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The radial Green function

In eqs. (6.36)–(6.40), Jackson derives an expression for the Green function, Gk(~x,~x′)
that satisfies,

(~∇2 + k2)Gk(~x,~x ′) = −δ3(~x− ~x′) , (1)

where I have omitted an overall factor of 4π following eqs. (9.93)–(9.95) of Jackson. After
imposing the boundary condition corresponding to outgoing waves, Jackson obtains,1

Gk(~x,~x′) =
eik|~x−~x ′|

4π|~x− ~x′| . (2)

We can expand this expression in spherical harmonics,

eik|~x−~x ′|

4π|~x− ~x′| =
∞∑

ℓ=0

ℓ∑

m=−ℓ

gℓ(r, r
′)Y ∗

ℓm(Ω
′)Yℓm(Ω) , (3)

where r ≡ |~x|, r′ ≡ |~x′|, Ω = (θ, φ) and Ω′ = (θ′, φ′), where θ and φ [θ′ and φ′] are the
polar and azimuthal angles of the vector ~x [~x′] with respect to a fixed coordinate system.
In this note, I will derive an expression for the radial Green function, gℓ(r, r

′).2 The k → 0
limit of eq. (3), which is given by eq. (3.70) of Jackson will serve as a check of our result
(see Appendix B).

The first observation is that the left hand side of eq. (3) is invariant under the inter-
change of ~x ↔ ~x′. Hence,

∞∑

ℓ=0

ℓ∑

m=−ℓ

gℓ(r, r
′)Y ∗

ℓm(Ω
′)Yℓm(Ω) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

gℓ(r
′, r)Y ∗

ℓm(Ω)Yℓm(Ω
′) . (4)

However, recall the addition theorem for spherical harmonics [Jackson eq. (3.62)],

Pℓ(cos γ) =
4π

2ℓ+ 1

ℓ∑

m=−ℓ

Y ∗
ℓm(Ω

′)Yℓm(Ω) , (5)

where γ is the angle between ~x and ~x′. Since Pℓ(cos γ) is a real function, it follows that

ℓ∑

m=−ℓ

Y ∗
ℓm(Ω

′)Yℓm(Ω) =

ℓ∑

m=−ℓ

Yℓm(Ω
′)Y ∗

ℓm(Ω) . (6)

Consequently, eqs. (4) and (6) yield,

∞∑

ℓ=0

[
gℓ(r, r

′)− gℓ(r
′, r)
] ℓ∑

m=−ℓ

Y ∗
ℓm(Ω

′)Yℓm(Ω) = 0 . (7)

1For completeness, a derivation of eq. (2) is given in Appendix A of these notes.
2A better notation for the radial Green function would be g

(ℓ)
k (r, r′) to emphasize the dependence on k.

However, I will stick with the notation that Jackson uses.
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After employing eq. (5) and noting that the Legendre polynomials constitute a linearly
independent set of functions, it follows that

gℓ(r, r
′) = gℓ(r

′, r) . (8)

The second observation is that we can obtain a differential equation for gℓ(r, r
′) by

inserting eq. (3) into eq. (1). Recall that in spherical coordinates,

~∇2 =
∂2

∂r2
+

2

r

∂

∂r
−

~L2

r2
, (9)

where ~L2 is a differential operator with the property that ~L2 Yℓm(Ω) = ℓ(ℓ + 1)Yℓm(Ω).
Hence, it follows that

(~∇2 + k2)gℓ(r, r
′)Yℓm(Ω) =

(
∂2

∂r2
+

2

r

∂

∂r
+ k2 −

~L2

r2

)
gℓ(r, r

′)Yℓm(Ω)

=

(
d2

dr2
+

2

r

d

dr
+ k2 − ℓ(ℓ+ 1)

r2

)
gℓ(r, r

′)Yℓm(Ω) . (10)

It follows that gℓ(r, r
′) must satisfy the equation,

(
d2

dr2
+

2

r

d

dr
+ k2 − ℓ(ℓ+ 1)

r2

)
gℓ(r, r

′) = − 1

r2
δ(r − r′) (11)

which defines the radial Green function. To show that eq. (11) is equivalent to eqs. (1)–(3),

(~∇2 + k2)Gk(~x,~x ′) = (~∇2 + k2)

∞∑

ℓ=0

ℓ∑

m=−ℓ

gℓ(r, r
′)Y ∗

ℓm(Ω
′)Yℓm(Ω)

= − 1

r2
δ(r − r′)

ℓ∑

m=−ℓ

Y ∗
ℓm(Ω

′)Yℓm(Ω) = − 1

r2
δ(r − r′)δ(Ω− Ω′)

= −δ3(~x− ~x′) , (12)

after using the completeness relation of the spherical harmonics [cf. eq. (3.56) of Jackson]:3

ℓ∑

m=−ℓ

Y ∗
ℓm(Ω

′)Yℓm(Ω) = δ(Ω− Ω′) , (13)

and the expression for the three dimensional delta function in spherical coordinates.
3To derive eq. (13), consider the expansion of an arbitrary function of the angles Ω = (θ, φ) in terms

of the spherical harmonics, f(Ω) =
∑

ℓ,m cℓmYℓm(Ω). To obtain the coefficients cℓm, we employ the
orthonormality relation [eq. (3.55) of Jackson]:

∫
Y ∗

ℓ′m′(Ω)Yℓm(Ω) dΩ = δℓℓ′δmm′ .

It then follows that

cℓm =

∫
f(Ω′)Y ∗

ℓ′m′(Ω′)dΩ′ .

Plugging this result back into the expansion of f(Ω), one obtains an identity if eq. (13) is satisfied.
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We now proceed to solve the differential equation [eq. (11)] for gℓ(r, r
′). First we consider

the case of r 6= r′. Then,
(

d2

dr2
+

2

r

d

dr
+ k2 − ℓ(ℓ+ 1)

r2

)
gℓ(r, r

′) = 0 , for r 6= r′, (14)

which we recognize as the equation for spherical Bessel functions. In the analysis that
follows, we will need to know the small argument and large argument behaviors of the
spherical Bessel functions. In the limit as x → 0,

jℓ(x) =
xℓ

(2ℓ+ 1)!!

[
1 +O(x)

]
, nℓ(x) = − (2ℓ− 1)!!

xℓ+1

[
1 +O(x)

]
, (15)

where (2ℓ+ 1)!! = (2ℓ+ 1)(2ℓ− 1) · · · 5·3·1 [for nonnegative integers ℓ ] and (−1)!! = 1. In
the limit of x → ∞,

jℓ(x) =
1

x
sin
(
x− 1

2
ℓπ
) [

1 +O
(
1

x

)]
, nℓ(x) = − 1

x
cos
(
x− 1

2
ℓπ
) [

1 +O
(
1

x

)]
. (16)

The spherical Hankel functions are defined by

h
(1)
ℓ (x) ≡ jℓ(x) + inℓ(x) , h

(2)
ℓ (x) ≡ jℓ(x)− inℓ(x) =

[
h
(1)
ℓ (x)

]∗
. (17)

Hence, it follows that as x → ∞,

h
(1)
ℓ (x) = (−i)ℓ+1 e

ix

x

[
1 +O

(
1

x

)]
, h

(2)
ℓ (x) = iℓ+1 e

−ix

x

[
1 +O

(
1

x

)]
. (18)

We shall solve eq. (14) by treating the cases of r < r′ and r > r′ separately. First, if
r < r′ then gℓ(r, r

′) = A(r′)jℓ(kr), where we reject the solution proportional to nℓ(kr) under
the requirement that a physical solution must be nonsingular as r → 0. Second, if r > r′,
we shall impose the condition that the solution behave as an outgoing spherical wave as
r → ∞. Hence, we conclude that if r > r′ then gℓ(r, r

′) = B(r′)h
(1)
ℓ (kr), since the solution

proportional to h(2)(kr) behaves like an incoming spherical wave as r → ∞ [cf. eq. (18)].
Combining these two results using eq. (8), which asserts that gℓ(r, r

′) is symmetric under
the interchange of r → r′, we can conclude that

gℓ(r, r
′) = Cjℓ(kr<)h

(1)
ℓ (kr>) , for r 6= r′, (19)

where r< ≡ min{r, r′} and r> ≡ max{r, r′}. The constant C is independent of r and r′

and can be determined by integrating eq. (11) from r = r′ − ǫ to r = r′ + ǫ, where ǫ is a
positive infinitesimal quantity. It then follows that

∂gℓ(r, r
′)

∂r

∣∣∣∣
r=r′+ǫ

−∂gℓ(r, r
′)

∂r

∣∣∣∣
r=r′−ǫ

+
2

r′
[gℓ(r

′ − ǫ, r′)− gℓ(r
′ + ǫ, r′)]

+

∫ r′+ǫ

r′−ǫ

(
k2 − ℓ(ℓ+ 1)

r2

)
gℓ(r, r

′)dr = − 1

r′ 2
. (20)

3



In light of eq. (19), gℓ(r, r
′) is continuous at r = r′. Thus as ǫ → 0, eq. (20) reduces to,

∂gℓ(r, r
′)

∂r

∣∣∣∣
r=r′+ǫ

−∂gℓ(r, r
′)

∂r

∣∣∣∣
r=r′−ǫ

= − 1

r′ 2
. (21)

Plugging in eq. (19) and taking the limit as ǫ → 0 yields an equation for the constant C,

C

[
jℓ(kr)

(
dh

(1)
ℓ (kr)

dr

)

r=r′

− h
(1)
ℓ (kr′)

(
jℓ(kr)

dr

)

r=r′

]
= − 1

r′ 2
. (22)

Eq. (22) is an identity that must hold for all values of r′ and k. Consequently, the
easiest way to evaluate C is to consider the small kr′ behavior of eq. (22). In this case,
we can employ the small argument expressions given in eq. (16) and the definition of the
spherical Hankel function [eq. (17)] to obtain,

jℓ(kr) =
(kr)ℓ

(2ℓ+ 1)!!
[1 +O(kr)] , h

(1)
ℓ (kr) =

−i(2ℓ− 1)!!

(kr)ℓ+1
[1 +O(kr)] . (23)

Hence, eq. (22) yields,

− 1

Cr2
=

(kr)ℓ

(2ℓ+ 1)!!
k
(−i)(2ℓ− 1)!!

(kr)ℓ+2
(−ℓ− 1)− kℓ(kr)ℓ−1

(2ℓ+ 1)!!
k
(−i)(2ℓ− 1)!!

(kr)ℓ+1

=
i

k
(2ℓ+ 1)

(2ℓ− 1)!!

(2ℓ+ 1)!!

1

r2
=

i

kr2
. (24)

That is, C = ik. Thus, the radial Green function is,

gℓ(r, r
′) = ikjℓ(kr<)h

(1)
ℓ (kr>) . (25)

Another Derivation of the radial Green function

A slightly fancier technique for deriving eq. (25) starts with the completeness relation
of the spherical Bessel functions,

∫ ∞

0

jℓ(kr)jℓ(kr
′)k2 dk =

π

2r2
δ(r − r′) , (26)

where jℓ(kr) satisfies,
(

d2

dr2
+

2

r

d

dr
− ℓ(ℓ+ 1)

r2

)
jℓ(kr) = −k2jℓ(kr) . (27)

This suggests that one can solve eq. (11) by writing

gℓ(r, r
′) =

∫ ∞

0

jℓ(k
′r)Rℓ(k

′, r′)k′ 2 dk′ . (28)

Plugging the above expression for gℓ(r, r
′) into eq. (11) and making use of eq. (26) yields,

∫ ∞

0

(k2 − k′ 2)jℓ(k
′r)Rℓ(k

′, r′)k′ 2 dk′ = −2

π

∫ ∞

0

jℓ(k
′r)jℓ(k

′r′)k′ 2 dk′ . (29)
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Hence, it follows that Rℓ(k
′, r′) solves an algebraic equation,

(k2 − k′ 2)Rℓ(k
′, r′) = −2

π
jℓ(k

′r′) . (30)

Solving for Rℓ(k
′, r′) yields,

Rℓ(k
′, r′)k′ 2 = − 2jℓ(k

′r′)

π(k2 − k′ 2)
. (31)

Inserting this result back into eq. (28), we end up with:

gℓ(r, r
′) = − 2

π

∫ ∞

0

jℓ(k
′r)jℓ(k

′r′)

k2 − k′ 2
k′ 2 dk′ . (32)

Noting that

jℓ(−x) = (−1)ℓjℓ(x) , (33)

we see that the integrand in eq. (32) is an even function of k′. Hence, an equivalent form
for eq. (32) is

gℓ(r, r
′) = − 1

π

∫ ∞

−∞

jℓ(k
′r)jℓ(k

′r′)

k2 − k′ 2
k′ 2 dk′ . (34)

Unfortunately, eq. (34) is not well defined due to the singularities at k′ = ±k along the
path of integration.

However, as in Appendix A, one can deform the contour around the singular points, or
equivalently we can give k an infinitesimal imaginary part. The choice of the deformation
depends on the desired boundary conditions for the problem. As noted earlier, we require
that g(r, r′) should be nonsingular as r< → 0 and should behave as an outgoing spherical
wave as r> → ∞. These requirements uniquely specify the required deformation of the
contour. As we shall demonstrate below by an explicit computation, the deformation that
yields the correct boundary conditions is,4

gℓ(r, r
′) = − 1

π

∫ ∞

−∞

jℓ(k
′r)jℓ(k

′r′)

k2 − k′ 2 + iε
k′ 2 dk′ , (35)

where ε is a positive infinitesimal quantity that will be taken to zero at the end of the
computation. Since jℓ(kr) is analytic in the complex k′ plane, the only singularities of the
integrand occur when k′ 2 = k2+iε. That is, the integrand possesses two poles at k′ = k+iε
and k′ = −k − iε (after absorbing a factor of 2 in the infinitesimal quantity ε). Note that
although k′ is integrated over the entire real axis in eq. (35), the quantity k ≡ ω/c remains
a real positive quantity.

4Eq. (35) is also obtained in Charles J. Joachain, Quantum Collision Theory (North-Holland Publishing
Company, Amsterdam, The Netherlands, 1975) pp. 122–123 [although my derivation of eq. (35) is more
direct]. The subsequent analysis presented below follows the same steps presented by Joachain. Note that
the radial Green function in Joachain’s book is defined with the opposite sign to the one employed in these
notes since Joachain omits the minus sign in eq. (1).
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To perform the integral exhibited in eq. (35), we shall use the following relation,

jℓ(x) =
1
2

[
h
(1)
ℓ (x) + h

(2)
ℓ (x)

]
= 1

2

[
h
(1)
ℓ (x) + (−1)ℓh

(1)
ℓ (−x)

]
. (36)

Then, if r < r′, the we can write

gℓ(r, r
′) =

1

2π

{∫ ∞

−∞

jℓ(k
′r)h

(1)
ℓ (k′r′) k′ 2 dk′

(k′ − k − iε)(k′ + k + iε)
+ (−1)ℓ

∫ ∞

−∞

jℓ(k
′r)h

(1)
ℓ (−k′r′) k′ 2 dk′

(k′ − k − iε)(k′ + k −+ε)

}
.

(37)

We can now extend the integration contour to the complex k′-plane. Because r < r′ it fol-
lows from eqs. (18) and (36) that jℓ(k

′r)h
(1)
ℓ (k′r′) is exponentially damped in the upper half

complex k′-plane and jℓ(k
′r)h

(1)
ℓ (−k′r′) is exponentially damped in the lower half complex

k′-plane as |k′| → ∞. Thus, in the first integral in eq. (37), we may close the contour in
the upper half complex k′-plane. The resulting closed contour C is counterclockwise and
contains only one pole inside C at k′ = k + iε. Hence, we may use the residue theorem of
complex analysis to obtain

∮

C

jℓ(k
′r)h

(1)
ℓ (k′r′) k′ 2 dk′

(k′ − k − iε)(k′ + k + iε)
= πikjℓ(kr)h

(1)
ℓ (kr′) . (38)

Likewise, in the second integral in eq. (37), we may close the contour in the lower half
complex k′-plane. The resulting closed contour C ′ is clockwise and contains only one pole
inside C ′ at k′ = −k − iε. Hence, we may use the residue theorem of complex analysis to
obtain

∮

C′

jℓ(k
′r)h

(1)
ℓ (−k′r′) k′ 2 dk′

(k′ − k − iε)(k′ + k + iε)
= πikjℓ(−kr)h

(1)
ℓ (kr′) , (39)

after remembering to include the extra minus sign due to the clockwise contour. Finally,
after employing eq. (33) and noting that (−1)2ℓ = 1, we see that eq. (37) yields,

gℓ(r, r
′) = ikjℓ(kr)h

(1)
ℓ (kr′) , for r < r′. (40)

If r > r′, then we can write,

gℓ(r, r
′) =

1

2π

{∫ ∞

−∞

h
(1)
ℓ (k′r)jℓ(k

′r′) k′ 2 dk′

(k′ − k − iε)(k′ + k + iε)
+ (−1)ℓ

∫ ∞

−∞

h
(1)
ℓ (−k′r)jℓ(k

′r′) k′ 2 dk′

(k′ − k − iε)(k′ + k −+ε)

}
.

(41)

Because r > r′, it follows from eqs. (18) and (36) that h
(1)
ℓ (k′r)jℓ(k

′r′) is exponentially

damped in the upper half complex k′-plane and h
(1)
ℓ (−k′r)jℓ(k

′r′) is exponentially damped
in the lower half complex k′-plane as |k′| → ∞. A similar analysis as above then yields,

gℓ(r, r
′) = ikh

(1)
ℓ (kr)jℓ(kr

′) , for r > r′. (42)

We can combine the results of eqs. (40) and (42) to obtain,

gℓ(r, r
′) = ikjℓ(kr<)h

(1)
ℓ (kr>) , where r< ≡ min{r, r′} and r> ≡ max{r, r′}. (43)

Thus, we have successfully reproduced eq. (25).
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APPENDIX A: The Green function of the Helmholtz equation

In this Appendix, we shall provide an explicit derivation of eq. (2), which is a solution to
eq. (1) subject to the boundary condition of outgoing waves. Using translational invariance,
it follows that Gk(~x,~x ′) = Gk(~x−~x ′). We can turn the differential equation [eq. (1)] into
an algebraic equation by employing the Fourier transform,

Gk(~x) =
1

(2π)3

∫
d3q G̃(~q) ei~q ·~x , (44)

Acting on both sides of this equation with (~∇2 + k2) and making use of the integral
representation of the delta function,

δ3(~x) =
1

(2π)3

∫
d3q ei~q ·~x , (45)

we end up with the algebraic equation, (k2 − q2)G̃(~q) = −1. Hence,

G̃(~q) =
1

q2 − k2
, (46)

where q ≡ |~q|. Plugging this result back into eq. (44) yields

Gk(~x) =
1

(2π)3

∫
d3q

ei~q ·~x

q2 − k2
. (47)

Writing d3q = q2 dq dΩ = q2 dq d cos θ dφ = 2πq2 dq d cos θ (one can freely integrate over φ
since there is no φ dependence in the integrand above) and ~q·~x = qr cos θ where r ≡ |~x|
and θ is the angle between ~q and ~x, it follows that

Gk(~x) =
1

(2π)2

∫ ∞

0

q2 dq

q2 − k2

∫ 1

−1

eiqr cos θ =
1

4π2

∫ ∞

0

q2 dq

q2 − k2

1

iqr

(
eiqr − e−iqr

)

=
1

2π2r

∫ ∞

0

q sin(qr) dq

q2 − k2
=

1

4π2r

∫ ∞

−∞

q sin(qr) dq

q2 − k2
, (48)

where we used the fact that the integrand above is an even function of q to extend the
limits of integration from (0,∞) to (−∞,∞). The integral in eq. (48) is undefined due
to the singularity at q = ±k along the path of integration. However, we can implement
the boundary condition corresponding to outgoing waves by deforming the contour or
equivalently by adding an infinitesimal imaginary part to k as follows,

Gk(~x) =
1

4π2r

∫ ∞

−∞

q sin(qr) dq

q2 − k2 − iε
, (49)

where ε is a positive infinitesimal quantity that will be taken to zero at the end of the
calculation. Factoring the denominator yields,

q2 − k2 − iε = (q − k − iε)(q + k + iε) , (50)

after absorbing a factor of two into the definition of ε on the right hand side above. Note
that k = ω/c is a real positive quantity.
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To perform the integral given in eq. (49), we first write 2i sin qr = eiqr − e−iqr. Consider
first,

Re q

Im q

C1

k + iε

−k − iε

I1(k, ε) ≡
∫ ∞

−∞

qeiqr dq

(q − k − iε)(q + k + iε)

where C1 is the closed contour shown above, and the radius of the contour is taken to
infinity. Note that the integrand is exponentially damped along the semicircular part of
the contour C1 and thus the contribution to the integral along the semicircular arc goes to
zero as the radius of the semicircle is taken to infinity. Inside the counterclockwise contour
C1 there exists a simple pole at q = k + iε (since by assumption, ε > 0). Thus, by the
residue theorem of complex analysis,

lim
ε→0

I1(k, ε) = 2πiRes

(
qeiqr

q2 − k2 − iε

)
= πieikr , (51)

where Resf(q) = limq→q0(q − q0)f(q) is the residue due to a simple pole at q = q0.

Next, we consider

Re q

Im q

C2

k + iε

−k − iε
I2(k, ε) ≡

∫ ∞

−∞

qe−iqr dq

(q − k − iε)(q + k + iε)

where the contour C2 is now closed in the lower half plane. The integrand is exponentially
damped along the semicircular part of the contour C2 and thus the contribution to the
integral along the semicircular arc goes to zero as the radius of the semicircle is taken to
infinity. Inside the clockwise contour C2 there exists a simple pole at q = −k − iε. Thus,
by the residue theorem of complex analysis,

lim
ε→0

I2(k, ε) = −2πiRes

(
qe−iqr

q2 − k2 − iε

)
= −πieikr , (52)

where the extra minus sign is due to the clockwise orientation of C2.
Using eqs. (51) and (52), it follows that

Gk(~x) =
1

4π2r

∫ ∞

−∞

q sin(qr) dq

q2 − k2 − iε
=

1

8iπ2r
lim
ε→0

[
I1(k, ε)− I2(k, ε)

]
=

eikr

4πr
. (53)
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Noting that r ≡ |~x|, we conclude that

Gk(~x,~x′) = Gk(~x− ~x′) =
eik|~x−~x ′|

4π|~x− ~x′| . (54)

which confirms eq. (2).

REMARKS:

Eq. (49) provides an integral representation of Gk(~x,~x′),

Gk(~x,~x′) =
1

4π2|~x− ~x
′|

∫ ∞

−∞

sin
(
q|~x− ~x

′|
)

q2 − k2 − iε
q dq . (55)

If we expand in terms of spherical harmonics, then [cf. eq. (3)],

Gk(~x,~x′) =

∞∑

ℓ=0

ℓ∑

m=−ℓ

gℓ(r, r
′)Y ∗

ℓm(Ω
′)Yℓm(Ω) , (56)

where the radial Green function is given by an integral representation exhibited in eq. (35),
which we rewrite below,

gℓ(r, r
′) =

1

π

∫ ∞

−∞

jℓ(qr)jℓ(qr
′)

q2 − k2 − iε
q2 dq . (57)

As a result, we obtain the following interesting expansion,

sin
(
q|~x− ~x

′|
)

4πq|~x− ~x
′| =

∞∑

ℓ=0

ℓ∑

m=−ℓ

jℓ(qr)jℓ(qr
′)Y ∗

ℓm(Ω
′)Yℓm(Ω) . (58)

Using the addition theorem for spherical harmonics given in eq. (5), it then follows that

sin
(
q|~x− ~x

′|
)

q|~x− ~x
′| =

∞∑

ℓ=0

(2ℓ+ 1)jℓ(qr)jℓ(qr
′)Pℓ(cos θ) , (59)

where θ is the angle between the vectors ~x and ~x ′. As a sanity check, if one sets ~x
′ = 0

and uses jℓ(0) = δℓ0 and P0(cos θ) = 1, then eq. (59) yields j0(qr) = sin(qr)/(qr), which is
correct.

Finally, by employing the orthogonality relation satisfied by the Legendre polynomials,
∫ 2

−1

Pℓ(cos θ)Pℓ′(cos θ) d cos θ =
2

2ℓ+ 1
δℓℓ′ , (60)

we can derive an interesting integral representation for the product of two spherical Bessel
functions,

jℓ(qr)jℓ(qr
′) =

1

2

∫ 1

−1

sin
(
q
√
r2 + r′ 2 − 2rr′ cos θ

)

q
√
r2 + r′ 2 − 2rr′ cos θ

Pℓ(cos θ) d cos θ . (61)
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APPENDIX B: The k = 0 limit

Having found an explicit formula for the radial Green function, one can now plug eq. (25)
into eq. (3) to obtain,

eik|~x−~x ′|

4π|~x− ~x′| = ik

∞∑

ℓ=0

ℓ∑

m=−ℓ

jℓ(kr<)h
(1)
ℓ (kr>)Y

∗
ℓm(Ω

′)Yℓm(Ω) . (62)

It is instructive to take the k → 0 limit of this result. Using eq. (23),

jℓ(kr<)h
(1)
ℓ (kr>) =

−i

(2ℓ+ 1)k

rℓ<
rℓ+1
>

[
1 +O(k)

]
. (63)

Thus, the k → 0 limit of eq. (62) yields,

1

|~x− ~x′| = 4π

∞∑

ℓ=0

ℓ∑

m=−ℓ

1

2ℓ+ 1

rℓ<
rℓ+1
>

Y ∗
ℓm(Ω

′)Yℓm(Ω) , (64)

in agreement with the result given by eq. (3.70) of Jackson.
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