
Physics 214 Midterm Exam Solutions Winter 2024

1. A linearly polarized electromagnetic wave, polarized in the x̂ direction, is traveling in
the ẑ-direction in a dielectric medium of refractive index n1. The wave is normally reflected
from the surface of a conductor of conductivity σ (the conductor occupies the x–y plane).
Assume that µ = µ0 for both the dielectric and the conductor.

(a) Find the phase change undergone by the electric field vector of the wave after reflec-
tion, assuming the refractive index of the conductor is n2 = n1(1 + iζ), where ζ > 0.

Without loss of generality, we define the z-axis to lie along the direction of the incoming
wave and the x-axis to lie along the polarization vector of the incoming wave. Thus, we can
take the incoming, transmitted and reflected waves to be,

~E = E0x̂ ei(kz−ωt) , ~E
′ = E ′

0x̂ ei(k
′z−ωt) , ~E

′′ = E ′′

0 x̂ e−i(kz+ωt) , (1)

respectively, where k = n1ω/c, k
′ = n2 ω/c, and the corresponding indices of refraction are

ni =

√

ǫiµi

ǫ0µ0

=

√

ǫi
ǫ0

, for i = 1, 2. (2)

In the notation of Section 7.3 of Jackson, the case of normal incidence of the wave
corresponds to k̂ = k̂

′ = n̂ = ẑ, k̂′′ = −ẑ, ~E0 = E0x̂, ~E
′

0 = E ′

0x̂ and ~E
′′

0 = E ′′

0 x̂. Using the
last two equations of eq. (7.37) of Jackson, it then follows that

E0 + E ′′

0 = E ′

0 , n1(E0 −E ′′

0 ) = n2E
′

0 .

Eliminating E ′

0, we can immediately solve for E ′′

0/E0,

E ′′

0

E0

=
n1 − n2

n1 + n2

= −
iζ

2 + iζ
= −

ζ(ζ + 2i)

ζ2 + 4
=

∣

∣

∣

∣

E ′′

0

E0

∣

∣

∣

∣

eiα , (3)

after using n2 = n1(1 + iζ), where the phase α is given by1

tanα =
Im(E ′′

0/E0)

Re(E ′′

0/E0)
=

2

ζ
. (4)

Note that the complex number E ′′

0/E0 given in eq. (3) lies in the third quadrant of the
complex plane. Consequently, eq. (4) yields α = tan−1(2/ζ)− π, where the principal value
of the arctangent satisfies 0 ≤ tan−1(2/ζ) < π for ζ > 0.

Using the reflected wave given in eq. (1),

~E
′′ = E ′′

0 x̂ e−i(kz+ωt) =

∣

∣

∣

∣

E ′′

0

E0

∣

∣

∣

∣

E0x̂ eiαe−i(kz+ωt) .

Hence, the relative phase of the incident and reflected wave at the interface (z = 0) is2

φrel = α = tan−1(2/ζ)− π . (5)

1In the standard convention, we take −π < α ≤ π as the principal value of the argument of E′′

0 /E0.
2The relative phase φrel is defined modulo 2π, so feel free replace −π with π in eq. (5) if so inclined.
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(b) How is ζ related to the conductivity σ in the limit of high frequency (i.e., in the limit
of ω ≫ σ/ǫ0)?

In light of eq. (7.57) of Jackson, a medium of “normal” (i.e., real) dialectric constant ǫ1 and
conductivity σ can be described as having a complex dialectric constant given by

ǫ2 = ǫ1 +
iσ

ω
. (6)

The corresponding indices of refraction are given in eq. (2). Note that we have identified
Re ǫ2 = Re ǫ1 since in part (a) we have been given the relation between the indices of
refraction, which implies that Ren2 = Ren1.

In the limit of ω ≫ σ/ǫ0, we can use eq. (6) to approximate,

n2 = n1(1 + iζ) =

√

ǫ2
ǫ0

=

√

ǫ1
ǫ0

+
iσ

ωǫ0
≃

√

ǫ1
ǫ0

[

1 +
iσ

2ωǫ1

]

.

Thus, we identify

ζ =
σ

2ωǫ1
.

2. Consider a conducting fluid with conductivity σ. The inertial frame K ′ is defined to be
the reference frame that is attached to the fluid, and the corresponding charge density is
denoted by ρ′. Assume that in reference frame K ′, Ohm’s law ( ~J

′

= σ ~E
′

) is satisfied. The

inertial frame K ′ moves with velocity ~v = c~β with respect to the laboratory frame K of the
observer.

(a) Show that a suitable covariant generalization of Ohm’s law is given by:

Jα −
1

c2
(uβJ

β)uα =
σ

c
F αβuβ , (7)

where uα is the four-velocity of the fluid.

Eq. (7) is a covariant equation. That is, both sides of eq. (7) transform as a Lorentz four-
vector. Thus, if this equation is valid in one inertial reference frame then it must be valid
in all inertial reference frames.

In the reference frame K ′, the fluid is at rest. Hence, the four-vector velocity in K ′ is
u′α = (c ; ~0). Thus, u′

βJ
′ β = cJ ′ 0 and F ′αβuβ = cF ′α0. It follows that the α = 0 component

of eq. (7) is:
J ′ 0 − J ′ 0 = σF ′ 00 , (8)

which is a valid equation since F ′αβ is an antisymmetric tensor so that F ′ 00 = 0.
Next, we examine the case where α = i ∈ {1, 2, 3}. Then, in reference frame K ′, eq. (7)

yields
J ′ i = σF ′ i0 . (9)
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Recalling that F ′ i0 = E ′ i where E ′ i is the ith component of the electric field in reference
frame K ′, it follows that Ohm’s law, ~J

′ = σ ~E
′, is satisfied. Thus, eq. (7) must be the

correct generalization of Ohm’s law to an arbitrary inertial reference frame.
Note that Jα = (σ/c)F αβuβ is not a viable candidate for Ohm’s law. Although this

equation also yields ~J
′ = σ ~E

′ when α = i, the same equation also implies that J ′ 0 = cρ′ = 0,
which is not true in general. To understand the structure of eq. (7), simply multiply eq. (7)
by uβ. Since F αβ is antisymmetric under the interchange of α ↔ β and the quantity uαuβ

is symmetric under the interchange of α ↔ β, it follows that F αβuαuβ = 0. Likewise,
multiplying the left-hand side of eq. (7) by uαuβ yields:

uα

[

Jα −
1

c2
(uβJ

β)uα
]

= uαJ
α − uβJ

β = 0 , (10)

after using uαu
α = c2. This result explains the form of the left-hand side of eq. (7).

(b) Suppose that the fluid is uncharged (ρ′ = 0). Using the result of part (a), deduce the

form for Ohm’s law as viewed in the laboratory frame. That is, express ~J as a function of
the electromagnetic fields ~E and ~B in the laboratory frame. Note that the charge density ρ
in the laboratory frame is not zero. Find an expression for ρ as a function of ~E in the
laboratory frame.

If ρ′ = 0, then it follows that u′

βJ
′β = 0 in reference frame K ′. But, uβJ

β is a Lorentz-

invariant quantity. Thus, it follows that uβJ
β = 0 in all inertial reference frames. Hence, if

ρ′ = 0 then eq. (7) simplifies to

Jα =
σ

c
F αβuβ , when ρ′ = 0. (11)

We now evaluate eq. (11) in the laboratory frame. In reference frame K, the velocity and

current four-vectors are given by uα = (γc ; γ~v) and Jα = (cρ ; ~J), where γ ≡ (1− β2)−1/2.
For α = 0, eq. (11) yields:

ρ =
γσ

c
~β · ~E , (12)

after using J0 = cρ, F 0i = −F i0 = −Ei and ui = −ui = −γvi = −γcβi. For α = i ∈
{1, 2, 3},

J i =
σ

c

(

F i0u0 + F ijuj) . (13)

Using F ij = −ǫijkBk, it follows that:

F ijuj = γǫijkBkvj = γc(~β × ~B)i . (14)

Hence, eq. (13) yields
~J = γσ

[

~E + ~β × ~B
]

. (15)

We can check the above results by noting that when ρ′ = 0,

0 = uβJ
β = γ(c2ρ− ~v · ~J) = γc(cρ− ~β · ~J) . (16)
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Consequently, eq. (16) yields

cρ = ~β · ~J . (17)

Using eqs. (15) and (17),

cρ = γσ
[

~E + ~β × ~B
]

· ~β = γσ~β · ~E , (18)

in agreement with eq. (12).

(c) Suppose that ρ ′ 6= 0. Show that the form for Ohm’s law as viewed in the laboratory
frame now takes the following form:

~J = γσ
[

~E + ~β× ~B − (~β·~E)~β
]

+ cρ~β . (19)

Note that ~J and ρ are not separately determined by the electromagnetic fields alone. Verify
that when ρ′ = 0, eq. (19) reproduces your results of part (b).

When ρ′ 6= 0, one must employ eq. (7). Using uα = (γc ; γ~v) and Jα = (cρ ; ~J), it follows
from eq. (7) that

cρ− γ2
(

cρ− ~β · ~J
)

= γσ~β · ~E , (20)

~J − γ2
(

cρ− ~β · ~J
)

~β = γσ
(

~E + ~β × ~B
)

. (21)

Using eq. (20), γ2
(

cρ− ~β · ~J
)

= cρ− γσ~β · ~E. Inserting this result into eq. (21) yields

~J = γσ
[

~E + ~β× ~B − (~β·~E)~β
]

+ cρ~β . (22)

To show that eq. (22) reduces to eq. (15) when ρ′ = 0, one can evaluate uβJ
β in reference

frames K and K ′, respectively. Since uβJ
β is a Lorentz-invariant quantity, the two results

must coincide. In particular,

uβJ
β =

{

γc
(

cρ− ~β · ~J
)

, in reference frame K,

c2ρ′ , in reference frame K ′.
(23)

Hence, it follows that

γcρ′ = γ2
(

cρ− ~β · ~J
)

= cρ− γσ~β · ~E , (24)

after using eq. (20) in the final step above. Using eq. (24) to eliminate cρ in eq. (22), we
end up with

~J = γσ
[

~E + ~β× ~B
]

+ γcρ′~β . (25)

If ρ′ = 0, then eq. (25) reduces to the result [eq. (15)] obtained in part (b).

REMARK: Alternatively, if ρ′ = 0 then uβJ
β = 0, and it follows that cρ = γσ~β · ~E

[cf. eq. (12)]. Inserting this into eq. (22), we end up with eq. (15).
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An alternative technique for solving Problem 2

Since Jµ is a four-vector, it transforms under a Lorentz boost as:

cρ′ = γ
(

cρ− ~β · ~J
)

, (26)

~J ′ = ~J +
(γ − 1)

β2

(

~β · ~J
)

~β − γc~βρ , (27)

whereas the electric field vector transforms as

~E ′ = γ
(

~E + ~β × ~B
)

=
γ2

γ + 1
~β
(

~β · ~E
)

. (28)

Using ~J ′ = σ ~E ′, it follows that

~J +
(γ − 1)

β2

(

~β · ~J
)

~β − γc~βρ = σγ
[

~E + ~β× ~B
]

−
γ2

γ + 1
σ~β

(

~β · ~E
)

. (29)

Taking the dot product of eq. (29) with ~β, the resulting expression simplifies to

~β · ~J − cβ2ρ = σ~β · ~E

(

1−
γβ2

γ + 1

)

. (30)

Noting that

β2 =
γ2 − 1

γ2
, (31)

it follows that

1−
γβ2

γ + 1
= 1−

γ

γ + 1

(

γ2 − 1

γ2

)

=
1

γ
. (32)

Hence,
~β · ~J = cβ2ρ+

σ

γ
~β · ~E . (33)

Inserting eq. (33) back into eq. (29) results in

~J = σγ
[

~E + ~β× ~B
]

− σ

[

γ2

γ + 1
+

γ − 1

γβ2

]

(

~β · ~E
)

+ cρ~β . (34)

Using eq. (31),
γ2

γ + 1
+

γ − 1

γβ2
=

γ2

γ + 1
+

γ

γ + 1
= γ . (35)

Hence,
~J = γσ

[

~E + ~β× ~B − (~β·~E)~β
]

+ cρ~β , (36)

which reproduces eq. (22).

We can rewrite eq. (36) by using eq. (33) to eliminate ~β · ~E. We then obtain

~J + γ2
(

~β · ~J
)

~β − cρ~β(1 + β2γ2) = γσ
[

~E + ~β× ~B
]

. (37)
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Using 1 + β2γ2 = γ2, the above equation reduces to:

~J − γ2~β
(

cρ− ~β · ~J
)

= γσ
[

~E + ~β× ~B
]

. (38)

Finally, multiplying eq. (33) by γ2 and using β2γ2 = γ2− 1, we can rewrite this equation as

cρ− γ2
(

cρ− ~β · ~J
)

= γσ~β · ~E . (39)

We can now recognize eqs. (38) and (39) as the space and time components, respectively,
of the covariant equation:

uα

[

Jα −
1

c2
(uβJ

β)uα
]

= uαJ
α − uβJ

β = 0 , (40)

Thus we have proven that eq. (40) is the covariant generalization of Ohm’s law.

3. A magnetic dipole ~m undergoes precessional motion with angular frequency ω and angle
ϑ0 with respect to the z-axis as shown in Fig. 1. That is, the time-dependence of the
azimuthal angle is ϕ0(t) = ϕ0 − ωt. Electromagnetic radiation is emitted by the precessing
dipole.

z

Figure 1: A magnetic dipole ~m undergoes precessional motion with angular frequency ω and angle ϑ0

with respect to the z-axis.

(a) Write out an explicit expression for the time-dependent magnetic dipole vector ~m in
terms of its magnitude m0, the angles ϑ0 and ϕ0 and the time t. Show that ~m consists of the
sum of a time-dependent term and a time-independent term. Verify that the time-dependent
term can be written as Re(~µ e−iωt), for some suitably chosen complex vector ~µ.

In light of Fig. 1, the magnetic dipole moment vector is given by:

~m = m0

[

x̂ sinϑ0 cos(ϕ0 − ωt) + ŷ sinϑ0 sin(ϕ0 − ωt) + ẑ cos ϑ0

]

(41)

= Re
[

m0 sin ϑ0 e
iϕ0(x̂− iŷ)e−iωt

]

+m0 cosϑ0 ẑ .
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Thus, we can write the time-dependent term of ~m as Re(~µ e−iωt), where

~µ = m0 sinϕ0 e
iϕ0(x̂− iŷ) . (42)

(b) Compute the angular distribution of the time-averaged radiated power, with respect
to the z-axis defined in the above figure.

The angular distribution of the time-averaged power is given by eq. (9.21) of Jackson in SI
units,

dP

dΩ
=

1

2
Re

[

r2 n̂ · ~E × ~H ∗
]

.

The magnetic and electric fields of the magnetic dipole are given by eqs. (9.35) and (9.36)
of Jackson. Keeping only the leading terms of O(1/r), we see that

~H = −
1

Z0

~E × n̂ ,

where Z0 =
√

µ0/ǫ0 is the impedance of free space. It follows that

n̂ · ~E × ~H ∗ = −
1

Z0
n̂ · ~E × (~E ∗

× n̂) =
1

Z0

[

|~E|2 − |~E · n̂|2
]

=
1

Z0
|~E|2 ,

since ~E · n̂ = 0 (due to the transverse nature of electromagnetic radiation). Hence,

dP

dΩ
=

r2

2Z0

|~E|2 , (43)

where the leading O(1/r) term of eq. (9.36) of Jackson, applied to the complex magnetic
moment vector ~µ, yields

~E = −
Z0

4π
k2(~n× ~µ)

eikr

r
. (44)

Inserting this result into eq. (43), we end up with

dP

dΩ
=

Z0

32π2
k4|n̂× ~µ|2 . (45)

The squared magnitude of the cross product above is easily computed,

|n̂× ~µ|2 = (n̂× ~µ) · (n̂× ~µ ∗) = |~µ|2 − |n̂ · ~µ|2 ,

since n̂ is a unit vector. Explicitly, ~µ is given by eq. (42) and

n̂ = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ .

Hence, it follows that

|~µ|2 = 2m2
0 sin

2 ϑ0 , |n̂ · ~µ| = m0 sinϑ0 sin θ ,
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and
|n̂× ~µ|2 = m2

0 sin
2 ϑ0(2− sin2 θ) = m2

0 sin
2 ϑ0(1 + cos2 θ) .

Thus, the angular distribution of the time-averaged radiated power is given by3

dP

dΩ
=

Z0m
2
0 sin

2 ϑ0

32π2
k4(1 + cos2 θ) . (46)

An alternative technique for computing the time-averaged radiated power

Instead of evaluating eq. (45), which requires the complex magnetic moment ~µ given in
eq. (42), one can instead employ the result of problem 9.7(a) of Jackson,

dP (t)

dΩ
=

Z0

16π2c4
|
..
~m× n̂|2 , (47)

where
..
~m ≡ d2 ~m/dt2, and ~m is the time-dependent magnetic dipole moment given in

eq. (41). Note that eq. (47) yields the time dependent power distribution, so to recover the
results obtained in problem 1(b), we must time-average over one cycle.

For convenience, we rewrite eq. (41) here:

~m = m0

[

x̂ sinϑ0 cos(ϕ0 − ωt) + ŷ sin ϑ0 sin(ϕ0 − ωt) + ẑ cosϑ0

]

Taking two time derivatives, we obtain:

..
~m = −m0ω

2
[

x̂ sinϑ0 cos(ϕ0 − ωt) + ŷ sin ϑ0 sin(ϕ0 − ωt)
]

. (48)

Next, we compute the square of the cross product,

|
..
~m× n̂|2 =

..
~m ·

..
~m− (n̂ ·

..
~m)2 ,

after using the fact that n̂ is a unit vector,

n̂ = x̂ sin θ cos φ+ ŷ sin θ sinφ+ ẑ cos θ . (49)

Using eqs. (48) and (49), it follows that

..
~m ·

..
~m = m2

0ω
4 sin2 ϑ0 ,

and

n̂ ·

..
~m = −m0ω

2 sinϑ0 sin θ
[

cosφ cos(ϕ− ωt) + sinφ sin(ϕ0 − ωt)
]

= −m0ω
2 sinϑ0 sin θ cos(ωt− ϕ0 + φ) .

3To obtain the angular distribution of the time-averaged radiated power in gaussian units, one must
replace Z0 → 4π/c and m0 → m0c in eq. (46).
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Hence,

|
..
~m× n̂|2 = m2

0ω
4 sin2 ϑ

[

1− sin2 θ cos2(ωt− ϕ0 + φ)
]

.

Inserting the above result into eq. (47) and using ω = kc, we end up with

dP (t)

dΩ
=

Z0m
2
0 sin

2 ϑ

16π2
k4
[

1− sin2 θ cos2(ωt− ϕ0 + φ)
]

. (50)

Time-averaging over one cycle, 〈cos2(ωt−ϕ0+φ)〉 = 1
2
. Since 1− 1

2
sin2 θ = 1

2
(1+cos2 θ), we

recover eq. (46). One can also check that the total power obtained by integrating eq. (50)
over solid angles is time-independent and coincides with eq. (52).

(c) Compute the total power radiated.

Integrating eq. (46) over solid angles,

∫

dΩ(1 + cos2 θ) = 2π

∫ 1

−1

(1 + cos2 θ) d cos θ =
16π

3
. (51)

Hence,

P =
Z0m

2
0k

4 sin2 ϑ2
0

6π
. (52)

(d) What is the polarization of the radiation measured by an observer located along
the positive z-axis far from the precessing dipole? How would your answer change if the
observer were located in the x–y plane?

The polarization is determined from the electric field given in eq. (44). Thus, we must
evaluate n̂× ~µ,

n̂× ~µ = det







x̂ ŷ ẑ

sin θ cos φ sin θ sinφ cos θ

m0 sin ϑ0e
iϕ0 −im0 sinϑ0e

iϕ0 0







= im0e
iϕ0 sin ϑ0 cos θ(x̂− iŷ)− im0 sin ϑ0 sin θ e

i(ϕ0−φ) ẑ . (53)

The polarization depends on the location of the observer. If the observer is located on the
positive z-axis then θ = 0. In this case, n̂ = ẑ and ~E ∝ x̂ − iŷ, which corresponds to
right-circularly polarized light [cf. p. 300 of Jackson]. If the observer is located in the x–y

plane, the θ = 1
2
π. In this case, n̂ = x̂ cosφ + ŷ sinφ and ~E ∝ ẑ, which corresponds to

linearly polarized light in the z-direction.

REMARK: If θ = π, then n̂ = −ẑ and ~E ∝ x̂ − iŷ, which corresponds to left-circularly
polarized light. For any other value of θ 6= 0, 1

2
π or π, the radiation is elliptically polarized.
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