula

tanh.'1 C '2/ D
tanh'1 C tanh'2
1C tanh'1 tanh'2

(7.34)

The use of ict and M4, which leads to the interpretation of the Lorentz trans-
formation as an ‘ordinary’ rotation, may, at best, be illustrative, but is not very
physical. Besides, if we leave the flat L4 space and enter the curved space of
general relativity, the ‘ict ’ trick will turn out to be an impasse. Let us therefore
immediately return to L4 where all components are real valued.

7.2 Covariant classical mechanics

The invariance of the differential ‘distance’ ds in L4, and the associated differ-
ential proper time d� [see equation (7.17) on page 158] allows us to define the
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four-velocity

u� D
dx
d�

�

D .c; v/ D

0BBBB@ cs
1 �

v2

c2

;
vs
1 �

v2

c2

1CCCCA D .u0;u/ (7.35)

which, when multiplied with the scalar invariant m0 yields the four-momentum

p� D m0
dx
d�

�

D m0.c; v/ D

0BBBB@ m0cs
1 �

v2

c2

;
m0vs
1 �

v2

c2

1CCCCA D .p0;p/ (7.36)

From this we see that we can write

p D mv (7.37)

where

m D m0 D
m0s
1 �

v2

c2

(7.38)

We can interpret this such that the Lorentz covariance implies that the mass-like
term in the ordinary 3D linear momentum is not invariant. A better way to look
at this is that p D mv D m0v is the covariantly correct expression for the
kinetic three-momentum.

Multiplying the zeroth (time) component of the four-momentum p� by the
scalar invariant c, we obtain

cp0 D m0c
2
D

m0c
2s

1 �
v2

c2

D mc2 (7.39)

Since this component has the dimension of energy and is the result of a Lorentzco-
variant description of the motion of a particle with its kinetic momentum de-
scribed by the spatial components of the four-momentum, equation (7.36) above,
we interpret cp0 as the total energy E. Hence,

cp� D .cp0; cp/ D .E; cp/ (7.40)

Scalar multiplying this four-vector with itself, we obtain

cp�cp
�
D c2���p

�p� D c2Œ.p0/2 � .p1/2 � .p2/2 � .p3/2�

D .E;�cp/ �.E; cp/ D E2 � c2p2

D
.m0c

2/2

1 � v2

c2

�
1 �

v2

c2

�
D .m0c

2/2
(7.41)
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Since this is an invariant, this equation holds in any inertial frame, particularly
in the frame where p D 0 and there we have

E D m0c
2 (7.42)

This is probably the most famous formula in physics history.

7.3 Covariant classical electrodynamics

Let us consider a charge density which in its rest inertial system is denoted by
�0. The four-vector (in contravariant component form)

j� D �0
dx�

d�
D �0u

�
D �0.c; v/ D .�c; �v/ (7.43)

with

� D �0 (7.44)

is the four-current .
The contravariant form of the four-del operator @� D @=@x� is defined in

equation (M.52) on page 242 and its covariant counterpart @� D @=@x� in equa-
tion (M.53) on page 242, respectively. As is shown in example M.9 on page 258,
the d’Alembert operator is the scalar product of the four-del with itself:

�2 D @�@� D @�@
�
D

1

c2
@2

@t2
� r

2 (7.45)

Since it has the characteristics of a four-scalar, the d’Alembert operator is in-
variant and, hence, the homogeneous wave equation �2f .t;x/ D 0 is Lorentz
covariant.

7.3.1 The four-potential

If we introduce the four-potential

A� D

�
ˆ

c
;A

�
(7.46)

where ˆ is the scalar potential and A the vector potential, defined in section 3.3
on page 35, we can write the uncoupled inhomogeneous wave equations, equa-
tions (3.17) on page 37, in the following compact (and covariant) way:

�2A� D �0j
� (7.47)
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With the help of the above, we can formulate our electrodynamic equations
covariantly. For instance, the covariant form of the equation of continuity , equa-
tion (4.20) on page 58 is

@�j
�
D 0 (7.48)

and the Lorenz-Lorentz gauge condition , equation (3.16) on page 37, can be
written

@�A
�
D 0 (7.49)

The Lorenz-Lorentz gauge is sometimes called the covariant gauge . The gauge
transformations (3.50) on page 43 in covariant form are

A� 7! A0� D A� C @��.x�/ (7.50)

If only one dimension Lorentz contracts (for instance, due to relative motion
along the x direction), a 3D spatial volume element transforms according to

dV D d3x D
1


dV0 D dV0

q
1 � ˇ2 D dV0

s
1 �

v2

c2
(7.51)

where dV0 denotes the volume element as measured in the rest system, then from
equation (7.44) on the preceding page we see that

�dV D �0dV0 (7.52)

i.e. the charge in a given volume is conserved. We can therefore conclude that
the elementary electric charge is a universal constant .

7.3.2 The Liénard-Wiechert potentials

Let us now solve the the inhomogeneous wave equations (3.17) on page 37 in
vacuum for the case of a well-localised charge q0 at a source point defined by
the position four-vector x0� � .x00 D ct 0; x01; x02; x03/. The field point (obser-
vation point) is denoted by the position four-vector x� D .x0 D ct; x1; x2; x3/.

In the rest system we know that the solution is simply

.A�/0 D

�
ˆ

c
;A

�
vD0

D

�
q0

4�"0

1

c jx � x0j0
; 0

�
(7.53)

where jx � x0j0 is the usual distance from the source point to the field point,
evaluated in the rest system (signified by the index ‘0’).

Let us introduce the relative position four-vector between the source point
and the field point:

R� D x� � x0� D
�
c.t � t 0/;x � x0

�
(7.54)



Draft version released 18th December 2012 at 5:36 CET—Downloaded from http://www.plasma.uu.se/CED/Book
Sheet: 188 of 298.

DRAFT

166 j 7. RELATIVISTIC ELECTRODYNAMICS

Scalar multiplying this relative four-vector with itself, we obtain

R�R� D
�
c.t � t 0/;x � x0/ �.c.t � t 0/;�.x � x0

�
D c2.t � t 0/2 �

ˇ̌
x � x0

ˇ̌2
(7.55)

We know that in vacuum the signal (field) from the charge q0 at x0� propag-
ates to x� with the speed of light c so thatˇ̌

x � x0
ˇ̌
D c.t � t 0/ (7.56)

Inserting this into equation (7.55) above, we see that

R�R� D 0 (7.57)

or that equation (7.54) on the preceding page can be written

R� D .
ˇ̌
x � x0

ˇ̌
;x � x0/ (7.58)

Now we want to find the correspondence to the rest system solution, equa-
tion (7.53) on the previous page, in an arbitrary inertial system. We note from
equation (7.35) on page 163 that in the rest system

.u�/0 D

0BBBB@ cs
1 �

v2

c2

;
vs
1 �

v2

c2

1CCCCA
vD0

D .c; 0/ (7.59)

and

.R�/0 D .
ˇ̌
x � x0

ˇ̌
;x � x0/0 D .

ˇ̌
x � x0

ˇ̌
0
; .x � x0/0/ (7.60)

As all scalar products, u�R� is invariant, which means that we can evaluate it
in any inertial system and it will have the same value in all other inertial systems.
If we evaluate it in the rest system the result is:

u�R� D
�
u�R�

�
0
D .u�/0.R�/0

D .c; 0/ �.
ˇ̌
x � x0

ˇ̌
0
;�.x � x0/0/ D c

ˇ̌
x � x0

ˇ̌
0

(7.61)

We therefore see that the expression

A� D
q0

4�"0

u�

cu�R�
(7.62)

subject to the condition R�R� D 0 has the proper transformation properties
(proper tensor form) and reduces, in the rest system, to the solution equation
(7.53) on the previous page. It is therefore the correct solution, valid in any
inertial system.
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According to equation (7.35) on page 163 and equation (7.58) on the preced-
ing page

u�R� D .c; v/ �
�ˇ̌

x � x0
ˇ̌
;�.x � x0/

�
D 

�
c
ˇ̌
x � x0

ˇ̌
� v �.x � x0/

�
(7.63)

Generalising expression (7.1a) on page 154 to vector form:

ˇ D ˇ Ov
def
�

v

c
(7.64)

and introducing

s
def
�
ˇ̌
x � x0

ˇ̌
�

v �.x � x0/

c
�
ˇ̌
x � x0

ˇ̌
� ˇ �.x � x0/ (7.65)

we can write

u�R� D cs (7.66)

and

u�

cu�R�
D

�
1

cs
;

v

c2s

�
(7.67)

from which we see that the solution (7.62) can be written

A�.x�/ D
q0

4�"0

�
1

cs
;

v

c2s

�
D

�
ˆ

c
;A

�
(7.68)

where in the last step the definition of the four-potential, equation (7.46) on
page 164, was used. Writing the solution in the ordinary 3D way, we conclude
that for a very localised charge volume, moving relative an observer with a ve-
locity v , the scalar and vector potentials are given by the expressions

ˆ.t;x/ D
q0

4�"0

1

s
D

q0

4�"0

1

jx � x0j � ˇ �.x � x0/
(7.69a)

A.t;x/ D
q0

4�"0c2
v

s
D

q0

4�"0c2
v

jx � x0j � ˇ �.x � x0/
(7.69b)

These potentials are the Liénard-Wiechert potentials that we derived in a more
complicated and restricted way in subsection 6.5.1 on page 123.

7.3.3 The electromagnetic field tensor

Consider a vectorial (cross) product c between two ordinary vectors a and b:

c D a � b D �ijkaibj Oxk

D .a2b3 � a3b2/Ox1 C .a3b1 � a1b3/Ox2 C .a1b2 � a2b1/Ox3

(7.70)
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We notice that the kth component of the vector c can be represented as

ck D aibj � aj bi D cij D �cj i ; i; j ¤ k (7.71)

In other words, the pseudovector c D a � b can be considered as an antisym-
metric tensor of rank two. The same is true for the curl operator r� operating
on a polar vector. For instance, the Maxwell equation

r � E D �
@B

@t
(7.72)

can in this tensor notation be written
@Ej

@xi
�
@Ei

@xj
D �

@Bij

@t
(7.73)

We know from chapter chapter 3 that the fields can be derived from the elec-
tromagnetic potentials in the following way:

B D r �A (7.74a)

E D �rˆ �
@A

@t
(7.74b)

In component form, this can be written

Bij D
@Aj

@xi
�
@Ai

@xj
D @iAj � @jAi (7.75a)

Ei D �
@ˆ

@xi
�
@Ai

@t
D �@iˆ � @tAi (7.75b)

From this, we notice the clear difference between the axial vector (pseudovector)
B and the polar vector (‘ordinary vector’) E.

Our goal is to express the electric and magnetic fields in a tensor form where
the components are functions of the covariant form of the four-potential, equa-
tion (7.46) on page 164:

A� D

�
ˆ

c
;A

�
(7.76)

Inspection of (7.76) and equation (7.75) above makes it natural to define the
four-tensor

F �� D
@A�

@x�
�
@A�

@x�
D @�A� � @�A� (7.77)

This anti-symmetric (skew-symmetric), four-tensor of rank 2 is called the elec-
tromagnetic field tensor or the Faraday tensor . In matrix representation, the
contravariant field tensor can be written

.F ��/ D

0BBB@
0 �Ex=c �Ey=c �Ez=c

Ex=c 0 �Bz By

Ey=c Bz 0 �Bx

Ez=c �By Bx 0

1CCCA (7.78)
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We note that the field tensor is a sort of four-dimensional curl of the four-
potential vector A�.

The covariant field tensor is obtained from the contravariant field tensor in
the usual manner by index lowering

F�� D ������F
��
D @�A� � @�A� (7.79)

which in matrix representation becomes

�
F��

�
D

0BBB@
0 Ex=c Ey=c Ez=c

�Ex=c 0 �Bz By

�Ey=c Bz 0 �Bx

�Ez=c �By Bx 0

1CCCA (7.80)

Comparing formula (7.80) above with formula (7.78) on the facing page we
see that the covariant field tensor is obtained from the contravariant one by a
transformation E! �E.

That the two Maxwell source equations can be written

@�F
��
D �0j

� (7.81)

is immediately observed by explicitly solving this covariant equation. Setting
� D 0, corresponding to the first/leftmost column in the matrix representation
of the covariant component form of the electromagnetic field tensor, F �� , i.e.
equation (7.78) on the preceding page, we see that

@F 00

@x0
C
@F 10

@x1
C
@F 20

@x2
C
@F 30

@x3
D 0C

1

c

�
@Ex

@x
C
@Ey

@y
C
@Ez

@z

�
D
1

c
r �E D �0j

0
D �0c�

(7.82)

or, equivalently (recalling that "0�0 D 1=c2),

r �E D
�

"0
(7.83)

which we recognise as the Maxwell source equation for the electric field, equa-
tion (2.1a) on page 19.

For � D 1 [the second column in equation (7.78) on the preceding page],
equation (7.81) above yields

@F 01

@x0
C
@F 11

@x1
C
@F 21

@x2
C
@F 31

@x3
D �

1

c2
@Ex

@t
C 0C

@Bz

@y
�
@By

@z

D �0j
1
D �0�vx

(7.84)

This result can be rewritten as

@Bz

@y
�
@By

@z
� "0�0

@Ex

@t
D �0jx (7.85)
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or, equivalently, as

.r � B/x D �0jx C "0�0
@Ex

@t
(7.86)

and similarly for � D 2; 3. In summary, we can write the result in three-vector
form as

r � B D �0j.t;x/C "0�0
@E

@t
(7.87)

which we recognise as the Maxwell source equation for the magnetic field, equa-
tion (2.1d) on page 19.

With the help of the fully antisymmetric pseudotensor of rank 4

����� D

8̂̂<̂
:̂
1 if �; �; �; � is an even permutation of 0,1,2,3

0 if at least two of �; �; �; � are equal

�1 if �; �; �; � is an odd permutation of 0,1,2,3

(7.88)

which can be viewed as a 4D (rank 4) extension of the Levi-Civita rank 3
pseudotensor, formula (M.21) on page 237, we can introduce the dual electro-
magnetic tensor

?F �� D
1

2
�����F�� D �

?F �� (7.89)

with the further property

?
�
?F ��

�
D �F �� (7.90)

In matrix representation the dual field tensor is

�
?F ��

�
D

0BBB@
0 �Bx �By �Bz

Bx 0 Ez=c �Ey=c

By �Ez=c 0 Ex=c

Bz Ey=c �Ex=c 0

1CCCA (7.91)

i.e. the dual field tensor is obtained from the ordinary field tensor by the duality
transformation E! cB and B! �E=c.

The covariant form of the two Maxwell field equations

r � E D �
@B

@t
(7.92)

r �B D 0 (7.93)

can then be written

@�
?F �� D 0 (7.94)
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Explicit evaluation shows that this corresponds to (no summation!)

@�F�� C @�F�� C @�F�� D 0 (7.95)

sometimes referred to as the Jacobi identity . Hence, equation (7.81) on page 169
and equation (7.95) above constitute Maxwell’s equations in four-dimensional
formalism.

It is interesting to note that equation (7.81) on page 169 and

@�
?F �� D �0j

�
m (7.96)

where jm is the magnetic four-current , represent the covariant form of Dirac’s
symmetrised Maxwell equations (2.2) on page 20.
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8

ELECTROMAGNETIC FIELDS AND

PARTICLES

In previous chapters, we calculated the electromagnetic fields and potentials
from arbitrary, but prescribed distributions of charges and currents. In this
chapter we first study the opposite situation, viz., the dynamics of charged particles
in arbitrary, but prescribed electromagnetic fields. Then we go on to consider the
general problem of interaction between electric and magnetic fields and electric-
ally charged particles. The analysis is based on Lagrangian and Hamiltonian
methods, is fully covariant, and yields results which are relativistically correct.

8.1 Charged particles in an electromagnetic field

We first establish a relativistically correct theory describing the motion of charged
particles in prescribed electric and magnetic fields. From these equations we
may then calculate the charged particle dynamics in the most general case.

8.1.1 Covariant equations of motion

We will show that for our problem we can derive the correct equations of motion
by using in four-dimensional L4 a function with similar properties as a Lag-
range function in 3D and then apply a variational principle. We will also show
that we can find a Hamiltonian-type function in 4D and solve the corresponding
Hamilton-type equations to obtain the correct covariant formulation of classical
electrodynamics.

8.1.1.1 Lagrangian formalism

In analogy with particle dynamics in 3D Euclidean space, we introduce a gener-
alised 4D action

S4 D

Z
L4.x

�; u�/ d� (8.1)
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where d� is the proper time defined via equation (7.17) on page 158, and L4
acts as a kind of generalisation to the common 3D Lagrangian. As a result, the
variational principle

ıS4 D ı

Z �1

�0

L4.x
�; u�/ d� D 0 (8.2)

with fixed endpoints �0; �1 must be fulfilled. We require that L4 is a scalar in-
variant which does not contain higher than the second power of the four-velocity
u� in order that the resulting equations of motion be linear.

According to formula (M.86) on page 249 the ordinary 3D Lagrangian is
the difference between the kinetic and potential energies. A free particle has
only kinetic energy. If the particle mass is m0 then in 3D the kinetic energy is
m0v

2=2. This suggests that in 4D the Lagrangian for a free particle should be

Lfree
4 D

1

2
m0u

�u� (8.3)

Again drawing inferences from analytical mechanics in 3D, we introduce a gen-
eralised interaction between the particles and the electromagnetic field with the
help of the four-potential given by equation (7.76) on page 168 in the following
way

L4 D
1

2
m0u

�u� C qu�A
�.x�/ (8.4)

We call this the four-Lagrangian and shall now show how this function, together
with the variation principle, formula (8.2), yields Lorentz covariant results which
are physically correct.

The variation principle (8.2) with the 4D Lagrangian (8.4) inserted, leads to

ıS4 D ı

Z �1

�0

�m0
2
u�u� C qu

�A�.x
�/
�

d�

D

Z �1

�0

�
m0

2

@.u�u�/

@u�
ıu� C q

�
A�ıu

�
C u�

@A�

@x�
ıx�

��
d�

D

Z �1

�0

�
m0u�ıu

�
C q

�
A�ıu

�
C u�@�A�ıx

�
��

d� D 0

(8.5)

According to equation (7.35) on page 163, the four-velocity is

u� D
dx
d�

�

(8.6)

which means that we can write the variation of u� as a total derivative with
respect to � :

ıu� D ı

�
dx
d�

��
D

d
d�
.ıx�/ (8.7)
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Inserting this into the first two terms in the last integral in equation (8.5) on the
facing page, we obtain

ıS4 D

Z �1

�0

�
m0u�

d
d�
.ıx�/C qA�

d
d�
.ıx�/C qu�@�A�ıx

�

�
d� (8.8)

Partial integration in the two first terms in the right hand member of (8.8) gives

ıS4 D

Z �1

�0

�
�m0

du�
d�

ıx� � q
dA�
d�

ıx� C qu�@�A�ıx
�

�
d� (8.9)

where the integrated parts do not contribute since the variations at the endpoints
vanish. A change of irrelevant summation index from� to � in the first two terms
of the right hand member of (8.9) yields, after moving the ensuing common
factor ıx� outside the parenthesis, the following expression:

ıS4 D

Z �1

�0

�
�m0

du�
d�
� q

dA�
d�
C qu�@�A�

�
ıx� d� (8.10)

Applying well-known rules of differentiation and the expression (7.35) for
the four-velocity, we can express dA�=d� as follows:

dA�
d�
D
@A�

@x�
dx�

d�
D @�A�u

� (8.11)

By inserting this expression (8.11) into the second term in right-hand member of
equation (8.10) above, and noting the common factor qu� of the resulting term
and the last term, we obtain the final variational principle expression

ıS4 D

Z �1

�0

�
�m0

du�
d�
C qu�

�
@�A� � @�A�

��
ıx� d� (8.12)

Since, according to the variational principle, this expression shall vanish and ıx�

is arbitrary between the fixed end points �0 and �1, the expression inside
� �

in
the integrand in the right hand member of equation (8.12) above must vanish.
In other words, we have found an equation of motion for a charged particle in a
prescribed electromagnetic field:

m0
du�
d�
D qu�

�
@�A� � @�A�

�
(8.13)

With the help of formula (7.79) on page 169 for the covariant component form
of the field tensor, we can express this equation in terms of the electromagnetic
field tensor in the following way:

m0
du�
d�
D qu�F�� (8.14)

This is the sought-for covariant equation of motion for a particle in an electro-
magnetic field. It is often referred to as the Minkowski equation . As the reader
may easily verify, the spatial part of this 4-vector equation is the covariant (re-
lativistically correct) expression for the Newton-Lorentz force equation .
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8.1.1.2 Hamiltonian formalism

The usual Hamilton equations for a 3D space are given by equation (M.98) on
page 250 in appendix M on page 231. These six first-order partial differential
equations are

@H

@pi
D

dqi
dt

(8.15a)

@H

@qi
D �

dpi
dt

(8.15b)

where H.pi ; qi ; t / D pi Pqi �L.qi ; Pqi ; t / is the ordinary 3D Hamiltonian, qi is a
generalised coordinate and pi is its canonically conjugate momentum .

We seek a similar set of equations in 4D space. To this end we introduce a
canonically conjugate four-momentum p� in an analogous way as the ordinary
3D conjugate momentum

p� D
@L4

@u�
(8.16)

and utilise the four-velocity u�, as given by equation (7.35) on page 163, to
define the four-Hamiltonian

H4 D p
�u� � L4 (8.17)

With the help of these, the position four-vector x�, considered as the generalised
four-coordinate , and the invariant line element ds, defined in equation (7.17) on
page 158, we introduce the following eight partial differential equations:

@H4

@p�
D

dx�
d�

(8.18a)

@H4

@x�
D �

dp�
d�

(8.18b)

which form the four-dimensional Hamilton equations .
Our strategy now is to use equation (8.16) above and equations (8.18) above

to derive an explicit algebraic expression for the canonically conjugate mo-
mentum four-vector. According to equation (7.40) on page 163, c times a four-
momentum has a zeroth (time) component which we can identify with the total
energy. Hence we require that the component p0 of the conjugate four-momentum
vector defined according to equation (8.16) above be identical to the ordinary 3D
Hamiltonian H divided by c and hence that this cp0 solves the Hamilton equa-
tions, equations (8.15) above.1 This latter consistency check is left as an exercise1 Recall that in 3D, the Hamilto-

nian equals the total energy. to the reader.
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Using the definition of H4, equation (8.17) on the preceding page, and the
expression for L4, equation (8.4) on page 174, we obtain

H4 D p
�u� � L4 D p

�u� �
1

2
m0u

�u� � qu�A
�.x�/ (8.19)

Furthermore, from the definition (8.16) of the canonically conjugate four-mo-
mentum p�, we see that

p� D
@L4

@u�
D

@

@u�

�
1

2
m0u

�u� C qu�A
�.x�/

�
D m0u

�
C qA� (8.20)

Inserting this into (8.19), we obtain

H4 D m0u
�u� C qA

�u� �
1

2
m0u

�u� � qu
�A�.x

�/ D
1

2
m0u

�u� (8.21)

Since the four-velocity scalar-multiplied by itself is u�u� D c2, we clearly
see from equation (8.21) above that H4 is indeed a scalar invariant, whose value
is simply

H4 D
m0c

2

2
(8.22)

However, at the same time (8.20) provides the algebraic relationship

u� D
1

m0
.p� � qA�/ (8.23)

and if this is used in (8.21) to eliminate u�, one gets

H4 D
m0

2

�
1

m0
.p� � qA�/

1

m0

�
p� � qA�

��
D

1

2m0
.p� � qA�/

�
p� � qA�

�
D

1

2m0

�
p�p� � 2qA

�p� C q
2A�A�

�
(8.24)

That this four-Hamiltonian yields the correct covariant equation of motion can
be seen by inserting it into the four-dimensional Hamilton equations (8.18) and
using the relation (8.23):

@H4

@x�
D �

q

m0
.p� � qA�/

@A�

@x�

D �
q

m0
m0u

� @A�

@x�

D �qu�
@A�

@x�

D �
dp�
d�
D �m0

du�
d�
� q

@A�

@x�
u�

(8.25)
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where in the last step equation (8.20) on the preceding page was used. Rearran-
ging terms, and using equation (7.79) on page 169, we obtain

m0
du�
d�
D qu�

�
@�A� � @�A�

�
D qu�F�� (8.26)

which is identical to the covariant equation of motion equation (8.14) on page 175.
We can therefore safely conclude that the Hamiltonian in question yields correct
results.

Recalling expression (7.46) on page 164 for the four-potential, and repres-
enting the canonically conjugate four-momentum as p� D .p0;p/, we obtain
the following scalar products:

p�p� D .p
0/2 � .p/2 (8.27a)

A�p� D
1

c
ˆp0 � .p �A/ (8.27b)

A�A� D
1

c2
ˆ2 � .A/2 (8.27c)

Inserting these explicit expressions into equation (8.24) on the preceding page,
and using the fact that H4 is equal to the scalar value m0c2=2, as derived in
equation (8.22) on the previous page, we obtain the equation

m0c
2

2
D

1

2m0

�
.p0/2 � .p/2 �

2

c
qˆp0 C 2q.p �A/C

q2

c2
ˆ2 � q2.A/2

�
(8.28)

which is a second-order algebraic equation in p0:

.p0/2 �
2q

c
ˆp0 �

�
.p/2 � 2qp �AC q2.A/2

�„ ƒ‚ …
.p�qA/2

C
q2

c2
ˆ2 �m20c

2
D 0 (8.29)

with two possible solutions

p0 D
q

c
ˆ˙

q
.p � qA/2 Cm20c

2 (8.30)

Since the zeroth component (time component) p0 of a four-momentum vector
p� multiplied by c represents the energy [cf. equation (7.40) on page 163], the
positive solution in equation (8.30) above must be identified with the ordinary
Hamilton function H divided by c. Consequently,

H � cp0 D qˆC c

q
.p � qA/2 Cm20c

2 (8.31)

is the ordinary 3D Hamilton function for a charged particle moving in scalar and
vector potentials associated with prescribed electric and magnetic fields.
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The ordinary Lagrange and Hamilton functions L and H are related to each
other by the 3D transformation [cf. the 4D transformation (8.17) between L4
and H4]

L D p � v �H (8.32)

Using the the explicit expressions given by equation (8.31) and equation (8.32),
we obtain the explicit expression for the ordinary 3D Lagrange function

L D p � v � qˆ � c

q
.p � qA/2 Cm20c

2 (8.33)

and if we make the identification

p � qA D
m0vs
1 �

v2

c2

D mv (8.34)

where the quantity mv is the usual kinetic momentum , we can rewrite this ex-
pression for the ordinary Lagrangian as follows:

L D qA � v Cmv2 � qˆ � c

q
m2v2 Cm20c

2

D mv2 � q.ˆ �A � v/ �mc2 D �qˆC qA � v �m0c
2

s
1 �

v2

c2

(8.35)

What we have obtained is the relativistically correct (covariant) expression for
the Lagrangian describing the mechanical motion of a charged particle in scalar
and vector potentials associated with prescribed electric and magnetic fields.

8.2 Covariant field theory

So far, we have considered two classes of problems. Either we have calculated
the fields from given, prescribed distributions of charges and currents, or we
have derived the equations of motion for charged particles in given, prescribed
fields. Let us now put the fields and the particles on an equal footing and present
a theoretical description which treats the fields, the particles, and their interac-
tions in a unified way. This involves transition to a field picture with an infinite
number of degrees of freedom. We shall first consider a simple mechanical prob-
lem whose solution is well known. Then, drawing inferences from this model
problem, we apply a similar view on the electromagnetic problem.
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Figure 8.1: A one-dimensional
chain consisting of N discrete,
identical mass points m, con-
nected to their neighbours with
identical, ideal springs with spring
constants k. The equilibrium dis-
tance between the neighbouring
mass points is a and �i�1.t/,
�i .t/, �iC1.t/ are the instantan-
eous deviations, along the x axis, of
positions of the .i � 1/th, i th, and
.i C 1/th mass point, respectively.

�i �iC1�i�1

k k kk
m m m m

x

m

a a a a

8.2.1 Lagrange-Hamilton formalism for fields and interac-
tions

Consider the situation, illustrated in figure 8.1, with N identical mass points,
each with massm and connected to its neighbour along a one-dimensional straight
line, which we choose to be the x axis, by identical ideal springs with spring con-
stants k (Hooke’s law). At equilibrium the mass points are at rest, distributed
evenly with a distance a to their two nearest neighbours so that the equilibrium
coordinate for the i th particle is xi D ia Ox . After perturbation, the motion of
mass point i will be a one-dimensional oscillatory motion along Ox. Let us denote
the deviation for mass point i from its equilibrium position by �i .t/Ox.

As is well known, the solution to this mechanical problem can be obtained if
we can find a Lagrangian (Lagrange function) L which satisfies the variational
equation

ı

Z
L.�i ; P�i ; t / dt D 0 (8.36)

According to equation (M.86) on page 249, the Lagrangian is L D T � V where
T denotes the kinetic energy and V the potential energy of a classical mechan-
ical system with conservative forces . In our case the Lagrangian is

L D
1

2

NX
iD1

h
m P�2i � k.�iC1 � �i /

2
i

(8.37)

Let us write the Lagrangian, as given by equation (8.37) above, in the fol-
lowing way:

L D

NX
iD1

aLi (8.38)

where

Li D
1

2

"
m

a
P�2i � ka

�
�iC1 � �i

a

�2#
(8.39)
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is the so called linear Lagrange density, measured in J m�1. If we now let
N !1 and, at the same time, let the springs become infinitesimally short ac-
cording to the following scheme:

a! dx (8.40a)
m

a
!

dm
dx
D � linear mass density (8.40b)

ka! Y Young’s modulus (8.40c)

�iC1 � �i

a
!

@�

@x
(8.40d)

we obtain

L D

Z
L dx (8.41)

where

L

�
�;
@�

@t
;
@�

@x
; t

�
D
1

2

"
�

�
@�

@t

�2
� Y

�
@�

@x

�2#
(8.42)

Notice how we made a transition from a discrete description, in which the mass
points were identified by a discrete integer variable i D 1; 2; : : : ; N , to a con-
tinuous description, where the infinitesimal mass points were instead identified
by a continuous real parameter x, namely their position along Ox.

A consequence of this transition is that the number of degrees of freedom for
the system went from the finite number N to infinity! Another consequence is
that L has now become dependent also on the partial derivative with respect to
x of the ‘field coordinate’ �. But, as we shall see, the transition is well worth the
cost because it allows us to treat all fields, be it classical scalar or vectorial fields,
or wave functions, spinors and other fields that appear in quantum physics, on
an equal footing.

Under the assumption of time independence and fixed endpoints, the vari-
ation principle (8.36) on the facing page yields:

ı

Z
Ldt D ı

ZZ
L

�
�;
@�

@t
;
@�

@x

�
dx dt

D

ZZ 24@L
@�
ı� C

@L

@
�
@�
@t

� ı�@�
@t

�
C

@L

@
�
@�
@x

� ı� @�
@x

�35 dx dt D 0

(8.43)

As before, the last integral can be integrated by parts. This results in the expres-
sion ZZ 24@L

@�
�
@

@t

0@ @L

@
�
@�
@t

�
1A � @

@x

0@ @L

@
�
@�
@x

�
1A35 ı� dx dt D 0 (8.44)
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where the variation is arbitrary (and the endpoints fixed). This means that the
integrand itself must vanish. If we introduce the functional derivative

ıL

ı�
D
@L

@�
�
@

@x

0@ @L

@
�
@�
@x

�
1A (8.45)

we can express this as

ıL

ı�
�
@

@t

0@ @L

@
�
@�
@t

�
1A D 0 (8.46)

which is the one-dimensional Euler-Lagrange equation .
Inserting the linear mass point chain Lagrangian density, equation (8.42) on

the previous page, into equation (8.46) above, we obtain the equation of motion
for our one-dimensional linear mechanical structure. It is:

�
@2�

@t2
� Y

@2�

@x2
D 0 (8.47a)

or  
1

v2'

@2

@t2
�
@2

@x2

!
� D 0 (8.47b)

i.e. the one-dimensional wave equation for compression waves which propagate
with phase speed v' D

p
Y=� along the linear structure.

A generalisation of the above 1D results to a three-dimensional continuum is
straightforward. For this 3D case we get the variational principle

ı

Z
L dt D ı

ZZ
L d3x dt D ı

Z
L

�
�;
@�

@x�

�
d4x

D

ZZ 24@L
@�
�

@

@x�

0@ @L

@
�
@�
@x�

�
1A35 ı� d4x D 0

(8.48)

where the variation ı� is arbitrary and the endpoints are fixed. This means that
the integrand itself must vanish:

@L

@�
�

@

@x�

0@ @L

@
�
@�
@x�

�
1A D @L

@�
� @�

�
@L

@.@��/

�
D 0 (8.49)

This constitutes the four-dimensional Euler-Lagrange equations .
Introducing the three-dimensional functional derivative

ıL

ı�
D
@L

@�
�

@

@xi

0@ @L

@
�
@�

@xi

�
1A (8.50)
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we can express this as

ıL

ı�
�
@

@t

0@ @L

@
�
@�
@t

�
1A D 0 (8.51)

In analogy with particle mechanics (finite number of degrees of freedom),
we may introduce the canonically conjugate momentum density

�.x�/ D �.t;x/ D
@L

@
�
@�
@t

� (8.52)

and define the Hamilton density

H

�
�; �;

@�

@xi
I t

�
D �

@�

@t
�L

�
�;
@�

@t
;
@�

@xi

�
(8.53)

If, as usual, we differentiate this expression and identify terms, we obtain the
following Hamilton density equations

@H

@�
D
@�

@t
(8.54a)

ıH

ı�
D �

@�

@t
(8.54b)

The Hamilton density functions are in many ways similar to the ordinary Hamilton
functions for a system of a finite number of particles and lead to similar results.
However, they describe the dynamics of a continuous system of infinitely many
degrees of freedom.

8.2.1.1 The electromagnetic field

Above, when we described the mechanical field, we used a scalar field �.t;x/.
If we want to describe the electromagnetic field in terms of a Lagrange density
L and Euler-Lagrange equations, it comes natural to express L in terms of the
four-potential A�.x�/.

The entire system of particles and fields consists of a mechanical part, a field
part and an interaction part. We therefore assume that the total Lagrange density
L tot for this system can be expressed as

L tot
D L mech

CL interaction
CL field (8.55)

where the mechanical part has to do with the particle motion (kinetic energy).
It is given by L4=V where L4 is given by equation (8.3) on page 174 and V
is the volume. Expressed in the rest mass density %0, the mechanical Lagrange
density can be written

L mech
D
1

2
%0u

�u� (8.56)
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The L interaction part describes the interaction between the charged particles
and the external electromagnetic field. A convenient expression for this interac-
tion Lagrange density is

L interaction
D j�A� (8.57)

For the field part L field we choose the difference between magnetic and elec-
tric energy density (in analogy with the difference between kinetic and potential
energy in a mechanical field). With the help of the field tensor, we express this
field Lagrange density as

L field
D

1

4�0
F ��F�� (8.58)

so that the total Lagrangian density can be written

L tot
D
1

2
%0u

�u� C j
�A� C

1

4�0
F ��F�� (8.59)

From this we can calculate all physical quantities.
Using L tot in the 3D Euler-Lagrange equations, equation (8.49) on page 182

(with � replaced by A�), we can derive the dynamics for the whole system. For
instance, the electromagnetic part of the Lagrangian density

L EM
D L interaction

CL field
D j �A� C

1

4�0
F ��F�� (8.60)

inserted into the Euler-Lagrange equations, expression (8.49) on page 182, yields
two of Maxwell’s equations. To see this, we note from equation (8.60) above and
the results in Example 8.1 that

@L EM

@A�
D j � (8.61)

Furthermore,

@�

�
@L EM

@.@�A�/

�
D

1

4�0
@�

�
@

@.@�A�/

�
F ��F��

��
D

1

4�0
@�

�
@

@.@�A�/

h
.@�A� � @�A�/.@�A� � @�A�/

i�
D

1

4�0
@�

(
@

@.@�A�/

�
@�A�@�A� � @

�A�@�A�

� @�A�@�A� C @
�A�@�A�

�)

D
1

2�0
@�

�
@

@.@�A�/

�
@�A�@�A� � @

�A�@�A�

��

(8.62)
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But

@

@.@�A�/

�
@�A�@�A�

�
D @�A�

@

@.@�A�/
@�A� C @�A�

@

@.@�A�/
@�A�

D @�A�
@

@.@�A�/
@�A� C @�A�

@

@.@�A�/
��˛@˛�

�ˇAˇ

D @�A�
@

@.@�A�/
@�A� C �

�˛��ˇ@�A�
@

@.@�A�/
@˛Aˇ

D @�A�
@

@.@�A�/
@�A� C @

˛Aˇ
@

@.@�A�/
@˛Aˇ

D 2@�A�

(8.63)

Similarly,

@

@.@�A�/

�
@�A�@�A�

�
D 2@�A� (8.64)

so that

@�

�
@L EM

@.@�A�/

�
D

1

�0
@� .@

�A� � @�A�/ D
1

�0
@�F

�� (8.65)

This means that the Euler-Lagrange equations, expression (8.49) on page 182,
for the Lagrangian density L EM and with A� as the field quantity become

@L EM

@A�
� @�

�
@L EM

@.@�A�/

�
D j � �

1

�0
@�F

��
D 0 (8.66)

or

@�F
��
D �0j

� (8.67)

which, according to equation (7.81) on page 169, is a Lorentz covariant formu-
lation of Maxwell’s source equations.

BField energy difference expressed in the field tensor EXAMPLE 8 .1

Show, by explicit calculation, that

1

4�0
F��F�� D

1

2

 
B2

�0
� "0E

2

!
(8.68)

i.e. the difference between the magnetic and electric field energy densities.

From formula (7.78) on page 168 we recall that

�
F��

�
D

0BB@
0 �Ex=c �Ey=c �Ez=c

Ex=c 0 �Bz By
Ey=c Bz 0 �Bx
Ez=c �By Bx 0

1CCA (8.69)
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and from formula (7.80) on page 169 that

�
F��

�
D

0BB@
0 Ex=c Ey=c Ez=c

�Ex=c 0 �Bz By
�Ey=c Bz 0 �Bx
�Ez=c �By Bx 0

1CCA (8.70)

where � denotes the row number and � the column number. Then, Einstein summation and
direct substitution yields

F��F�� D F
00F00 C F

01F01 C F
02F02 C F

03F03

C F 10F10 C F
11F11 C F

12F12 C F
13F13

C F 20F20 C F
21F21 C F

22F22 C F
23F23

C F 30F30 C F
31F31 C F

32F32 C F
33F33

D 0 �E2x=c
2
�E2y=c

2
�E2z =c

2

�E2x=c
2
C 0C B2z C B

2
y

�E2y=c
2
C B2z C 0C B

2
x

�E2z =c
2
C B2y C B

2
x C 0

D �2E2x=c
2
� 2E2y=c

2
� 2E2z =c

2
C 2B2x C 2B

2
y C 2B

2
z

D �2E2=c2 C 2B2 D 2.B2 �E2=c2/

(8.71)

or [cf. equation (2.44a) on page 30]

1

4�0
F��F�� D

1

2

 
B2

�0
�

1

c2�0
E2

!
D
1

2

 
B2

�0
� "0E

2

!
D �

"0

2
.E2 � c2B2/

(8.72)

where, in the last step, the identity "0�0 D 1=c2 was used. QED�

End of example 8.1C

8.2.1.2 Other fields

In general, the dynamic equations for most fields, and not only electromagnetic
ones, can be derived from a Lagrangian density together with a variational prin-
ciple (the Euler-Lagrange equations). Both linear and non-linear fields are stud-
ied with this technique. As a simple example, consider a real, scalar field �
which has the following Lagrange density:

L D
1

2

�
@��@

�� �m2�2
�

(8.73)

Insertion into the 1D Euler-Lagrange equation, equation (8.46) on page 182,
yields the dynamic equation

.�2 �m2/� D 0 (8.74)
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with the solution

� D ei.k �x�!t/ e�mjxj

jxj
(8.75)

which describes the Yukawa meson field for a scalar meson with mass m. With

� D
1

c2
@�

@t
(8.76)

we obtain the Hamilton density

H D
1

2

h
c2�2 C .r �/2 Cm2�2

i
(8.77)

which is positive definite.
Another Lagrangian density which has attracted quite some interest is the

Proca Lagrangian

L EM
D L interaction

CL field
D j �A� C

1

4�0
F ��F�� C

�
mc

}

�2
A�A�

(8.78)

where m is a mass term. This leads to the dynamic equation

@�F
��
�

�
mc

}

�2
A� D �0j

� (8.79)

Clearly, this equation describes an electromagnetic field with mass m, or, in
other words, massive photons . If massive photons do exist, large-scale magnetic
fields, including those of the earth and galactic spiral arms, should be signific-
antly modified from what they are to yield measurable discrepancies from their
usual form. Space experiments of this kind on board satellites have led to strin-
gent upper bounds on the photon mass. If the photon really has a mass, it will
have an impact on electrodynamics as well as on cosmology and astrophysics.
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The microscopic Maxwell equations derived in chapter 1, which in chapter 2
were chosen as the axiomatic basis for the treatment in the remainder of the
book, are valid on all scales where a classical description is good. They provide
a correct physical picture for arbitrary field and source distributions, on mac-
roscopic and, under certain assumptions, microscopic scales. A more complete
and accurate theory, valid also when quantum effects are significant, is provided
by quantum electrodynamics . QED gives a consistent description of how elec-
tromagnetic fields are quantised into photons and describes their intrinsic and
extrinsic properties. However, this theory is beyond the scope of the current
book.

In a material medium, be it in a solid, fluid or gaseous state or a combination
thereof, it is sometimes convenient to replace the Maxwell-Lorentz equations
(2.1) on page 19 by the corresponding macroscopic Maxwell equations in which
auxiliary, derived fields are introduced. These auxiliary fields, viz., the electric
displacement vector D (measured in C m�2) and the magnetising field H (meas-
ured in A m�1), incorporate intrinsic electromagnetic properties of macroscopic
matter, or properties that appear when the medium is immersed fully or partially
in an electromagnetic field. Consequently, they represent, respectively, electric
and magnetic field quantities in which, in an average sense, the material prop-
erties of the substances are already included. In the most general case, these
derived fields are complicated, possibly non-local and nonlinear, functions of
the primary fields E and B :

D D D.t;xIE;B/ (9.1a)

H D H.t;xIE;B/ (9.1b)

An example of this are chiral media .
A general treatment of these fields will not be included here. Only simplified,

but important and illuminating examples will be given.

189
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9.1 Maxwell’s macroscopic theory

Under certain conditions, for instance for small magnitudes of the primary field
strengths E and B, we may assume that the response of a substance to the fields
can be approximated by a linear one so that

D � "E (9.2)

H � ��1B (9.3)

i.e. that the electric displacement vector D.t;x/ is only linearly dependent on
the electric field E.t;x/, and the magnetising field H.t;x/ is only linearly de-
pendent on the magnetic field B.t;x/. In this chapter we derive these linearised
forms, and then consider a simple, explicit linear model for a medium from
which we derive the expression for the dielectric permittivity ".t;x/, the mag-
netic susceptibility �.t;x/, and the refractive index or index of refraction n.t;x/
of this medium. Using this simple model, we study certain interesting aspects of
the propagation of electromagnetic particles and waves in the medium.

9.1.1 Polarisation and electric displacement

By writing the first microscopic Maxwell-Lorentz equation (2.1a) on page 19
as in equation (6.26) on page 110, i.e. in a form where the total charge density
�.t;x/ is split into the charge density for free, ‘true’ charges, �true, and the charge
density, �pol, for bound polarisation charges induced by the applied field E, as

r �E D
�total.t;x/

"0
D
�true.t;x/C �pol.t;x/

"0
D
�true.t;x/ � r �P .t;x/

"0
(9.4)

and at the same time introducing the electric displacement vector (C m�2)

D.t;x/ D "0E.t;x/C P .t;x/ (9.5)

one can reshuffle expression (9.4) above to obtain

r �Œ"0E.t;x/C P .t;x/� D r �D.t;x/ D �true.t;x/ (9.6)

This is one of the original macroscopic Maxwell equations. It is important to
remember that only the induced electric dipole moment of matter, subject to the
field E, was included in the above separation into true and induced charge dens-
ities. Contributions to D from higher-order electric moments were neglected.
This is one of the approximations assumed.
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Another approximation is the assumption that there exists a simple linear
relationship between P and E in the material medium under consideration

P .t;x/ D "0�e.t;x/E.t;x/ (9.7)

This approximation is often valid for regular media if the field strength jEj is
low enough. Here the variations in time and space of the the material dependent
electric susceptibility, �e, are usually on much slower and longer scales than
for E itself.1 Inserting the approximation (9.7) into equation (9.5) on the facing 1 The fact that the relation between

the dipole moment per unit volume
P and the applied electric field E
is local in time and space is yet
another approximation assumed in
macroscopic Maxwell theory.

page, we can write the latter

D.t;x/ D ".t;x/E.t;x/ (9.8)

where, approximately,

".t;x/ D "0Œ1C �e.t;x/� D "0�e.t;x/ (9.9)

For an electromagnetically anisotropic medium such as a magnetised plasma or
a birefringent crystal , the susceptibility �e or, equivalently the relative dielectric
permittivity

�e.t;x/ D
".t;x/

"0
D 1C �e.t;x/ (9.10)

will have to be replaced by a tensor. This would still describe a linear relation-
ship between E and P but one where the linear proportionality factor, or, as we
shall call it, the dispersive property of the medium, is dependent on the direction
in space.

In general, however, the relationship is not of a simple linear form as in
equation (9.7) above but non-linear terms are important. In such a situation
the principle of superposition is no longer valid and non-linear effects such as
frequency conversion and mixing can be expected.2 2 The nonlinearity of semicon-

ductor diodes is used, e.g. in radio
receivers to convert high radio
frequencies into lower ones, or
into the audible spectrum. These
techniques are called heterodyning
and demodulation , respectively.
Another example of the nonlinear
response of a medium is the Kerr
effect .

9.1.2 Magnetisation and the magnetising field

An analysis of the properties of magnetic media and the associated currents
shows that three such types of currents exist:

1. In analogy with true charges for the electric case, we may have true currents
jtrue, i.e. a physical transport of true (free) charges.

2. In analogy with the electric polarisation P there may be a form of charge
transport associated with the changes of the polarisation with time. Such
currents, induced by an external field, are called polarisation currents and are
identified with @P=@t .
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3. There may also be intrinsic currents of a microscopic, often atomistic, nature
that are inaccessible to direct observation, but which may produce net effects
at discontinuities and boundaries. These magnetisation currents are denoted
jM.

Free magnetic monopoles have not yet been unambiguously identified in
experiments. So there is no correspondence in the magnetic case to the elec-
tric monopole moment, formula (6.17a) on page 108. The lowest order mag-
netic moment, corresponding to the electric dipole moment, formula (6.17b) on
page 108, is the magnetic dipole moment [cf. the Fourier component expression
(6.55) on page 116]

m.t/ D
1

2

Z
V 0

d3x0 .x0 � x0/ � j.t 0;x0/ (9.11)

Analogously to the electric case, one may, for a distribution of magnetic dipole
moments in a volume, describe this volume in terms of its magnetisation , or
magnetic dipole moment per unit volume , M. Via the definition of the vector
potential A one can show that the magnetisation current and the magnetisation
is simply related:

jM
D r �M (9.12)

In a stationary medium we therefore have a total current which is (approx-
imately) the sum of the three currents enumerated above:

jtotal
D jtrue

C
@P

@t
C r �M (9.13)

One might then be led to think that the right-hand side (RHS) of the r � B

Maxwell equation (2.1d) on page 19 should be

RHS D �0

�
jtrue
C
@P

@t
C r �M

�
However, moving the term r �M from the right hand side (RHS) to the left
hand side (LHS) and introducing the magnetising field (magnetic field intensity ,
Ampère-turn density) as

H D
B

�0
�M (9.14)

and using the definition for D, equation (9.5) on page 190, we find that

LHS D r �H

RHS D jtrue
C
@P

@t
D jtrue

C
@D

@t
� "0

@E

@t
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Hence, in this simplistic view, we would pick up a term �"0@E=@t which makes
the equation inconsistent: the divergence of the left hand side vanishes while the
divergence of the right hand side does not! Maxwell realised this and to over-
come this inconsistency he was forced to add his famous displacement current
term which precisely compensates for the last term the RHS expression.3 In 3 This term, which ensures that

electric charge is conserved also
in non-stationary problems, is the
one that makes it possible to turn
the Maxwell equations into wave
equations (see chapter 2) and,
hence, the term that, in a way, is
the basis for radio communications
and other engineering applications
of the theory.

chapter 1, we discussed an alternative way, based on the postulate of conserva-
tion of electric charge, to introduce the displacement current.

We may, in analogy with the electric case, introduce a magnetic susceptibil-
ity for the medium. Denoting it �m, we can write

H.t;x/ D ��1.t;x/B.t;x/ (9.15)

where, approximately,

�.t;x/ D �0Œ1C �m.t;x/� D �0�m.t;x/ (9.16)

and

�m.t;x/ D
�.t;x/

�0
D 1C �m.t;x/ (9.17)

is the relative permeability. In the case of anisotropy, �m will be a tensor, but it
is still only a linear approximation.4 4 This is the case for the Hall

effect which produces a potential
difference across an electric
conduction current channel,
perpendicular to this current,
in the presence of an external
magnetic field that is likewise
perpendicular to the current. This
effect was discovered 1879 by the
US physicist EDWIN HERBERT
HALL (1855–1938).

9.1.3 Macroscopic Maxwell equations

Field equations, expressed in terms of the derived, and therefore in principle
superfluous, field quantities D and H are obtained from the Maxwell-Lorentz
microscopic equations (2.1) on page 19, by replacing the E and B in the two
source equations by using the approximate relations formula (9.8) on page 191
and formula (9.15) above, respectively:

r �D D �true (9.18a)

r � E D �
@B

@t
(9.18b)

r �B D 0 (9.18c)

r �H D jtrue
C
@D

@t
(9.18d)

This set of differential equations, originally derived by Maxwell himself, are
called Maxwell’s macroscopic equations . Together with the boundary condi-
tions and the constitutive relations, they describe uniquely (but only approxim-
ately) the properties of the electric and magnetic fields in matter and are conveni-
ent to use in certain simple cases, particularly in engineering applications. How-
ever, the structure of these equations rely on certain linear approximations and
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there are many situations where they are not useful or even applicable. There-
fore, these equations, which are the original Maxwell equations (albeit expressed
in their modern vector form as introduced by OLIVER HEAVISIDE), should be
used with some care.55 It should be recalled that Max-

well formulated these macroscopic
equations before it was known that
matter has an atomistic structure
and that there exist electrically
charged particles such as elec-
trons and protons, which possess
a quantum mechanical prop-
erty called spin that gives rise to
magnetism!

9.2 Phase velocity, group velocity and dispersion

If we introduce the phase velocity in the medium as

v' D
1
p
"�
D

1
p
�e"0�m�0

D
c

p
�e�m

(9.19)

where, according to equation (1.12) on page 6, c D 1=
p
"0�0 is the speed of

light, i.e. the phase speed of electromagnetic waves, in vacuum. Associated with
the phase speed of a medium for a wave of a given frequency ! we have a wave
vector , defined as

k
def
� k Ok D k Ov' D

!

v'

v'

v'
(9.20)

The ratio of the phase speed in vacuum and in the medium

c

v'
D
p
�e�m D c

p
"�

def
� n (9.21)

where the material dependent quantity

n.t;x/
def
�

c

v'
D
p
�e.t;x/�m.t;x/ (9.22)

is called the refractive index of the medium and describes its refractive and re-
flective properties.6 In general n is a function of frequency. If the medium

6 In fact, there exist metamaterials
where �e and �m are negative. For
such materials, the refractive index
becomes negative:

n D i
p
j�ej i

p
j�mj

D � j�e�mj
1=2

Such negative refractive index
materials, have quite remarkable
electromagnetic properties.

is anisotropic or birefringent , the refractive index is a rank-two tensor field.
Under our simplifying assumptions, in the material medium that we consider
n D Const for each frequency component of the fields. In certain materials, the
refractive index is larger than unity (e.g. glass and water at optical frequencies),
in others, it can be smaller than unity (e.g. plasma and metals at radio and optical
frequencies).

It is important to notice that depending on the electric and magnetic proper-
ties of a medium, and, hence, on the value of the refractive index n, the phase
speed in the medium can be smaller or larger than the speed of light:

v' D
c

n
D
!

k
(9.23)
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where, in the last step, we used equation (9.20) on the preceding page.
If the medium has a refractive index which, as is usually the case, dependent

on frequency !, we say that the medium is dispersive . Because in this case also
k.!/ and !.k/, so that the group velocity

vg D
@!

@k
(9.24)

has a unique value for each frequency component, and is different from v' .
Except in regions of anomalous dispersion , vg is always smaller than c. In a gas
of free charges, such as a plasma , the refractive index is given by the expression

n2.!/ D 1 �
!2p

!2
(9.25)

where

!2p D
X
�

N�q
2
�

"0m�
(9.26)

is the square of the plasma frequency !p. Here m� and N� denote the mass and
number density, respectively, of charged particle species � . In an inhomogen-
eous plasma, N� D N� .x/ so that the refractive index and also the phase and
group velocities are space dependent. As can be easily seen, for each given fre-
quency, the phase and group velocities in a plasma are different from each other.
If the frequency ! is such that it coincides with !p at some point in the medium,
then at that point v' !1 while vg ! 0 and the wave Fourier component at !
is reflected there.

9.3 Radiation from charges in a material medium

When electromagnetic radiation is propagating through matter, new phenomena
may appear which are (at least classically) not present in vacuum. As mentioned
earlier, one can under certain simplifying assumptions include, to some extent,
the influence from matter on the electromagnetic fields by introducing new, de-
rived field quantities D and H according to

D D ".t;x/E D �e.t;x/"0E (9.27)

B D �.t;x/H D �m.t;x/�0H (9.28)

9.3.1 Vavilov- LCerenkov radiation

As we saw in example 6.3 on page 148, a charge in uniform, rectilinear motion
in vacuum does not give rise to any radiation; see in particular equation (6.196a)
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on page 149. Let us now consider a charge in uniform, rectilinear motion in a
medium with electric properties which are different from those of a (classical)
vacuum. Specifically, consider a medium where

" D Const > "0 (9.29a)

� D �0 (9.29b)

This implies that in this medium the phase speed is

v' D
c

n
D

1
p
"�0

< c (9.30)

Hence, in this particular medium, the speed of propagation of (the phase planes
of) electromagnetic waves is less than the speed of light in vacuum, which we
know is an absolute limit for the motion of anything, including particles. A
medium of this kind has the interesting property that particles, entering into
the medium at high speeds jv 0j, which, of course, are below the phase speed
in vacuum, can experience that the particle speeds are higher than the phase
speed in the medium. This is the basis for the Vavilov- LCerenkov radiation , more
commonly known in the western literature as Cherenkov radiation , that we shall
now study.

If we recall the general derivation, in the vacuum case, of the retarded (and
advanced) potentials in chapter 3 and the Liénard-Wiechert potentials, equations
(6.83) on page 123, we realise that we obtain the latter in the medium by a simple
formal replacement c 7! c=n in the expression (6.84) on page 124 for s. Hence,
the Liénard-Wiechert potentials in a medium characterized by a refractive index
n, are

ˆ.t;x/ D
1

4�"0

q0ˇ̌̌
jx � x0j � n .x�x0/ � v 0

c

ˇ̌̌ D 1

4�"0

q0

s
(9.31a)

A.t;x/ D
1

4�"0c2
q0v 0ˇ̌̌

jx � x0j � n .x�x0/ � v 0

c

ˇ̌̌ D 1

4�"0c2
q0v 0

s
(9.31b)

where now

s D

ˇ̌̌̌ˇ̌
x � x0

ˇ̌
� n

.x � x0/ � v 0

c

ˇ̌̌̌
(9.32)

The need for the absolute value of the expression for s is obvious in the case
when v0=c � 1=n because then the second term can be larger than the first term;
if v0=c � 1=n we recover the well-known vacuum case but with modified phase
speed. We also note that the retarded and advanced times in the medium are [cf.
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�c ˛c vq0

x0.t 0/

x.t/ Figure 9.1: Instantaneous picture
of the expanding field spheres from
a point charge moving with con-
stant speed v0=c > 1=n in a me-
dium where n > 1. This generates
a Vavilov- LCerenkov shock wave in
the form of a cone.

equation (3.33) on page 40]

t 0ret D t
0
ret.t;

ˇ̌
x � x0

ˇ̌
/ D t �

k jx � x0j

!
D t �

jx � x0jn

c
(9.33a)

t 0adv D t
0
adv.t;

ˇ̌
x � x0

ˇ̌
/ D t C

k jx � x0j

!
D t C

jx � x0jn

c
(9.33b)

so that the usual time interval t � t 0 between the time measured at the point of
observation and the retarded time in a medium becomes

t � t 0 D
jx � x0jn

c
(9.34)

For v0=c � 1=n, the retarded distance s, and therefore the denominators in
equations (9.31) on the preceding page, vanish when

n.x � x0/ �
v 0

c
D
ˇ̌
x � x0

ˇ̌ nv0
c

cos �c D
ˇ̌
x � x0

ˇ̌
(9.35)

or, equivalently, when

cos �c D
c

nv0
(9.36)

In the direction defined by this angle �c, the potentials become singular. Dur-
ing the time interval t�t 0 given by expression (9.34) above, the field exists within
a sphere of radius jx � x0j around the particle while the particle moves a distance

l 0 D .t � t 0/v0 (9.37)

along the direction of v 0.
In the direction �c where the potentials are singular, all field spheres are tan-

gent to a straight cone with its apex at the instantaneous position of the particle
and with the apex half angle ˛c defined according to

sin˛c D cos �c D
c

nv0
(9.38)
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This is illustrated in figure 9.1 on the previous page.
The cone of potential singularities and field sphere circumferences propag-

ates with speed c=n in the form of a shock front . The first observation of this
type of radiation was reported by MARIE SKLODOWSKA CURIE in 1910, but
she never pursued the exploration of it. This radiation in question is therefore
called Vavilov- LCerenkov radiation .7

7 The first systematic exploration
of this radiation was made in 1934
by PAVEL ALEKSEEVICH
LCERENKOV(1904–1990),
who was then a doctoral stu-
dent in SERGEY IVANOVICH
VAVILOV’s (1891–1951) research
group at the Lebedev Physical
Institute in Moscow. Vavilov wrote
a manuscript with the experimental
findings, put LCerenkov as the au-
thor, and submitted it to Nature. In
the manuscript, Vavilov explained
the results in terms of radioact-
ive particles creating Compton
electrons which gave rise to the
radiation. This was indeed the
correct interpretation, but the paper
was rejected. The paper was then
sent to Physical Review and was,
after some controversy with the
American editors, who claimed
the results to be wrong, eventually
published in 1937. In the same
year, IGOR’ EVGEN’EVICH
TAMM (1895–1975) and ILYA
M IKHAILOVICH FRANK (1908–
1990) published the theory for the
effect (‘the singing electron’).

In fact, predictions of a similar
effect had been made as early as
1888 by OLIVER HEAVISIDE
(1850–1925), and by ARNOLD
JOHANNES W ILHELM SOM -
MERFELD (1868–1951) in his
1904 paper ‘Radiating body mov-
ing with velocity of light’. On 8
May, 1937, Sommerfeld sent a
letter to Tamm via Austria, saying
that he was surprised that his old
1904 ideas were now becoming
interesting. Tamm, Frank and
LCerenkov received the Nobel Prize
in 1958 ‘for the discovery and
the interpretation of the LCerenkov
effect’ [V ITALIY LAZAREVICH
G INZBURG (1916–2009), private
communication]. The Vavilov-
LCerenkov cone is similar in nature
to the Mach cone in acoustics.

In order to make some quantitative estimates of this radiation, we note that
we can describe the motion of each charged particle q0 as a current density:

j D q0v 0 ı.x0 � v 0t 0/ D q0v0 ı.x0 � v0t 0/ı.y0/ı.z0/Ox1 (9.39)

which has the trivial Fourier transform

j! D
q0

2�
eı!x0=v0 ı.y0/ı.z0/Ox1 (9.40)

This Fourier component can be used in the formulæ derived for a linear current
in subsection 6.4.1 on page 117 if only we make the replacements

"0 7! " D n2"0 (9.41a)

k 7!
n!

c
(9.41b)

In this manner, using j! from equation (9.40) above, the resulting Fourier trans-
forms of the Vavilov- LCerenkov magnetic and electric radiation fields can be cal-
culated from the expressions (5.23) on page 92 and (5.18) on page 90, respect-
ively.

The total energy content is then obtained from equation (6.9) on page 106
(integrated over a closed sphere at large distances). For a Fourier component
one obtains [cf. equation (6.12) on page 107]

U rad
! d� �

1

4�"0nc

ˇ̌̌̌Z
V 0

d3x0 .j! � k/e�ık �x0
ˇ̌̌̌2

d�

D
q0
2
n!2

16�3"0c3

ˇ̌̌̌Z 1
�1

exp
h
ix0
�!
v0
� k cos �

�i
dx0
ˇ̌̌̌2

sin2 � d�

(9.42)

where � is the angle between the direction of motion, Ox01, and the direction to the
observer, Ok. The integral in (9.42) is singular of a ‘Dirac delta type’. If we limit
the spatial extent of the motion of the particle to the closed interval Œ�X;X� on
the x0 axis we can evaluate the integral to obtain

U rad
! d� D

q0
2
n!2 sin2 �
4�3"0c3

sin2
h�
1 � nv0

c
cos �

�
X!
v0

i
��
1 � nv0

c
cos �

�
!
v0

�2 d� (9.43)

which has a maximum in the direction �c as expected. The magnitude of this
maximum grows and its width narrows as X ! 1. The integration of (9.43)
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over � therefore picks up the main contributions from � � �c. Consequently,
we can set sin2 � � sin2 �c and the result of the integration is

QU rad
! D 2�

Z �

0

U rad
! .�/ sin � d� D dcos � D ��c D 2�

Z 1

�1

U rad
! .�/ d�

�
q0
2
n!2 sin2 �c

2�2"0c3

Z 1

�1

sin2
h�
1C nv0�

c

�
X!
v0

i
h�
1C nv0�

c

�
!
v0

i2 d�
(9.44)

The integrand in (9.44) is strongly peaked near � D �c=.nv0/, or, equivalently,
near cos �c D c=.nv

0/. This means that the integrand function is practically zero
outside the integration interval � 2 Œ�1; 1�. Consequently, one may extend the �
integration interval to .�1;1/ without introducing too large an error. Via yet
another variable substitution we can therefore approximate

sin2 �c

Z 1

�1

sin2
h�
1C nv0�

c

�
X!
v0

i
h�
1C nv0�

c

�
!
v0

i2 d� �
�
1 �

c2

n2v02

�
cX

!n

Z 1
�1

sin2 x
x2

dx

D
cX�

!n

�
1 �

c2

n2v02

�
(9.45)

leading to the final approximate result for the total energy loss in the frequency
interval .!; ! C d!/

QU rad
! d! D

q0
2
X

2�"0c2

�
1 �

c2

n2v02

�
! d! (9.46)

As mentioned earlier, the refractive index is usually frequency dependent.
Realising this, we find that the radiation energy per frequency unit and per unit
length is

QU rad
! d!
2X

D
q0
2
!

4�"0c2

�
1 �

c2

n2.!/v02

�
d! (9.47)

This result was derived under the assumption that v0=c > 1=n.!/, i.e. under
the condition that the expression inside the parentheses in the right hand side is
positive. For all media it is true that n.!/ ! 1 when ! ! 1, so there exist
always a highest frequency for which we can obtain Vavilov- LCerenkov radiation
from a fast charge in a medium. Our derivation above for a fixed value of n is
valid for each individual Fourier component.
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9.4 Electromagnetic waves in a medium

In section 2.3 on page 23 in chapter 2 we derived the wave equations for the
electric and magnetic fields, E and B, respectively,

1

c2
@2E

@t2
� r

2E D �
r�

"0
� �0

@j

@t
(9.48a)

1

c2
@2B

@t2
� r

2B D �0r � j (9.48b)

where the charge density � and the current density j were viewed as the sources
of the wave fields. As we recall, these wave equations were derived from the
Maxwell-Lorentz equations (2.1) on page 19, taken as an axiomatic foundation,
or postulates, of electromagnetic theory. As such, these equations just state what
relations exist between (the second order derivatives of) the fields, i.e. essentially
dynamic generalisations of the Coulomb and Ampère forces, and the dynamics
of the charges (charge and current densities) in the region under study.

Even if the � and j terms in the Maxwell-Lorentz equations are often referred
to as the source terms, they can equally well be viewed as terms that describe
the impact on matter in a particular region upon which an electromagnetic wave,
produced in another region with its own charges and currents, impinges. In order
to do so, one needs to find the constitutive relations that describe how charge
and current densities are induced by the impinging fields. Then one can solve
the wave equations (9.48) above. In general, this is a formidable task, and one
must often resort to numerical methods.

Let us, for simplicity, assume that the linear relations, as given by formula
(9.8) on page 191 and formula (9.15) on page 193, hold, and that there is also
a linear relation between the electric field E and the current density, known as
Ohm’s law:

j.t;x/ D �.t;x/E.t;x/ (9.49)

where � is the conductivity of the medium. Let us make the further assumption
that " D ".x/, � D �.x/, and �.x/ are not explicitly dependent on time and are
local in space. Then we obtain the coupled wave equations

r
2E � �.x/�.x/

@E

@t
� ".x/�.x/

@2E

@t2
D .r � E/ � r ln�.x/

�r Œr ln ".x/ �E�C r
�

"

(9.50a)

r
2H � �.x/�.x/

@H

@t
� ".x/�.x/

@2H

@t2
D .r �H/ � r ln ".x/

�r Œr ln�.x/ �H�C r ln ".x/ � .�.x/E/ � Œr�.x/� � E

(9.50b)
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For the case � D �0 (no magnetisation) and � D Const in the medium, equa-
tions (9.50) on the preceding page simplify to

r
2E � �0�.x/

@E

@t
� ".x/�0

@2E

@t2
D �r Œr ln ".x/ �E� (9.51a)

r
2B � �0�.x/

@B

@t
� ".x/�0

@2B

@t2
D .r � B/ � r ln ".x/

C�0r ln ".x/ � .�E/ � �0Œr�.x/� � E

(9.51b)

Making the further assumption that the medium is not conductive, i.e. that
� D 0, the uncoupled wave equations

r
2E �

".x/

"0c2
@2E

@t2
D �r fŒr ln ".x/� �Eg (9.52a)

r
2B �

".x/

"0c2
@2B

@t2
D .r � B/ � Œr ln ".x/� (9.52b)

are obtained.

9.4.1 Constitutive relations

In a solid, fluid or gaseous medium the source terms in the microscopic Maxwell
equations (2.1) on page 19 must include all charges and currents in the medium,
i.e. also the intrinsic ones (e.g. the polarisation charges in electrets, and atomistic
magnetisation currents in magnets) and the self-consistently imposed ones (e.g.
polarisation currents). This is of course also true for the inhomogeneous wave
equations derived from Maxwell’s equations.

From now one we assume that � and j represent only the charge and current
densities (i.e. polarisation and conduction charges and currents, respectively)
that are induces by the E and B fields of the waves impinging upon the medium
of interest.8 8 If one includes also the effect

of the charges on E and B, i.e.
treat � and j as sources for fields,
singularities will appear in the
theory. Such so called self-force
effects will not be treated here.

Let us for simplicity consider a medium containing free electrons only and
which is not penetrated by a magnetic field, i.e. the medium is assumed to be
isotropic with no preferred direction(s) in space.9

9 To this category belongs unmag-
netised plasma . So do also, to a
good approximation, fluid or solid
metals.

Each of these electrons are assumed to be accelerated by the Lorentz force,
formula (4.53) on page 63. However, if the fields are those of an electromag-
netic wave one can, for reasonably high oscillation frequencies, neglect the force
from the magnetic field. Of course, this is also true if there is no magnetic field
present. So the equation of motion for each electron in the medium can be writ-
ten

m
d2x
dt2
Cm�

dx

dt
D qE (9.53)
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where m and q are the mass and charge of the electron, respectively, � the ef-
fective collision frequency representing the frictional dissipative force from the
surrounding medium, and E the effective applied electric field sensed by the
electron. For a Fourier component of the electric field E D E0 exp .�i!t/, the
equation of motion becomes

!2qx.t/ � i!�qx.t/ D
q2

m
E (9.54)

If the electron is at equilibrium x D 0 when E D 0, then its dipole moment is
d.t/ D qx.t/. Inserting this in equation (9.54) above, we obtain

d D �
q2

m.!2 C i!�/
E (9.55)

This is the the lowest order contribution to the dipole moment of the medium
from each electron under the influence of the assumed electric field. If Nd.x/

electrons per unit volume can be assumed to give rise to the electric polarisation
P , this becomes

P D Ndd D �
Ndq

2

m.!2 C i!�/
E (9.56)

Using this in formula (9.5) on page 190, one finds that

D.t;x/ D ".x/E.t;x/ (9.57)

where

".x/ D "0 �
Nd.x/q

2

m.!2 C i!�/
D "0

�
1 �

Nd.x/q
2

"0m

1

!2 C i!�

�
(9.58)

The quantity

!p.x/ D

s
Nd.x/q

2

"0m
(9.59)

is the plasma frequency and

n.x/ D

s
".x/

"0
D

s
1 �

!2p

!2 C i!�
(9.60)

is the refractive index . At points in the medium where the wave frequency !
equals this plasma frequency and the collision frequency � vanishes, the refract-
ive index n D 0, and the wave is totally reflected. In the ionised outer part of the
atmosphere called the ionosphere this happens for radio waves of frequencies
up to about 5–10 MHz dependent on the solar radiation which causes most of
the ionisation. This is the basis for over-the-horizon radio communications and
is also the reason why low-frequency radio signals from space do not reach the
surface of the Earth.
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9.4.2 Electromagnetic waves in a conducting medium

We shall now restrict ourselves to the wave equations for the electric field vector
E and the magnetic field vector B in a electrically conductive and neutral me-
dium, i.e. a volume where there exist no net electric charge, � D 0, no dielectric
effects, " D "0, and no electromotive force, Eemf D 0. A highly conductive
metal is a good example of such a medium.

9.4.2.1 The wave equations for E and B

To a good approximation, metals and other conductors in free space have a
conductivity � that is not dependent on t or x. The wave equations (9.51) on
page 201 are then simplified to

r
2E � �0�

@E

@t
�
1

c2
@2E

@t2
D 0 (9.61)

r
2B � �0�

@B

@t
�
1

c2
@2B

@t2
D 0 (9.62)

which are the homogeneous vector wave equations for E and B in a conducting
medium without EMF.

We notice that for the simple propagation media considered here, the wave
equation for the magnetic field B has exactly the same mathematical form as
the wave equation for the electric field E, equation (9.61) above. Therefore,
in this case it suffices to consider only the E field, since the results for the B

field follow trivially. For EM waves propagating in more complicated media,
containing, e.g. inhomogeneities, the wave equations for E and for B do not
have the same mathematical form.

Following the spectral component prescription leading to equation (2.23) on
page 26, we obtain, in the special case under consideration, the following time-
independent wave equation

r
2E0 C

!2

c2

�
1C ı

�

"0!

�
E0 D 0 (9.63)

Multiplying by e�ı!t and introducing the relaxation time � D "0=� of the me-
dium in question, we see that the differential equation for each spectral compon-
ent can be written

r
2E.t;x/C

!2

c2

�
1C

ı
�!

�
E.t;x/ D 0 (9.64)

In the limit of long � (low conductivity � ), (9.64) tends to

r
2EC

!2

c2
E D 0 (9.65)
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which is a time-independent wave equation for E, representing undamped propagat-
ing waves. In the short � (high conductivity � ) limit we have instead

r
2EC i!�0�E D 0 (9.66)

which is a time-independent diffusion equation for E.
For most metals � � 10�14 s, which means that the diffusion picture is good

for all frequencies lower than optical frequencies. Hence, in metallic conductors,
the propagation term @2E=c2@t2 is negligible even for VHF, UHF, and SHF
signals. Alternatively, we may say that the displacement current "0@E=@t is
negligible relative to the conduction current j D �E.

If we introduce the vacuum wave number

k D
!

c
(9.67)

we can write, using the fact that c D 1=
p
"0�0 according to equation (1.12) on

page 6,

1

�!
D

�

"0!
D
�

"0

1

ck
D
�

k

r
�0

"0
D
�

k
R0 (9.68)

where in the last step we used the characteristic impedance of vacuum defined
according to formula (6.4) on page 105.

9.4.2.2 Plane waves

Consider now the case where all fields depend only on the distance � to a given
plane with unit normal On. Then the del operator becomes

r D On
@

@�
D Onr (9.69)

and the microscopic Maxwell equations attain the form

On �
@E

@�
D 0 (9.70a)

On �
@E

@�
D �

@B

@t
(9.70b)

On �
@B

@�
D 0 (9.70c)

On �
@B

@�
D �0j.t;x/C "0�0

@E

@t
D �0�EC "0�0

@E

@t
(9.70d)

Scalar multiplying (9.70d) by On, we find that

0 D On �

�
On �

@B

@�

�
D On �

�
�0� C "0�0

@

@t

�
E (9.71)
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which simplifies to the first-order ordinary differential equation for the normal
component En of the electric field

dEn
dt
C
�

"0
En D 0 (9.72)

with the solution

En D En0e��t="0 D En0e�t=� (9.73)

This, together with (9.70a), shows that the longitudinal component of E, i.e. the
component which is perpendicular to the plane surface is independent of � and
has a time dependence which exhibits an exponential decay, with a decrement
given by the relaxation time � in the medium.

Scalar multiplying (9.70b) by On, we similarly find that

0 D On �

�
On �

@E

@�

�
D �On �

@B

@t
(9.74)

or

On �
@B

@t
D 0 (9.75)

From this, and (9.70c), we conclude that the only longitudinal component of B

must be constant in both time and space. In other words, the only non-static
solution must consist of transverse components .

9.4.2.3 Telegrapher’s equation

In analogy with equation (9.61) on page 203, we can easily derive a wave equa-
tion

@2E

@�2
� �0�

@E

@t
�
1

c2
@2E

@t2
D 0 (9.76)

describing the propagation of plane waves along � in a conducting medium. This
equation is is called the telegrapher’s equation . If the medium is an insulator
so that � D 0, then the equation takes the form of the one-dimensional wave
equation

@2E

@�2
�
1

c2
@2E

@t2
D 0 (9.77)

As is well known, each component of this equation has a solution which can be
written

Ei D f .� � ct/C g.� C ct/; i D 1; 2; 3 (9.78)
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where f and g are arbitrary (non-pathological) functions of their respective ar-
guments. This general solution represents perturbations which propagate along
�, where the f perturbation propagates in the positive � direction and the g
perturbation propagates in the negative � direction. In a medium, the general
solution to each component of equation (9.99) on page 208 is given by

Ei D f .� � v' t /C g.� C v' t /; i D 1; 2; 3 (9.79)

If we assume that our electromagnetic fields E and B are represented by a
Fourier component proportional to exp.�ı!t/, the solution of equation (9.77) on
the previous page becomes

E D E0e�i.!t˙k�/
D E0ei.�k��!t/ (9.80)

By introducing the wave vector

k D k On D
!

c
On D

!

c
Ok (9.81)

this solution can be written as

E D E0ei.k �x�!t/ (9.82)

Let us consider the lower sign in front of k� in the exponent in (9.80). This
corresponds to a wave which propagates in the direction of increasing �. Insert-
ing this solution into equation (9.70b) on page 204, gives

On �
@E

@�
D ı!B D ik On � E (9.83)

or, solving for B,

B D
k

!
On � E D

1

!
k � E D

1

c
Ok � E D

p
"0�0 On � E (9.84)

Hence, to each transverse component of E, there exists an associated magnetic
field given by equation (9.84) above. If E and/or B has a direction in space
which is constant in time, we have a plane wave .

Allowing now for a finite conductivity � in our medium, and making the
spectral component Ansatz in equation (9.76) on the preceding page, we find
that the time-independent telegrapher’s equation can be written

@2E

@�2
C "0�0!

2EC ı�0�!E D
@2E

@�2
CK2E D 0 (9.85)

where

K2 D "0�0!
2

�
1C ı

�

"0!

�
D
!2

c2

�
1C ı

�

"0!

�
D k2

�
1C ı

�

"0!

�
(9.86)
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where, in the last step, equation (9.67) on page 204 was used to introduce the
wave number k. Taking the square root of this expression, we obtain

K D k

r
1C ı

�

"0!
D ˛ C ıˇ (9.87)

Squaring, one finds that

k2
�
1C ı

�

"0!

�
D .˛2 � ˇ2/C 2ı˛ˇ (9.88)

or

ˇ2 D ˛2 � k2 (9.89)

˛ˇ D
k2�

2"0!
(9.90)

Squaring the latter and combining with the former, one obtains the second order
algebraic equation (in ˛2)

˛2.˛2 � k2/ D
k4�2

4"20!
2

(9.91)

which can be easily solved and one finds that

˛ D k

vuuut
r
1C

�
�
"0!

�2
C 1

2
(9.92a)

ˇ D k

vuuut
r
1C

�
�
"0!

�2
� 1

2
(9.92b)

As a consequence, the solution of the time-independent telegrapher’s equation,
equation (9.85) on the facing page, can be written

E D E0e�ˇ�ei.˛��!t/ (9.93)

With the aid of equation (9.84) on the preceding page we can calculate the asso-
ciated magnetic field, and find that it is given by

B D
1

!
K Ok � E D

1

!
. Ok � E/.˛ C ıˇ/ D

1

!
. Ok � E/ jAj eı (9.94)

where we have, in the last step, rewritten ˛ C ıˇ in the amplitude-phase form
jAj exp.ı/. From the above, we immediately see that E, and consequently also
B, is damped, and that E and B in the wave are out of phase.
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In the limit "0! � � , we can approximate K as follows:

K D k

�
1C ı

�

"0!

� 1
2

D k

�
ı
�

"0!

�
1 � ı

"0!

�

�� 12
� k.1C i/

r
�

2"0!

D
p
"0�0!.1C i/

r
�

2"0!
D .1C i/

r
�0�!

2

(9.95)

In this limit we find that when the wave impinges perpendicularly upon the me-
dium, the fields are given, inside the medium, by

E0 D E0 exp
�
�

r
�0�!

2
�

�
exp

�
ı
�r

�0�!

2
� � !t

��
(9.96a)

B0 D .1C i/
r
�0�

2!
. On � E0/ (9.96b)

Hence, both fields fall off by a factor 1=e at a distance

ı D

s
2

�0�!
(9.97)

This distance ı is called the skin depth .
Assuming for simplicity that the electric permittivity " and the magnetic per-

meability �, and hence the relative permittivity �e and the relative permeability
�m all have fixed values, independent on time and space, for each type of mater-
ial we consider, we can derive the general telegrapher’s equation [cf. equation
(9.76) on page 205]

@2E

@�2
� ��

@E

@t
� "�

@2E

@t2
D 0 (9.98)

describing (1D) wave propagation in a material medium.
In chapter 2 we concluded that the existence of a finite conductivity, mani-

festing itself in a collisional interaction between the charge carriers, causes the
waves to decay exponentially with time and space. Let us therefore assume that
in our medium � D 0 so that the wave equation simplifies to

@2E

@�2
� "�

@2E

@t2
D 0 (9.99)

As in the vacuum case discussed in chapter 2, assuming that E is time-
harmonic, i.e. can be represented by a Fourier component proportional to exp.�ı!t/,
the solution of equation (9.99) can be written

E D E0ei.k �x�!t/ (9.100)
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where now k is the wave vector in the medium given by equation (9.20) on
page 194. With these definitions, the vacuum formula for the associated mag-
netic field, equation (9.84) on page 206,

B D
p
"� Ok � E D

1

v'
Ok � E D

1

!
k � E (9.101)

is valid also in a material medium (assuming, as mentioned, that n has a fixed
constant scalar value). A consequence of a �e ¤ 1 is that the electric field will,
in general, have a longitudinal component.

BElectromagnetic waves in an electrically and magnetically conducting medium EXAMPLE 9 .1

Derive the wave equation for the E field described by the electromagnetodynamic equations
(Dirac’s symmetrised Maxwell equations) [cf. equations (2.2) on page 20]

r �E D
�e

"0
(9.102a)

r � E D �
@B

@t
� �0jm (9.102b)

r �B D �0�
m (9.102c)

r � B D "0�0
@E

@t
C �0je (9.102d)

under the assumption of vanishing net electric and magnetic charge densities and in the
absence of electromotive and magnetomotive forces. Interpret this equation physically.

Assume, for symmetry reasons, that there exists a linear relation between the magnetic
current density jm and the magnetic field B (the magnetic dual of Ohm’s law for electric
currents, je D �eE)

jm
D �mB (9.103)

Taking the curl of (2.2c) and using (2.2d), one finds, noting that "0�0 D 1=c2, that

r � .r � E/ D ��0r � jm
�
@

@t
.r � B/

D ��0�
mr � B �

@

@t

�
�0je

C
1

c2
@E

@t

�
D ��0�

m
�
�0�

eEC
1

c2
@E

@t

�
� �0�

e @E

@t
�
1

c2
@2E

@t2

(9.104)

Using the vector operator identity r � .r � E/ D r .r �E/ � r2E, and the fact that
r �E D 0 for a vanishing net electric charge, we can rewrite the wave equation as

r
2E � �0

�
�e
C
�m

c2

�
@E

@t
�
1

c2
@2E

@t2
� �20�

m�eE D 0 (9.105)

This is the homogeneous electromagnetodynamic wave equation for E that we were after.

Compared to the ordinary electrodynamic wave equation for E, equation (9.61) on
page 203, we see that we pick up extra terms. In order to understand what these extra
terms mean physically, we analyse the time-independent wave equation for a single Fourier
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component. Then our wave equation becomes

r
2EC i!�0

�
�e
C
�m

c2

�
EC

!2

c2
E � �20�

m�eE

D r
2EC

!2

c2

"�
1 �

1

!2
�0

"0
�m�e

�
C i

�e C �m=c2

"0!

#
E D 0

(9.106)

Realising that, according to formula (6.4) on page 105, �0="0 is the square of the vacuum
radiation resistance R0, and rearranging a bit, we obtain the time-independent wave equa-
tion in Dirac’s symmetrised electrodynamics

r
2EC

!2

c2

 
1 �

R20
!2
�m�e

!0BB@1C i
�e C �m=c2

"0!

�
1 �

R2
0

!2
�m�e

�
1CCAE D 0 ;

! ¤ R0
p
�m�e

(9.107)

From this equation we conclude that the existence of magnetic charges (magnetic mono-
poles), and non-vanishing electric and magnetic conductivities would lead to a shift in the
effective wave number of the wave. Furthermore, even if the electric conductivity �e van-
ishes, the imaginary term does not necessarily vanish and the wave therefore experiences
damping or growth according as �m is positive or negative, respectively. This would hap-
pen in a hypothetical medium which is a perfect insulator for electric currents but which
can carry magnetic currents.

Finally, we note that in the particular case ! D R0
p
�m�e def

� !m, the time-independent
wave equation equation (9.106) above becomes a time-independent diffusion equation

r
2EC i!�0

�
�e
C
�m

c2

�
E D 0 (9.108)

which in time domain corresponds to the time-dependent diffusion equation

@E

@t
�Dr2E� D 0 (9.109)

with a diffusion coefficient given by

D D
1

�0

�
�e C �m

c2

� (9.110)

Hence, electromagnetic waves with this particular frequency do not propagate. This means
that if magnetic charges (monopoles) exist in a region in the Universe, electromagnetic
waves propagating through this region would, in this simplistic model, exhibit a lower cutoff
at ! D !m. This would in fact impose a lower limit on the mass of the photon , the quantum
of the electromagnetic field that we shall come across later.

End of example 9.1C
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FORMULÆ

This appendix contains an comprehensive collection of vector and tensor al-
gebra and calculus formulæ and identities, including perhaps a few that are not
included in every electrodynamics textbook. It also lists the most important elec-
trodynamics formulæ from the various chapters.

F.1 Vector and tensor fields in 3D Euclidean space

Let x be the position vector (radius vector , coordinate vector) from the origin
of the Euclidean space R3 coordinate system to the coordinate point .x1; x2; x3/
in the same system and let jxj denote the magnitude (‘length’) of x. Let further
˛.x/; ˇ.x/; : : :, be arbitrary scalar fields, a.x/;b.x/; : : : , arbitrary vector fields,
and A.x/;B.x/; : : : , arbitrary rank two tensor fields in this space. Let � denote
complex conjugate and � denote Hermitian conjugate (transposition and, where
applicable, complex conjugation).

The differential vector operator r is in Cartesian coordinates given by

r �

3X
iD1

Oxi
@

@xi

def
� Oxi

@

@xi

def
� @ (F.1)

where Oxi , i D 1; 2; 3 is the i th unit vector and Ox1 � Ox, Ox2 � Oy , and Ox3 � Oz. In
component (tensor) notation r can be written

ri D @i D

�
@

@x1
;
@

@x2
;
@

@x3

�
D

�
@

@x
;
@

@y
;
@

@z

�
(F.2)

The differential vector operator r 0 is defined as

r 0 �

3X
iD1

Oxi
@

@x0i

def
� Oxi

@

@x0i

def
� @0 (F.3)

or

r
0
i D @

0
i D

�
@

@x01
;
@

@x02
;
@

@x03

�
D

�
@

@x0
;
@

@y0
;
@

@z0

�
(F.4)
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F.1.1 Cylindrical circular coordinates

F.1.1.1 Base vectors

CARTESIAN TO CYLINDRICAL CIRCULAR

O¡ D cos � Ox1 C sin � Ox2 (F.5a)

O® D � sin � Ox1 C cos � Ox2 (F.5b)

Oz D Ox3 (F.5c)

CYLINDRICAL CIRCULAR TO CARTESIAN

Ox1 D cos � O¡ � sin � O® (F.6a)

Ox2 D sin � O¡C cos � O® (F.6b)

Ox3 D Oz (F.6c)

F.1.1.2 Directed line element

dl D dx Ox D d� O¡C � d' O®C dz Oz (F.7)

F.1.1.3 Directed area element

dS D � d' dz O¡C d� dz O®C � d� d' Oz (F.8)

F.1.1.4 Volume element

dV D d3x D � d� d' dz (F.9)

F.1.1.5 Spatial differential operators

In the following we assume that the scalar field ˛ D ˛.�; '; z/ and that the
vector field a D a.�; '; z/.

THE GRADIENT

r˛ D O¡
@˛

@�
C O™

1

�

@˛

@'
C Oz

@˛

@z
(F.10)

THE DIVERGENCE

r �a D
1

�

@.�a�/

@�
C
1

�

@a'

@'
C
@az

@z
(F.11)
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THE CURL

r � a D O¡

�
1

�

@az

@'
�
@a'

@z

�
C O®

�
@a�

@z
�
@az

@�

�
C Oz

1

�

�
@.�a'/

@�
�
@a�

@'

� (F.12)

THE LAPLACIAN

r
2˛ D

1

�

@

@�

�
�
@˛

@�

�
C

1

�2
@2˛

@'2
C
@2˛

@z2
(F.13)

F.1.2 Spherical polar coordinates

F.1.2.1 Base vectors

CARTESIAN TO SPHERICAL POLAR

Or D sin � cos' Ox1 C sin � sin' Ox2 C cos � Ox3 (F.14a)

O™ D cos � cos' Ox1 C cos � sin' Ox2 � sin � Ox3 (F.14b)

O® D � sin' Ox1 C cos' Ox2 (F.14c)

SPHERICAL POLAR TO CARTESIAN

Ox1 D sin � cos' Or C cos � cos' O™ � sin' O® (F.15a)

Ox2 D sin � sin' Or C cos � sin' O™C cos' O® (F.15b)

Ox3 D cos � Or � sin � O™ (F.15c)

F.1.2.2 Directed line element

dl D dx Ox D dr Or C r d� O™C r sin � d' O® (F.16)

F.1.2.3 Solid angle element

d� D sin � d� d' (F.17)

F.1.2.4 Directed area element

dS D r2d� Or C r sin � dr d' O™C r dr d� O® (F.18)
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F.1.2.5 Volume element

dV D d3x D dr r2d� (F.19)

F.1.2.6 Spatial differential operators

In the following we assume that the scalar field ˛ D ˛.r; �; '/ and that the vector
field a D a.r; �; '/.

THE GRADIENT

r˛ D Or
@˛

@r
C O™

1

r

@˛

@�
C O®

1

r sin �
@˛

@'
(F.20)

THE DIVERGENCE

r �a D
1

r2
@.r2ar/

@r
C

1

r sin �
@.a� sin �/

@�
C

1

r sin �
@a'

@'
(F.21)

THE CURL

r � a D Or
1

r sin �

�
@.a' sin �/

@�
�
@a�

@'

�
C O™

1

r

�
1

sin �
@ar

@'
�
@.ra'/

@r

�
C O®

1

r

�
@.ra� /

@r
�
@ar

@�

� (F.22)

THE LAPLACIAN

r
2˛ D

1

r2
@

@r

�
r2
@˛

@r

�
C

1

r2 sin �
@

@�

�
sin �

@˛

@�

�
C

1

r2 sin2 �
@2˛

@'2
(F.23)

F.1.3 Vector and tensor field formulæ

F.1.3.1 The three-dimensional unit tensor of rank two

13 D Oxi Oxi (F.24)

with matrix representation, denoted by .: : : /,

.13/ D

0B@1 0 0

0 1 0

0 0 1

1CA (F.25)
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F.1.3.2 The 3D Kronecker delta tensor

ıij D

(
0 if i ¤ j

1 if i D j
(F.26)

has the same matrix representation as 13:

.ıij / D .13/ (F.27)

F.1.3.3 The fully antisymmetric Levi-Civita tensor

�ijk D

8̂̂<̂
:̂
1 if i; j; k is an even permutation of 1,2,3

0 if at least two of i; j; k are equal

�1 if i; j; k is an odd permutation of 1,2,3

(F.28)

has the properties

�ijk D �jki D �kij (F.29)

�ijk D ��j ik D ��ikj (F.30)

�ijk�ilm D ıjlıkm � ıjmıkl (F.31)

F.1.3.4 Rotational matrices

The rotational matrix vector

S D Si Oxi D �i.�ijk/Oxi (F.32)

has the matrices Si as components, where

S1 D

0B@0 0 0

0 0 �i
0 i 0

1CA D �i.�1jk/ (F.33a)

S2 D

0B@ 0 0 i
0 0 0

�i 0 0

1CA D �i.�2jk/ (F.33b)

S3 D

0B@0 �i 0

i 0 0

0 0 0

1CA D �i.�3jk/ (F.33c)
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F.1.3.5 General vector and tensor algebra identities

a �b D b � a D ıijaibj D ab cos � (F.34)

a � a D a2 (F.35)

a � b D �b � a D �ijk Oxiaj bk D �jki Oxjakbi D �kij Oxkaibj (F.36)

.a �b/2 C .a � b/2 D a2b2 (F.37)

A D Aij Oxi ˝ Oxj (F.38)

A� D A�ij Oxj ˝ Oxi (F.39)

Aij D Oxi �A � Oxj (F.40)

Tr.A/ D Ai i (F.41)

a˝b � ab D Oxiaibj Oxj (F.42)

Tr.a˝b/ D a �b (F.43)

a˝.bC c/ D a˝bC a˝ c (F.44)

.aC b/˝ c D a˝ cC b˝ c (F.45)

c � a˝b D .c � a/b (F.46)

a˝b � c D a.b � c/ (F.47)

.a � b/ D �ia �S˝b D �ia˝S �b (F.48)

c � a˝b D .c � a/˝b (F.49)

a˝b � c D a˝.b � c/ (F.50)

a˝b � c˝d D .b � c/a˝d (F.51)

a �.b � c/ D .a � b/ � c (F.52)

a � .b � c/ D b˝ a � c � c˝ a �b D b.a � c/ � c.a �b/ (F.53)

.a � b/ � c D b˝ a � c � a˝b � c D b.a � c/ � a.b � c/ (F.54)

a � .b � c/C b � .c � a/C c � .a � b/ D 0 (F.55)

.a � b/ �.c � d/ D a �Œb � .c � d/� D .a � c/.b �d/ � .a �d/.b � c/ (F.56)

.a � b/ � .c � d/ D .a � b �d/c � .a � b � c/d (F.57)

F.1.3.6 Special vector and tensor algebra identities

13 � a D a � 13 D a (F.58)

13 � a D a � 13 (F.59)

.13 � a/ D .a � 13/ D

0B@ 0 �a3 a2

a3 0 �a1

�a2 a1 0

1CA D �iS � a (F.60)

a �.13 �b/ D a �b (F.61)
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a �.13 � b/ D a � b (F.62)

13 � .a � b/ D b˝ a � a˝b (F.63)

F.1.3.7 General vector and tensor calculus identities

r˛ D Oxi@i˛ (F.64)

r �a D @iai (F.65)

a � r D ai@i (F.66)

r � a D �ijk Oxi@jak (F.67)

a � r D �ijk Oxiaj @k (F.68)

r ˝ a D Oxi ˝ Oxj @iaj (F.69)

a˝r D Oxi ˝ Oxjai@j (F.70)

Tr.r ˝ a/ D r �a (F.71)

r �A D Oxj @iAij (F.72)

a˝r �b D a@ibi (F.73)

r �r˛ D r2˛ (F.74)

r ˝r �a D r .r �a/ D Oxi@i@jaj (F.75)

a � r ˝r D .a � r /r D Oxiaj @j @i (F.76)

r .˛ˇ/ D ˛rˇ C ˇr˛ (F.77)

r ˝.˛a/ D .r˛/˝ aC ˛r ˝ a (F.78)

r .a �b/ D a � .r � b/C b � .r � a/C a � r ˝bC b � r ˝ a (F.79)

r .a � b/ D .ra/ � b � .rb/ � a (F.80)

r �.˛a/ D a � r˛ C ˛r �a (F.81)

.r˛/ � rˇ D r �.˛rˇ/ � ˛r2ˇ (F.82)

r �.a � b/ D b �.r � a/ � a �.r � b/ (F.83)

.r˛/ �.r � a/ D �r �.a � r˛/ (F.84)

.r � a/ �.r � b/ D b �Œr � .r � a/� � r �Œ.r � a/ � b� (F.85)

r �.a˝b/ D .r �a/bC a � r ˝b (F.86)

r � .˛a/ D ˛r � a � a � r˛ (F.87)

r � .˛rˇ/ D .r˛/ � rˇ (F.88)

r � .a � b/ D a˝r �b � b˝r �aC b � r ˝ a � a � r ˝b (F.89)

r � .a˝b/ D .r � a/˝b � a � r ˝b (F.90)

a �.r � b/ D .a � r / �b (F.91)

a � .r � b/ D .r ˝b/ � a � a � r ˝b (F.92)
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a � .r � a/ D 1
2r .a

2/ � a � r ˝ a (F.93)

.a � r / � b D .r ˝b/ � a � .r �b/a (F.94)

.a � r / � r D a � r ˝r � ar2 (F.95)

r � .r � a/ D r ˝r �a � r �ra D r .r �a/ � r2a (F.96)

a � r ˝.b � c/ D .a � r ˝b/ � cC b � .a � r ˝ c/ (F.97)

a �b � .r � c/ D b �.a � r ˝ c/ � a �.b � r ˝ c/ (F.98)

r �.r � a/ D 0 (F.99)

r � r˛ D 0 (F.100)

.r � r / � a D 0 (F.101)

F.1.3.8 Special vector and tensor calculus identities

In the following S is the matrix vector defined in formula (F.32) and k is an
arbitrary constant vector.

r �.13˛/ D r˛ (F.102)

r �.13 � a/ D r �a (F.103)

r �.13 � a/ D r � a (F.104)

.r � a/ D �ir �S˝ a D �ir ˝S � a (F.105)

r �x D 3 (F.106)

r � x D 0 (F.107)

r ˝x D 13 (F.108)

r .x �k/ D k (F.109)

r .x � a/ D aC x.r �a/C .x � r / � a (F.110)

r jxj D
x

jxj
(F.111)

r
�
jx � x0j

�
D

x � x0

jx � x0j
D �r 0

�
jx � x0j

�
(F.112)

r

�
1

jxj

�
D �

x

jxj3
(F.113)

r

�
1

jx � x0j

�
D �

x � x0

jx � x0j3
D �r 0

�
1

jx � x0j

�
(F.114)

r �

�
x

jxj3

�
D �r

2

�
1

jxj

�
D 4�ı.x/ (F.115)

r �

�
x � x0

jx � x0j3

�
D �r

2

�
1

jx � x0j

�
D 4�ı.x � x0/ (F.116)

r �

�
k

jxj

�
D k �

�
r

�
1

jxj

��
D �

k �x

jxj3
(F.117)
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r �

�
k �

�
x

jxj3

��
D �r

�
k �x

jxj3

�
if jxj ¤ 0 (F.118)

r
2

�
k

jxj

�
D kr2

�
1

jxj

�
D �4�kı.x/ (F.119)

r � .k � a/ D k.r �a/C k � .r � a/ � r .k � a/ (F.120)

F.1.3.9 Integral identities

DIVERGENCE THEOREM AND RELATED THEOREMS

Let V.S/ be the volume bounded by the closed surface S.V /. Denote the 3D
volume element by d3x.� dV / and the surface element, directed along the out-
ward pointing surface normal unit vector On, by dS.� d2x On/. Then

Z
V

d3x r˛ D
I
S

dS ˛ �

I
S

d2x On˛ (F.121a)Z
V

d3x r �a D
I
S

dS � a �

I
S

d2x On � a (F.121b)Z
V

d3x r � a D

I
S

dS � a �

I
S

d2x On � a (F.121c)Z
V

d3x r ˝ a D

I
S

dS˝ a �

I
S

d2x On˝ a (F.121d)Z
V

d3x r �A D
I
S

dS �A �
I
S

d2x On �A (F.121e)Z
V

d3x r � A D
I
S

dS � A �
I
S

d2x On � A (F.121f)

If S.C / is an open surface bounded by the contour C.S/, whose line element
is dl, then I

C

dl˛ D

Z
S

dS � r˛ (F.122)I
C

dl � a D

Z
S

dS � r � a (F.123)

GREEN’S FIRST IDENTITYZ
V

d3x Œ.r˛/ � rˇ C ˛r2ˇ� D
I
S

d2x On �˛rˇ (F.124)

follows from formula (F.82).

GENERIC PARTIAL INTEGRATION IDENTITY

r ı

Z
V 0

d3x0
A.x0/
jx � x0j

D

Z
V 0

d3x0
r 0 ıA.x0/
jx � x0j

�

I
S 0

d2x0 On0 ı
A.x0/
jx � x0j

(F.125)
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where ı is either (i) nothing (juxtaposition) and A D ˛, or (ii) ı D � or ı D �
and A D a or A D A.

r �r

Z
V 0

d3x0
A.x0/
jx � x0j

D

Z
V 0

d3x0A.x0/r2
�

1

jx � x0j

�
D �4�A.x/ (F.126)

where A D ˛ or A D a.

SPECIFIC INTEGRAL IDENTITIES

r ˝r �

Z
V 0

d3x0
a.x0/

jx � x0j
D �

Z
V 0

d3x0 Œr 0 � a.x0/�r 0
�

1

jx � x0j

�
C

I
S 0

d2x0 On0 �
�

a.x0/˝.x � x0/

jx � x0j3

� (F.127)

r �

�
r �

Z
V 0

d3x0
a.x0/

jx � x0j

�
D r ˝r �

Z
V 0

d3x0
a.x0/

jx � x0j

� r �r

Z
V 0

d3x0
a.x0/

jx � x0j

D 4�a.x/ �

Z
V 0

d3x0 Œr 0 � a.x0/�r 0
�

1

jx � x0j

�
C

I
S 0

d2x0 On0 �
�

a.x0/˝.x � x0/

jx � x0j3

�
(F.128)

HELMHOLTZ DECOMPOSITION

Any regular, differentiable vector field u that falls off sufficiently fast asymptot-
ically can be decomposed into two components, one irrotational and one rota-
tional, such that

u.x/ D uirrot.x/C urotat.x/ (F.129a)

where

uirrot.x/ D �r

Z
V 0

d3x0
r 0 �u.x0/

4� jx � x0j
(F.129b)

urotat.x/ D r �

Z
V 0

d3x0
r 0 � u.x0/

4� jx � x0j
(F.129c)

If v is a vector field with the same properties as u, or u itself, thenZ
V

d3x uirrot.x/ � v rotat.x/ D 0 (F.130a)Z
V

d3x uirrot.x/ � v irrot.x/ D 0 (F.130b)
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Z
V

d3x uirrot.x/ � v irrot.x/ D

Z
V

d3x Œr � v irrot.x/�

Z
V 0

d3x0
r 0 �uirrot.x0/

4� jx � x0j

(F.130c)Z
V

d3x urotat.x/ � v rotat.x/ D

Z
V

d3x Œr � urotat.x/� �

Z
V 0

d3x0
r 0 � v rotat.x0/

4� jx � x0j

(F.130d)Z
V

d3x urotat.x/ � v rotat.x/ D

Z
V

d3x Œr � urotat.x/� �

Z
V 0

d3x0
r 0 � v rotat.x0/

4� jx � x0j

(F.130e)Z
V

d3x uirrot.x/ � v rotat.x/ D

Z
V

d3x Œr �uirrot.x/�

Z
V 0

d3x0
r 0 � v rotat.x0/

4� jx � x0j

(F.130f)

F.2 The electromagnetic field

F.2.1 Microscopic Maxwell-Lorentz equations in Dirac’s
symmetrised form

r �E D
�e

"0
(F.131)

r �B D �0�
m (F.132)

r � EC
@B

@t
D ��0j

m (F.133)

r � B �
1

c2
@E

@t
D �0j

e (F.134)

F.2.1.1 Constitutive relations

c D
1

p
"0�0

.D 299 792 458ms�1/ (F.135)r
�0

"0
D R0 .D 119:9169832� � � 376:7�/ (F.136)

D � "E (F.137)

H � ��1B (F.138)

j � �E (F.139)

P � "0�E (F.140)
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F.2.2 Fields and potentials

F.2.2.1 Vector and scalar potentials

E D �rˆ �
@A

@t
(F.141a)

B D r �A (F.141b)

F.2.2.2 The velocity gauge condition in free space

r �AC
˛

c2
@ˆ

@t
D 0; ˛ D

c2

v2
;

8̂̂<̂
:̂
˛ D 1) Lorenz-Lorentz gauge

˛ D 0) Coulomb gauge

˛ D �1) Kirchhoff gauge

(F.142)

F.2.2.3 Gauge transformation

ˆ.t;x/ 7! ˆ0.t;x/ D ˆ.t;x/ �
@�.t;x/

@t
(F.143a)

A.t;x/ 7! A0.t;x/ D A.t;x/C r�.t;x/ (F.143b)

F.2.3 Energy and momentum

F.2.3.1 Electromagnetic field energy density in free space

ufield
D
1

2
"0.E �EC c

2B �B/ (F.144)

F.2.3.2 Poynting vector in free space

S D
1

�0
E � B (F.145)

F.2.3.3 Linear momentum density in free space

g D "0E � B (F.146)
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F.2.3.4 Linear momentum flux tensor in free space

T D ufield13 � "0
�
E˝EC c2B˝B

�
(F.147)

Tij D u
fieldıij � "0EiEj � "0c

2BiBj (F.148)

F.2.3.5 Angular momentum density around x0 in free space

h D .x � x0/ � g D .x � x0/ � "0E � B (F.149)

F.2.3.6 Angular momentum flux tensor around x0 in free space

K.x0/ D .x � x0/ � T (F.150)

F.2.4 Electromagnetic radiation

F.2.4.1 The far fields from an extended source distribution

Efar
! .x/ � �i

k

4�"0c

eikjx�x0j

jx � x0j

Z
V 0

d3x0
��

j! e�ik �.x0�x0/ � Ok
�
� Ok

�
(F.151)

� �i
k

4�"0c

eikjx�x0j

jx � x0j
.I!.x0/ � On/ � On (F.152)

Bfar
! .x/ � �i

k

4�"0c2
eikjx�x0j

jx � x0j

Z
V 0

d3x0
�
j! e�ik �.x0�x0/ � Ok

�
(F.153)

� �i
k

4�"0c2
eikjx�x0j

jx � x0j
I!.x0/ � On (F.154)

I!.x0/ D
Z
V 0

d3x0 j!.x0/ e�ik On �.x0�x0/ (F.155)

F.2.4.2 The far fields from an electric dipole

Efar
! .x/ D �

k2

4�"0

eikjx�x0j

jx � x0j
.d!.x0/ � Ok/ � Ok (F.156)

Bfar
! .x/ D �

k2

4�"0c

eikjx�x0j

jx � x0j
d!.x0/ � Ok (F.157)

d.t;x0/ D

Z
V 0

d3x0 .x0 � x0/ �.t
0
ret;x

0/ (F.158)
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F.2.4.3 The far fields from a magnetic dipole

Efar
! .x/ D

k2

4�"0c

eikjx�x0j

jx � x0j
m!.x0/ � Ok (F.159)

Bfar
! .x/ D �

k2

4�"0c2
eikjx�x0j

jx � x0j

�
m!.x0/ � Ok

�
� Ok (F.160)

m.t;x0/ D
1

2

Z
V 0

d3x0 .x0 � x0/ � j.t 0ret;x
0/ (F.161)

F.2.4.4 The far fields from an electric quadrupole

Efar
! .x/ D i

k3

8�"0

eikjx�x0j

jx � x0j

��
Ok �Q!.x0/

�
� Ok

�
� Ok (F.162)

Bfar
! .x/ D i

k3

8�"0c

eikjx�x0j

jx � x0j

�
Ok �Q!.x0/

�
� Ok (F.163)

Q.t;x0/ D
Z
V 0

d3x0 .x0 � x0/˝.x
0
� x0/ �.t

0
ret;x

0/ (F.164)

F.2.4.5 Relationship between the field vectors in a plane wave

B D
1

c
Ok � E (F.165)

F.2.4.6 The fields from a point charge in arbitrary motion

E.t;x/ D
q

4�"0s3

�
.x � x0/

�
1 �

v02

c2

�
C .x � x0/ �

.x � x0/ � a0

c2

�
(F.166)

B.t;x/ D
1

c

x � x0

jx � x0j
� E.t;x/ (F.167)

v 0.t 0/ D
dx0.t 0/

dt 0
(F.168)

a0.t 0/ D
dv 0.t 0/

dt 0
(F.169)

s D
ˇ̌
x � x0

ˇ̌
� .x � x0/ �

v 0

c
(F.170)

x � x0 D .x � x0/ �
ˇ̌
x � x0

ˇ̌ v 0

c
(F.171)�

@t 0

@t

�
x

D
jx � x0j

s
(F.172)
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F.3 Special relativity

F.3.1 Metric tensor for flat 4D space

�
���

�
D

0BBB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCCA (F.173)

F.3.2 Lorentz transformation of a four-vector

x0� D ƒ��x
� (F.174)

�
ƒ��

�
D

0BBB@
 �ˇ 0 0

�ˇ  0 0

0 0 1 0

0 0 0 1

1CCCA (F.175)

 D
1p
1 � ˇ2

(F.176)

ˇ D
v

c
(F.177)

F.3.3 Covariant and contravariant four-vectors

F.3.3.1 Position four-vector (radius four-vector)

CONTRAVARIANT REPRESENTATION

x� D .x0; x2; x2; x3/ D .ct; x; y; z/
def
� .ct;x/ (F.178)

COVARIANT REPRESENTATION

x� D .x0; x2; x2; x3/ D .x
0;�x2;�x2;�x3/

D .ct;�x;�y;�z/
def
� .ct;�x/

(F.179)

F.3.3.2 Arbitrary four-vector field

a�.x
�/ D ���a

�.x�/ (F.180)
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F.3.3.3 Four-del operator

@� D

�
@

@x0
;
@

@x1
;
@

@x2
;
@

@x3

�
D

�
1

c

@

@t
;�

@

@x
;�

@

@y
;�

@

@z

�
def
�

�
1

c

@

@t
;�r

�
(F.181a)

@� D

�
@

@x0
;
@

@x1
;
@

@x2
;
@

@x3

�
D

�
1

c

@

@t
;
@

@x
;
@

@y
;
@

@z

�
def
�

�
1

c

@

@t
;r

�
(F.181b)

D’ALEMBERT OPERATOR

�2 D @�@� D @�@
�
D

�
1

c

@

@t
;�r

�
�

�
1

c

@

@t
;r

�
D

1

c2
@2

@t2
� r

2 (F.182)

F.3.3.4 Invariant line element

ds D c
dt

D c d� (F.183)

F.3.3.5 Four-velocity

u� D
dx
d�

�

D .c; v/ (F.184)

F.3.3.6 Four-momentum

p� D m0u
�
D

�
E

c
; p

�
(F.185)

F.3.3.7 Four-current density

j� D �0u
�
D .�c; �v/ (F.186)

F.3.3.8 Four-potential

A� D

�
ˆ

c
; A

�
(F.187)

F.3.4 Field tensor

F �� D @�A� � @�A� (F.188)
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�
F ��

�
D

0BBB@
0 �Ex=c �Ey=c �Ez=c

Ex=c 0 �Bz By

Ey=c Bz 0 �Bx

Ez=c �By Bx 0

1CCCA (F.189)
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MATHEMATICAL METHODS

Physics is the academic discipline that systematically studies and describes the
physical world, postulates new fundamental laws of Nature or generalises exist-
ing ones that govern Nature’s behaviour under various conditions, and — per-
haps most important of all — makes new predictions about Nature, based on
these new postulates. Then these predictions are put to systematic tests in inde-
pendent, carefully designed and performed, repeatable experiments that produce
objective emprical data. Merely describing Nature and explaining physical ex-
periments in terms of already existing laws is not physics in the true sense of the
word.1 Had this non-creative, static view been adopted by all physicists since 1 As STEVEN WEINBERG puts it

in the Preface To Volume I of The
Quantum Theory of Fields:

‘. . . after all, our purpose
in theoretical physics is
not just to describe the
world as we find it, but to
explain — in terms of a few
fundamental principles —
why the world is the way it
is.’

the days of Newton, we would still be doing essentially Newtonian physics.
Even if such a scientific giant as M ICHAEL FARADAY, who had very little

mathematical training, was able to make truly remarkable contributions to phys-
ics (and chemistry) using practically no formal mathematics whatsoever, it is for
us mere mortals most convenient to use the shorthand language of mathematics,
together with the formal methods of logic (inter alia propositional calculus),
in physics. After all, mathematics was once introduced by us human beings
to make it easier to quantitatively and systematically describe, understand and
predict the physical world around us. Examples of this from ancient times are
arithmetics and geometry. A less archaic example is differential calculus, needed
by S IR ISAAC NEWTON to formulate, in a compact and unambiguous manner,
the physical laws that bear his name. Another more modern example is the delta
‘function’ introduced by PAUL ADRIEN MAURICE D IRAC. But the oppos-
ite is also very common: the expansion and generalisation of mathematics has
more than once provided excellent tools for creating new physical ideas and to
better analyse observational data. Examples of the latter include non-Euclidean
geometry and group theory.

Unlike mathematics per se, where the criterion of logical consistency is both
necessary and sufficient, a physical theory that is supposed to describe the phys-
ical reality has to fulfil the additional criterion that its predictions be empiric-
ally testable. Ultimately, as GALILEO GALILEI taught us, physical reality is
defined by the outcome of experiments and observations, and not by mere Ar-
istotelean logical reasoning, however mathematically correct and logically con-
sistent this may be. Common sense is not enough and logic and reasoning can
never ‘outsmart’ Nature. Should the outcome of repeated, carefully performed,

231
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independent experiments produce results that systematically contradict predic-
tions of a theory, the only conclusion one can draw is that the theory in question,
however logically stringent and mathematically correct it may be, is wrong.22 The theoretical physicist S IR

RUDOLF PEIERLS (1907–1995)
described an ideal physical theory
in the following way:

‘It must firstly leave
undisturbed the successes
of earlier work and not
upset the explanations of
observations that had been
used in support of earlier
ideas. Secondly it must
explain in a reasonable
manner the new evidence
which brought the previous
ideas into doubt and
which suggested the
new hypothesis. And
thirdly it must predict
new phenomena or new
relationships between
different phenomena, which
were not known or not
clearly understood at the
time when it was invented.’

On the other hand, extending existing physical theories by mathematical and
logical generalisations is a very powerful way of making hypotheses that predict
the existence of possilbe new physical phenomena. History shows that if one has
several alternative ways of generalising a theory, the theory with most generality,
simplicity, elegance and beauty often is the best one. But it is not until these hy-
potheses and predictions have withstood tough empirical tests in well-designed,
systematic physical experiments that they can be said to extend physics and our
knowledge about Nature.

This appendix describes briefly some of the more common mathematical
methods and tools that are used in Classical Electrodynamics.

M.1 Scalars, vectors and tensors

Every physical observable can be represented by a mathematical object. We
have chosen to describe the observables in classical electrodynamics in terms of
scalars, pseudoscalars, vectors, pseudovectors, tensors and pseudotensors, all of
which obey certain canonical rules of transformation under a change of coordin-
ate systems and are completely defined by these rules. Despite certain advant-
ages (and some shortcomings), differential forms will not be exploited to any
significant degree in our mathematical description of physical observables.

A scalar , which may or may not be constant in time and/or space, describes
the scaling of a physical quantity. A vector describes some kind of physical
motion along a curve in space due to vection.3 A tensor describes the local3 The Latin word ‘vector’ means

‘carrier’. motion or deformation of a surface or a volume due to some form of tension
and is therefore a relation between a set of vectors. However, generalisations to
more abstract notions of these quantities have proved useful and are therefore
commonplace. The difference between a scalar, vector and tensor and a pseudo-
scalar , pseudovector and a pseudotensor is that the latter behave differently un-
der those coordinate transformations that cannot be reduced to pure rotations.

For computational convenience, it is often useful to allow mathematical ob-
jects representing physical observables to be complex valued, i.e. to let them be
analytically continued into (a domain of) the complex plane. However, since
by definition our physical world is real, care must be exercised when compar-
ing mathematical results with physical observables, i.e. real-valued numbers ob-
tained from physical measurements.
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Throughout we adopt the convention that Latin indices i; j; k; l; : : : run over
the range f1; 2; 3g to denote vector or tensor components in the real Euclidean
three-dimensional (3D) configuration space, and Greek indices �; �; �; �; : : : ,
which are used in four-dimensional (4D) spacetime, run over the range f0; 1; 2; 3g.

M.1.1 Vectors

Mathematically, a vector can be represented in a number of different ways. One
suitable representation in a vector space of dimensionN is in terms of an ordered
N -tuple of real or complex4 numbers .a1; a2; : : : ; aN / of the components along 4 It is often very convenient to use

complex notation in physics. This
notation can simplify the math-
ematical treatment considerably.
But since all physical observables
are real, we must in the final step
of our mathematical analysis of a
physical problem always ensure
that the results to be compared
with experimental values are real-
valued. In classical physics this
is achieved by taking the real (or
imaginary) part of the mathem-
atical result, whereas in quantum
physics one takes the absolute
value.

N orthogonal coordinate axes that span the vector space under consideration.
Note, however, that there are many ordered N -tuples of numbers that do not
comprise a vector, i.e. do not have the necessary vector transformation proper-
ties!

M.1.1.1 Position vector

The most basic vector, and the prototype against which all other vectors are
benchmarked, is the position vector (radius vector , coordinate vector) which is
the vector from the origin of the chosen coordinate system to the actual point
of interest. Its N -tuple representation simply enumerates the coordinates of the
position of this point. In this sense, the vector from the origin to a point is
synonymous with the coordinates of the point itself.

In the 3D Euclidean space R3, we have N D 3 and the position vector x can
be represented by the triplet .x1; x2; x3/ of its coordinates xi 2 R, i D 1; 2; 3.
The coordinates xi are scalar quantities which describe the position along the
unit base vectors Oxi which span R3. Therefore one convenient representation of
the position vector in R3 is5

5 We introduce the symbol
def
�

which may be read ‘is, by defin-
ition, to equal in meaning’, or
‘equals by definition’, or, formally,

definiendum
def
� definiens . Another

symbol sometimes used is´.

x D

3X
iD1

xi Oxi
def
� xi Oxi (M.1)

where we have introduced Einstein’s summation convention (E†) that states
that a repeated index in a term implies summation over the range of the index
in question. Whenever possible and convenient we shall in the following always
assume E† and suppress explicit summation in our formulæ. Typographically,
we represent vectors as well as prefix and infix vector operators in 3D Euclidean
space by a boldface letter or symbol in a Roman font, for instance a, r , �, �,
and˝.

Alternatively, we can describe the position vector x in component notation
as xi where

xi
def
� .x1; x2; x3/ (M.2)
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In Cartesian coordinates

.x1; x2; x3/ D .x; y; z/ (M.3)

This component notation is particularly useful in a 4-dimensional Rieman-
nian space where we can represent the (one and the same) position vector either
in its contravariant component form , (superscript index form) as the quartet

x�
def
� .x0; x1; x2; x3/ (M.4)

or its covariant component form (subscript index form)

x�
def
� .x0; x1; x2; x3/ (M.5)

The contravariant and covariant forms represent the same vector but the numer-
ical values of the components of the two may have different numerical values.
The relation between them is determined by the metric tensor (also known as
the fundamental tensor) whose actual form is dictated by the properties of the
vector space in question. The dual representation of vectors in contravariant and
covariant forms is most convenient when we work in a vector space with an in-
definite metric . An example of 4D Riemannian space is Lorentz space L4 which
is a frequently employed to formulate the special theory of relativity.

M.1.2 Fields

A field is a physical entity that depends on one or more continuous parameters.
Such a parameter can be viewed as a ‘continuous index’ that enumerates the
infinitely many ‘coordinates’ of the field. In particular, in a field that depends on
the usual position vector x of R3, each point in this space can be considered as
one degree of freedom so that a field is a representation of a physical entity with
an infinite number of degrees of freedom.

M.1.2.1 Scalar fields

We denote an arbitrary scalar field in R3 by

˛.x/ D ˛.x1; x2; x3/
def
� ˛.xi / (M.6)

This field describes how the scalar quantity ˛ varies continuously in 3D R3

space.
In 4D, a four-scalar field is denoted

˛.x0; x1; x2; x3/
def
� ˛.x�/ (M.7)

which indicates that the four-scalar ˛ depends on all four coordinates spanning
this space. Since a four-scalar has the same value at a given point regardless of
coordinate system, it is also called an invariant .
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M.1.2.2 Vector fields

We can represent an arbitrary 3D real vector field a.x/ as follows:

a.x/ D ai .x/Oxi 2 R3 (M.8)

In component notation this same vector can be represented as

ai .x/ D .a1.x/; a2.x/; a3.x// D ai .xj / (M.9)

A 3D complex vector field c.x/ is a vector in C3 (or, if we like, in R6),
expressed in terms of two real vectors cR and cI in R3 in the following way

c.x/
def
� cR.x/C icI.x/ D cR.x/OcR C icI.x/OcI

def
� c.x/Oc 2 C3 (M.10)

which means that

Re fcg D cR D cR OcR 2 R3 (M.11a)

Im fcg D cI D cI OcI 2 R3 (M.11b)

The use of complex vectors is in many situations a very convenient and
powerful technique but requires extra care since physical observables must be
represented by real vectors (2 R3).

In 4D, an arbitrary four-vector field in contravariant component form can be
represented as

a�.x�/ D .a0.x�/; a1.x�/; a2.x�/; a3.x�// (M.12)

or, in covariant component form, as

a�.x
�/ D .a0.x

�/; a1.x
�/; a2.x

�/; a3.x
�// (M.13)

where x� is the position four-vector (radius four-vector , coordinate four-vector).
Again, the relation between a� and a� is determined by the metric of the phys-
ical 4D system under consideration.

M.1.2.3 Coordinate transformations

We note that for a change of coordinates x� 7! x0� D x0�.x0; x1; x2; x3/, due
to a transformation from one coordinate system † to another coordinate system
†0, the differential position vector dx� transforms as

dx0� D
@x0�

@x�
dx� (M.14)
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This follows trivially from the rules of differentiation of x0� considered as a
function of four variables x� , i.e. x0� D x0�.x�/. Analogous to the transforma-
tion rule for the differential dx�, equation (M.14) above, the transformation rule
for the differential operator @=@x� under a transformation x� 7! x0� becomes

@

@x0�
D
@x�

@x0�
@

@x�
(M.15)

which, again, follows trivially from the rules of differentiation.
Whether an arbitrary N -tuple fulfils the requirement of being an (N -dimen-

sional) contravariant vector or not, depends on its transformation properties
during a change of coordinates. For instance, in 4D an assemblage y� D
.y0; y1; y2; y3/ constitutes a contravariant four-vector (or the contravariant com-
ponents of a four-vector) if and only if, during a transformation from a system
† with coordinates x� to a system †0 with coordinates x0�, it transforms to the
new system according to the rule

y0� D
@x0�

@x�
y� (M.16)

i.e. in the same way as the differential coordinate element dx� transforms ac-
cording to equation (M.14) on the preceding page.

The analogous requirement for a covariant four-vector is that it transforms,
during the change from † to †0, according to the rule

y0� D
@x�

@x0�
y� (M.17)

i.e. in the same way as the differential operator @=@x� transforms according to
equation (M.15) above.

M.1.2.4 Tensor fields

We denote an arbitrary tensor field in R3 by A.x/. This tensor field can be
represented in a number of ways, for instance in the following matrix represent-
ation:66 When a mathematical object

representing a physical observable
is given in matrix representation,
we indicate this by enclosing the
mathematical object in question in
parentheses, i.e. .: : :/.

�
A.x/

� def
�
�
Aij .xk/

� def
�

0B@A11.x/ A12.x/ A13.x/

A21.x/ A22.x/ A23.x/

A31.x/ A32.x/ A33.x/

1CA (M.18)

Strictly speaking, the tensor field described here is a tensor of rank two.
A particularly simple rank two tensor in R3 is the 3D Kronecker delta tensor

ıij , with the following properties:

ıij D

(
0 if i ¤ j

1 if i D j
(M.19)
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The 3D Kronecker delta tensor has the following matrix representation

.ıij / D

0B@1 0 0

0 1 0

0 0 1

1CA (M.20)

Another common and useful tensor is the fully antisymmetric tensor of rank
three, also known as the Levi-Civita tensor

�ijk D

8̂̂<̂
:̂
1 if i; j; k is an even permutation of 1,2,3

0 if at least two of i; j; k are equal

�1 if i; j; k is an odd permutation of 1,2,3

(M.21)

Clearly, this tensor fulfils the relations

�ijk D �jki D �kij (M.22)

and

�ijk D ��j ik D ��ikj (M.23)

and has the following further property

�ijk�ilm D ıjlıkm � ıjmıkl (M.24)

In fact, tensors may have any rank n. In this picture, a scalar is considered
to be a tensor of rank n D 0 and a vector to be a tensor of rank n D 1. Con-
sequently, the notation where a vector (tensor) is represented in its component
form is called the tensor notation . A tensor of rank n D 2may be represented by
a two-dimensional array or matrix, and a tensor of rank n D 3 may be represen-
ted as a vector of tensors of rank n D 2. Assuming that one of the indices of the
Levi-Civita tensor �ijk , e.g. the first index i D 1; 2; 3, denotes the component of
such a vector of tensors, these components have the matrix representations (the
second and third indices, j; k D 1; 2; 3, are the matrix indices)

�
.�ijk/iD1

�
D

0B@�111 �112 �113

�121 �122 �123

�131 �132 �133

1CA D
0B@0 0 0

0 0 1

0 �1 0

1CA D iS1 (M.25a)

�
.�ijk/iD2

�
D

0B@�211 �212 �213

�221 �222 �223

�231 �232 �233

1CA D
0B@0 0 �1

0 0 0

1 0 0

1CA D iS2 (M.25b)

�
.�ijk/iD3

�
D

0B@�311 �312 �313

�321 �322 �323

�331 �332 �333

1CA D
0B@ 0 1 0

�1 0 0

0 0 0

1CA D iS3 (M.25c)
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Here we have introduced the matrix vector

S D Si Oxi (M.26)

where the vector components Si are the matrices

S1 D

0B@0 0 0

0 0 �i
0 i 0

1CA S2 D

0B@ 0 0 i
0 0 0

�i 0 0

1CA S3 D

0B@0 �i 0

i 0 0

0 0 0

1CA (M.27)

which satisfy the angular momentum commutation rule

ŒSi ;Sj � D �i�ijkSk (M.28)

Tensors of rank higher than 3 are best represented in their tensor notation
(component form). It is important to remember that a tensor of any rank is fully
and totally characterized by its transformation properties under the change of
coordinates. This is a very strict constraint.

In 4D, we have three forms of four-tensor fields of rank n. We speak of

� a contravariant four-tensor field , denoted A�1�2:::�n.x�/,

� a covariant four-tensor field , denoted A�1�2:::�n.x
�/,

� a mixed four-tensor field , denoted A�1�2:::�k�kC1:::�n.x
�/.

The 4D metric tensor (fundamental tensor) mentioned above is a particularly
important four-tensor of rank two. In covariant component form we shall denote
it g�� . This metric tensor determines the relation between an arbitrary contrav-
ariant four-vector a� and its covariant counterpart a� according to the following
rule:

a�.x
�/

def
� g��a

�.x�/ (M.29)

This rule is often called lowering of index . The raising of index analogue of the
index lowering rule is:

a�.x�/
def
� g��a�.x

�/ (M.30)

More generally, the following lowering and raising rules hold for arbitrary
rank n mixed tensor fields:

g�k�kA
�1�2:::�k�1�k
�kC1�kC2:::�n

.x�/ D A�1�2:::�k�1�k�kC1:::�n
.x�/ (M.31)

g�k�kA�1�2:::�k�1�k�kC1:::�n
.x�/ D A�1�2:::�k�1�k�kC1�kC2:::�n

.x�/ (M.32)

Successive lowering and raising of more than one index is achieved by a repeated
application of this rule. For example, a dual application of the lowering operation
on a rank two tensor in its contravariant form yields

A�� D g��g��A
�� (M.33)

i.e. the same rank two tensor in its covariant form.
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M.2 Vector algebra

M.2.1 Scalar product

The scalar product (dot product , inner product) of two arbitrary 3D vectors a

and b in Euclidean R3 space is the scalar number

a �b D ai Oxi � bj Oxj D Oxi � Oxjaibj D ıijaibj D aibi (M.34)

where we used the fact that the scalar product Oxi � Oxj is a representation of the
Kronecker delta ıij defined in equation (M.19) on page 236.7 The scalar product 7 In the Russian literature, the 3D

scalar product is often denoted
.ab/.

of a vector a in R3 with itself is

a � a
def
� .a/2 D jaj2 D .ai /

2
D a2 (M.35)

and similarly for b. This allows us to write

a �b D ab cos � (M.36)

where � is the angle between a and b.
In 4D space we define the scalar product of two arbitrary four-vectors a� and

b� in the following way

a�b
�
D g��a

�b� D a�b� D g
��a�b� (M.37)

where we made use of the index lowering and raising rules (M.29) and (M.30).
The result is a four-scalar, i.e. an invariant which is independent of in which 4D
coordinate system it is measured.

The quadratic differential form

ds2 D g��dx�dx� D dx�dx� (M.38)

i.e. the scalar product of the differential position four-vector with itself, is an
invariant called the metric . It is also the square of the line element ds which is
the distance between neighbouring points with coordinates x� and x� C dx�.

M.2.2 Vector product

The vector product or cross product of two arbitrary 3D vectors a and b in
ordinary R3 space is the vector8 8 Sometimes the 3D vector product

of a and b is denoted a ^ b
or, particularly in the Russian
literature, Œab�.

c D a � b D �ijk Oxiaj bk D �ijkaj bk Oxi (M.39)

Here �ijk is the Levi-Civita tensor defined in equation (M.21) on page 237. Al-
ternatively,

a � b D ab sin � Oe (M.40)
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where � is the angle between a and b and Oe is a unit vector perpendicular to the
plane spanned by a and b.

A spatial reversal of the coordinate system, .x01; x
0
2; x
0
3/ D .�x1;�x2;�x3/,

known as a parity transformation , changes sign of the components of the vectors
a and b so that in the new coordinate system a0 D �a and b0 D �b, which is to
say that the direction of an ordinary vector is not dependent on the choice of the
directions of the coordinate axes. On the other hand, as is seen from equation
(M.39) on the preceding page, the cross product vector c does not change sign.
Therefore a (or b) is an example of a ‘true’ vector, or polar vector , whereas c is
an example of an pseudovector or axial vector .

A prototype for a pseudovector is the angular momentum vector L D x � p

and hence the attribute ‘axial’. Pseudovectors transform as ordinary vectors un-
der translations and proper rotations, but reverse their sign relative to ordinary
vectors for any coordinate change involving reflection. Tensors (of any rank)
that transform analogously to pseudovectors are called pseudotensors . Scalars
are tensors of rank zero, and zero-rank pseudotensors are therefore also called
pseudoscalars , an example being the pseudoscalar Oxi �.Oxj � Oxk/ D Oxi �.�ijk Oxi /.
This triple product is a representation of the ijk component of the rank three
Levi-Civita pseudotensor �ijk .

M.2.3 Dyadic product

The dyadic product A.x/ � a.x/˝b.x/ of two vector fields a.x/ and b.x/ is
the outer product of a and b known as a dyad . Here a is called the antecedent
and b the consequent .99 In electrodynamics, it is very

common that the dyadic product is
represented by a juxtaposition of
the antecedent and the consequent,
i.e. A D ab.

The dyadic product between vectors (rank one tensors) is a special instance
of the direct product ˝ between arbitrary rank tensors. This associative but
non-commuting operation is also called the tensor product or, when applied to
matrices (matrix representations of tensors), the Kronecker product .

Written out in explicit form, the dyadic product A becomes

A D a˝b D a1 Ox1˝ b1 Ox1 C a1 Ox1˝ b2 Ox2 C � � � C a3 Ox3˝ b3 Ox3 (M.41a)

D ai Oxi ˝ bj Oxj D aibj Oxi ˝ Oxj D Oxiai ˝ bj Oxj (M.41b)

D

�
Ox1 Ox2 Ox3

�0B@a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

1CA
0B@Ox1Ox2
Ox3

1CA (M.41c)

In matrix representation

.A/ D .a˝b/ D

0B@a1a2
a3

1CA�b1 b2 b3

�
D

0B@a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

1CA (M.42)
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which we identify with expression (M.18) on page 236, viz. a tensor in matrix
representation. Hence, a dyadic of two vectors is intimately related to a rank two
tensor, emphasising its vectorial characteristics.

Scalar multiplication from the right or from the left of the dyad A D a˝b

by a vector c, produces other vectors according to the scheme

A � c D a˝b � c
def
� a.b � c/ D aj bici Oxj (M.43a)

c �A D c � a˝b
def
� .c � a/b D aibj ci Oxj (M.43b)

respectively. These two vectors, proportional to a and b, respectively, are in
general not identical to each other. In the first case, c is known as the postfactor ,
in the second case as the prefactor .

Specifically, if c D Oxj , then

A � Oxj D abj D aibj Oxi (M.44a)

Oxj �A D ajb D aj bi Oxi (M.44b)

which means that

Oxi �A � Oxj D aibj D Aij (M.44c)

The vector product can be represented in matrix form as follows:

.c/ D

0B@c1c2
c3

1CA D .a � b/ D

0B@a2b3 � a3b2a3b1 � a1b3

a1b2 � a2b1

1CA D �ia �S˝b D �ia˝S �b

(M.45)

where S˝b is the dyadic product of the matrix vector S, given by formula
(M.26) on page 238, and the vector b, and a˝S is the dyadic product of the
vector a and the matrix vector S.

Vector multiplication from the right and from the left of the dyad A by a
vector is another dyad according to the scheme

A � c D a˝b � c
def
� a˝.b � c/ D �jklaibkcl Oxi Oxj (M.46a)

c � A D c � a˝b
def
� .c � a/˝b D �jklalbick Oxj Oxi D �iklalbj ck Oxi Oxj

(M.46b)

respectively. In general, the two new dyads thus created are not identical to each
other.

Specifically, if A D 13 D Oxi ˝ Oxi , i.e. the unit dyad or the second-rank unit
tensor , then

13 � c D � c3 Ox1˝ Ox2 C c2 Ox1˝ Ox3

C c3 Ox2˝ Ox1 � c1 Ox2˝ Ox3

� c2 Ox1˝ Ox3 C c1 Ox3˝ Ox2 D c � 13

(M.47)
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or, in matrix representation,

.13 � c/ D

0B@ 0 �c3 c2

c3 0 �c1

�c2 c1 0

1CA D .c � 13/ (M.48)

Using the matrix vector formula (M.26) on page 238, we can write this as

.13 � c/ D .c � 13/ D �iS � c (M.49)

One can extend the dyadic scheme and introduce abc, called a tryad , and so
on. In this vein, a vector a is sometimes called a monad .

M.3 Vector calculus

M.3.1 The del operator

In R3 the del operator is a differential vector operator , denoted in Gibbs’ nota-
tion by the boldface nabla symbol r and defined as1010 This operator was introduced by

W ILLIAM ROWEN HAMILTON
(1805–1865) who, however, used
the symbol B for it. It is therefore
sometimes called the Hamilton
operator .

r D Oxiri
def
� Oxi

@

@xi

def
�

@

@x

def
� @ (M.50)

where Oxi is the i th unit vector in a Cartesian coordinate system. Since the oper-
ator in itself has vectorial properties, we denote it with a boldface nabla (r ).

In ‘component’ (tensor) notation the del operator can be written

@i D

�
@

@x1
;
@

@x2
;
@

@x3

�
(M.51)

In 4D, the contravariant component representation of the four-del operator is
defined by

@� D

�
@

@x0
;
@

@x1
;
@

@x2
;
@

@x3

�
(M.52)

whereas the covariant four-del operator is

@� D

�
@

@x0
;
@

@x1
;
@

@x2
;
@

@x3

�
(M.53)

We can use this four-del operator to express the transformation properties
(M.16) and (M.17) on page 236 as

y0� D
�
@�x
0�
�
y� (M.54)

and

y0� D
�
@0�x

�
�
y� (M.55)

respectively.
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M.3.2 The gradient of a scalar field

The gradient of an R scalar field ˛.x/, is an R3 vector field

grad˛.x/
def
� r˛.x/

def
� @˛.x/

def
� Oxi@i˛.x/

def
� Oxi@i˛.xj / (M.56)

If the scalar field depends only on one coordinate, � say, then

r˛.x/ D r˛.�/ D O—
@˛.�/

@�
D O—r˛.�/ (M.57)

and, therefore, r D O—r. From this we see that the boldface notation for the
gradient (r ) is very handy as it elucidates its 3D vectorial property and separates
it from the nabla operator (r) which has a scalar property.

In 4D, the four-gradient of a four-scalar is a covariant vector, formed as a
derivative of a four-scalar field ˛.x�/, with the following component form:

@�˛.x
�/ D

@˛.x�/

@x�
(M.58a)

with the contravariant form

@�˛.x�/ D
@˛.x�/

@x�
(M.58b)

M.3.3 The divergence of a vector field

We define the 3D divergence of a vector field a in R3 as

div a.x/
def
� r �a.x/

def
�
@ai .x/

@xi

def
� @iai .x/

def
� @iai .xj / (M.59)

which, as indicated by the notation ˛.x/, is a scalar field in R3.
The four-divergence of a four-vector a� is the four-scalar

@�a
�.x�/ D

@a�.x�/

@x�
(M.60)

M.3.4 The curl of a vector field

In R3 the curl of a vector field a.x/ is another R3 vector field defined in the
following way:

curl a.x/
def
� r � a.x/

def
� �ijk Oxi

@ak.x/

@xj

def
� �ijk Oxi@jak.x/

def
� �ijk Oxi@jak.xl/

(M.61)
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where use was made of the Levi-Civita tensor, introduced in equation (M.21) on
page 237. If a is an ordinary vector (polar vector), then r � a is a pseudovector
(axial vector) and vice versa.

Similarly to formula (M.45) on page 241, we can write the matrix represent-
ation of the curl in R3 as

.r � a/ D

0B@@2a3 � @3a2@3a1 � @1a3

@1a2 � @2a1

1CA D �ir �S˝ a D �ir ˝S � a (M.62)

where S is the matrix vector given by formula (M.26) on page 238.
The covariant 4D generalisation of the curl of a four-vector field a�.x�/ is

the antisymmetric four-tensor field

A��.x
�/ D @�a�.x

�/ � @�a�.x
�/ D �A��.x

�/ (M.63)

A vector with vanishing curl is said to be irrotational .

M.3.5 The Laplacian

The 3D Laplace operator or Laplacian can be described as the divergence of the
del operator:

r �r D r2
def
� �

def
�

3X
iD1

@2

@x2i

def
�

@2

@x2i

def
� @2i (M.64)

The symbol r2 is sometimes read del squared . If, for a scalar field ˛.x/,
r2˛ < 0 at some point in 3D space, ˛ has a concentration at that point.

Numerous vector algebra and vector calculus formulæ are given in appendix F

on page 213. Those which are not found there can often be easily derived by us-
ing the component forms of the vectors and tensors, together with the Kronecker
and Levi-Civita tensors and their generalisations to higher ranks and higher di-
mensions.

M.3.6 Vector and tensor integrals

In this subsection we derive some (Riemann) integral identities involving vectors
and/or tensors, Of particular interest, importance and usefulness are identities
where the integrand contains the scalar 1= jx � x0j.
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M.3.6.1 First order derivatives

Let us start with the gradient of a volume integral of a scalar field divided by
jx � x0j. It can be written

r

Z
V 0

d3x0
˛.x0/

jx � x0j
D

Z
V 0

d3x0 ˛.x0/r
�

1

jx � x0j

�
(M.65)

where we used formula (F.77) on page 219 with ˇ.x/ D 1= jx � x0j, noticing
that ˛ is a function of x0 only and therefore behaves as a constant under differ-
entiation with respect to x. The results obtained in example M.10 on page 258
allow us to make the replacement r 7! �r 0 in the integrand, leading to

r

Z
V 0

d3x0
˛.x0/

jx � x0j
D �

Z
V 0

d3x0 ˛.x0/r 0
�

1

jx � x0j

�
(M.66)

We can now integrate the RHS by part by invoking formula (F.77) once more,
but this time with r 0 instead of r . The result is

r

Z
V 0

d3x0
˛.x0/

jx � x0j
D

Z
V 0

d3x0
r 0˛.x0/

jx � x0j
�

Z
V 0

d3x0 r 0
�
˛.x0/

jx � x0j

�
(M.67)

Formula (F.121a) on page 221 enables us to replace the last volume integral with
a surface integral, yielding the final result

r

Z
V 0

d3x0
˛.x0/

jx � x0j
D

Z
V 0

d3x0
r 0˛.x0/

jx � x0j
�

I
S 0

d2x0 On
˛.x0/

jx � x0j
(M.68)

An analogous approach for the divergence of a volume integral of a regular
vector field a.x0/ divided by jx � x0j yields, with the use of formula (F.81) on
page 219 and the results in example M.10 on page 258,

r �

Z
V 0

d3x0
a.x0/

jx � x0j
D

Z
V 0

d3x0 a.x0/ � r
�

1

jx � x0j

�
D �

Z
V 0

d3x0 a.x0/ � r 0
�

1

jx � x0j

� (M.69)

We integrate this by part, again employing identity (F.81) on page 219 and for-
mula (F.121b) on page 221, to obtain

r �

Z
V 0

d3x0
a.x0/

jx � x0j
D

Z
V 0

d3x0
r 0 � a.x0/

jx � x0j
�

I
S 0

d2x0 On0 �
a.x0/

jx � x0j
(M.70)

For the curl of the same vector integral, we do not repeat the steps but only
quote the final result

r �

Z
V 0

d3x0
a.x0/

jx � x0j
D

Z
V 0

d3x0
r 0 � a.x0/

jx � x0j
�

I
S 0

d2x0 On0 �
a.x0/

jx � x0j
(M.71)
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The above results can be summarised in the general partial integration for-
mula

r ı

Z
V 0

d3x0
A.x0/
jx � x0j

D

Z
V 0

d3x0
r 0 ıA.x0/
jx � x0j

�

I
S 0

d2x0 On0 ı
A.x0/
jx � x0j

(M.72)

where ı is either (i) nothing (juxtaposition) and A D ˛, or (ii) ı D � or ı D �
and A D a. In the surface integrals in the formulæ above, the surface ele-
ment d2x0 D dS0 � On0 is proportional to r2 D jx � x0j

2 [cf. formula (F.18) on
page 215]. Hence, if A.x0/ falls off faster than 1=r , this surface integral vanishes
when we let the radius r of the sphere S 0, over which the surface integral is to be
evaluated, tend to infinity. If A.x0/ falls off exactly as 1=r for large r , the surface
integral tends to a constant, which, in the special cases ı D �; A.x0/ D a ? On0

and ı D �; A.x0/ D a k On0 is zero. If A.x0/ falls off slower than 1=r at in-
finity, the surface integral is singular and, consequently, the above formulæ are
inapplicable. When the surface integral vanishes the following simple and very
useful formula obtains:

r ı

Z
V 0

d3x0
A.x0/
jx � x0j

D

Z
V 0

d3x0
r 0 ıA.x0/
jx � x0j

(M.73)

M.3.6.2 Second order derivatives

Let us also derive two identities involving second derivatives of an integral over
V 0 where the integrand is either a regular, differentiable scalar ˛.x0/, or a regular
vector field a.x0/ divided by jx � x0j.

The divergence of the gradient of an integral where the integrand is of the
first kind can be written

r �r

Z
V 0

d3x0
˛.x0/

jx � x0j
D �

Z
V 0

d3x0 ˛.x0/r �r
�

1

jx � x0j

�
D �

Z
V 0

d3x0 ˛.x0/r2
�

1

jx � x0j

� (M.74)

The representation of the Dirac delta function given by formula (F.116) on page 220
immediately yields the simple result that

r �r

Z
V 0

d3x0
˛.x0/

jx � x0j
D �4�˛.x/ (M.75)

The curl of the curl of an integral with an integrand of the second kind is

r �

�
r �

Z
V 0

d3x0
a.x0/

jx � x0j

�
D r ˝r �

Z
V 0

d3x0
a.x0/

jx � x0j

� r �r

Z
V 0

d3x0
a.x0/

jx � x0j

(M.76)
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where we used the identity (F.96) on page 220. The second integral in the RHS
is the vector form of formula (M.75) on the preceding page :

r �r

Z
V 0

d3x0
a.x0/

jx � x0j
D �4�a.x/ (M.77)

Using the fact that r operates on unprimed coordinates whereas a depends only
on x0, we can rewrite the first integral in the RHS asZ

V 0
d3x0 a.x0/ � r ˝r

�
1

jx � x0j

�
D

Z
V 0

d3x0 a.x0/ � r 0˝r 0
�

1

jx � x0j

�
(M.78)

where we twice used the fact that r D �r 0 when they operate on 1= jx � x0j

and its gradient. Now we can utilise identity (F.86) on page 219 with b D

r 0.1= jx � x0j/ to integrate the RHS by parts as follows:Z
V 0

d3x0 a.x0/ � r 0˝r 0
�

1

jx � x0j

�
D �

Z
V 0

d3x0 Œr 0 � a.x0/�r 0
�

1

jx � x0j

�
C

Z
V 0

d3x0 r 0 �
�
a.x0/˝r 0

�
1

jx � x0j

��
D �

Z
V 0

d3x0 Œr 0 � a.x0/�r 0
�

1

jx � x0j

�
C

I
S 0

d2x0 On0 �
�
a.x0/˝r 0

�
1

jx � x0j

��
(M.79)

where, in the last step, we used the divergence theorem for tensors/dyadics, for-
mula (F.121e) on page 221. Putting it all together, we finally obtain the integral
identity

r �

�
r �

Z
V 0

d3x0
a.x0/

jx � x0j

�
D 4�a.x/�

Z
V 0

d3x0 Œr 0 � a.x0/�r 0
�

1

jx � x0j

�
C

I
S 0

d2x0 On0 �
�

a.x0/˝.x � x0/

jx � x0j3

�
(M.80)

where the surface integral vanishes for any well-behaved a.

M.3.7 Helmholtz’s theorem

Let us consider an unspecified but well-behaved vector field u.x/ that is con-
tinuously differentiable. From equation (M.76) and equation (M.77) above we
see that we can always represent such a vector field in the following way:

u.x/ D �r ˝r �

Z
V 0

d3x0
u.x0/

4� jx � x0j
C r �

�
r �

Z
V 0

d3x0
u.x0/

4� jx � x0j

�
(M.81)
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If u.x/ is regular and falls off rapidly enough with distance r D jx � x0j (typic-
ally faster than 1=r when r ! 1), we can use formula (M.73) on page 246 to
rewrite this as

u.x/ D � r˛.x/C r � a.x/ (M.82a)

where

˛.x/ D

Z
V 0

d3x0
r 0 �u.x0/

4� jx � x0j
(M.82b)

a.x/ D

Z
V 0

d3x0
r 0 � u.x0/

4� jx � x0j
(M.82c)

Since, according to example M.13 on page 259, r � .r˛/ D 0, i.e. r˛ is ir-
rotational (also called rotation-less or lamellar), and, according to example M.14
on page 260, r �.r � a/ D 0, i.e. r � a is rotational (also called divergence-
less or solenoidal ), u can always be decomposed into one irrotational and one
rotational component

u.x/ D uirrot.x/C urotat.x/ (M.83a)

where

uirrot.x/ D �r˛.x/ D �r

Z
V 0

d3x0
r 0 �u.x0/

4� jx � x0j
(M.83b)

urotat.x/ D r � a.x/ D r �

Z
V 0

d3x0
r 0 � u.x0/

4� jx � x0j
(M.83c)

This is called Helmholtz decomposition .
Furthermore, since

r � uirrot
D 0 (M.84a)

r �urotat
D 0 (M.84b)

we notice, by invoking also equations (M.83) above, that

r �u D r �uirrot
D r �.�r˛/ D �r2˛ (M.85a)

r � u D r � urotat
D r � .r � a/ (M.85b)

from which we see that a vector field that is well-behaved at large distances is
completely and uniquely determined if we know its divergence and curl at all
points x in 3D space (and at any given fixed time t if the vector field is time
dependent). This is the (first) Helmholtz’s theorem , also called the fundamental
theorem of vector calculus .
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M.4 Analytical mechanics

M.4.1 Lagrange’s equations

As is well known from elementary analytical mechanics, the Lagrange function
or Lagrangian L is given by

L.qi ; Pqi ; t / D L .qi ; Pqi ; t / D T � V (M.86)

where qi is the generalised coordinate ,

Pqi
def
�

dqi
dt

(M.87)

the generalised velocity , T the kinetic energy , and V the potential energy of a
mechanical system, If we use the action

S D

Z t2

t1

dt L.qi ; Pqi ; t / (M.88)

and the variational principle with fixed endpoints t1 and t2,

ıS D 0 (M.89)

we find that the Lagrangian L satisfies the Euler-Lagrange equations

d
dt

�
@L

@ Pqi

�
�
@L

@qi
D 0 (M.90)

To the generalised coordinate qi one defines a canonically conjugate mo-
mentum pi according to

pi D
@L

@ Pqi
(M.91)

and note from equation (M.90) above that

@L

@qi
D Ppi (M.92)

If we introduce an arbitrary, continuously differentiable function ˛ D ˛.qi ; t /
and a new Lagrangian L0 related to L in the following way

L0 D LC
d˛
dt
D LC Pqi

@˛

@qi
C
@˛

@t
(M.93)

then

@L0

@ Pqi
D
@L

@ Pqi
C
@˛

@q
(M.94a)
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@L0

@qi
D
@L

@qi
C

d
dt
@˛

@q
(M.94b)

Or, in other words,
d
dt

�@L0
@ Pqi

�
�
@L0

@qi
D

d
dt

� @L
@ Pqi

�
�
@L

@qi
(M.95)

where

p0i D
@L0

@ Pqi
D
@L

@ Pqi
C
@˛

@qi
D pi C

@˛

@qi
(M.96a)

and

q0i D �
@L0

@ Ppi
D
@L

@ Pp
D qi (M.96b)

M.4.2 Hamilton’s equations

From L, the Hamiltonian (Hamilton function) H can be defined via the Le-
gendre transformation

H.pi ; qi ; t / D pi Pqi � L.qi ; Pqi ; t / (M.97)

After differentiating the left and right hand sides of this definition and setting
them equal we obtain

@H

@pi
dpi C

@H

@qi
dqi C

@H

@t
dt D Pqidpi C pid Pqi �

@L

@qi
dqi �

@L

@ Pqi
d Pqi �

@L

@t
dt

(M.98)

According to the definition of pi , equation (M.91) on the preceding page, the
second and fourth terms on the right hand side cancel. Furthermore, noting that
according to equation (M.92) on the previous page the third term on the right
hand side of equation (M.98) above is equal to � Ppidqi and identifying terms, we
obtain the Hamilton equations:

@H

@pi
D Pqi D

dqi
dt

(M.99a)

@H

@qi
D � Ppi D �

dpi
dt

(M.99b)

M.5 Examples

BThe physical interpretation of a complex vectorEXAMPLE M .1

Study the physical meaning of vectors in complex notation where both the magnitudes and
the base vectors are complex.

Let us choose the complex magnitude as
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c D jcjei�
D
p
2C.cos� C i sin�/ ; C 2 R (M.100)

and, without lack of generality, choose as base vectors the two complex unit base vectors,
expressed in the two orthogonal base vectors x1;x2 2 R3

Oh˙ D
1
p
2
.Ox1 ˙ iOx2/ (M.101)

that fulfil the conditions

OhC � Oh
�
C D

Oh� � Oh
�
� D 1 (M.102)

OhC � Oh
�
� D

Oh� � Oh
�
C D 0 (M.103)

With these choices, our two vectors can be written

c˙ D jcje
i� Oh˙ D C.cos� C i sin�/.Ox1 ˙ iOx2/

D C.cos� Ox1 � sin� Ox2/C iC.sin� Ox1 ˙ cos� Ox2/
(M.104)

In order to interpret this expression correctly in physical terms, we must take the real part

Re fc˙g D C.cos� Ox1 � sin� Ox2/ (M.105)

If � D !t , as is be the case when � measures the angle of rotation with angular frequency
!, then

Re fc˙g D C
�

cos.!t/ Ox1 � sin.!t/ Ox2
�

(M.106)

We see that the physically meaningful real part describes a rotation in positive or negative
sense, depending on the choice of sign. and therefore Oh˙ are called helical base vectors .

End of example M.1C

BTensors in 3D space EXAMPLE M .2

Consider a tetrahedron-like volume element V of a solid, fluid, or gaseous body, whose
atomistic structure is irrelevant for the present analysis; figure M.1 on the next page indicates
how this volume may look like. Let dS D d2x On be the directed surface element of this
volume element and let the vector T On d2x be the force that matter, lying on the side of d2x
toward which the unit normal vector On points, acts on matter which lies on the opposite side
of d2x. This force concept is meaningful only if the forces are short-range enough that they
can be assumed to act only in the surface proper. According to Newton’s third law, this
surface force fulfils

T�On D � T On (M.107)

Using (M.107) and Newton’s second law, we find that the matter of mass m, which at a
given instant is located in V obeys the equation of motion

T On d2x � cos �1T Ox1 d2x � cos �2T Ox2 d2x � cos �3T Ox3 d2x C Fext D ma (M.108)

where Fext is the external force and a is the acceleration of the volume element. In other
words

T On D n1T Ox1 C n2T Ox2 C n3T Ox3 C
m

d2x

�
a �

Fext

m

�
(M.109)
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Figure M.1: Tetrahedron-like
volume element V containing
matter.

x1

d2x

On

x3

x2

V

Since both a and Fext=m remain finite whereas m=d2x ! 0 as V ! 0, one finds that in
this limit

T On D

3X
iD1

niT Oxi � niT Oxi (M.110)

From the above derivation it is clear that equation (M.110) above is valid not only in equi-
librium but also when the matter in V is in motion.

Introducing the notation

Tij D
�
T Oxi

�
j

(M.111)

for the j th component of the vector T Oxi , we can write equation (M.110) above in compon-
ent form as follows

T Onj D .T On/j D

3X
iD1

niTij � niTij (M.112)

Using equation (M.112) above, we find that the component of the vector T On in the direction
of an arbitrary unit vector Om is

T On Om D T On � Om

D

3X
jD1

T Onjmj D

3X
jD1

 
3X
iD1

niTij

!
mj � niTijmj D On �T � Om

(M.113)
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Hence, the j th component of the vector T Oxi , here denoted Tij , can be interpreted as the
ij th component of a tensor T. Note that T On Om is independent of the particular coordinate
system used in the derivation.

We shall now show how one can use the momentum law (force equation) to derive the
equation of motion for an arbitrary element of mass in the body. To this end we consider a
part V of the body. If the external force density (force per unit volume) is denoted by f and
the velocity for a mass element dm is denoted by v , we obtain

d
dt

Z
V

v dm D
Z
V

f d3x C
Z
S

T On d2x (M.114)

The j th component of this equation can be writtenZ
V

d
dt
vj dm D

Z
V
fj d3x C

Z
S
T Onj d2x D

Z
V
fj d3x C

Z
S
niTij d2x (M.115)

where, in the last step, equation (M.112) on the preceding page was used. Setting dm D
� d3x and using the divergence theorem on the last term, we can rewrite the result asZ

V
�

d
dt
vj d3x D

Z
V
fj d3x C

Z
V

@Tij

@xi
d3x (M.116)

Since this formula is valid for any arbitrary volume, we must require that

�
d
dt
vj � fj �

@Tij

@xi
D 0 (M.117)

or, equivalently

�
@vj

@t
C �v � rvj � fj �

@Tij

@xi
D 0 (M.118)

Note that @vj =@t is the rate of change with time of the velocity component vj at a fixed
point x D .x1; x1; x3/.

End of example M.2C

BContravariant and covariant vectors in flat Lorentz space EXAMPLE M .3

The 4D Lorentz space L4 has a simple metric which can be described by the metric tensor

g�� D ��� D

8̂<̂
:
1 if � D � D 0

�1 if � D � D i D j D 1; 2; 3

0 if � ¤ �

(M.119)

which in matrix notation becomes

.���/ D

0BB@
1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1CCA (M.120)

i.e. a matrix with a main diagonal that has the sign sequence, or signature , fC;�;�;�g.
Alternatively, one can define the metric tensor in L4 as

��� D

8̂<̂
:
�1 if � D � D 0

1 if � D � D i D j D 1; 2; 3

0 if � ¤ �

(M.121)
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which in matrix representation becomes

.���/ D

0BB@
�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCA (M.122)

i.e. a matrix with signature f�;C;C;Cg. Of course, the physics is unaffected by the choice
of metric tensor.

Consider an arbitrary contravariant four-vector a� in this space. In component form it can
be written:

a�
def
� .a0; a1; a2; a3/ D .a0; a/ (M.123)

According to the index lowering rule, equation (M.29) on page 238, we obtain the covariant
version of this vector as

a�
def
� .a0; a1; a2; a3/ D ���a

� (M.124)

In the fC;�;�;�g metric we obtain

� D 0 W a0 D 1 � a
0
C 0 � a1 C 0 � a2 C 0 � a3 D a0 (M.125)

� D 1 W a1 D 0 � a
0
� 1 � a1 C 0 � a2 C 0 � a3 D �a1 (M.126)

� D 2 W a2 D 0 � a
0
C 0 � a1 � 1 � a2 C 0 � a3 D �a2 (M.127)

� D 3 W a3 D 0 � a
0
C 0 � a1 C 0 � a2 � 1 � a3 D �a3 (M.128)

or

a� D .a0; a1; a2; a3/ D .a
0;�a1;�a2;�a3/ D .a0;�a/ (M.129)

The radius 4-vector itself in L4 and in this metric is given by

x� D .x0; x1; x2; x3/ D .ct; x; y; z/ D .ct;x/

x� D .x0; x1; x2; x3/ D .ct;�x
1;�x2;�x3/ D .ct;�x/

(M.130)

Analogously, using the f�;C;C;Cg metric we obtain

a� D .a0; a1; a2; a3/ D .�a
0; a1; a2; a3/ D .�a0; a/ (M.131)

End of example M.3C
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BScalar products in complex vector space EXAMPLE M .4

Let c be a complex vector defined as in expression (M.10) on page 235.

The inner product of c with itself may be defined as

c2
def
� c � c D .cR C icI/ �.cR C icI/ D c2R � c2I C 2icR � cI

D c2R � c
2
I C 2icR � cI

def
� c2 2 C

(M.132)

from which we find that

c D

q
c2R � c

2
I C 2icR � cI D

q
c2R � c

2
I C 2icRcI cos � 2 C (M.133)

where � is the (real-valued) angle between cR and cI.

Using this in equation (M.10) on page 235, we see that we can define the complex unit
vector as being

Oc D
c

c
D

cRq
c2R � c

2
I C 2icRcI cos �

OcR C i
cIq

c2R � c
2
I C 2icRcI cos �

OcI

D

cR

q
c2R � c

2
I � 2icRcI cos �

.c2R C c
2
I /

s
1 �

4c2Rc
2
I sin2 �

.c2R C c
2
I /
2

OcR C i
cI

q
c2R � c

2
I � 2icRcI cos �

.c2R C c
2
I /

s
1 �

4c2Rc
2
I sin2 �

.c2R C c
2
I /
2

OcI 2 C3

(M.134)

On the other hand, the definition of the scalar product in terms of the inner product of a
complex vector with its own complex conjugate yields

jcj2
def
� c � c� D .cR C icI/ � .cR C icI/

�
D c2R C c2I D c

2
R C c

2
I D jcj

2 (M.135)

with the help of which we can define the unit vector as

Oc D
c

jcj
D

cRq
c2R C c

2
I

OcR C i
cIq

c2R C c
2
I

OcI

D

cR

q
c2R C c

2
I

c2R C c
2
I
OcR C i

cI

q
c2R C c

2
I

c2R C c
2
I
OcI 2 C3

(M.136)

End of example M.4C
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BScalar product, norm and metric in Lorentz spaceEXAMPLE M .5

In L4 the metric tensor attains a simple form [see example M.3 on page 253] and, hence,
the scalar product in equation (M.37) on page 239 can be evaluated almost trivially. For the
fC;�;�;�g signature it becomes

a�b
�
D .a0;�a/ �.b0;b/ D a0b

0
� a �b (M.137)

In L4 the important scalar product of the position four-vector with itself therefore takes the
simple form

x�x
�
D .x0;�x/ �.x0;x/ D .ct;�x/ �.ct;x/

D .ct/2 � .x1/2 � .x2/2 � .x3/2 D s2
(M.138)

which is the indefinite, real norm of L4. The L4 metric is the quadratic differential form

ds2 D dx�dx� D c2.dt /2 � .dx1/2 � .dx2/2 � .dx3/2 (M.139)

End of example M.5C

BThe vector triple productEXAMPLE M .6
The vector triple product is the vector product of a vector a with a vector product b� c and
can, with the help of formula (M.24) on page 237, be evaluated as

a � .b � c/ D �ijk Oxiaj .b � c/k D �ijk Oxiaj .�lmn Oxlbmcn/k

D �ijk Oxiaj �kmnbmcn D �ijk�kmn Oxiaj bmcn

D �kij �kmn Oxiaj bmcn D .ıimıjn � ıinıjm/Oxiaj bmcn

D ıimıjn Oxiaj bmcn � ıinıjm Oxiaj bmcn D aj cj bi Oxi � aj bj ci Oxi

D .a � c/b � .a �b/c D b.a � c/ � c.a �b/ � b˝ a � c � c˝ a �b

(M.140)

which is formula (F.53) on page 218. This is sometimes called Lagrange’s formula , but is
more often referred to as the bac-cab rule .

End of example M.6C

BMatrix representation of the vector product in R3EXAMPLE M .7
Prove that the matrix representation of the vector product c D a � b is given by formula
(M.45) on page 241.

According to formula (M.43) on page 241, the scalar multiplication of a dyadic product of
two vectors (in our case S and b) from the left by a vector (in our case a) is interpreted as
a �S˝b D .a �S/b where

a �S D aiSi (M.141)

and the components Si are given by formula (M.27) on page 238. Hence

a �S D a1

0@0 0 0

0 0 �i
0 i 0

1AC a2
0@ 0 0 i
0 0 0

�i 0 0

1AC a3
0@0 �i 0

i 0 0

0 0 0

1A
D i

240@0 0 0

0 0 �a1
0 a1 0

1AC
0@ 0 0 a2
0 0 0

�a2 0 0

1AC
0@ 0 �a3 0

a3 0 0

0 0 0

1A35
D i

0@ 0 �a3 a2
a3 0 �a1
�a2 a1 0

1A
(M.142)
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from which we find that

.a �S/b D i

0@ 0 �a3 a2
a3 0 �a1
�a2 a1 0

1A0@b1b2
b3

1A D i

0@a2b3 � a3b2a3b1 � a1b3
a1b2 � a2b1

1A (M.143)

In other words,

�i.a �S/b D �ia �S˝b D

0@a2b3 � a3b2a3b1 � a1b3
a1b2 � a2b1

1A D .a � b/ (M.144)

Likewise, a˝S �b D a.S �b/ where

S �b D Sibi D

0@0 0 0

0 0 �i
0 i 0

1A b1 C
0@ 0 0 i
0 0 0

�i 0 0

1A b2 C
0@0 �i 0

i 0 0

0 0 0

1A b3
D i

0@ 0 �b3 b2
b3 0 �b1
�b2 b1 0

1A
(M.145)

and

a.S �b/ D i
�
a1 a2 a3

�0@ 0 �b3 b2
b3 0 �b1
�b2 b1 0

1A D i

0@a2b3 � a3b2a3b1 � a1b3
a1b2 � a2b1

1A (M.146)

from which follows

�ia.S �b/ D �ia˝S �b D

0@a2b3 � a3b2a3b1 � a1b3
a1b2 � a2b1

1A D .a � b/ (M.147)

Hence, .a � b/ D �ia �S˝b D �ia˝S �b QED�

End of example M.7C

BGradient of a scalar product of two vector fields EXAMPLE M .8

The gradient of the scalar product of two vector fields a and b can be calculated in the
following way:

r .a �b/ D .Oxi@i /.aj Oxj � bk Oxk/

D Œ.Oxi@i /.aj Oxj /� �.bk Oxk/C .aj Oxj / �Œ.Oxi@i /.bk Oxk/�

D .Oxi@iaj Oxj / �bC .Oxi@ibk Oxk/ � a D .r ˝ a/ �bC .r ˝b/ � a

(M.148)

This is the first version of formula (F.79) on page 219.

End of example M.8C
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BThe four-del operator in Lorentz spaceEXAMPLE M .9

In L4 the contravariant form of the four-del operator can be represented as

@� D

�
1

c

@

@t
;�@

�
D

�
1

c

@

@t
;�r

�
(M.149)

and the covariant form as

@� D

�
1

c

@

@t
; @

�
D

�
1

c

@

@t
;r

�
(M.150)

Taking the scalar product of these two, one obtains

@�@� D
1

c2
@2

@t2
� r

2
D �2 (M.151)

which is the d’Alembert operator , sometimes denoted �, and sometimes defined with an
opposite sign convention.

End of example M.9C

BGradients of scalar functions of relative distances in 3DEXAMPLE M .10

Very often electrodynamic quantities are dependent on the relative distance in R3 between
two vectors x and x0, i.e. on

ˇ̌
x � x0

ˇ̌
. In analogy with equation (M.50) on page 242, we can

define the primed del operator in the following way:

r 0 D Oxi
@

@x0i
D @0 (M.152)

Using this, the corresponding unprimed version, viz., equation (M.50) on page 242, and
elementary rules of differentiation, we obtain the following very useful result:

r
�ˇ̌

x � x0
ˇ̌�
D Oxi

@
ˇ̌
x � x0

ˇ̌
@xi

D Oxi
@

q
.x1 � x

0
1/
2
C .x2 � x

0
2/
2
C .x3 � x

0
3/
2

@xi

D Oxi
.xi � x

0
i /

jx � x0j
D

x � x0

jx � x0j
D �Oxi

@
ˇ̌
x � x0

ˇ̌
@x0i

D �r 0
�ˇ̌

x � x0
ˇ̌� (M.153)

Likewise

r

�
1

jx � x0j

�
D �

x � x0

jx � x0j3
D �r 0

�
1

jx � x0j

�
(M.154)

End of example M.10C

BDivergence and curl of a vector field divided by the relative distanceEXAMPLE M .11

For an arbitrary R3 vector field a.x0/, the following relations hold:

r 0 �

�
a.x0/

jx � x0j

�
D
r 0 � a.x0/

jx � x0j
C a.x0/ � r 0

�
1

jx � x0j

�
(M.155a)

r 0 �

�
a.x0/

jx � x0j

�
D
r 0 � a.x0/

jx � x0j
C a.x0/ � r 0

�
1

jx � x0j

�
(M.155b)

This demonstrates how the primed divergence and curl, defined in terms of the primed del
operator in equation (M.152) above, work.

End of example M.11C
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BThe Laplacian and the Dirac delta ‘function’ EXAMPLE M .12

A very useful formula in R3 is

r �r

�
1

jx � x0j

�
D r

2

�
1

jx � x0j

�
D �4�ı.x � x0/ (M.156)

where ı.x � x0/ is the 3D Dirac delta ‘function’. This formula follows directly from the
fact thatZ
V 0

d3x0 r �r
�

1

jx � x0j

�
D

Z
V 0

d3x0 r �
�
�

x � x0

jx � x0j3

�
D

I
S 0

d2x0 On0 �
�
�

x � x0

jx � x0j3

�
(M.157)

equals �4� if the integration volume V 0.S 0/, enclosed by the surface S 0.V 0/, includes
x0 D x, and equals 0 otherwise.

End of example M.12C

BThe curl of a gradient EXAMPLE M .13

Using the definition of the R3 curl, equation (M.61) on page 243, and the gradient, equation
(M.56) on page 243, we see that

r � Œr˛.x/� D �ijk Oxi@j Œr˛.x/�k D �ijk Oxi@j @k˛.x/ (M.158)

which, due to the assumed well-behavedness of ˛.x/, vanishes:

�ijk Oxi@j @k˛.x/ D �ijk
@

@xj

@

@xk
˛.x/Oxi

D

 
@2

@x2@x3
�

@2

@x3@x2

!
˛.x/Ox1

C

 
@2

@x3@x1
�

@2

@x1@x3

!
˛.x/Ox2

C

 
@2

@x1@x2
�

@2

@x2@x1

!
˛.x/Ox3

� 0

(M.159)

We thus find that

r � Œr˛.x/� � 0 (M.160)

for any arbitrary, well-behaved R3 scalar field ˛.x/.

In 4D we note that for any well-behaved four-scalar field ˛.x�/

.@�@� � @�@�/˛.x
�/ � 0 (M.161)

so that the four-curl of a four-gradient vanishes just as does a curl of a gradient in R3.

Hence, a gradient is always irrotational .

End of example M.13C
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BThe divergence of a curlEXAMPLE M .14

With the use of the definitions of the divergence (M.59) and the curl, equation (M.61) on
page 243, we find that

r �Œr � a.x/� D @i Œr � a.x/�i D �ijk@i@j ak.x/ (M.162)

Using the definition for the Levi-Civita symbol, defined by equation (M.21) on page 237,
we find that, due to the assumed well-behavedness of a.x/,

@i �ijk@j ak.x/ D
@

@xi
�ijk

@

@xj
ak

D

 
@2

@x2@x3
�

@2

@x3@x2

!
a1.x/

C

 
@2

@x3@x1
�

@2

@x1@x3

!
a2.x/

C

 
@2

@x1@x2
�

@2

@x2@x1

!
a3.x/

� 0

(M.163)

i.e. that

r �Œr � a.x/� � 0 (M.164)

for any arbitrary, well-behaved R3 vector field a.x/. The 3D curl is therefore solenoidal
(has a vanishing divergence).

In 4D, the four-divergence of the four-curl is not zero, for

@�A
�
� D @

�@�a
�.x�/ ��2a�.x�/ ¤ 0 (M.165)

End of example M.14C

BThe curl of the curl of a vector field — the ‘bac-cab’ rule for the del operatorEXAMPLE M .15

The curl of the curl of a vector field can be viewed as the del operator version of the bac-cab
that was derived in example M.6 on page 256. By using formula (M.24) on page 237 it can
be evaluated as

r � .r � a/ D �ijk Oxi@j .r � a/k D �ijk Oxi@j .�lmn Oxl@man/k

D �ijk Oxi@j �kmn@man D �ijk�kmn Oxi@j @man

D �kij �kmn Oxi@j @man D .ıimıjn � ıinıjm/Oxi@j @man

D ıimıjn Oxi@j @man � ıinıjm Oxi@j @man

D Oxi@j @iaj � Oxi@j @j ai D Oxi@i@j aj � Oxi@
2
j ai

D r .r �a/ � r2a � r ˝r �a � r �ra

(M.166)

which is formula (F.96) on page 220.

End of example M.15C
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BProducts of rotational and irrotational components of vectors EXAMPLE M .16

Derive the scalar and vector products of the rotational and irrotational components of two
vector fields u.x/ and v.x) that have been Helmholtz decomposed into u D urotat C uirrot

and v D v rotat C v irrot, respectively.

Let us, in addition to expressions (M.82), introduce the definitions

ˇ.x/ D

Z
V 0

d3x0
r 0 � v.x0/

4� jx � x0j
(M.167a)

b.x/ D

Z
V 0

d3x0
r 0 � v.x0/

4� jx � x0j
(M.167b)

in order to simplify our notations and calculations.

SCALAR PRODUCTS

The scalar product of the two irrotational components uirrot and v irrot is given by the formula

uirrot.x/ � v irrot.x/ D Œr˛.x/� �Œrˇ.x/� (M.168)

where we can rewrite the RHS by using formula (F.82) on page 219 so that

Œr˛.x/� �Œrˇ.x/� D r �Œ˛.x/rˇ.x/� � ˛.x/r2ˇ.x/ (M.169)

If we insert the expression (M.82b) on page 248 for ˛.x/ and expression (M.167a) for ˇ.x/
and then integrate over V , the first term in the RHS can, with help of the divergence theorem,
be written as a surface integral where, at large distances r D

ˇ̌
x � x0

ˇ̌
, the integrand tends

to zero as 1=r3, ensuring that this integral vanishes. Then, also using the identity (M.77)
on page 247 and equations (M.85) on page 248, we obtain the following non-local scalar
product expression:Z

V
d3x uirrot.x/ � v irrot.x/ D

Z
V

d3x
Z
V 0

d3x0
Œr 0 �uirrot.x0/�Œr � v irrot.x/�

4� jx � x0j

D

Z
V

d3x Œr � v irrot.x/�

Z
V 0

d3x0
r 0 �uirrot.x0/

4� jx � x0j

(M.170)

This is identity (F.130c) on page 223.

We now evaluate the scalar product of the two rotational (solenoidal) components urotat and
v rotat

urotat.x/ � v rotat.x/ D Œr � a.x/� �Œr � b.x/� (M.171)

Formula (F.85) on page 219 allows us to write

urotat.x/ � v rotat.x/ D b �Œr � .r � a/� � r �Œ.r � a/ � b� (M.172)

As the last term in the RHS will vanish when we integrate over V (divergence theorem), we
focus our attention on the first term. According to formula (F.96) on page 220

b �Œr � .r � a/� D b �Œr .r �a/ � r2a� (M.173)

and, according to equation (M.82c) on page 248 and formula (F.81) on page 219, we obtain

r �a D r �

Z
V 0

d3x0
r 0 � v.x0/

4� jx � x0j
D

Z
V 0

d3x0 Œr 0 � v.x0/� � r

�
1

4� jx � x0j

�
(M.174)
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With the help of formula (F.114) on page 220, formula (M.155) on page 258, and formula
(F.99) on page 220, we can rewrite this as

r �a D �

Z
V 0

d3x0 r �
�
r 0 � v.x0/

4� jx � x0j

�
D �

I
S 0

d2x0 On0 �
�
r 0 � v.x0/

4� jx � x0j

�
(M.175)

which tends to zero for a surface at large distances. Hence, we have found that

urotat.x/ � v rotat.x/ D �b �r2a � r �Œ.r � a/ � b� (M.176)

Integration over V and the use of the divergence theorem, where the resulting surface in-
tegral vanishes, and using equations (M.85) on page 248 gives the resultZ

V
d3x urotat.x/ � v rotat.x/ D

Z
V

d3x
Z
V 0

d3x0
Œr � urotat.x/� �Œr 0 � v rotat.x0/�

4� jx � x0j

D

Z
V

d3x Œr � urotat.x/� �

Z
V 0

d3x0
r 0 � v rotat.x0/

4� jx � x0j

(M.177)

This is identity (F.130d) on page 223.

The scalar product of uirrot and v rotat becomes

uirrot.x/ � v rotat.x/ D �Œr˛.x/� �Œr � b.x/� (M.178)

With the use of a standard vector analytic identity (F.84) on page 219, we can rewrite this
as

uirrot.x/ � v rotat.x/ D �r �
�
b.x/ � Œr˛.x/�

�
(M.179)

If we integrate this over V and use the divergence theorem, we obtainZ
V

d3x uirrot.x/ � v rotat.x/ D �

I
S

d2x On �
�
b.x/ � Œr˛.x/�

�
(M.180)

Again, the surface integral vanishes and we find that the non-local orthogonality conditionZ
V

d3x uirrot.x/ � v rotat.x/ D 0 (M.181)

holds between the irrotational and rotational components of any two arbitrary, continuously
differentiable vector fields u.x/ and v.x/. This is identity (F.130a) on page 222. If, in
particlar, v � u, then Z

V
d3x uirrot.x/ �urotat.x/ D 0 (M.182)

VECTOR PRODUCTS

According to formulæ (M.83) on page 248, the vector product of the two irrotational com-
ponents uirrot and v irrot is

uirrot.x/ � v irrot.x/ D Œr˛.x/� � Œrˇ.x/� (M.183)

which can be evaluated in a similar manner as the scalar product. Using formula (F.88) on
page 219 we immediately see that the result is

uirrot.x/ � v irrot.x/ D r � Œ˛.x/rˇ.x/� (M.184)

Integration over V yields, with the use of formula (F.121c) on page 221, the result
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Z
V

d3x uirrot.x/ � v irrot.x/ D

I
S

d2x On � ˛.x/rˇ.x/ (M.185)

where the RHS goes to zero asymptotically, resulting in the non-local parallelity conditionZ
V

d3x uirrot.x/ � v irrot.x/ D 0 (M.186)

This is identity (F.130b) on page 222.

In order to evaluate the vector product of two rotational components urotat and v rotat

urotat.x/ � v rotat.x/ D .r � a/ � .r � b/ (M.187)

[see formulæ (M.83)], we use the vector identity (F.79) on page 219 that gives (with c

replacing a)

c � .r � b/ D r .c �b/ � b � .r � c/ � c � r ˝b � b � r ˝ c (M.188)

Next, we use the identity (F.86) on page 219 to replace c � r ˝b and find that we can write

c � .r � b/ D �b � .r � c/ � b � r ˝ cC .r � c/bC r .c �b/C r �.c˝b/ (M.189)

Finally we make the change c 7! r � a with the result that we obtain the identity

.r � a/ � .r � b/ D �b � Œr � .r � a/� � b �Œr ˝.r � a/�C Œr �.r � a/„ ƒ‚ …
D0

�b

C r Œ.r � a/ �b�C r �Œ.r � a/˝b�

(M.190)

Recalling that a is given by formula (M.82c) on page 248, we see that the expression within
square brackets in the first term of the RHS of equation (M.190) is

r � .r � a/ D r �

�
r �

Z
V 0

d3x0
r 0 � u.x0/

4� jx � x0j

�
D r � u.x/ �

Z
V 0

d3x0 fr 0 �Œr 0 � u.x0/�„ ƒ‚ …
0

gr 0
�

1

4� jx � x0j

�
D r � u.x/

(M.191)

where we used formula (M.80) on page 247, not including the vanishing surface integral
(last term in the RHS of that formula). Consequently,

urotat.x/ � v rotat.x/ D .r � a/ � .r � b/

D �b � .r � u/ � b � r ˝.r � a/

C r Œ.r � a/ �b�C r �Œ.r � a/˝b�

(M.192)

Integrating the RHS of this expression over V , using the divergence theorem and formula
(F.121a) on page 221, and assuming that the ensuing surface integrals vanish, we therefore
obtainZ

V
d3x urotat.x/ � v rotat.x/ D �

Z
V

d3x b � .r � u/ �

Z
V

d3x b � r ˝.r � a/ (M.193)

Integration by parts of the second term in the RHS of this expression over V , making use
of the identity (F.86) on page 219 with a D b and b D r � a, gives the result
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�

Z
V

d3x b � r .r � a/ D

Z
V

d3x .r �b/.r � a/ �

Z
V

d3x r �Œb˝.r � a/�

D

Z
V

d3x .r �b/.r � a/ �

I
S

d2x On �b˝.r � a/

(M.194)

where we used formula (F.121e) on page 221. We have thereby shown thatZ
V

d3x urotat.x/ � v rotat.x/ D �

Z
V

d3x b � .r � u/C

Z
V

d3x .r �b/.r � a/

�

I
S

d2x On �b˝.r � a/

(M.195)

When we insert b as given by expression (M.167b) on page 261, the surface integral van-
ishes and we getZ

V
d3x urotat.x/ � v rotat.x/ D �

Z
V

d3x
Z
V 0

d3x0
r 0 � v.x0/

4� jx � x0j
� .r � u/

C

Z
V

d3x
�
r �

Z
V 0

d3x0
r 0 � v.x0/

4� jx � x0j

�
.r � a/

(M.196)

However, for the case at hand with sufficiently rapid fall-off of the integrands in the surface
integrals, we can, according to formula (M.73) on page 246 with A D r 0 � v.x0/, rewrite
the expression within the large parentheses in the last term as

r �

Z
V 0

d3x0
r 0 � v.x0/

jx � x0j
D

Z
V 0

d3x0

0‚ …„ ƒ
r 0 �Œr 0 � v.x0/�

jx � x0j
D 0 (M.197)

This means that the second term itself vanishes and we are left with the final resultZ
V

d3x urotat.x/ � v rotat.x/ D

Z
V

d3x
Z
V 0

d3x0
Œr � u.x/� � Œr 0 � v.x0/�

4� jx � x0j

D

Z
V

d3x Œr � u.x/� �

Z
V 0

d3x0
r 0 � v.x0/

4� jx � x0j

(M.198)

This is identity (F.130e) on page 223.

The vector product of an irrotational and a rotational component is

uirrot.x/ � v rotat.x/ D �Œr˛.x/� � Œr � b.x/� (M.199)

Using identity (F.79), identity (F.89) with a D r˛, and identity (F.100) on page 220,
together with identity (F.74) on page 219, this can be written

uirrot.x/ � v rotat.x/ D b � r ˝r˛ � br2˛ � r Œ.r˛/ �b�C r �Œ.r˛/˝b� (M.200)

When we insert the expression (M.83b) on page 248 and integrate over V , employing iden-
tity (F.121a) and identity (F.121b) on page 221 and neglecting the resulting surface integrals,
we get

uirrot.x/ � v rotat.x/ D � b � r ˝uirrot.x/ � br2
Z
V 0

d3x0
r 0 �u.x0/

4� jx � x0j
(M.201)

With the help of the generic formula (F.126) on page 222 we can simplify the last integral
and obtainZ

V
d3x uirrot.x/ � v rotat.x/ D

Z
V

d3x b.x/Œr �uirrot.x/� �

Z
V

d3x b.x/ � r ˝uirrot.x/

(M.202)
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After integrating the last integral on the RHS by parts, making use of formula (F.86) on
page 219 and discarding the surface integral which results after applying the divergence
theorem, we can writeZ

V
d3x uirrot.x/ � v rotat.x/ D

Z
V

d3x b.x/Œr �uirrot.x/�C

Z
V

d3x Œr �b.x/�uirrot.x/

(M.203)

To obtain the final expression, we use formula (M.167b) on page 261 and recall that
r �b D 0. The result isZ

V
d3x uirrot.x/ � v rotat.x/ D

Z
V

d3x
Z
V 0

d3x0
Œr �uirrot.x/�Œr 0 � v rotat.x0/�

4� jx � x0j

D

Z
V

d3x Œr �uirrot.x/�

Z
V 0

d3x0
r 0 � v rotat.x0/

4� jx � x0j

(M.204)

This is identity (F.130f) on page 223.

End of example M.16C
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