The Poisson sum formula

The Poisson sum formula takes on a number of different forms in the literature. Here is one useful version,

\[\frac{1}{2\pi} \sum_{n=-\infty}^{\infty} e^{inx} = \sum_{m=-\infty}^{\infty} \delta(x - 2\pi m). \]

(1)

You will use this version of the Poisson sum formula in solving problem 14.13 of Jackson.

To prove this formula, consider the following periodic function, defined by:

\[f(x) = \frac{1}{2} - \frac{x}{2\pi}, \quad 0 \leq x \leq 2\pi, \]

(2)

where \(f(x + 2\pi) = f(x) \). Note that \(f(x) \) is discontinuous at \(x = 2\pi m \), where \(m = 0, \pm 1, \pm 2, \ldots \). It follows that one can expand \(f(x) \) in a Fourier series:

\[f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}, \]

where

\[c_n = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-inx} f(x) \, dx. \]

Inserting \(f(x) \) as given by eq. (2), one easily obtains:

\[c_0 = 0, \quad c_n = \frac{-i}{2\pi n}, \quad (n \neq 0). \]

That is,

\[f(x) = -\frac{i}{2\pi} \sum_{n=-\infty \atop n \neq 0}^{\infty} \frac{e^{inx}}{n}. \]

(3)

Consider the derivative of \(f(x) \), which we denote by \(f'(x) \). From its definition [eq. (1)], \(f'(x) = -1/(2\pi) \) for \(x \neq 2\pi m \) \((m = 0, \pm 1, \pm 2, \ldots)\). At \(x = 2\pi m \), the discontinuity of \(f(x) \) can be described by the step function \(\Theta(x) \). Specifically, in the vicinity of \(x = 2\pi m \),

\[f(x) = -\frac{1}{2} + \Theta(x - 2\pi m), \quad \text{for } x \simeq 2\pi m. \]

(4)
That is, \(f(x) = -\frac{1}{2} \) for \(x = 2\pi m - \epsilon \) and \(f(x) = \frac{1}{2} \) for \(x = 2\pi m + \epsilon \), where \(\epsilon > 0 \) is an infinitesimal quantity. Taking the derivative of eq. (4) yields:

\[
f'(x) = \delta(x - 2\pi m), \quad \text{for } x \approx 2\pi m.
\]

We conclude that:

\[
f'(x) = -\frac{1}{2\pi} + \sum_{m=-\infty}^{\infty} \delta(x - 2\pi m).
\] (5)

We can also compute \(f'(x) \) by differentiating the Fourier series of \(f(x) \) term-by-term. Using eq. (3), we obtain:

\[
f'(x) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} e^{inx} = \frac{1}{2\pi} \left[-1 + \sum_{n=-\infty}^{\infty} e^{inx} \right].
\] (6)

Equating eqs. (5) and (6) yields the desired result announced in eq. (1).

Actually, the most common form for the Poisson sum formula is as follows. Given a function \(f(t) \) and its Fourier transform,

\[
F(\omega) \equiv \int_{-\infty}^{\infty} e^{i\omega t} f(t) dt,
\] (7)

then the Poisson sum formula is given by:

\[
\sum_{m=-\infty}^{\infty} f(\alpha m) = \frac{1}{\alpha} \sum_{n=-\infty}^{\infty} F\left(\frac{2\pi n}{\alpha}\right),
\] (8)

where \(\alpha \) is any number. One can derive eq. (8) by inserting the integral expression for \(F \) [eq. (7)] on the right-hand side of eq. (8), and then performing the sum over \(n \) using eq. (1). The resulting integrals are then trivially performed, and the left hand side of eq. (8) is immediately obtained.

For further details, see for example M.J. Lighthill, *Introduction to Fourier Analysis and Generalized Functions*, pp. 67–71.