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The electromagnetic fields of a uniformly moving charge

1. Relativistic transformation laws

Consider a charge q moving at constant velocity ~v with respect to the laboratory
frame K. The rest frame of the charge will be denoted by K ′. In particular, we define
the origin of K ′ to be the location of the charge. A laboratory observer is located at the
point ~x = (x, y, z), which denotes the vector that points from the origin of the laboratory
frame to the observer. As seen in the rest frame of the charge, the observer is located at
the point ~x ′ = (x′, y′, z′), which denotes the vector that points from the origin of K ′ to
the observer.

At time t = 0, the charge is located at the origin of the laboratory frame. After a
time t has elapsed (as measured in frame K), the charge is located at the point ~vt in the
laboratory frame. It is convenient to define the axes of the K ′ coordinate system such
that the K and K ′ coordinate systems (and their origins) coincide at t = t′ = 0. As usual
we define x0 ≡ ct and x′

0
≡ ct′. The relation between (x0 ; ~x) and (x′

0
; ~x ′) is given by

x′
0
= γ(x0 − ~β·~x) ,

~x
′ = ~x+

(γ − 1)

β2
(~β·~x)~β − γ~βx0 , (1)

where
~β ≡ ~v/c , β ≡ |~β| , γ ≡

1
√

1− β2
.

It is convenient to resolve all vectors into components parallel and perpendicular to
the direction of the velocity β̂ ≡ ~β/β. We shall write

~x = ~x‖ + ~x⊥ ,

where ~x‖ ×
~β = ~x⊥ ·

~β = 0. Note that

~x‖ =

(

~β·~x

β2

)

~β ,

or equivalently,

~x‖ = x‖β̂ , where x‖ =
~β·~x

β
.

Then eq. (1) can be rewritten as:

x′
0
= γ(x0 − ~β·~x‖) ,

~x
′
‖ = γ(~x‖ − ~β x0) ,

~x
′
⊥ = ~x⊥ . (2)
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The transformation laws for the electromagnetic fields are given by:

~E
′
= γ(~E + ~β × ~B)−

γ2

γ + 1
~β(~β· ~E) , (3)

~B
′
= γ( ~B − ~β × ~E)−

γ2

γ + 1
~β(~β· ~B) . (4)

Again, we resolve the vectors into components parallel and perpendicular to the velocity,

~E = ~E⊥ + ~E‖ , ~B = ~B⊥ + ~B‖ , (5)

where

~E‖ =
~β(~β· ~E)

β2
, (6)

and

~E⊥ = ~E − ~E‖ = ~E −
~β(~β· ~E)

β2
=
β2 ~E − ~β(~β· ~E)

β2
=

~β × (~E × ~β)

β2
, (7)

and similarly for ~B‖ and ~B⊥. Hence eq. (3) yields

~β· ~E
′
= γ~β· ~E −

γ2β2

γ + 1
~β· ~E . (8)

Multiplying both sides of eq. (8) by ~β/β2 and using eq. (6), it follows that

~E
′
‖ =

(

γ −
γ2β2

γ + 1

)

~E‖ = ~E‖ , (9)

after noting that γ2 = 1/(1− β2) yields γ2β2 = (γ2 − 1). Similarly,

~E
′
⊥ =

~β × (~E
′
× ~β)

β2
=

~β

β2
×

[

γ(~E + ~β × ~B)× ~β
]

=
γ~β × (~E × ~β)

β2
+
γ~β ×

[

~β × ( ~B × ~β)
]

β2

= γ
(

~E⊥ + ~β × ~B⊥

)

. (10)

Repeating the analogous calculations for the magnetic fields, the end result is:

~E
′
‖ = ~E‖ , ~E

′
⊥ = γ(~E⊥ + ~β × ~B⊥) , (11)

~B
′
‖ = ~B‖ , ~B

′
⊥ = γ( ~B⊥ − ~β × ~E⊥) . (12)

In analyzing the uniformly moving charge, ~E
′
and ~B

′
are known, so we have to invert

eqs. (11) and (12) to obtain the electromagnetic fields in frame K. This is easily done by

interchanging the primed and unprimed fields while reversing the sign of ~β. That is,

~E⊥ = γ(~E
′
⊥ − ~β × ~B

′
⊥) , ~B⊥ = γ( ~B

′
⊥ + ~β × ~E

′
⊥) . (13)
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Figure 1: A charge q moving at constant velocity ~v in the z-direction as seen from reference frameK.
The origin of the laboratory frame K is denoted by O. The angle ψ is defined so that v̂ · R̂ = cosψ.
By convention, we take 0 ≤ ψ ≤ π.
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Figure 2: A charge q moving at constant velocity ~v in the z′-direction as seen from reference frame
K ′. The origin of the laboratory frame K is denoted by O. The x-axis of frame K is indicated by
a dashed line.

2. Electromagnetic fields of a uniformly moving charge1

Let us compare the views from reference frames K and K ′. The moving charge as
seen from the laboratory frame K is shown in Fig. 1.2 In addition, we define ~R to be the
vector in frame K that points from the location of the charge at time t to the location of
the observer. It follows that

~R = ~x− ~vt . (14)

The rest frame K ′ of the moving charge is depicted in Fig. 2. In this frame, the vector
that points from the origin of frame K to the location of the charge is ~vt′, where t′ is the
time elapsed as measured in frame K ′ (where t = t′ = 0 marks the time when the frames
K and K ′ coincided).

1The derivation presented in these notes is inspired by Section 22.6.4 on pp. 844–845 of Andrew
Zangwill, Modern Electrodynamics (Cambridge University Press, Cambridge, UK, 2013).

2In this figure, we have defined the z-axis to point in the direction of the velocity ~v, although we do
not make us of this fact the derivation presented in these notes.
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The goal of our calculation is to compute the electromagnetic fields, ~E and ~B in the
laboratory frame K. First, we note that the corresponding electromagnetic fields in the
rest frame K ′ of the charge are given (in gaussian units) by:

~E
′
=
q~x ′

r′ 3
, ~B

′
= 0 , (15)

where r′ ≡ |~x ′|. We resolve the vectors above into components parallel and perpendicular
to the velocity vector. In particular,

~x
′ = ~x

′
‖ + ~x

′
⊥ ,

and
r′ 2 = ~x

′
·~x

′ = ~x
′
‖ ·~x

′
‖ + ~x

′
⊥ ·~x

′
⊥ , (16)

since ~x‖ ·~x⊥ = 0. Likewise, we can identify the longitudinal and transverse electric fields
in frame K ′,

~E
′
‖ =

q~x ′
‖

r′ 3
, ~E

′
⊥ =

q~x ′
⊥

r′ 3
. (17)

We are now ready to evaluate the electromagnetic fields in frame K. First, we employ
eqs. (11)–(13) and (15) to obtain

~E = ~E‖ + ~E⊥ = ~E
′
‖ + γ ~E

′
⊥ , ~B = ~B‖ + ~B⊥ = γ~β × ~E

′
⊥ .

Using eq. (17), it follows that

~E =
q

r′ 3
(

~x
′
‖ + γ~x ′

⊥

)

, ~B =
γq

r′ 3
~β × ~x

′
⊥ .

We next apply eq. (2) to convert the primed coordinates into unprimed coordinates,

~E =
γq

r′ 3
(

~x‖ − ~vt + ~x⊥

)

, ~B =
γq

cr′ 3
~v × ~x⊥ , (18)

after using ~βx0 = ~vt. Furthermore [cf. eq. (16)],

r′ 2 = γ2(~x‖ − ~vt)·(~x‖ − ~vt) + ~x⊥ ·~x⊥ . (19)

In frame K, we can also decompose the vector ~R [cf. eq. (14)] into components parallel
and perpendicular to the velocity vector. In particular,

~R‖ = ~x‖ − ~vt , ~R⊥ = ~x⊥ .

Note that

~x‖ − ~vt+ ~x⊥ = ~R‖ + ~R⊥ = ~R , ~v × ~x⊥ = ~v × ~R⊥ = ~v × ~R ,

where the last result is obtained by noting that ~v × ~R‖ = 0. Inserting the above results
into eqs. (18) and (19) yields r′ 2 = γ2R2

‖ +R2

⊥ and

~E =
γq ~R

(γ2R2

‖ +R2

⊥)
3/2

, ~B =
γq~v × ~R

c(γ2R2

‖ +R2

⊥)
3/2

, (20)

where R⊥ ≡ |~R⊥| and R‖ ≡ | ~R‖|. Note that R ≡ |~R| = (R2

‖ +R2

⊥)
1/2.
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As exhibited in Fig. 1, the angle between the vectors ~v and ~R is denoted by ψ. In
particular, R⊥ = R sinψ. By convention, we take 0 ≤ ψ ≤ π (that is, ψ is a polar angle

of ~R with respect to the vector ~v). It follows that

r′ 3 = (γ2R2

‖ +R2

⊥)
3/2 = γ3(R2

‖ +R2

⊥/γ
2)3/2 = γ3[R2

‖ +R2

⊥(1− β2)]3/2

= γ3(R2 −R2

⊥β
2)3/2 = γ3R3(1− β2 sin2 ψ)3/2 . (21)

Using eq. (21) in eq. (20), we arrive at our final result:

~E(~x) =
q ~R

γ2R3(1− β2 sin2 ψ)3/2
, ~B(~x) =

q~v × ~R

cγ2R3(1− β2 sin2 ψ)3/2
, (22)

where ~R ≡ ~x−~vt. The expression for the electric field reproduces eq. (11.154) on p. 560
of Jackson.3 However, our derivation is more general than the one given in Jackson, as
Fig. 11.8 of Jackson assumes that the observer is located on the x-axis of Fig. 1; whereas
in the derivation presented here the observer is located at an arbitrary point ~x = (x, y, z).

3. Electromagnetic fields of a uniformly moving charge revisited

The electromagnetic fields given in eq. (22) are functions of ~x and t that are expressed
in terms of the variables R and ψ. In particular, the definitions of R and ψ are based
on the location of the charge at the same time t [cf. Figure 1]. When we study the
electromagnetic fields of a charge in general motion as in Chapter 14 of Jackson, the
electromagnetic fields are expressed in terms of quantities whose definitions are based on
the location of the charge at the retarded time, henceforth denoted by t′. By definition,4

t′ = t−
|~x− ~r(t′)|

c
, (23)

where ~r(t′) ≡ ~vt′ is the location of the charge at time t′. The retarded time has the
following interpretation: if a light signal originated from the location of the moving charge
at time t′, then the light signal would reach a fixed observer (located at the point ~x) at
time t. It is instructive to rewrite eq. (22) in terms of quantities whose definitions are
based on the location of the charge at the retarded time t′. The relevant quantities are
defined in Figure 3.

3Jackson employs the symbol ~r for what we call ~R. Our choice is motivated by the desire to avoid
possible confusion between the meaning of the vector ~x (with length r ≡ |~x|) and the vector ~R (with

length R). In particular, it is important to note that although ~R points from the charge to the observer
in frame K and ~x

′ points from the charge to the observer in frame K ′ [cf. Figs. 1 and 2], the vectors
~R and ~x

′ are not related by a Lorentz transformation. Of course, the coordinate vectors ~x and ~x
′ are

related by a Lorentz transformation; namely a Lorentz boost along the direction of ~v as indicated by
eqs. (1) and (2).

4In Section 3, a primed variable indicate a variable that depends on the retarded time t′. In particular,
primed variables in this section are not associated with the reference frame K ′ used in Sections 1 and 2.
All computations in this section are performed in the laboratory frame K.
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Figure 3: A charge q moving at constant velocity ~v in the z-direction as seen from reference frameK.
The origin of the laboratory frame K is denoted by O. The charge q is located at the origin at
time t = 0. At the retarded time t′, the charge q is located at ~vt′ (labeled by t′), and at time t, the
charge is located at ~vt (labeled by t). A fixed observer is located at the point ~x.

In particular, we have defined the vector ~R
′
= ~x − ~r(t′) to be the vector that points

from the location of the charge at time t′ to the location of the fixed observer. Thus, the
retarded time given in eq. (23) can be rewritten as

t′ = t−
R′

c
,

where R′ ≡ | ~R|. Consequently, the vector that points from t′ to t in Figure 3 is simply
given by

~vt− ~vt′ =
R′~v

c
= R′~β .

It follows that
~R = ~R

′
− R′~β = R′(n̂ ′ − ~β) , (24)

where n̂ ′ ≡ ~R
′
/R′ is the unit vector that points in the direction of ~R

′
.

The angle ψ in Figure 3 can be defined via ~R · ~β = Rβ cosψ. It follows that

R3(1− β2 sin2 ψ)3/2 = R3(1− β2 + β2 cos2 ψ)3/2 =
[

R2(1− β)2 + (~β · ~R)2
]3/2

. (25)

Using eq. (24), we can take the dot product with ~β to obtain

~β · ~R = R′(n̂ ′
· ~β − β2) ,

after using ~R
′
= R′ n̂ ′. Squaring eq. (24) yields

R2 = R′ 2
(

1 + β2 − 2n̂ ′
· ~β
)

.

It follows that

R2(1− β)2 + (~β · ~R)2 = R′ 2
[

(1− β2)(1 + β2 − 2n̂ ′
· ~β) + (n̂ ′

· ~β − β2)2
]

= R′ 2
[

1− β4 − 2n̂ ′
· ~β + 2β2n̂ ′

· ~β + (n̂ ′
· ~β)2 − 2β2n̂ ′

· ~β + β4

]

= R′ 2
[

1− 2n̂ ′
· ~β + (n̂ ′

· ~β)2
]

=
[

R′(1− n̂ ′
· ~β)

]2

.
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Inserting this result into eq. (25), we end up with5

R3(1− β2 sin2 ψ)3/2 = R ′ 3(1− n̂ ′
· ~β)3 . (26)

Applying eqs. (24) and (26) to eq. (22), we obtain

~E(~x) =
q(n̂ ′ − ~β)

γ2R′ 2(1− n̂ ′
· ~β)3

, ~B(~x) =
q ~β × n̂ ′

γ2R′ 2(1− n̂ ′
· ~β)3

= ~n
′
× ~E(~x) .

Note that all primed variables are functions of the retarded time t′, since ~R
′
≡ ~x− ~r(t′)

and n̂ ′ ≡ ~R
′
/R′. Thus, we have confirmed that the velocity fields obtained in eqs. (14.13)

and (14.14) of Jackson are equivalent to the results obtained in eq. (22) by the Lorentz
transformation technique of Section 2.

5Note that for massive particles, we have 0 ≤ β < 1 so that 1 − n̂ ′
· ~β > 0. Hence, it follows that

[(1− n̂ ′
· ~β)2]1/2 = 1− n̂ ′

· ~β.
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