1. In class, we showed that the angular distribution of the power radiated by a charge \(e\) moving along a trajectory \(\vec{r}(t)\) at velocity \(c\vec{\beta}(t) \equiv d\vec{r}(t)/dt\) is given by:

\[
\frac{dP}{d\Omega} = \lim_{r \to \infty} \frac{c r^2}{4\pi} \int_{-\infty}^{\infty} d\omega' \int_{-\infty}^{\infty} d\omega'' \vec{E}_{\omega'}^{*}(\vec{x}) \cdot \vec{E}_{\omega''}(\vec{x}) e^{i(\omega' - \omega'')t},
\]

where \(r\) is the distance of the observer from the origin and the Fourier coefficient of the electric field vector is given by

\[
E_{\omega}(\vec{x}) \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \vec{E}(\vec{x}, t) e^{i\omega t}
\]

(a) Derive the following expression for the Fourier coefficient,

\[
E_{\omega}(\vec{x}) = -\frac{ie \omega e^{i\omega r/c}}{2\pi rc} \int_{-\infty}^{\infty} dt \ (\hat{n} \times \vec{\beta}) \ e^{i\omega(t - \hat{n} \cdot \vec{r}(t)/c)},
\]

where \(\hat{n}\) is a unit vector pointing from the charge to the observer.\(^1\)

HINT: Use the same integration by parts technique employed by Jackson in obtaining his eq. (14.67), and assume that Jackson’s justification for dropping the boundary term is valid.

For a charge \(e\) moving along a trajectory \(\vec{r}(t)\) at velocity \(\vec{v} \equiv c\vec{\beta}\) with acceleration \(\vec{a} = d\vec{v}/dt \equiv c\vec{\alpha}\), the leading order behavior of the electric and magnetic fields at large distances (in gaussian units) is given by:

\[
\vec{E} = \frac{e}{cr} \frac{\hat{n} \times \left[(\hat{n} - \vec{\beta}) \times \vec{\alpha}\right]}{(1 - \hat{n} \cdot \vec{\beta})^3} \bigg|_{\vec{x}' = \vec{r}(t_{\text{ret}})} + O\left(\frac{1}{r^2}\right),
\]

\[
\vec{B} = \hat{n} \times \vec{E} + O\left(\frac{1}{r^2}\right),
\]

where the retarded time is defined as \(t_{\text{ret}} \equiv t - \frac{1}{c} |\vec{x} - \vec{r}(t_{\text{ret}})|\). Note that in eq. (2) the velocity \(c\vec{\beta}\) is equal to the derivative of \(\vec{x}' = \vec{r}(t_{\text{ret}})\) with respect to the retarded time,

\[
\vec{\beta} \equiv \vec{\beta}(t_{\text{ret}}) = \frac{1}{c} \frac{d\vec{r}(t_{\text{ret}})}{dt_{\text{ret}}}
\]

\(^1\)As noted by Jackson below his eq. (14.62), assuming that the observation point \(\vec{x}\) is located very far away from the region of space where the acceleration occurs, the unit vector \(\hat{n}\) can be very well approximated as being constant in time.
Inserting eq. (2) into eq. (1) yields,
\[
\vec{E}_\omega(\vec{x}) = \frac{e}{2\pi c r} \int_{-\infty}^{\infty} dt e^{i\omega t} \frac{\hat{n} \times [(\hat{n} - \vec{\beta}) \times \vec{\alpha}]}{(1 - \hat{n} \cdot \vec{\beta})^2} \bigg|_{\vec{x}' = \vec{r}(t_{ret})}. \tag{5}
\]

Define \(t' \equiv t_{ret} \) and change the variable of integration in eq. (5),
\[
t = t' + \frac{1}{c} |\vec{x} - \vec{r}(t')| \quad \implies \quad dt = \frac{dt'}{dt'} dt' = \left(1 - \frac{(\vec{x} - \vec{r}(t')) \cdot d\vec{r}/dt'}{c|\vec{x} - \vec{r}(t')|} \right) dt'.
\]

Noting that \(\vec{v} = c\vec{\beta} = d\vec{r}(t')/dt' \) [cf. eq. (4)] and
\[
\hat{n} = \frac{\vec{x} - \vec{r}(t')}{|\vec{x} - \vec{r}(t')|},
\]
it follows that
\[
dt = (1 - \hat{n} \cdot \vec{\beta}) dt'.
\]

Hence,
\[
\vec{E}_\omega(\vec{x}) = \frac{e}{2\pi c r} \int_{-\infty}^{\infty} dt' e^{i\omega t' + |\vec{x} - \vec{r}(t')|/c} \frac{\hat{n} \times [(\hat{n} - \vec{\beta}) \times \vec{\alpha}]}{(1 - \hat{n} \cdot \vec{\beta})^2} \bigg|_{\vec{x}' = \vec{r}(t')} \tag{6}
\]

For large values of \(r \equiv |\vec{x}| \), we can approximate
\[
\hat{n} \simeq r \hat{\nu} \quad \text{so that} \quad \vec{x} \simeq r \hat{n} \quad \text{and} \quad \vec{x} - \vec{r}(t') \simeq \frac{\vec{x}}{r} \left[1 + O \left(\frac{1}{r} \right)\right],
\]

so that \(\vec{x} \simeq r \hat{n} \) and
\[
\begin{align*}
 t' + \frac{1}{c} |\vec{x} - \vec{r}(t')| &= t' + \frac{1}{c} \sqrt{r^2 - 2 \vec{x} \cdot \vec{r}(t')} + r'^2 = t' + \frac{r}{c} \left[1 - \frac{\hat{n} \cdot \vec{r}(t')}{r} + O \left(\frac{1}{r^2} \right)\right] \\
 &\simeq t' + \frac{1}{c} \left(r - \hat{n} \cdot \vec{r}(t')\right),
\end{align*}
\]

where \(r' \equiv |\vec{r}(t')| \). Inserting the above result into eq. (6) yields
\[
\vec{E}_\omega(\vec{x}) = \frac{e}{2\pi c r} e^{i\omega r/c} \int_{-\infty}^{\infty} dt' e^{i\omega t' - \hat{n} \cdot \vec{r}(t')/c} \frac{\hat{n} \times [(\hat{n} - \vec{\beta}) \times \vec{\alpha}]}{(1 - \hat{n} \cdot \vec{\beta})^2} \bigg|_{\vec{x}' = \vec{r}(t')} \tag{7}
\]

Employing the identity,
\[
\frac{\hat{n} \times [(\hat{n} - \vec{\beta}) \times \vec{\alpha}]}{(1 - \hat{n} \times \vec{\beta})^2} = \frac{d}{dt'} \left(\frac{\hat{n} \times (\hat{n} \times \vec{\beta})}{1 - \hat{n} \cdot \vec{\beta}}\right),
\]
in eq. (7), we can integrate by parts and drop the surface term.\(^2\) Hence, eq. (7) can be converted into
\[
\vec{E}_\omega(\vec{x}) = -\frac{ie\omega}{2\pi c r} e^{i\omega r/c} \int_{-\infty}^{\infty} dt' \hat{n} \times (\hat{n} \times \vec{\beta}) e^{i\omega t' - \hat{n} \cdot \vec{r}(t')/c}, \tag{8}
\]
after dropping the primed superscripts by writing \(t \) in place of \(t' \) (which after all is just a dummy integration variable).

\(^2\)The justification for dropping the surface term is discussed on pp. 675–676 of Jackson.
(b) [Jackson, problem 14.13] Suppose that the motion of the radiating particle repeats itself with periodicity T. Using the results of part (a) and the Poisson sum formula, show explicitly that if the motion of a radiating particle repeats itself with periodicity T, then the continuous frequency spectrum becomes a discrete spectrum containing frequencies that are integral multiples of the fundamental. Show that a general expression for the time-averaged power radiated per unit solid angle in each multiple m of the fundamental frequency $\omega_0 = 2\pi/T$ is:\footnote{Note that the power radiated per unit solid angle, time-averaged over one cycle, is given by:
$$\langle \frac{dP}{d\Omega} \rangle = \frac{1}{T} \int_0^T dt \frac{dP}{d\Omega} = \sum_{m=1}^{\infty} \frac{dP_m}{d\Omega}.$$}

$$\frac{dP_m}{d\Omega} = \frac{e^2 \omega_0^4 m^2}{(2\pi e)^3} \left| \int_0^{2\pi/\omega_0} \vec{v}(t) \times \hat{n} \exp \left[im \omega \left(t - \frac{\hat{n} \cdot \vec{r}(t)}{c} \right) \right] dt \right|^2 . \quad (9)$$

It is convenient to rewrite the integral in eq. (8) as

$$\int_{-\infty}^{\infty} dt \ \hat{n} \times (\hat{n} \times \vec{\beta}) e^{i\omega [t - \hat{n} \cdot \vec{r}(t)/c]} = \sum_{m=-\infty}^{\infty} \int_{mT}^{(m+1)T} dt \ \hat{n} \times (\hat{n} \times \vec{\beta}) e^{i\omega [t - \hat{n} \cdot \vec{r}(t)/c]} . \quad (10)$$

Since the motion is periodic, we have

$$\vec{r}(t + T) = \vec{r}(t) \quad \text{and} \quad \vec{\beta}(t + T) = \vec{\beta}(t),$$

where $T \equiv 2\pi/\omega_0$ defines the fundamental frequency ω_0. Let us define a new variable, $t' \equiv t - mT$. Then, eq. (10) takes the following form,

$$\int_{-\infty}^{\infty} dt \ \hat{n} \times (\hat{n} \times \vec{\beta}) e^{i\omega [t - \hat{n} \cdot \vec{r}(t)/c]} = \sum_{m=-\infty}^{\infty} e^{i\omega mT} \int_0^T dt' \ \hat{n} \times (\hat{n} \times \vec{\beta}) e^{i\omega [t' - \hat{n} \cdot \vec{r}(t)/c]} , \quad (11)$$

where $\vec{\beta}' \equiv \vec{\beta}(t')$.

At this point, we can apply the Poisson sum formula,\footnote{See the class handout entitled, \textit{The Poisson sum formula}.}

$$\frac{1}{2\pi} \sum_{m=-\infty}^{\infty} e^{i\omega mT} = \sum_{m=-\infty}^{\infty} \delta(\omega T - 2\pi m) .$$

Hence, eq. (11) can be rewritten as

$$\int_{-\infty}^{\infty} dt \ \hat{n} \times (\hat{n} \times \vec{\beta}) e^{i\omega [t - \hat{n} \cdot \vec{r}(t)/c]} = \sum_{m=-\infty}^{\infty} \delta(\omega T - 2\pi m) \int_0^T dt \ \hat{n} \times (\hat{n} \times \vec{\beta}) e^{i\omega [t - \hat{n} \cdot \vec{r}(t)/c]} ,$$

after again removing the superscript primes from t' from the right hand side above as a notational convenience. Note that the δ-function enforces the condition,

$$\omega = \frac{2\pi m}{T} = m\omega_0 , \quad \text{for} \ m = 0, \pm 1, \pm 2, \ldots ,$$

which implies that the frequency spectrum is discrete.
Thus we can rewrite eq. (8), obtained in part (a), as

\[\vec{E}_\omega(\vec{x}) = -\frac{i e \omega}{2 \pi c r} \sum_{m=-\infty}^{\infty} \delta(\omega T - 2 \pi m) \int_0^T dt \; \hat{n} \times (\hat{n} \times \vec{\beta}) e^{i \omega [t - \hat{n} \cdot \vec{r}(t)/c]} . \]

The power radiated per unit solid angle (in gaussian units) is given by

\[\frac{dP}{d\Omega} = \lim_{r \to \infty} r^2 \vec{S} \cdot \hat{n} , \quad \text{where } \vec{S} = \frac{c}{4 \pi} (\vec{E} \times \vec{B}) , \]

and \(\vec{E} \) and \(\vec{B} \) are the real physical fields. For large distances \(r \), we have \(\vec{B} \simeq \hat{n} \times \vec{E} \), as noted in eq. (3), in which case

\[\vec{E} \times \vec{B} = \vec{E} \times (\hat{n} \times \vec{E}) = \hat{n}|\vec{E}|^2 , \]

after using \(\hat{n} \cdot \vec{E} = 0 \) (for transverse electromagnetic radiation). Hence, it follows that

\[\frac{dP}{d\Omega} = \frac{c}{4 \pi} \lim_{r \to \infty} r^2 |\vec{E}|^2 . \]

Inverting the Fourier transform defined in eq. (1),

\[\vec{E}(\vec{x}, t) = \int_{-\infty}^{\infty} d\omega \; \vec{E}_\omega(\vec{x}) e^{-i \omega t} , \]

and inserting the result into eq. (13) yields

\[\frac{dP}{d\Omega} = \lim_{r \to \infty} \frac{c r^2}{4 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \vec{E}_{\omega'} \cdot \vec{E}_{\omega''}^* e^{i(\omega' - \omega'')t} . \]

Using eq. (12) in the above expression, we obtain

\[\frac{dP}{d\Omega} = \frac{c^2}{4 \pi c T^2} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(\omega' T - \omega'' T - 2 \pi m n) e^{i(\omega' - \omega'')(t-r/c)} \omega' \omega'' \]

\[\times \int_0^T dt' \; \hat{n} \times (\hat{n} \times \vec{\beta}') e^{i \omega [t' - \hat{n} \cdot \vec{r}(t')/c]} \int_0^T dt'' \; \hat{n} \times (\hat{n} \times \vec{\beta}'') e^{i \omega'' [t'' - \hat{n} \cdot \vec{r}(t'')/c]} . \]

We can now perform the integrals over \(\omega' \) and \(\omega'' \) using the \(\delta \)-functions, which set \(\omega' = m \omega_0 \) and \(\omega'' = n \omega_0 \), respectively (where \(\omega_0 \equiv 2 \pi/T \)). Thus,

\[\frac{dP}{d\Omega} = \frac{c^2 \omega_0^2}{4 \pi c T^2} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} mn e^{i \omega_0 (m-n)(t-r/c)} \int_0^T dt' \hat{n} \times (\hat{n} \times \vec{\beta}') e^{i \omega [t' - \hat{n} \cdot \vec{r}(t')/c]} \]

\[\times \int_0^T dt'' \; \hat{n} \times (\hat{n} \times \vec{\beta}'') e^{i \omega'' [t'' - \hat{n} \cdot \vec{r}(t'')/c]} . \]

(14)
Since \(\frac{dP}{d\Omega}\) depends on \(t\), we shall integrate over one cycle,
\[
\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{1}{T} \int_0^T \frac{dP}{d\Omega} \, dt.
\]
Taking the time-average of eq. (14), the integration over \(t\) is straightforward, as it depends only on the following integral,
\[
\frac{1}{T} \int_0^T e^{i\omega_0 t(m-n)} \, dt = \delta_{mn}.
\]
The sums over \(m\) and \(n\) in eq. (14) now collapse into a single sum over \(m\). The end result is
\[
\left\langle \frac{dP}{d\Omega} \right\rangle = \frac{e^2 \omega_0^4}{4\pi c T^2} \sum_{m=-\infty}^{\infty} m^2 \left| (\hat{n} \times \vec{\beta}) e^{im\omega_0(t-\hat{n}\cdot\vec{r}(t)/c)} \right|^2,
\]
where we have used the vector identity, \(|\hat{n} \times (\hat{n} \times \vec{\beta})|^2 = |\hat{n} \times \vec{\beta}|^2\). Thus, we can write:
\[
\left\langle \frac{dP}{d\Omega} \right\rangle = \sum_{m=1}^{\infty} \frac{dP_m}{d\Omega},
\]
where
\[
\frac{dP_m}{d\Omega} = \frac{e^2 \omega_0^4 m^2}{(2\pi c)^3} \left| \int_0^{2\pi/\omega_0} \vec{\theta}(t) \times \hat{n} \exp \left[im\omega_0 \left(t - \frac{\hat{n} \cdot \vec{r}(t)}{c} \right) \right] \, dt \right|^2,
\]
(16) after noting that positive and negative \(m\) contribute equally to the sum over \(m\). Above, we have substituted \(\vec{\theta}(t) = c\vec{\beta}\) and \(T = 2\pi/\omega_0\) in eq. (15) in order to obtain eq. (16).

2. [Jackson, problem 14.9] A particle of mass \(m\), charge \(q\), moves in a plane perpendicular to a uniform, static, magnetic induction \(B\).

(a) Calculate the total energy radiated per unit time, expressing it in terms of the constants already defined and the ratio \(\gamma\) of the particle’s total energy to its rest energy.

Using eq. (14.46) of Jackson, the total radiated power is given by:
\[
P(t') = \frac{2e^2 \gamma^4}{c^3} \left| \frac{d\vec{\theta}}{dt'} \right|^2.
\]
(17)

For circular motion of radius \(R\),
\[
\vec{a} \equiv \frac{d\vec{\theta}}{dt'} = \frac{v^2}{R} = R\omega_B^2,
\]
where the angular velocity is the gyration frequency given by eq. (12.39) of Jackson,
\[
\omega_B = \frac{qB}{\gamma mc}.
\]
(18)
Hence, eq. (17) yields
\[P(t') = \frac{2q^2\gamma^4 R^2\omega_B^4}{3c^5} = \frac{2q^4B^4R^2}{3m^4c^7}. \] (19)

To express \(P(t') \) in terms of \(\gamma \) and the constants \(m, q \) and \(B \), we need to eliminate \(R \). Using eq. (18), and noting that
\[\gamma \equiv \frac{1}{\sqrt{1 - v^2/c^2}} \implies \frac{v}{c} = \sqrt{1 - \frac{1}{\gamma^2}}, \]
it follows that
\[R = \frac{v}{\omega_B} = \frac{\gamma mcv}{qB} = \frac{mc^2}{qB} (\gamma^2 - 1)^{1/2}. \]

Inserting this result into eq. (19) then gives:
\[P(t') = \frac{2q^4B^2}{3m^2c^3} (\gamma^2 - 1). \] (20)

(b) If at time \(t = 0 \) the particle has a total energy \(E_0 = \gamma_0 mc^2 \), show that it will have energy \(E = \gamma mc^2 < E_0 \), at a time \(t \), where
\[t \approx \frac{3m^3c^5}{2q^4B^2} \left(\frac{1}{\gamma} - \frac{1}{\gamma_0} \right), \]
provided that \(\gamma \gg 1 \).

Since \(P(t') \) is the energy loss of the particle per unit retarded time,
\[P(t') = -\frac{dE}{dt'}. \]

Hence, eq. (20) yields the differential equation,
\[\frac{dE}{\gamma^2 - 1} = -\frac{2q^4B^2}{3m^2c^3} dt'. \]

Using \(E = \gamma mc^2 \), it follows that \(dE = mc^2d\gamma \). It follows that
\[\int_\gamma^{\gamma_0} \frac{d\gamma}{\gamma^2 - 1} = -\frac{2q^4B^2}{3m^2c^3} \int_0^t dt'. \] (21)

Assuming \(\gamma \gg 1 \), we can approximate \(\gamma^2 - 1 \approx \gamma^2 \) in the denominator on the left-hand side of eq. (21). In this case, the integrals of eq. (21) are trivial. In particular,
\[\int_\gamma^{\gamma_0} \frac{d\gamma}{\gamma^2} = \frac{1}{\gamma} - \frac{1}{\gamma_0}. \]
Hence, eq. (21) yields:

\[t \simeq \frac{3m^3c^5}{2q^4B^2} \left(\frac{1}{\gamma} - \frac{1}{\gamma_0} \right), \]

under the assumption that \(\gamma, \gamma_0 \gg 1 \).

(c) If the particle is initially nonrelativistic and has a kinetic energy \(T_0 \) at \(t = 0 \), what is its kinetic energy at time \(t \)?

In the non-relativistic limit, \(\gamma \approx 1 \). Thus, we can approximate

\[\gamma^2 - 1 = (\gamma + 1)(\gamma - 1) \simeq 2(\gamma - 1). \]

In this case,

\[\int_{\gamma_0}^{\gamma} \frac{d\gamma}{\gamma^2 - 1} \approx \frac{1}{2} \int_{\gamma_0}^{\gamma} \frac{d\gamma}{\gamma - 1} = \frac{1}{2} \ln \left(\frac{\gamma - 1}{\gamma_0 - 1} \right). \]

Using eq. (21), we obtain

\[\ln \left(\frac{\gamma - 1}{\gamma_0 - 1} \right) = \frac{-4q^4B^2t}{3m^2c^5}. \] (22)

The kinetic energy is defined as

\[T = E - mc^2 = \gamma mc^2 - mc^2 = (\gamma - 1)mc^2. \]

Thus, exponentiating eq. (22) yields

\[T(t) = T_0 \exp \left(\frac{-4q^4B^2t}{3m^2c^5} \right). \]

3. [Jackson, problem 13.9] Assuming that Plexiglas or Lucite has an index of refraction of 1.50 in the visible region, compute the angle of emission of visible Cherenkov radiation for electrons and protons as a function of their kinetic energies in MeV. Determine how many quanta with wavelengths between 4000 and 6000 Å are emitted per centimeter of the path in Lucite by a 1 MeV electron, a 500 MeV proton, and a 5 GeV proton.

Using eq. (13.50) of Jackson, the angle of emission \(\theta_c \) is obtained from:

\[\cos \theta_c = \frac{1}{\beta \sqrt{\epsilon}}, \] (23)

and the index of refraction is \(n_r = \sqrt{\epsilon} \). To compute \(\beta \) given the kinetic energy \(T \), we recall that

\[T = E - mc^2 = \gamma mc^2 - mc^2 = mc^2 \left[\sqrt{\frac{1}{1 - \beta^2}} - 1 \right]. \]
Solving for β, it follows that
\[\beta^2 = 1 - \frac{1}{\left(1 + \frac{T}{mc^2}\right)^2}, \]
from which β is easily obtained,
\[\beta = \frac{T\sqrt{1 + \frac{2mc^2}{T}}}{T + mc^2}. \]

Hence, eq. (23) yields
\[\cos \theta_c = \frac{1}{n_r} \left(1 + \frac{mc^2}{T}\right) \left(1 + \frac{2mc^2}{T}\right)^{-1/2}. \]

(24)

Note that $mc^2 = 0.511$ MeV for the electron, and $mc^2 = 938$ MeV for the proton. Inserting these numbers along with $n_r = 1.5$ in eq. (24), one obtains the angle of emission of visible Cherenkov radiation for electrons and protons as a function of their kinetic energies in MeV.

To determine the number of quanta emitted per path length, we first use eq. (13.48) of Jackson:
\[\left(\frac{dE}{dx}\right)_{\text{rad}} = \frac{e^2}{e^2} \int_{\omega > 1/\beta} \omega \left(1 - \frac{1}{\beta^2 n_r^2}\right) d\omega. \]

Assuming that n_r is independent of ω in the frequency range of interest, we integrate from $\omega = \omega_1$ to $\omega = \omega_2$ to obtain,
\[\left(\frac{dE}{dx}\right)_{\text{rad}} = \frac{e^2}{2e^2} \left(1 - \frac{1}{\beta^2 n_r^2}\right) (\omega_2^2 - \omega_1^2). \]

For the range $4000 \, \text{Å} \leq \lambda \leq 6000 \, \text{Å}$, where $1 \, \text{Å} = 10^{-8} \, \text{cm}$, we have
\[\omega_1 = \frac{2\pi c}{\lambda_1} = \frac{2\pi (3 \times 10^{10} \, \text{cm} \cdot \text{s}^{-1})}{4 \times 10^{-5} \, \text{cm}} = 4.71 \times 10^{15} \, \text{s}^{-1}, \]
\[\omega_2 = \frac{2\pi c}{\lambda_2} = \frac{2}{3} \omega_1 = 3.14 \times 10^{15} \, \text{s}^{-1}. \]

The energy of one quantum is $\hbar \omega$. Hence, it follows that
\[\frac{dN}{d\omega \, dx} = \frac{1}{h\omega} \frac{dE}{dx}, \]
where N is the number of quanta radiated. Thus,
\[\left(\frac{dN}{dx}\right)_{\text{rad}} = \frac{e^2}{\hbar c^2} \int_{\omega_1}^{\omega_2} \left(1 - \frac{1}{\beta^2 n_r^2}\right) d\omega = \frac{e^2}{\hbar c^2} \left(1 - \frac{1}{\beta^2 n_r^2}\right) (\omega_2 - \omega_1). \]

\footnote{Note that the charge of the moving particle is denoted by ze in Jackson. In this problem, $z = \pm 1$ for the proton and electron, respectively, so that $z^2 = 1$.}
We can rewrite the above equation by using $\omega = kc/n_r = 2\pi c/(n_r \lambda)$ [cf. eq. (7.5) of Jackson] and by introducing the fine structure constant,

$$\alpha \equiv \frac{e^2}{\hbar c} \simeq \frac{1}{137}.$$

It follows that

$$\left(\frac{dN}{dx} \right)_{\text{rad}} = \frac{2\pi \alpha}{n_r} \left(\frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right) \left(1 - \frac{1}{\beta^2 n_r^2} \right).$$ \hspace{1cm} (25)

We now plug in the relevant numbers into eq. (25).

Case 1: For a $T = 1$ MeV electron,

$$\frac{1}{\beta} = \left(1 + \frac{mc^2}{T} \right) \left(1 + \frac{2mc^2}{T} \right)^{-1/2} = 1.0626.$$

Hence,

$$\cos \theta_c = \frac{2}{3\beta} = 0.7084 \implies \theta_c = 44.9^\circ,$$

and

$$1 - \frac{1}{\beta^2 n_r^2} = 1 - \frac{(1.0626)^2}{(1.5)^2} = 0.4982.$$

Eq. (25) then yields,

$$\left(\frac{dN}{dx} \right)_{\text{rad}} = \frac{2\pi}{1.5} \left(\frac{1}{137} \right) \left(\frac{1}{4 \times 10^{-5} \text{ cm}} - \frac{1}{6 \times 10^{-5} \text{ cm}} \right) (0.4982) = 127 \text{ quanta/cm}.$$

Case 2: For a $T = 500$ MeV proton,

$$\frac{1}{\beta} = 1.3193.$$

Hence,

$$\cos \theta_c = 0.8795 \implies \theta = 28.4^\circ.$$

Eq. (25) then yields,

$$\left(\frac{dN}{dx} \right)_{\text{rad}} = 58 \text{ quanta/cm}.$$

Case 3: For a $T = 5$ GeV proton,

$$\frac{1}{\beta} = 1.0127.$$

Hence,

$$\cos \theta_c = 0.6751 \implies \theta = 47.5^\circ.$$

Eq. (25) then yields,

$$\left(\frac{dN}{dx} \right)_{\text{rad}} = 140 \text{ quanta/cm}.$$
4. [Jackson, problem 10.1]

(a) Show that for arbitrary initial polarizations, the scattering cross section of a perfectly conducting sphere of radius \(a\), summed over outgoing polarizations, is given in the long-wavelength limit by

\[
\frac{d\sigma}{d\Omega}(\varepsilon_0, \hat{n}_0, \hat{n}) = k^4 a^6 \left[\frac{5}{4} - |\varepsilon_0 \cdot \hat{n}|^2 - \frac{1}{4}|\hat{n} \cdot (\hat{n}_0 \cdot \varepsilon_0) - \hat{n}_0 \cdot \hat{n}| \right],
\]

where \(\hat{n}_0\) and \(\hat{n}\) are the directions of the incident and scattered electromagnetic waves, respectively, while \(\varepsilon_0^*\) is the (perhaps complex) unit polarization vector of the incident radiation \((\varepsilon_0 \cdot \varepsilon_0 = 1; \hat{n}_0 \cdot \varepsilon_0 = 0)\).

Our starting point is eq. (10.14) of Jackson,

\[
\frac{d\sigma}{d\Omega} = k^4 a^6 |\varepsilon^* \cdot \varepsilon_0 - \frac{1}{2}(\hat{n} \times \varepsilon^*) \cdot (\hat{n}_0 \times \varepsilon_0)|^2.
\]

For arbitrary initial polarization \(\varepsilon_0\), the scattering cross section summed over the final state polarizations is

\[
\frac{d\sigma}{d\Omega} = k^4 a^6 \sum_\lambda \left| \varepsilon^{(\lambda)*} \cdot \varepsilon_0 - \frac{1}{2} (\hat{n} \times \varepsilon^{(\lambda)*}) \cdot (\hat{n}_0 \times \varepsilon_0) \right|^2.
\]

(26)

We shall evaluate the polarization sum using the following identity,

\[
\sum_\lambda \varepsilon^{(\lambda)*}_i \varepsilon^{(\lambda)}_j = \delta_{ij} - n_i n_j,
\]

where the \(n_i\) are the components of the unit vector \(\hat{n} \equiv \vec{k}/k\). Expanding out the terms in eq. (26), we first evaluate

\[
\sum_\lambda |\varepsilon^{(\lambda)*} \cdot \varepsilon_0|^2 = \sum_\lambda \varepsilon^{(\lambda)*}_i \varepsilon^{(\lambda)}_j (\varepsilon_0^*)_i (\varepsilon_0^*)_j = (\varepsilon_0^*)_i (\varepsilon_0^*)_j [\delta_{ij} - n_i n_j] = 1 - |\hat{n} \cdot \varepsilon_0|^2,
\]

after using \(\varepsilon_0 \cdot \varepsilon_0^* = 1\) in the final step. Similarly,

\[
\sum_\lambda |(\hat{n} \times \varepsilon^{(\lambda)*}) \cdot (\hat{n}_0 \times \varepsilon_0)|^2 = \sum_\lambda \epsilon_{ijk} n_j \epsilon^{(\lambda)}_k \epsilon^{(\lambda)}_\ell n_m \epsilon^{(\lambda)}_n (\hat{n}_0 \times \varepsilon_0)_i (\hat{n}_0 \times \varepsilon_0^*)_\ell,
\]

where the summation over repeated index pairs is implied by the Einstein summation convention. Using the polarization sum identity given by eq. (27),

\[
\sum_\lambda |(\hat{n} \times \varepsilon^{(\lambda)*}) \cdot (\hat{n} \times \varepsilon_0)|^2 = \epsilon_{ijk} \epsilon^{(\lambda)}_m n_k (\hat{n}_0 \times \varepsilon_0)_i (\hat{n}_0 \times \varepsilon_0^*)_\ell.
\]

Since \(\epsilon_{ijk}\) is a totally antisymmetric tensor, it follows that \(\epsilon_{ijk} n_j n_k = 0\). Employing the identity,

\[
\epsilon_{ijk} \epsilon^{(\lambda)}_m \delta_{kn} = \epsilon_{ijk} \epsilon^{(\lambda)}_m = \delta_{ik} \delta_{jm} - \delta_{im} \delta_{j} \ell,
\]

10
we end up with
\[\sum_{\lambda} |(\hat{n} \times \hat{e}^{(\lambda)*}) \cdot (\hat{n}_0 \times \hat{e}_0)|^2 = (\delta_{ij}\delta_{jm} - \delta_{im}\delta_{j\ell})n_jn_m(\hat{n}_0 \times \hat{e}_0)_i(\hat{n}_0 \times \hat{e}_0)_\ell \]
\[= |\hat{n}_0 \times \hat{e}_0|^2 - |\hat{n} \cdot (\hat{n}_0 \times \hat{e}_0)|^2, \]

after noting that \(n_jn_m\delta_{jm} = \hat{n} \cdot \hat{n} = 1 \). Finally, we can expand out the square of the cross product,
\[|\hat{n}_0 \times \hat{e}_0|^2 = 1 - |\hat{n} \cdot \hat{e}_0|^2 = 1, \]

after using \(\hat{n}_0 \cdot \hat{e}_0 = 0 \) (which follows from the fact that the polarization vector is transverse to the direction of propagation of the electromagnetic wave). Hence, we conclude that
\[\sum_{\lambda} |(\hat{n} \times \hat{e}^{(\lambda)*}) \cdot (\hat{n}_0 \times \hat{e}_0)|^2 = 1 - |\hat{n} \cdot (\hat{n}_0 \times \hat{e}_0)|^2. \]

All that remains is to evaluate the cross-term in eq. (26).
\[\sum_{\lambda} \epsilon_i^{(\lambda)*}(\epsilon_0)_i(\hat{n} \times \hat{e}^{(\lambda)})(\hat{n}_0 \times \hat{e}_0^*)_j = \sum_{\lambda} \epsilon_{j\ell} \epsilon_i^{(\lambda)*} \epsilon_i^{(\lambda)}(\epsilon_0)_i n_k(\hat{n}_0 \times \hat{e}_0^*)_j \]
\[= \epsilon_{j\ell}(\delta_{i\ell} - n_i n_\ell)(\epsilon_0)_i n_k(\hat{n}_0 \times \hat{e}_0^*)_j \]
\[= \epsilon_{j\ell} n_k(\epsilon_0)_\ell(\hat{n}_0 \times \hat{e}_0^*)_j = (\hat{n} \times \hat{e}_0) \cdot (\hat{n}_0 \times \hat{e}_0^*) \]
\[= (\hat{n} \cdot \hat{n}_0)(\hat{e}_0 \cdot \hat{e}_0^*) - |\hat{n} \cdot \hat{e}_0|^2 \]
\[= \hat{n} \cdot \hat{n}_0. \]

Collecting all the above results, it follows that
\[\frac{d\sigma}{d\Omega} = k^4a^6 \left\{ 1 - |\hat{n} \cdot \hat{e}_0|^2 + \frac{1}{4} \left[1 - |\hat{n} \cdot (\hat{n}_0 \times \hat{e}_0)|^2 \right] - \hat{n} \cdot \hat{n}_0 \right\}, \]
which simplifies to
\[\frac{d\sigma}{d\Omega} = k^4a^6 \left[\frac{5}{4} - |\hat{e}_0 \cdot \hat{n}|^2 - \frac{1}{4} |\hat{n} \cdot (\hat{n}_0 \times \hat{e}_0)|^2 - \hat{n} \cdot \hat{n}_0 \right], \quad (28) \]
as required.

(b) If the incident radiation is linearly polarized, show that cross section is
\[\frac{d\sigma}{d\Omega}(\hat{e}_0, \hat{n}_0, \hat{n}) = k^4a^6 \left[\frac{5}{8} (1 + \cos^2 \theta) - \cos \theta - \frac{3}{8} \sin^2 \theta \cos 2\phi \right], \]
where \(\hat{n} \cdot \hat{n}_0 = \cos \theta \) and the azimuthal angle \(\phi \) is measured from the direction of the linear polarization.
We set up our coordinate system as follows:

The components of the corresponding unit vectors are:

\[\hat{\varepsilon}_0 = (1, 0, 0), \quad \hat{n}_0 \times \hat{\varepsilon}_0 = (0, 1, 0), \quad \hat{n} = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta). \]

It follows that

\[\hat{\varepsilon}_0 \cdot \hat{n} = \sin \theta \cos \phi, \quad \hat{n} \cdot (\hat{n}_0 \times \hat{\varepsilon}_0) = \sin \theta \sin \phi, \quad \hat{n}_0 \cdot \hat{n} = \cos \theta. \]

Hence, eq. (28) yields

\[\frac{d\sigma}{d\Omega} = k^4 a^6 \left[\frac{5}{4} - \frac{1}{4} \sin^2 \theta \cos^2 \phi - \frac{1}{4} \sin^2 \theta \sin^2 \phi - \cos \theta \right]. \quad (29) \]

Writing \(\sin^2 \phi = \frac{1}{2} (1 - \cos 2\phi) \) and \(\cos^2 \phi = \frac{1}{2} (1 + \cos 2\phi) \), eq. (29) takes the following form,

\[\frac{d\sigma}{d\Omega} = k^4 a^6 \left[\frac{5}{8} (1 + \cos^2 \theta) - \cos \theta - \frac{3}{8} \sin^2 \theta \cos 2\phi \right]. \quad (30) \]

(c) What is the ratio of the scattered intensities at \(\theta = \frac{1}{2}\pi, \phi = 0 \) and \(\theta = \frac{1}{2}\pi, \phi = \frac{1}{2}\pi? \)

Explain physically in terms of the induced multipoles and their radiation patterns.

Using eq. (30), it follows that

\[\frac{\frac{d\sigma}{d\Omega} (\theta = \frac{1}{2}\pi, \phi = 0)}{\frac{d\sigma}{d\Omega} (\theta = \frac{1}{2}\pi, \phi = \frac{1}{2}\pi)} = \frac{1}{4}. \]
If we trace back the origin of the various contributions, we see that the electric dipole scattering originates from

\[1 - |\hat{n} \cdot \hat{\epsilon}|^2 = 1 - \sin^2 \theta \cos^2 \phi \xrightarrow{\theta = \frac{1}{2}\pi} \sin^2 \phi , \]

whereas the magnetic dipole scattering originates from

\[\frac{1}{4} \left[1 - |\hat{n} \cdot (\hat{n}_0 \times \hat{\epsilon}_0)|^2 \right] = \frac{1}{4} \left(1 - \sin^2 \theta \sin^2 \phi \right) \xrightarrow{\theta = \frac{1}{2}\pi} \frac{1}{4} \cos^2 \phi . \]

Thus, at \(\theta = \frac{1}{2}\pi, \phi = 0 \), we have pure magnetic dipole scattering. In contrast, at \(\theta = \frac{1}{2}\pi, \phi = \frac{1}{2}\pi \), we have pure electric dipole scattering, whose contribution is four times larger than the magnetic dipole scattering contribution at \(\theta = \frac{1}{2}\pi, \phi = 0 \). The factor of four originates from the relative factor of two between the electric dipole moment \(\vec{p} \) [cf. eq. (10.12) of Jackson] and the magnetic dipole moment \(\vec{m} \) [cf. eq. (10.13) of Jackson] that are induced by the electric and magnetic fields of the incoming plane wave.

At \(\theta = \frac{1}{2}\pi, \phi = 0 \), we see that \(\hat{n} \) points in the direction of \(\hat{\epsilon}_0 \). But \(\hat{n} \) points in the direction of the outgoing wave, whereas \(\hat{\epsilon}_0 \) is parallel to the direction of the electric field of the incoming plane wave. Since the latter is also parallel to the direction of \(\vec{p} \), we conclude that in this case \(\hat{n} \) is parallel to \(\vec{p} \). It follows that \(\hat{\epsilon}^* \) must be perpendicular to \(\vec{p} \) (since the former is necessarily perpendicular to \(\hat{n} \)), in which case \(\hat{\epsilon}^* \cdot \vec{p} = 0 \). Eq. (10.4) of Jackson then implies that the scattering in this case is entirely due to the magnetic dipole term.

Similarly, at \(\theta = \frac{1}{2}\pi, \phi = \frac{1}{2}\pi \), we see that \(\hat{n} \) points in the direction of \(\hat{n}_0 \times \hat{\epsilon}_0 \), which is parallel to the direction of the magnetic field of the incoming plane wave. Since the latter is also parallel to \(\vec{m} \), we conclude that in this case \(\hat{n} \) is parallel to \(\vec{m} \). It follows that \(\hat{n} \times \hat{\epsilon}_0^* \) must be perpendicular to \(\vec{m} \), in which case \((\hat{n} \times \hat{\epsilon}_0^*) \cdot \vec{m} = 0 \). Eq. (10.4) of Jackson then implies that the scattering in this case is entirely due to the electric dipole term.