
CHAPTER 3 

Dynamics of Classical Fields 

§ 3.1 Illustrative Example: The Lagrangian Formalism for 
a String 

We have already discussed the Lagrangian formulation ofthe dynamics of a system 
with a finite number of degrees offreedom, say a finite number of particles moving 
in an external field. Now we want to include the dynamics of fields. We will start 
by considering a one-dimensional string. It has an important property: If the string 
is disturbed at one place, then this disturbance may propagate along the string. 
We can understand this in an intuitive way. The string consists of "atoms." Each 
atom interacts with its nearest neighbors. Hence, if one atom is disturbed, this 
disturbance has influence on its neighbor. But this disturbance of a neighbor has 
influence on the neighbor of the neighbor, etc.! In this way a traveling wave is 
created that propagates along the string! 

In our model the string is composed of "atoms" that in the equilibrium state are 
evenly spaced throughout the x-axis. (See Figure 3.1.) The important assumption 
is that the "atoms" are coupled to each other through forces proportional to their 
relative displacements (Hooke forces). 

We will enumerate the "atoms" with an integer n, so that the equilibrium position 
of the nth "atom" is Xn = an. Ifwe set the "atoms" in motion, then the nth "atom" 
will be displaced an amount qn from its equilibrium position. 

When the string is put into vibration, its dynamical evolution is described by 
the functions 

qn = qn (t), n = ... , -2, -1,0, 1,2, .... 

a x - axis 
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Figure 3.1. 
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The kinetic energy of the nth "atom" is 

1 .2 
"2 mqn' 

and the potential energy associated with the separation of atom nand n + 1 is: 

122 "2 mv [qn+l - qn] . 

Hence the total Lagrangian for the system is 

~ (1 .2 1 2 2) 
L = n~oo "2 mqn - "2 mv [qn+l - qn] . 

Let us determine the equations of motion. Using (2.6) we get 

mqi = mv2 (qi+l - 2qi + qi-l)· 

(3.1) 

(3.2) 

It is easy to check that the equations of motion actually allow wave solutions. If 
we put 

qn(t) = A cos(kxn - wt), (3.3) 

then this will represent a traveling wave. Inserting this into the equation of motion, 
we get 

-mw2 A cos(kxn - wt) = mv2 cos(kxn - wt)(2 cos(k . a) - I), 

or 

(3.4) 

Thus (3.3) is a solution to the equation of motion, provided that (3.4) is satisfied. 
Relation (3.4) is called a dispersion relation. Observe that for small k, i.e., in the 
long wave-length limit, we may expand the cosine, getting 

w:::::: ±vj2 (1 - 1 + ~ k2a 2 ) = ±va· k, (3.5) 

which is a linear dispersion relation. 
Now we want to investigate a continuous string, where there are "atoms" ev­

erywhere. We can do this by letting a ~ 0 in our discrete model. We say that we 
pass to the continuum limit. 

Now, instead of describing the displacements by the infinite set of numbers q j (t), 
we will represent them by a smooth function q (x, t) giving the displacement of 
the "atom" with equilibrium position x. (See Figure 3.2.) 

In the discrete model, the mass density is m / a. When we pass to the continuum 
limit, we suppose that it approaches a constant p, the mass density of the continuous 
string; i.e., 

m 
~ p asa ~ o. 

a 
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Figure 3.2. 

Finally, it will be necessary to make an assumption about v. In the discrete 
model, the velocity ofa wave in the long wave-length limit is (compare (3.3) and 
(3.5)) 

w 

k 
= va. 

We assume that it approaches a constant c, the velocity ofa traveling wave in the 
continuous string: 

va -+ c as a -+ O. 

With these preliminaries we can investigate what happens to the Lagrangian in 
the continuum limit. Let us take a look at the kinetic energy: 

r=+oo I 
-+ Jx=-oo 2" p[q(x, t)fdx. 

We can treat the potential energy in a similar way. From the observation 

aq 
q/l+l(t) - q,,(t) = q(X,,+h t) - q(x", t) ~ a ax (x". t) 

= x,,~oo ~ m (va)2 [aq (xn, t)J 2 ~xn 
~ 2 a ax 

XII =-00 

-+ r=+oo ~ pc2 [aq (x, ()J2 dx. 
Jx=-oo 2 ax 
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Thus for the total Lagrangian we get 

~ 1 .2 1 2 2 
L 2 mqn - 2 mv [qn+J - qn] 

n=-oo 

1+00 [I ( aq )2 
-+ x=-oo 2 P at ( )2J 1 2 aq 

2 pc ax dx, 

(3.6) 

showing that in the continuum limit the Lagrangian is expressed as an integral 
over space. The integrand is called the Lagrangian density, 

L (q, aq , aq ) = ~ P (aq )2 _ ~ pc2 (aq )2 (3.7) 
at ax 2 at 2 ax 

Observe that it contains not only ~ but also * ! Where did the space derivative * come from? It came from the term (qn+J - qn)2 in the discrete model. Hence, 
it reflects the property of local interactions. Each point in space interacts with its 
nearest neighbors. 

In a similar way we may analyze the equations of motion. In the discrete model 
we have 

qn(t) = y2[qn+J - 2qll + qn-IJ. 

We may rearrange the term on the right side: 

qn+J - 2qn + qn-J = [q(xn+J, t) - q(xn• t)] - [q(xn • t) - q(xn• t)] 

::::::: a [aq (x + CJ.- t) _ aq (x - CJ.- t)] 
ax n 2' ax n 2 ' 

Thus we obtain 

.. 2 2 a2q 2 a2q 
q(xn, t) ::::::: y a ax2 (xn, t) -+ c ax2 ; 

. I a2q 
I.e., "2-2 

c at 
As before, we may look for a solution representing a traveling wave: 

q(x. t) = A cos(kx - wO. 

Ifwe insert this into the equation of motion (3.8). we get 

-QiAcos(kx - wt) = -c2eAcos(kx - wt); 

i.e., 

w = ±ck. 

(3.8) 

(3.9) 

(3.10) 

Hence, (3.9) is a solution to the equation of motion, provided that w satisfies the 
linear dispersion relation (3.10). 
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§ 3.2 The Lagrangian Formalism for Relativistic Fields 

We should now be motivated for the abstract field theory. We start with a field 
¢ (t, x) defined throughout space-time. The value of the field at a particular point 
Xo, ¢ (1, xo), corresponds to the stretching q (t, xo) in the preceding example. The 
dynamics of the field are governed by a Lagrangian C, which by analogy with the 
preceding example we write as 

(3.11 ) 

The Lagrangian density L depends not only on the time derivative, but on the 
space derivatives as well 

L = L(¢, 0/1¢). 

The presence of space derivatives Oi¢ reflects the principle of local interactions. 
Ifwe choose two times tl and t2, we may specify the field at these times. Any 

smooth function ¢(t, x) that satisfies the boundary conditions 

¢(tl, x) = ¢1(X) and ¢(t2, x) = ¢2(X) 

represents a possible history of the field. To each such history we associate the 
action 

i.e., 

(3.12) 

where Q is the four-dimensional region between the hyperplanes t = tl and t = t2. 
(See Figure 3.3.) As usual, we want to determine a history ¢ (t, x) that extremizes 
the action. This, of course, leads to the equation of motion for the field. Now 
suppose that ¢o(t, x) really extremizes the action. Consider another history, 

¢(t, x) = ¢o(t, x) + E1'/(t, x), 

where 1'/ (t, x) satisfies the boundary conditions 1'/ (th x) = 1'/ (t2, x) = o. 
Then the action 

SeE) = In L(¢o + E1'/, 0/1¢O + E0/11'/)d4x 

has an extremal value when E = O. Consequently, we get 
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Figure 3.3. 

where we have neglected the surface terms due to the boundary conditions on TJ. 

But TJ (t, x) was arbitrarily chosen. Therefore, the above result is consistent only if 
<Po satisfies the differential equation 

(3.13) 

This generalizes the Euler-Lagrange equation for a system with a finite number of 
degrees of freedom. Observe that all the derivatives occur! This has an important 
consequence: The equation of motion is Lorentz-invariant, provided that L is a 
Lorentz scalar. 

We would also like to discuss fields with several components <Pa, a = I, ... , n 
(like the Maxwell field AuJ. We leave the deduction of the equations of motion as 
an exercise. 

Exercise 3.2.1 
Problem: Suppose the field has several components: CPa, a = 1. ... , n. Show that 
each of the components must satisfy the appropriate Euler-Lagrange equation 

a = 1, ... , n. (3.14) 

We may also discuss the energy-momentum corresponding to our field <Pa. A 
direct generalization of the Hamiltonian method suggests that the energy density 
is given by the Hamiltonian density 

H= (3.15) 




