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Consider the n× n matrix
Aij = δij + aibj .

In this note, we shall provide three different proofs that

detA = 1 +~a·~b . (1)

First proof

One definition of the determinant is

detA = ǫi1i2i3···inA1i1A2i2A3i3 · · ·Anin ,

where there is an implicit n-fold sum over i1, i2, i3, . . . , in. Thus,

detA = ǫi1i2i3···in(δ1i1 + a1bi1)(δ2i2 + a2bi2)(δ1i3 + a3bi3) · · · (δnin + anbin) .

= ǫ123···n + a1bi1ǫi123···n + a2bi2ǫ1i23···n + a3bi3ǫ12i3···n + . . .− anbinǫ123···in +R , (2)

where R consists of a sum of terms that contain two or more factors of b. But R = 0, since
for any two indices ij and ik (1 ≤ j < k ≤ n),

ǫi1i2i3···inbijbik = 0 ,

due to the fact that bij bik is symmetric under the interchange of ij and ik, whereas ǫi1i2i3···in
is antisymmetric under the interchange of any pair of indices. Moreover, ǫ123···n = 1. Hence,
eq. (2) yields

detA = 1 + a1b1 + a2b2 + a3b3 + . . .+ anbn = 1 +~a·~b ,

which confirms eq. (1).

Second proof

We shall compute the determinant by finding all of the eigenvalues and eigenvectors of A.
One eigenvector is immediately apparent, namely (a1 , a2 , a3 , . . . , an). This can be easily
verified since

Aijaj = (δij + aibj)aj = ai(1 + ajbj) = (1 +~a·~b)ai .

The corresponding eigenvalue is 1 + ~a·~b.
Remarkably, it is a simple matter to identify the remaining n−1 eigenvectors. A convenient

choice is: (b2 , −b1 , 0 , . . . , 0), (b3 , 0 , −b1 , . . . , 0) , . . . , (bn , 0 , 0 , . . . , −b1). It is easy to
check that the corresponding eigenvalues are degenerate and equal to 1. For example,











1 + a1b1 a1b2 · · · a1bn
a2b1 1 + a2b2 · · · a2bn
. . .

. . .
...

. . .

anb1 anb2 · · · 1 + anbn





















b2
−b1
...
0











=











b2
−b1
...
0











.

First, we assume that ~a·~b 6= 0. Then, the eigenvalue 1 + ~a·~b is not degenerate with the
(n− 1)-fold degenerate eigenvalue 1. Since the determinant of A is equal to the product of its

eigenvalues, it immediately follows that detA = 1 +~a·~b, in agreement with eq. (1).
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Second, suppose that ~a·~b = 0. Then (a1 , a2 , a3 , . . . , an) and (b1 , b2 , b3 , . . . , bn) are
orthogonal. But, note that (b1 , b2 , b3 , . . . , bn) is also orthogonal to the n − 1 vectors,
(b2 , −b1 , 0 , . . . , 0), (b3 , 0 , −b1 , . . . , 0), . . ., (bn , 0 , 0 , . . . , −b1). Since there can be at
most n mutually orthogonal vectors, we conclude that (a1 , a2 , a3 , . . . , an) must be a lin-
ear combination of (b2 , −b1 , 0 , . . . , 0), (b3 , 0 , −b1 , . . . , 0) , . . . , (bn , 0 , 0 , . . . , −b1). This

means that if ~a·~b = 0, then there are only n−1 linearly independent eigenvectors with eigen-
value equal to 1. Nevertheless, the eigenvalue 1 in this case is n-fold degenerate. To prove
this assertion, we evaluate the trace of A,

TrA = δijAij = δij(δij + aibj) = n + ~a·~b .

If ~a·~b = 0, then TrA = n. Since the trace of A is equal to the sum of its eigenvalues, it then
follows that the nth eigenvalue is 1, in which case the eigenvalue 1 is n-fold degenerate. The
corresponding determinant is then detA = 1, which is in agreement with eq. (1) in the case

of ~a·~b = 0. The proof of eq. (1) is now complete.

Third proof

The proof is based on the formula,

det

(

F C

B D

)

= detD det (F − CD−1B) = detF det (D −BF−1C) , (3)

where F is an invertible n× n matrix, B is an m× n matrix, C is an n×m matrix and D is
an invertible m×m matrix. To prove eq. (3) we employ the following matrix identities:
(

F C

B D

)

=

(

In C

0 D

)(

F − CD−1B 0
D−1B Im

)

=

(

F 0
B Im

)(

In F−1C

0 D − BF−1C

)

, (4)

where Ip is the p× p identity matrix and det Ip = 1. We now make use of the following result,

det

(

F 0
B D

)

= det

(

F C

0 D

)

= detF detD , (5)

which is proved in Appendix A. Taking the determinants of the two identities given in eq. (4)
(noting that the determinant of a product of matrices is equal to the product of the individual
determinants) and employing eq. (5), we end up with eq. (3).

The special case of eq. (3) that we will exploit to obtain eq. (1) is,

det

(

In −AT

B Im

)

= det (In + ATB) = det (Im +BAT) , (6)

where A and B are m×n matrices and AT is the transpose of A. In particular, if m = 1 then
A = (a1 , a2 , a3 , . . . , an) and B = (b1 , b2 , b3 , . . . , bn). In particular,

det (In + ATB) = det (Im +BAT)

is equivalent to
det (δij + aibj) = 1 +~a·~b ,

since the determinant of the 1 × 1 matrix Im + BAT (where m = 1) is equal to its matrix
element. Once again, eq. (1) is verified.

2



APPENDIX A: The determinant of a matrix in block form

Here, I shall provide a proof of my own devising (I have not seen this proof in a book) of
the following identity

det

(

F 0
B D

)

= det

(

F C

0 D

)

= detF detD , (A.1)

where F is an invertible n× n matrix, B is an m× n matrix, C is an n×m matrix and D is
an invertible m×m matrix. First, we consider the case of n = 1,

det

(

f 0
B D

)

, (A.2)

where f is a number. We can evaluate the determinant by using the cofactor expansion along
the first row.∗ One then immediately obtains

det

(

f 0
B D

)

= f detD , (A.3)

which verifies eq. (A.1) in the case of n = 1. The case of n = 2 is almost as simple,

det







f11 f12
f21 f22

0 0
0 0

B D






= f11f22detD − f12f21detD = (f11f22 − f12f21)detD = detF detD ,

(A.4)
after applying the cofactor expansion along the first row and making use of eq. (A.3).

To generalize to arbitrary n, we shall use the principle of mathematical induction. Assum-
ing that eq. (A.1) holds for n, we shall prove the result for n + 1. In the case of n + 1, the
cofactor expansion along the first row yields an expression for the determinant that is a sum
of n+ 1 terms,

det

(

F 0
B D

)

=

n+1
∑

k=1

(−1)k+1f1k detA1k , (A.5)

where A1k is the n×nmatrix obtained by deleting row 1 and column k of the matrix ( F 0
B D ), and

f1k is the matrix element corresponding to the first row and the kth column of the matrix F .
You can easily verify that in the case of n = 1, eq. (A.5) reduces to eq. (A.4).

Since we are assuming that eq. (A.1) holds for n, it follows that

detA1k = detF1k detD , (A.6)

where F1k is the n × n matrix obtained by deleting row 1 and column k of the matrix F .
Thus, eqs. (A.5) and (A.6) yield

det

(

F 0
B D

)

=

(

n+1
∑

k=1

(−1)k+1f1k detF1k

)

detD = detF detD , (A.7)

where we have recognized the expression for detF by the cofactor expansion along the first
row. Thus, the proof by induction is now complete and the first part of eq. (A.1) is established.
To prove the second part of eq. (A.1), simply follow the same steps as above while employing
the cofactor expansion along column 1 to evaluate the relevant determinants.

∗See, e.g., Section 3.2.3 of Nathaniel Johnson, Introduction to Linear and Matrix Algebra (Springer Nature
Switzerland, Cham, Switzerland, 2021).
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