Quantum Mechanics of a Charged Particle in an Electromagnetic Field

These notes present the Schrodinger equation for a charged particle in an external electromagnetic field. In order to obtain the relevant equation, we first examine the classical Hamiltonian of a charged particle in an electromagnetic field. We then use this result to obtain the Schrodinger equation using the principle of minimal substitution. We examine a special case of a uniform magnetic field. Finally, we demonstrate the origin of the coupling of the spin operator to the external magnetic field in the case of a charged spin- $1 / 2$ particle.

Note that in these notes, we assume that all motion is non-relativistic. Thus, we shall set $\gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2} \simeq 1$.

I. Classical Hamiltonian of a charged particle in an electromagnetic field

We begin by examining the classical theory of a charged spinless particle in and external electric field $\overrightarrow{\boldsymbol{E}}$ and magnetic field $\overrightarrow{\boldsymbol{B}}$. Gaussian (or cgs) units are employed for electromagnetic quantities. It is convenient to introduce the vector potential $\overrightarrow{\boldsymbol{A}}$ and the scalar potential ϕ :

$$
\begin{equation*}
\overrightarrow{\boldsymbol{B}}=\vec{\nabla} \times \overrightarrow{\boldsymbol{A}}, \quad \overrightarrow{\boldsymbol{E}}=-\overrightarrow{\boldsymbol{\nabla}} \phi-\frac{1}{c} \frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial t} . \tag{1}
\end{equation*}
$$

These equations encode two of the four Maxwell equations,

$$
\begin{equation*}
\vec{\nabla} \cdot \overrightarrow{\boldsymbol{B}}=0, \quad \vec{\nabla} \times \overrightarrow{\boldsymbol{E}}=-\frac{1}{c} \frac{\partial \overrightarrow{\boldsymbol{B}}}{\partial t} \tag{2}
\end{equation*}
$$

due to the vector identities

$$
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{A})=0, \quad \vec{\nabla} \times(\vec{\nabla} \phi)=0
$$

which are valid for any non-singular vector field $\overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{x}}, t)$ and scalar field $\phi(\overrightarrow{\boldsymbol{x}}, t)$.
However, the fields $\overrightarrow{\boldsymbol{A}}$ and ϕ are not unique. Namely, the following transformations:

$$
\begin{equation*}
\overrightarrow{\boldsymbol{A}} \longrightarrow \overrightarrow{\boldsymbol{A}}+\vec{\nabla} \chi(\overrightarrow{\boldsymbol{x}}, t), \quad \phi \longrightarrow \phi-\frac{1}{c} \frac{\partial \chi(\overrightarrow{\boldsymbol{x}}, t)}{\partial t} \tag{3}
\end{equation*}
$$

called gauge transformations leave the physical electromagnetic fields, $\overrightarrow{\boldsymbol{E}}$ and $\overrightarrow{\boldsymbol{B}}$, unchanged.

We wish to write down a classical Hamiltonian H that describes the motion of a charged particle q in an external electromagnetic field. Given H, we can use Hamilton's equations to derive the equations of motion for the charged particle. The correct Hamiltonian will yield the Lorentz force law:

$$
\begin{equation*}
\overrightarrow{\boldsymbol{F}}=\frac{d}{d t}(m \overrightarrow{\boldsymbol{v}})=q\left(\overrightarrow{\boldsymbol{E}}+\frac{\overrightarrow{\boldsymbol{v}}}{c} \times \overrightarrow{\boldsymbol{B}}\right) \tag{4}
\end{equation*}
$$

The Hamiltonian for a charged particle in an electromagnetic field is given by:

$$
\begin{equation*}
H=\frac{1}{2 m}\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right) \cdot\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right)+q \phi . \tag{5}
\end{equation*}
$$

We shall verify this result by using Hamilton's equations to compute the equations of motion and demonstrate that these coincide with eq. (4). For a Hamiltonian of the form $H=H\left(p_{i}, x_{i}\right)$, Hamilton's equations are given by:

$$
\frac{\partial H}{\partial p_{i}}=\frac{d x_{i}}{d t}, \quad-\frac{\partial H}{\partial x_{i}}=\frac{d p_{i}}{d t}
$$

where i runs over the three directions of space. In particular, the partial derivative with respect to p_{i} is computed at fixed x_{i} and the partial derivative with respect to x_{i} is computed at fixed p_{i}. Inserting eq. (5) into Hamilton's equations yields:

$$
\begin{align*}
& v_{i} \equiv \frac{d x_{i}}{d t}=\frac{p_{i}}{m}-\frac{q}{m c} A_{i}, \tag{6}\\
& F_{i} \equiv \frac{d p_{i}}{d t} \tag{7}\\
&=\frac{q}{m c}\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right) \cdot \frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial x_{i}}-q \frac{\partial \phi}{\partial x_{i}}
\end{align*}
$$

Eq. (6) is equivalent to:

$$
\overrightarrow{\boldsymbol{p}}=m \overrightarrow{\boldsymbol{v}}+\frac{q}{c} \overrightarrow{\boldsymbol{A}} .
$$

The quantity $m \overrightarrow{\boldsymbol{v}}$ is called the mechanical momentum, which is not equal to $\overrightarrow{\boldsymbol{p}}$, which is called the canonical momentum. The reason for this nomenclature will be addressed later. If we now substitute the equation for $\overrightarrow{\boldsymbol{p}}$ in eq. (7), we obtain:

$$
\begin{equation*}
\frac{d}{d t}\left(m v_{i}+\frac{q}{c} A_{i}\right)=\frac{q}{c} \overrightarrow{\boldsymbol{v}} \cdot \frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial x_{i}}-q \frac{\partial \phi}{\partial x_{i}} \tag{8}
\end{equation*}
$$

which we can rewrite as:

$$
\begin{equation*}
\frac{d}{d t}\left(m v_{i}\right)=\frac{q}{c}\left[\overrightarrow{\boldsymbol{v}} \cdot \frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial x_{i}}-\frac{d A_{i}}{d t}\right]-q \frac{\partial \phi}{\partial x_{i}} . \tag{9}
\end{equation*}
$$

To make further progress, note that $d \overrightarrow{\boldsymbol{A}} / d t$ is a full time-derivative of $\overrightarrow{\boldsymbol{A}}$. By the chain rule,

$$
\frac{d \overrightarrow{\boldsymbol{A}}}{d t}=\frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial t}+\sum_{j=1}^{3} \frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial x_{j}} \frac{d x_{j}}{d t}
$$

The chain rule reflects the physical fact that the full time-derivative of $\overrightarrow{\boldsymbol{A}}$ has two sources: (i) explicit time-dependence of $\overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{x}}, t)$, and (ii) implicit time-dependence by virtue of the fact that the charged particle moves on a trajectory $\overrightarrow{\boldsymbol{x}}=\overrightarrow{\boldsymbol{x}}(t)$. Noting that $v_{i} \equiv d x_{i} / d t\left[\right.$ where $\left.\overrightarrow{\boldsymbol{x}} \equiv\left(x_{1}, x_{2}, x_{3}\right)\right]$, we can rewrite the chain rule above as:

$$
\frac{d A_{i}}{d t}=\frac{\partial A_{i}}{\partial t}+(\overrightarrow{\boldsymbol{v}} \cdot \vec{\nabla}) A_{i} .
$$

Inserting this result in eq. (9) yields:

$$
\begin{equation*}
\frac{d}{d t}\left(m v_{i}\right)=\frac{q}{c}\left[\overrightarrow{\boldsymbol{v}} \cdot \frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial x_{i}}-\frac{\partial A_{i}}{\partial t}-(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) A_{i}\right]-q \frac{\partial \phi}{\partial x_{i}} \tag{10}
\end{equation*}
$$

Next, we make use of the vector identity:

$$
\begin{equation*}
[\overrightarrow{\boldsymbol{v}} \times(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{A}})]_{i}=\overrightarrow{\boldsymbol{v}} \cdot \frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial x_{i}}-(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) A_{i} . \tag{11}
\end{equation*}
$$

This should remind you of the BAC-CAB rule used for computing the triple crossproduct: $\overrightarrow{\boldsymbol{A}} \times(\overrightarrow{\boldsymbol{B}} \times \overrightarrow{\boldsymbol{C}})=\overrightarrow{\boldsymbol{B}}(\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{C}})-\overrightarrow{\boldsymbol{C}}(\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}})$. In the case of the identity above, you have to be careful since one of the vectors is a differential operator, which does not commute with $\overrightarrow{\boldsymbol{x}}$. However, it is straightforward to prove eq. (11) by employing a well-known identity involving the product of two Levi Civita tensors:

$$
\begin{equation*}
[\overrightarrow{\boldsymbol{v}} \times(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{A}})]_{i}=\epsilon_{i j k} v_{j} \epsilon_{k \ell m} \frac{\partial A_{m}}{\partial x_{\ell}}=\left(\delta_{i \ell} \delta_{j m}-\delta_{i m} \delta_{j \ell}\right) v_{j} \frac{\partial A_{m}}{\partial x_{\ell}}=\overrightarrow{\boldsymbol{v}} \cdot \frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial x_{i}}-(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}}) A_{i}, \tag{12}
\end{equation*}
$$

where there is an implied sum over pairs of repeated indices. In light of eq. (11), one can rewrite eq. (10) as follows:

$$
\frac{d}{d t}(m \overrightarrow{\boldsymbol{v}})=\frac{q}{c} \overrightarrow{\boldsymbol{v}} \times(\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{A}})-q\left(\overrightarrow{\boldsymbol{\nabla}} \phi+\frac{1}{c} \frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial t}\right)
$$

Finally, using eq. (1), we end up with

$$
\frac{d}{d t}(m \overrightarrow{\boldsymbol{v}})=q \overrightarrow{\boldsymbol{E}}+\frac{q}{c} \overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{B}},
$$

which coincides with eq. (4), as required.
So far, we have described the motion of a charged particle in an external electromagnetic field. If the particle also feels an external potential $V(\overrightarrow{\boldsymbol{x}}, t)$ that is unrelated to the external electromagnetic field, then we should use the more general Hamiltonian,

$$
\begin{equation*}
H=\frac{1}{2 m}\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right) \cdot\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right)+q \phi+V(\overrightarrow{\boldsymbol{x}}, t) . \tag{13}
\end{equation*}
$$

Eq. (13) suggests the principle of minimal substitution, which states that the Hamiltonian for a charged particle (of charge q) in an external electromagnetic field can be obtained from the corresponding Hamiltonian for an uncharged particle by making the following substitutions:

$$
\overrightarrow{\boldsymbol{p}} \longrightarrow \overrightarrow{\boldsymbol{p}}-\frac{q}{c} \overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{x}}, t), \quad V(\overrightarrow{\boldsymbol{x}}, t) \longrightarrow V(\overrightarrow{\boldsymbol{x}}, t)+q \phi(\overrightarrow{\boldsymbol{x}}, t) .
$$

II. Schrodinger equation for a charged particle in an external electromagnetic field

We first write down the time-dependent Schrodinger equation,

$$
H|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle
$$

where

$$
H=\frac{1}{2 m}\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right) \cdot\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right)+q \phi+V(\overrightarrow{\boldsymbol{x}}, t) .
$$

For simplicity, we will set the external potential $V(\overrightarrow{\boldsymbol{x}}, t)$ to zero, and assume that the electromagnetic potentials are time-independent. Then, the time-independent Schrodinger equation for stationary state solutions $|\psi\rangle$ is given by:

$$
\frac{1}{2 m}\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right)^{2}|\psi\rangle=(E-q \phi)|\psi\rangle .
$$

Comparing this with the time-independent Schrodinger equation for a free particle, one can introduce the principle of minimal substitution at this point by noting that the time-independent Schrodinger equation for a charged particle of charge q is obtained by the substitution:

$$
\overrightarrow{\boldsymbol{p}} \longrightarrow \overrightarrow{\boldsymbol{p}}-\frac{q}{c} \overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{x}}, t), \quad E \longrightarrow E-q \phi(\overrightarrow{\boldsymbol{x}}, t)
$$

In the coordinate representation, we identify $\overrightarrow{\boldsymbol{p}}$ with the differential operator $-i \hbar \overrightarrow{\boldsymbol{\nabla}}$. Hence, the time-independent Schrodinger equation is given by:

$$
\frac{1}{2 m}\left[i \hbar \overrightarrow{\boldsymbol{\nabla}}+\frac{q}{c} \overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{x}})\right]^{2} \psi(\overrightarrow{\boldsymbol{x}})+q \phi(\overrightarrow{\boldsymbol{x}}) \psi(\overrightarrow{\boldsymbol{x}})=E \psi(\overrightarrow{\boldsymbol{x}}) .
$$

In obtaining the above result, we implicitly assumed that we should identify the canonical momentum $\overrightarrow{\boldsymbol{p}}$ [and not the mechanical momentum $m \overrightarrow{\boldsymbol{v}}$] with the operator $-i \hbar \overrightarrow{\boldsymbol{\nabla}}$. The momentum operator $\overrightarrow{\boldsymbol{p}}$ is called the canonical momentum because it satisfies the canonical commutation relations,

$$
\left[x_{i}, p_{j}\right]=i \hbar \delta_{i j} .
$$

This is one of the essential postulates of quantum mechanics. Had we tried to identify $m \overrightarrow{\boldsymbol{v}}$ with $-i \hbar \overrightarrow{\boldsymbol{\nabla}}$, we would have found that the resulting theory does not reduce to the classical limit as $\hbar \rightarrow 0$.

The Schrodinger equation written above can be expanded out:

$$
\frac{-\hbar^{2}}{2 m} \overrightarrow{\boldsymbol{\nabla}}^{2} \psi+\frac{i q \hbar}{m c} \overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{\nabla}} \psi+\frac{i q \hbar}{2 m c} \psi(\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{A}})+\frac{q^{2}}{2 m c^{2}} \overrightarrow{\boldsymbol{A}}^{2} \psi+q \phi \psi=E \psi
$$

where we have suppressed the coordinate arguments of the electromagnetic vector and scalar potentials and the wave function ψ. At this point, the equation can
be simplified by choosing a gauge. Given any $\overrightarrow{\boldsymbol{A}}$ and ϕ, one can perform a gauge transformation [cf. eq. (3)] such that the resulting $\overrightarrow{\boldsymbol{A}}$ and ϕ satisfy:

$$
\begin{array}{|lll|}
\hline \vec{\nabla} \cdot \overrightarrow{\boldsymbol{A}}=0, & \phi=0, \quad \text { Coulomb gauge conditions } \\
\hline
\end{array}
$$

Suppose $(\overrightarrow{\boldsymbol{A}}, \phi)$ are the initial vector and scalar potential. Making a gauge transformation,

$$
\overrightarrow{\boldsymbol{A}}^{\prime}=\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{\nabla}} \chi(\overrightarrow{\boldsymbol{x}}, t), \quad \quad \phi^{\prime}=\phi-\frac{1}{c} \frac{\partial \chi(\overrightarrow{\boldsymbol{x}}, t)}{\partial t} .
$$

To ensure that the Coulomb gauge conditions are satisfied, we require that:

$$
\overrightarrow{\boldsymbol{\nabla}}^{2} \chi(\overrightarrow{\boldsymbol{x}}, t)=-\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{x}}, t), \quad \frac{\partial \chi(\overrightarrow{\boldsymbol{x}}, t)}{\partial t}=c \phi(\overrightarrow{\boldsymbol{x}}, t) .
$$

One can always find a $\chi(\overrightarrow{\boldsymbol{x}}, t)$ such that the above conditions are satisfied! By choosing such a $\chi(\overrightarrow{\boldsymbol{x}}, t)$, it then follows that $\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{A}}^{\prime}=\phi^{\prime}=0$ as desired. Thus, the Schrodinger equation in the Coulomb gauge is given by:

$$
\frac{-\hbar^{2}}{2 m} \overrightarrow{\boldsymbol{\nabla}}^{2} \psi+\frac{i q \hbar}{m c} \overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{\nabla}} \psi+\frac{q^{2}}{2 m c^{2}} \overrightarrow{\boldsymbol{A}}^{2} \psi+q \phi \psi=E \psi
$$

III. Schrodinger equation for a charged particle in a uniform electromagnetic field

We can use the results obtained Section II to examine two cases.

1. A uniform electric field

In this case, it is not convenient to use the Coulomb gauge. Instead, we choose $\overrightarrow{\boldsymbol{A}}=0$ and $\vec{E}=-\overrightarrow{\boldsymbol{\nabla}} \phi$. The Schrodinger equation becomes:

$$
\frac{-\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi+q \phi \psi=E \psi
$$

which has the same form as the usual Schrodinger equation for a particle in a potential.

2. A uniform magnetic field

In this case, we will choose the Coulomb gauge. If \boldsymbol{B} is uniform in space and time-independent, then, one may choose:

$$
\overrightarrow{\boldsymbol{A}}=-\frac{1}{2} \overrightarrow{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{B}}, \quad \phi=0
$$

To check that this is correct, we use eq. (1) to compute $\overrightarrow{\boldsymbol{E}}$ and $\overrightarrow{\boldsymbol{B}}$. Since $\overrightarrow{\boldsymbol{A}}$ is timeindependent and $\phi=0$, it follows that $\overrightarrow{\boldsymbol{E}}=0$. Next, we compute $\overrightarrow{\boldsymbol{B}}=\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{A}}$. Noting that:

$$
A_{x}=-\frac{1}{2}\left(y B_{z}-z B_{y}\right), \quad A_{y}=-\frac{1}{2}\left(z B_{x}-x B_{z}\right), \quad A_{z}=-\frac{1}{2}\left(x B_{y}-y B_{x}\right),
$$

one easily evaluates:

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{A}} & =\hat{\boldsymbol{x}}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\hat{\boldsymbol{y}}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\hat{\boldsymbol{z}}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \\
& =\hat{\boldsymbol{x}} B_{x}+\hat{\boldsymbol{y}} B_{y}+\hat{\boldsymbol{z}} B_{z}=\overrightarrow{\boldsymbol{B}}
\end{aligned}
$$

Furthermore, note that

$$
\vec{\nabla} \cdot \overrightarrow{\boldsymbol{A}}=-\frac{1}{2} \vec{\nabla} \cdot(\overrightarrow{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{B}})=0,
$$

which confirms that we have indeed chosen the Coulomb gauge. Thus, the timeindependent Schrodinger equation reads:

$$
\frac{-\hbar^{2}}{2 m} \overrightarrow{\boldsymbol{\nabla}}^{2} \psi-\frac{i q \hbar}{2 m c}(\overrightarrow{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{B}}) \cdot \overrightarrow{\boldsymbol{\nabla}} \psi+\frac{q^{2}}{8 m c^{2}}(\overrightarrow{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{B}})^{2} \psi=E \psi .
$$

This equation can be simplified by noting the vector identity:

$$
(\overrightarrow{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{B}}) \cdot \overrightarrow{\boldsymbol{\nabla}} \psi=-\overrightarrow{\boldsymbol{B}} \cdot(\overrightarrow{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{\nabla}} \psi) .
$$

Hence,

$$
-\frac{i q \hbar}{2 m c}(\overrightarrow{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{B}}) \cdot \overrightarrow{\boldsymbol{\nabla}} \psi=-\frac{q}{2 m c} \overrightarrow{\boldsymbol{B}} \cdot\left(\overrightarrow{\boldsymbol{x}} \times \frac{\hbar}{i} \overrightarrow{\boldsymbol{\nabla}} \psi\right) .
$$

We identify the canonical angular momentum operator,

$$
\begin{equation*}
\overrightarrow{\boldsymbol{L}} \equiv-i \hbar \overrightarrow{\boldsymbol{x}} \times \vec{\nabla} . \tag{14}
\end{equation*}
$$

This is to be distinguished from the mechanical angular momentum $\boldsymbol{\boldsymbol { x }} \times(m \boldsymbol{\boldsymbol { v }})$. You can check that the canonical angular momentum operators of eq. (14) satisfy the usual angular momentum commutation relations,

$$
\left[L_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} L_{k}
$$

where there is an implicit sum over the repeated index $k \in\{1,2,3\}$. Hence, we can write:

$$
-\frac{i q \hbar}{2 m c}(\overrightarrow{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{B}}) \cdot \overrightarrow{\boldsymbol{\nabla}} \psi=-\frac{q}{2 m c} \overrightarrow{\boldsymbol{B}} \cdot \overrightarrow{\boldsymbol{L}} \psi .
$$

Finally, if we use the vector identity,

$$
(\overrightarrow{\boldsymbol{x}} \times \overrightarrow{\boldsymbol{B}})^{2}=r^{2} \overrightarrow{\boldsymbol{B}}^{2}-(\overrightarrow{\boldsymbol{x}} \cdot \overrightarrow{\boldsymbol{B}})^{2},
$$

where $r \equiv|\overrightarrow{\boldsymbol{x}}|$, then the time-independent Schrodinger equation for a charged particle of charge q in an external uniform magnetic field \boldsymbol{B} is given by:

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} \overrightarrow{\boldsymbol{\nabla}}^{2} \psi-\frac{q}{2 m c} \overrightarrow{\boldsymbol{B}} \cdot \overrightarrow{\boldsymbol{L}} \psi+\frac{q^{2}}{8 m c^{2}}\left[r^{2} \overrightarrow{\boldsymbol{B}}^{2}-(\overrightarrow{\boldsymbol{x}} \cdot \overrightarrow{\boldsymbol{B}})^{2}\right] \psi=E \psi . \tag{15}
\end{equation*}
$$

IV. Schrodinger equation for a charged spin-1/2 particle in an electromagnetic field

So far, we have neglected spin. For a spin- $1 / 2$ particle, the wave function is a spinor of the form

$$
\psi=\binom{\psi_{1}}{\psi_{2}}
$$

Likewise, the Hamiltonian operator must be a 2×2 matrix.
To determine the correct Hamiltonian for a charged spin- $1 / 2$ particle in an electromagnetic field, we choose the Hamiltonian for a free uncharged spin- $1 / 2$ particle to be:

$$
\begin{equation*}
H=\frac{(\overrightarrow{\boldsymbol{\sigma}} \cdot \overrightarrow{\boldsymbol{p}})^{2}}{2 m} . \tag{16}
\end{equation*}
$$

Noting that $(\overrightarrow{\boldsymbol{\sigma}} \cdot \overrightarrow{\boldsymbol{p}})^{2}=\overrightarrow{\boldsymbol{p}}^{2} \mathbf{I}$, where \mathbf{I} is the 2×2 identity matrix, we recover the expected free particle Hamiltonian. In order to obtain the Hamiltonian for a charged spin- $1 / 2$ particle, we apply the principle of minimal substitution to eq. (16). ${ }^{1}$ Thus, we choose

$$
H=\frac{1}{2 m} \vec{\sigma} \cdot\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right) \overrightarrow{\boldsymbol{\sigma}} \cdot\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right)+q \phi \mathbf{I} .
$$

We can simplify the first term above by writing:

$$
\begin{align*}
\overrightarrow{\boldsymbol{\sigma}} \cdot\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right) \overrightarrow{\boldsymbol{\sigma}} \cdot\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right) & =\sum_{i j} \sigma_{i} \sigma_{j}\left(p_{i}-\frac{q A_{i}}{c}\right)\left(p_{j}-\frac{q A_{j}}{c}\right) \\
& =\sum_{i j k}\left(\delta_{i j} \mathbf{I}+i \epsilon_{i j k} \sigma_{k}\right)\left(p_{i}-\frac{q A_{i}}{c}\right)\left(p_{j}-\frac{q A_{j}}{c}\right) \\
& =\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right)^{2} \mathbf{I}-\frac{i q}{c} \sum_{i j k} \epsilon_{i j k}\left(p_{i} A_{j}+A_{i} p_{j}\right) \sigma_{k} \tag{17}
\end{align*}
$$

where we have used the sigma matrix identity,

$$
\sigma_{i} \sigma_{j}=\mathbf{I} \delta_{i j}+i \sum_{k=1}^{3} \epsilon_{i j k} \sigma_{k}
$$

Note that

$$
\sum_{i j} \epsilon_{i j k} p_{i} p_{j}=\sum_{i j} \epsilon_{i j k} A_{i} A_{j}=0,
$$

since $\epsilon_{i j k}=-\epsilon_{j i k}$ is a totally antisymmetric tensor.

[^0]To evaluate the second term in eq. (17) above, we use

$$
\sum_{i j k} \epsilon_{i j k}\left(p_{i} A_{j}+A_{i} p_{j}\right) \sigma_{k}=\sum_{i j k} \epsilon_{i j k}\left(p_{i} A_{j}-A_{j} p_{i}\right) \sigma_{k}
$$

where we have used the antisymmetry of $\epsilon_{i j k}$ followed by an appropriate relabeling of indices. Employing the operator identity (which is most easily checked in the coordinate representation),

$$
p_{i} A_{j}-A_{j} p_{i}=\left[p_{i}, A_{j}\right]=-i \hbar \frac{\partial A_{j}}{\partial x_{i}}
$$

it follows that

$$
\sum_{i j} \epsilon_{i j k}\left(p_{i} A_{j}+A_{i} p_{j}\right)=\sum_{i j} \epsilon_{i j k}\left[p_{i}, A_{j}\right]=-i \hbar \sum_{i j} \epsilon_{i j k} \frac{\partial A_{j}}{\partial x_{i}}=-i \hbar B_{k}
$$

after recognizing that $\overrightarrow{\boldsymbol{B}}=\vec{\nabla} \times \overrightarrow{\boldsymbol{A}}$ implies that:

$$
B_{k}=\sum_{i j} \epsilon_{i j k} \frac{\partial A_{j}}{\partial x_{i}}
$$

Consequently,

$$
\vec{\sigma} \cdot\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right) \vec{\sigma} \cdot\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right)=\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right)^{2} \mathrm{I}-\frac{\hbar q}{c} \vec{\sigma} \cdot \overrightarrow{\boldsymbol{B}} .
$$

Thus, the Hamiltonian for a charged spin-1/2 particle in an external electromagnetic field is:

$$
H=\frac{1}{2 m}\left(\overrightarrow{\boldsymbol{p}}-\frac{q \overrightarrow{\boldsymbol{A}}}{c}\right)^{2} \mathbf{I}-\frac{\hbar q}{2 m c} \overrightarrow{\boldsymbol{\sigma}} \cdot \overrightarrow{\boldsymbol{B}}+q \phi \mathbf{I}
$$

That is, if H_{0} is the spin-independent part of the Hamiltonian, then

$$
\begin{equation*}
H=H_{0}-\frac{q}{m c} \overrightarrow{\boldsymbol{S}} \cdot \overrightarrow{\boldsymbol{B}}, \tag{18}
\end{equation*}
$$

where we have identified the spin- $1 / 2$ operator, $\overrightarrow{\boldsymbol{S}}=\frac{1}{2} \hbar \overrightarrow{\boldsymbol{\sigma}}$.
Let us apply the above results to obtain the time-independent Schrodinger equation for a charged spin- $1 / 2$ particle in a uniform magnetic field. Using eqs. (15) and (18), it follows that:

$$
\frac{-\hbar^{2}}{2 m} \overrightarrow{\boldsymbol{\nabla}}^{2} \psi-\frac{q}{2 m c} \overrightarrow{\boldsymbol{B}} \cdot(\overrightarrow{\boldsymbol{L}}+2 \overrightarrow{\boldsymbol{S}}) \psi+\frac{q^{2}}{8 m c^{2}}\left[r^{2} \overrightarrow{\boldsymbol{B}}^{2}-(\overrightarrow{\boldsymbol{x}} \cdot \overrightarrow{\boldsymbol{B}})^{2}\right] \psi=E \psi
$$

Note especially the relative factor of 2 in $\overrightarrow{\boldsymbol{L}}+2 \overrightarrow{\boldsymbol{S}}$ above. This means that we have predicted that an elementary charged spin- $1 / 2$ particle has a g-factor equal to 2 . In more general circumstances, $\overrightarrow{\boldsymbol{L}}+2 \boldsymbol{\boldsymbol { S }}$ in the above equation should be replaced by $\overrightarrow{\boldsymbol{L}}+g \overrightarrow{\boldsymbol{S}}$, where g is determined from experiment.

[^0]: ${ }^{1}$ If one applies the principle of minimal substitution to $H=\left(\overrightarrow{\boldsymbol{p}}^{2} /(2 m)\right) \mathbf{I}$, one obtains a spinindependent Hamiltonian, which is in conflict with experiment. Remarkably, applying the principle of minimal substitution to eq. (16) yields a spin-dependent Hamiltonian, which is in very good agreement with experiment.

