Physics 214 Solution Set 3 Winter 2024

1. [Jackson, problem 9.2] A radiating quadrupole consists of a square of side a with charges
+q at alternate corners. The square rotates with angular velocity w about an axis normal
to the plane of the square and through its center. Calculate the quadrupole moments, the
radiation fields, the angular distribution of radiation, and the total radiated power, all in the
long-wavelength approximation. What is the frequency of the radiation?
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Figure 1: A radiating quadrupole consisting of a square of side a with charges £¢q at alternate corners.

The charge distribution consists of point charges at the four corners of a square in the z—y
plane, as depicted in Figure 1. The charges are located at the following positions in Cartesian
coordinates,

a a
+q : —(coswt, sinwt, 0) , +q: ———(coswt,sinwt, 0) 1
q \/5( ) q \/5( ) (1)
¢ (sinwt t,0) ¢ sinwt t.0) (2)
—q : — (sinwt, —coswt, 0) , —q: —(—sinwt, coswt, 0) .
B EYG
The quadrupole moment Cartesian tensor is given by?
k) (K
Qi = Y ax [32a — (192, (3)
k

where k labels each charge and 7 and j label the components of the position vector & Note
that the charges all lie in the z—y plane (corresponding to z = 0). Moreover, r*) is the distance
of the kth charge from the origin, located at the center of the square. Hence,

(9 = (@) + (@37)° + (27)° = §a*, forall k.
This means that
St = 3 -0
k k

f one uses eq. (4.9) of Jackson, then one should express the charge distribution p(&,t) as a sum of delta
functions, whose arguments vanish at the locations of the four charges. Integrating over all space then yields

eq. (3).



since there are an equal number of positive and negative charges. Plugging in the location of
the four charges in eq. (3), we obtain:

Q13 = Q23 =03 =0, ang'
Qa2 = —3a’qcos 2wt Q=13

2a%q [0082 wt — sin? wt] = 3a’q cos 2wt ,
-4 a®qsinwt cos wt = 3a®qsin 2wt |

after employing some well known trigonometric identities. Thus, the electric quadrupole tensor
is given by

cos 2wt sin 2wt 0
Qij(t) = 3a%q | sin2wt  —cos2wt 0] . (4)
0 0 0

In a Cartesian basis, all the elements of the physical multipole tensors are real. We can introduce
the complex time-dependent multipole tensor @);;(t) by defining

1 i 0
Qi(t) =3a?qe™ " i -1 0] . (5)
0 0 0

One can check that the physical quadrupole Cartesian tensor is given by
Qu(t) = Re | Q1) (6)

To make contact with the convention for harmonic sources employed by eq. (9.1) of Jackson,
we note that the complex electric quadrupole tensor is defined to be

@ij (t) == /(3$ZIJ - 7’252‘]'),5(.’.6, t) dsl’ y

where p(&,t) = p(&) e ™" and the physical charge density is given by p(&,t) = Re[p(Z) e~*].
However, this would not yield the correct time dependence exhibited in eq. (5). However, the
solution is simple—we write:

B, 1) = pld) 2
That is, one must replace w with 2w in the formulae that appear in Chapter 9 of Jackson. Note

that this also implies that
2w

b= (7)
Thus, it follows that N |
Qij(t) = Qi e Bt (8)
where
1 ) 0
Q= [ o, ~ )o@ e =g |1 -1 0 )

0 0 0
Using eq. (9), the matrix Q whose components are defined by

3
Qi = Z Qi (10)
=1
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are easily evaluated. Using 7o = (sinf cos ¢, sinfsin ¢, cosf), we find
Q1 = 3d’gsinf e, Qs = 3a’qisinf e, Q3=0.
That is, '
Q = 3a’qsin 0 e (& + i) . (11)
We can now employ eqgs. (7) and (11) in eqgs. (9.44), (9.45) and (9.49) of Jackson. First we
evaluate

A A A~

T Y z
A X Q = 3a’gsinf e det | sinfcosé sinfsing cosb
1 i 0

= —3a’qisinf e’ [cos (& + ig) —sinf 2] .
Therefore, eq. (9.44) of Jackson [in SI units| yields
ﬁ- Ck?) eikr

=—— a’qsinf e’ [cos (& + i) —sinfe’2] .
8t 1

The physical magnetic fields are then given by

- ) /{33 2
Re(H e 2" = —% sin 9{@ cos 6 cos(kr — 2wt + ¢) — g cos O sin(kr — 2wt + @)
o

—Zsin 0 cos(kr — 2wt + 2¢)} : (12)

The electric fields are obtained by using eq. (9.39) of Jackson. In SI units,
E=7,H x 7, (13)
where Zy = \/ 110/ €0 is the impedance of free space. Thus,

20 e | 2 g g
a’qsin 0 e det cosf icos —sinfe
sinf cos ¢ sinfsin ¢ cos

E=—
&t r

Z()k‘g eikr ) )
=— a’qsin 0 e“z’{:f:(sin2 fsin ¢ €' + i cos® 0)

8T r
—g(sin® § cos ¢ " + cos? ) — i2sin  cos O ei¢} :

The physical electric fields are then given by
_ Zokla*q

Re(ﬁ e_%m) = <
mr

sin 9{:% [sin” 6 sin ¢ cos(kr — 2wt + 2¢) — cos® § sin(kr — 2wt + ¢)]
—g [sin® 6 cos ¢ cos(kr — 2wt + 2¢) + cos” 0 cos(kr — 2wt + )]

+2 sind cos 0 sin(kr — 2wt + 2¢)} : (14)

As a check, it is easy to verify that eq. (13) is also satisfied by the physical fields given in
egs. (12) and (14).



Next, we compute the time-averaged power radiated per unit solid angle. Using eqs. (9.45)

and (9.46) of Jackson,
— = kS Q- |h-Q?
0~ Tme b @ @R Qrf

Using eq. (11), we compute:

G - Q@ = 18a*¢*sin? 4, 17 - Q) = [3a’gsin® 0 ¥ = 9a*¢? sin® 6 .

Hence,
g -q- 17 - Q)2 = 9aq?sin 0(2 — sin®§) = 9a’q?sin® (1 + cosF) .
Eq. (15) then yields
apP 2 Zya*q? kS
dQ 12872
Using k = 2w/c [cf. eq. (7)], we obtain

sin? 0(1 + cos? ).

AP Zpa'q¢*w®

10" 92 sin® 0(1 + cos®0) .

The total radiated power is obtained by integrating over solid angles. Using

! 167

/dQsin29(1+00529) :27T/ (1 —cos*f) dcosf = =

-1

we end up with
8Z0(1,4 2 6

P =
Smet

As a check, we can use eq. (9.49) of Jackson,

2 6
= 14407 Z @il
%,J

Z ‘QUP == 36@4(]2
2

Using eq. (9)

Inserting this back into eq. (18) along with & = 2w/c, we recover eq. (17) as expected.

ALTERNATIVE SOLUTION:

(15)

(16)

In class, I showed that for general time dependent charges and current, the physical (real)

magnetic and electric fields of E2 radiation are given by
— 1 83 r
et ().
52(&, ) 24xc2r 8153 c
EEg(i, t) = ZoﬁEQ(a_f, t) X T

(19)

(20)



after converting the formulae given in class from gaussian to SI units. The time-averaged power
radiated per unit solid angle is given by

APy~
m—?”S"fL, (21)

where the Poynting vector is given by eq. (6.109) of Jackson, § = E x H. Using eqs. (19)-(21),

dP ZO . N 03 T
a0~ 5r6mA { 8t3Q (t a E)

:_%ﬁ-{ﬁg—;ﬁ-é(t—g—%*(t—g)}><

70 »*P - |? o? = 12
= —Q (t— - t— - . 22
57672t { 8t3Q ( c) 8t3n @ ( c) (22)
In the above formula, the components of the real vector Q(t) are given by eq. (10), where Qi (t)

is given by eq. (4). Using spherical coordinates, 7o = (sin 6 cos ¢, sin § sin ¢, cos @) and

Q1(t) = Quni + Qa1 + n3Q13n3 = 3a’gsin 9(008 ¢ cos 2wt + sin ¢ sin th)
= 3a’qsin 0 cos(2wt — @),

Q2(t) = Quny + Qang + Qozns = 3a’gsin 9(008 ¢ sin 2wt — sin ¢ cos th)
= 3a’qsin O sin(2wt — @),

Q3(t) = Q3111 + Q329 + Q33nz = 0.

Thus,

- C,_j(t) = 3a’¢sin? 6 [cos ¢ cos(2wt — ¢) + sin ¢ sin(2wt — gb)} = 3a’¢sin’® Cos(2(wt — gb)) ,
g—;ﬁ - Q(t) = 24wa’gsin® O sin (2(wt — ¢))

P o

pre (t) = 24w’a®qsin O (sin(2wt — @), — cos(2wt — @), 0) .
It then follows that

® =0 | [ ’ r
2600 [atsn Q@__)} = 576ufalq?sin?6 {1~ sincos? (2o (- 1) — o))}

Averaging over one cycle, we obtain,

(o (o0 2) o)) 3 o

d(P)  Zywba'q®sin* (1 — 1sin®0)  Zyw®a'q?sin® (1 + cos® §)
aa w2t N 2m2ct
which reproduces the result previously obtained in eq. (16). Note that in our first derivation
above, by using the complex version of ();;(¢) given in eq. (5) along with the complex Poynting
vector, one automatically obtains the time-averaged power using eq. (15).

Hence,

, (25)

bt



2. [Jackson, problem 9.6 and 9.7(a)]

(9.6a) Starting from the general expression given by Jackson eq. (9.2) for A and the corre-
sponding expression for ®, expand both R = ‘.’E — :E'" and t' =t — R/c to first order in ‘:E" /r
to obtain the electric dipole potentials for arbitrary time variation

1 [1 1. 0P,
O(Z,t)=— |=n-p —f 26
(wa ) 471'60 7“2n Dret + crn 015 ’ ( )
— 8_’
A@, 1) = 1o Pret (27)

4ar Ot

where P, = P (t' =t —r/c) is the dipole moment evaluated at the retarded time measured
from the origin.

We begin with Jackson eq. (9.2),

K(f,t):@/d3x//dt’{($7f,)6 t’+w—t . (28)
47 }w—w‘ c

Integrating over t' yields

A’(@’,t):@/d%’t](w’t_‘m_w‘/C). (29)

Using eq. (9.7) of Jackson,

1
RE\f—i'\zr—ﬁ-:ﬁ"—i—O(—), (30)
r
where r = |&| and 7o = &/r. Therefore, it follows that,
€ — &' r fn-x 1
t————=t——+ +0(-). (31)
c c c r

Hence, the leading order contribution in the limit of large r is given by

AZ 1) =10 / &' T (3 t—r/c) . (32)

 4qr

In the same spirit of Jackson eq. (9.14), we can employ an integration by parts by writing

—

Ji = O (Jl) = 2f(V7- ), (33)

where there is an implicit sum over the repeated index k. Hence,
/d%:’f: —/d%’f'(ﬁ'- 7). (34)
under the assumption that the current is localized (so that the surface term at infinity vanishes).
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We can now use the continuity equation,

= Op(Z’, 1)

V@) + —=0. (35)

Hence, egs. (34) and (35) yield,
[ @i —rjo = o a0 @p@a - = P, (36)

after using the definition of the electric dipole vector p' [Jackson, eq. (9.17)], generalized to the
case of a time-dependent charge density. Note that since the second argument of p(Z’,t') is
t' ~t —r/c, we were able to replace 0/0t' with 0/0t (via the chain rule), which can then be
pulled outside the integral in eq. (36).

Plugging eq. (36) back into eq. (32), we confirm eq. (27),

- /"LO aﬁret
A(Z t) = ——= 37
(@)= 12 O (37)
where ﬁret = ﬁ(t/ =1 T/C>'
Next, we consider the expression for ® given on p. 410 of Jackson,

O(Z,t /d3’/dt t’+M—t . (38)
47‘(’60 ar:—ar: c

Integrating over t’' yields

L L [ (@& )
<I>(:c,t)—4mo d’z F-7 : (39)

We again make use of eqs. (30) and (31). However, in contrast with the calculation of A above,
here we shall keep the first subleading term in the large r expansion. That is, we shall employ:

1 1 n-Z
- v (40)
@ Op (Bt —
o (@t 1F = &)Je) = p (@t — rfe) + T O = r/c) (41)
c
Inserting the above results into eq. (39), we obtain
1 n-& 0p (&' t—r/c) n-@
(T, ¢ &’ |p (&8t — ’ £t —
(@1) = 47rr€o/ ! [p (&t =r/e)+ c ot * r p (&t =r/c)
1 [Q 1. 90p(t—r/e)

= AN A 42
Areg {r—i_crn ot + n plt=r/e) (42)

where Q = [ d2/p (a‘c’ ‘t—r/ c) is the total charge of the sources, which must be time-independent
due to the conservation of charge. Thus, the first term in eq. (42) is static and does not con-
tribute to the radiation (see p. 410 of Jackson). The remaining two terms in eq. (42) correspond
to the electric dipole potentials,

O(Z,t) =

—N-p, —n
drey | r? Pret +cr ot

11 1 A_&ﬁrﬂ (43)

which confirms the results given in eq. (26).



(9.6b) Calculate the dipole electric and magnetic fields directly from these potentials and
show that

5 1 0P, 1. 0%
B T — @ - X prot _ —’fL prot
4 | r? t cr ot?

0
= _, 1 Ta Bﬁ(ﬁ'ﬁt)_ﬁt 1 A ~ 825‘5
E — 1 o re re - re
(&:1) 4mreg {( * c@t) [ 73 T\ e

We can now use egs. (26) and (27) to compute the electric and magnetic fields. In light of
Jackson egs. (6.7) and (6.9),

_ - A Y o o
E:-V@-%—t, B=VxA. (44)

~
To obtain an expression for E, we must evaluate:

L /1 1 _ op
V _—»‘ — _—». ret
(7"33} pret + C’l"2$ 015 ) )

(45)

where we have put A = &/r and r = |&| = (22 + 22 + 22)1/2. We shall make use of the chain
rules discussed in class. In particular, if w = f(z,t') and ¢’ = g(z,t), then

(5:),= (), (). G0), @
().~ (). (&), @

where the subscripts to the right of the right parentheses indicate the variable that is held
fixed when performing the partial differentiation. In the applications below, w = P, (t') where
t' =t —r/c. It then follows that

In evaluating eq. (45), we first note that

- (1 - 1 na n&
V(i—|=V = =——. 49
(r") <(x%+w%+x§)"/2) (2% + a3 + af) 422 2 )

Second, eqgs. (46) and (47) yield:

- OB\ = .. Op. ot Op,
V = - = re Vt/ ret — ret ¥ _ ret 50
(.’E pret) pret + <.’E at/ ) ) at at/ at at/ ) ( )
in light of eq. (48). Note further that
. 1 . — ~
C cr C



after putting n = —1 in eq. (49). Hence, it follows that

- . . r. (. OP.
V(w'pret) = Pret — E'n’ (’I’L ot t) : (52)

Using the results obtained above,

V(3% P T cr? ot r3 i cr?
— prot 3’)’1/('",]3;01:) _ L ~ 'fl' aZs‘ret
r3 cr? ot
Oret oo (o OPret
re _ 2 . re
8t " (n at o i A~ ’fL a2pret
cr? cAr ot?
r 0 ﬁ"et B 3ﬁ(ﬁ _‘ret) 1 ~ azpret
=(1+22 - . (53
( +c@t>< r3 e\ o (53)
Thus, we have obtained

= 1 r 0\ [31(NPy) — Dret 1 . (. P
_V@ - 1 o re re - re . 54
Areg {( * c@t) [ r3 * 2\ o (54)

Next, we use eq. (27) to obtain
OA o PP 1 PP (55)
ot Ay Ot? 4egcir Ot2
after making use of ugeg = 1/c¢% Adding eqs. (54) and (55) and noting that
~ ~ 8215’1"et ~ A~ azﬁ;et 8215;&

n X (n Xn | = an ) T e (56)

we end up with

— PP = -
E(f, t) = —6(1) — % L ]_ ‘l‘ r a 37'L (n prot) prot + i,ﬁ/ % 'fL % 8 prot :
c@t 73 2

which confirms the result for the electric field given by Jackson.
Next, we compute B = V X A using eq. (27). Using a vector identity that can be found
on the inside cover of Jackson,

o (10D 1o 0P 1Y | 0Pt
VX(F 0t)_rv ot +V r at (58)

In light of eq. (49),



Finally, we make use of egs. (46) and (51) to obtain

apret o 0 aZs‘ret o a2pret ot’ o 8225“1"et ,ﬁ/j
(VX ot )i_%’f 8:cj< ot ), "\ o ) oz 0 M\ o ), ¢ (60)

where there are implicit sums over the repeated index pairs j and k, respectively. That is,

= aZs‘ret 1 ~ 82]3 ret

= —— ) 1
V x o X (61)
Hence, it follows that
N/ = Ho 1 ~ 8ﬁ;ret 1 ~ 8215;%
B(Z,t) = —— |— — 62
(@:1) 4 Lz ot * cr o |’ (62)

which confirms the result for the magnetic field given by Jackson.

(9.6¢) Show explicitly how you can go back and forth between these results and the harmonic
fields of Jackson eq. (9.18) by the substitutions —iw <> 9/0t and pe* ! < 5, (¥').

Assuming that the sources and fields are harmonic, one can write

—iwt’ — —i(kr—wt)

Dret (t )=DPe =pe )
(& 1) = E(&)e™",
(& 1) = B(&)e ™",

where we have used t' =t — r/c in obtaining eq. (63). Inserting egs. (63)—(65) into egs.
and (62), and making use of B = uoH and w = ck,

E
B

@ - Faxn " (1- 1) (66)

" 1 1 kY 2
B@ - {Batn 5] (5- %) - Saxaxn ) o)
which reproduces eq. (9.18) of Jackson after writing 1o X (1 X p) = —(7fv X P) X 7.

After multiplying both sides of eqs. (67) and (66) by e~ and writing k¥ = w/c, one can
then obtain eqs. (57) and (62) from egs. (67) and (66) by the substitutions pe* =« — 5 (¢,
E(@)e ™ — E(Z,t), poH (Z)e ™" — B(Z,t), —iw — 0/0t, and —w? — 82/0t%. Likewise,
reversing the arrows permits one to obtain eqs. (66) and (67) from eqs. (62) and (57).

(9.7a) Show for a real electric dipole p(t) that the instantaneous radiated power per unit
solid angle at a distance r from the dipole in a direction 7 is

dP(t) %

2

d*p
= X )] X 7 68
dQ 1672¢c? [ dt’2( )} "o (68)
where t' = t — r/c is the retarded time. For a magnetic dipole moment m(t), substitute

(1/c)m X # for (Ao X ) X 7.

10



In light of the second equation of eq. (50), dp,./dt = dp(t')/dt = dp(t')/dt'. Thus, we shall
simply denote d?p.,../dt* = p in what follows. It is sufficient to only retain terms of O(1/r) in
egs. (57) and (62). Hence,

. 1 .
H(x t) = — X P 69
(#0)= A X P, (69)
o L s
E(m,t):mnx (nxp), (70)
after using B = ,uoﬁ . It follows that

s — 1
E:ZOHXﬁ+O(—2), (71)

r

where Zy = /po/€o is the impedance of free space, after noting that egc = 1/Z, (which is a
consequence of eyug = 1/c?%).

For real (time-dependent) fields, the equivalent of eq. (9.21) of Jackson is:?

—zlim(rQﬁ-Exﬁ). (72)

In particular, note that to leading order in 1/7,

—

A [(H x 7)) x Iﬂ S [H(ﬁ-m - ﬁ|ﬁ|2} — |H]? — (H-n)?=|H x a.
Hence, eq. (72) yields
dP(t)
ds)
Note that only the O(1/r) terms of H contribute in the r — oo limit.
Finally, we make use of eq. (69) to obtain

= lim Zyr?|H x n*. (73)
r—00

ﬁxﬂ:—hcr(ﬁxﬁ’)xﬁ. (74)
Hence, eq. (73) yields
dAP(t)  Zo s e
aQ 167?202}(71 xP) X n} ’ (75)

in agreement with eq. (68).

In the case of magnetic dipole radiation, Jackson notes on the top of p. 414 that one can
simply make use of the corresponding results for electric dipole radiation with the interchange
of E — ZoH, ZyH — —E, and § — m/c. In light of egs. (69) and (70), the magnetic dipole
radiation fields at O(1/r) are given by

oo 20 .5

E(Z t) = Tz, X (76)
T T Ly

H(:I;,t):mnx(nxm). (77)

2Here, we use eq. (6.109) of Jackson, which gives S—ExH.
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One can check that eq. (71) is still valid. Therefore, egs. (73) and (76) yield
dP(1) Z

2
T —
——— = lim —|E|* =
d§2 oo Z0| | 1672t
This result confirms Jackson’s claim that for a magnetic dipole moment (), substitute
(1/c)m X 1 for (n X Pp) X v in eq. (68) to obtain the instantaneous radiated power per
unit solid angle at a distance r from the magnetic dipole in a direction 7

A X |2 (78)

An alternative method for solving Jackson, problem 9.7a via Fourier transforms

In the analysis of sections 2 and 3 in Chapter 9 of Jackson, the physical electric and magnetic
fields are given by

E(&,1) = Re [E(CE, w)e ', H(&,t) = Re [ﬁ(a‘:’,w)e_i“’t] .

The complex fields E = E(:E', w) and H=H (Z,w) are then employed to compute the differ-
ential power distribution via eq. (9.21) of Jackson.
To generalize to the case of arbitrary time dependence, we introduce the Fourier transforms,

E(f, t) = / E(:ff, w)e ™ duw, ﬁ(a‘i t) = / I-_j(f, w)e™ @t du

Since E(:E, t) and H (Z,t) are the physical fields, they must be real fields. This requirement
imposes reality conditions on the Fourier coefficients,

E(& —w) = E*(Z,w), H(Z —w)=H"(&w).
Consider first the case of electric dipole radiation. The E and H fields given in eq. (9.19)

of Jackson are in fact the Fourier coefficients. Since k = w/¢, it follows that

2 ezwr/c

— = w N = — = — N
HEl(w,w):Zl—m[nXp(w)} may Eg (Z,w) = ZyH(Z,w) X N,

where the time-dependent electric dipole moment is obtained via the Fourier transform,

B(t) = / T W) e . (79)

Hence, )
Hy (T, ) = 47rlcr X /_Z w? B (w)e @t/ gy
= _47rlcr n X 5—; _: pw) e~ @t/ gy
- _47rlc7° X %?(t/) ’

where t' =t — r/c. Thus, we have established eq. (69). From this, we may obtain the power
distribution given in eq. (75) as before.

12



3. [Jackson, problem 9.§]

(a) Show that a classical oscillating electric dipole pwith fields given by eq. (9.18) of Jackson
radiates electromagnetic angular momentum to infinity at the rate

dL k3

— = Im [p* X P .
dt 127meg m [P X P

In class, we derived the following result for the radiated angular momentum per unit time in
gaussian units (which was denoted by 7):

(80)
where E and B are the complex electric and magnetic field vectors (after removing the harmonic

e~ ™! factor). To rewrite this in ST units, we must replace E — Ve E and B — VAT Lo H ,
where ¢ = 1/, /éopig. Note that we must also replace p — p/v/4dmey and J — J/+/47mey, which
means that p'— p/\/4mey [cf. Table 3 on p. 782 of Jackson|. Thus, in SI units, we have

F=—1® Re/[eom X E*) (- E) + po(f x H) (A H")] d,

(s1)
We now make use of the electric dipole fields given by eq. (9.18) of Jackson,
ﬁzi—f(ﬁxﬁ)ef (1—%) ,
B g (i xm) < o 3ala-7) - 7] (5-%)"
Note that # - H = 0 and

- 1
~ = ikr
- . o= .
2mepr? nepeT < )
Thus, we only need to keep the O(1/r) terms in 7 X E*. Using the vector identity,

1
n X p* ‘ +0 (—) .
4reg T
Hence, it follows that



where we have dropped terms that vanish in the limit of » — co. In component form,
ik? .
7, = Re meijkpzpk dQnjng, (82)

where there is an implicit sum over the repeated indices j, k, and . Using eq. (9.47) of Jackson,
4
/dQ n;ngy = ? 5jg .

Inserting this result into eq. (82) yields

ik?
G = R p X p* i
= Repp — (P x P*)
Finally, noting that Re(iz) = —Im z for any complex number z, and p X p* = —p* X p, we
end up with?
daL  K?
T = — = Im(p™* X p). 83
T dt 127eg m(p" X P) (83)

(b) What is the ratio of angular momentum radiated to energy radiated? Interpret.

Eq. (9.24) of Jackson states that the total power radiated is given by

p— C2Z0]€4

= (34

where Zy = /po/€o is the impedance of free space. In particular, note that ceyZy = 1. Thus,
using w = kc it follows that

T In(@xp) .

P w|p)?

To interpret eq. (85), consider the case where the electric dipole moment possesses a definite
value of m in the spherical basis. Recall that

Y E TR VE
qi,+1 = F 87 Pz T+ Dy) qio = 47sz-

1. If q11 7& 0 and dio = q1,-1 = 0, then

Consider three cases:

— p . — — . 2 A
p:ﬁ(—l,—z,O) — prXp=ip|°Z;
3In class, I wrote ¥ = —dL /dt, where —dL /dt denotes the rate of angular momentum lost by the radiating

sources, which is equal to the rate of angular momentum transported to infinity. Jackson denotes this quantity
dL/dt without the explicit minus sign. Thus, I have adopted Jackson’s convention in obtaining eq. (83).
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2. If d10 #O and d11 = q1,-1 :0, then
p=p(0,0,1) — pPXp=0;

3. If q1,—1 % 0 and d11 = 10 — 0, then

p=-—(1,-i,0) =  p*xp=—ip]’s,

Sl

where p = |p]. That is,
P X §=im|p|*2, form=—1,0,+1.
Inserting this result into eq. (85) yields

7. _dL;/dt _—m
P dU/dt  w

In the quantum mechanics of electromagnetic radiation, photons possess an energy U = hw
and a spin angular momentum S, = mh, so that S,/U = m/w. The analogy is quite striking!

(c) For a charge e rotating in the z—y plane at radius a and angular speed w, show that there
is only a z component of radiated angular momentum with magnitude dL,/dt = e*k3a*/(67¢).
What about a charge oscillating along the z axis?

For a charge e rotating in the x—y plane at radius a and angular speed w, the components of

the electric dipole vector are given by, p' = ea(coswt, sinwt, 0). This result can be rewritten
as

p= Re{eae_i‘“t (1,1, 0)} :
Thus, we may define a complez electric dipole vector,
pt) = pe ™", where p'=ea(1,1,0).

It then follows that

T U Z
prx p=det |ea —ieca 0| =2ie*a*2.
ea tea 0

Hence, Im(p* X p) = 2¢%a” 2. Inserting this result into eq. (83) yields

_dL,  eka®
dt 6mey

T

For a charge oscillating along the z-axis, the real physical charge density is

=

&

N2
I

q(2)0(y)0(z — zg coswt) .
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Hence, p = 2 qzp coswt = 2 qzg Ree™™!. Thus, we identify the corresponding complex electric

dipole moment vector (with the harmonic factor stripped off) as

P=2qz.
Note that this is in fact a real vector, in which case p* X p=p
7 = 0 and no angular momentum is radiated.
The above two cases correspond to m = 1 and m = 0, respectively, which were treated
explicitly at the end of part (b).

X p = 0. Hence, for this case,

(d) What are the results corresponding to parts (a) and (b) for magnetic dipole radiation?

For magnetic dipole radiation, we use egs. (9.35) and (9.36) of Jackson,

*:_{/ﬁ(ﬁxm)xﬁe Hgﬁ(ﬁ.m)_m](i_ﬁ)eim}.

r3 r2

As noted by Jackson at the top of p. 414, one can obtain results for magnetic dipole radiation
from that of electric dipole radiation by the following set of interchanges,

E—> Z,H, ZoH — —E, p— m/c.

Applying these interchanges on the results obtained in eqgs. (83) and (84) yields

/{33
7= e x m), (86)
127
MOCI{:4 — 12
P = .
o= || (87)

The corresponding ratio of these two quantities is:

7  Im(m*xm
7 _Im(mrxm) (88)
P w|m|?
The analysis of part (b) is nearly identical, with the magnetic dipole moment in the spherical
basis replacing the electric dipole moment. Thus, again, we conclude that

—»|2A

m* X m = im|m|°2Z, for m=—1,0,+1.

which again yields

. dL./dt m
P dUjdt  w’
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ADDED NOTE:

In the literature, you will sometimes see another expression for the rate of angular momen-
tum transport by radiation, in place of eq. (81). To derive this expression, we first note that in
the radiation zone, the Jefimenko equations imply that n+ E =7+ H =0 at O(1/r). Thus,

. = 1 " = 1
n-E:O<T—2), n-H:O<ﬁ>. (89)

It follows that we only need to keep expressions for 7 X E and 7o x H at O(1/r) in eq. (81).
For harmonic fields, eq. (9.5) of Jackson is

ﬁxﬁ:—zoﬁxﬁuo(—). (90)
where we have used the leading behavior of H o (1/r)e™* =t Likewise,

ﬁxE:—Zoﬁx<ﬂxﬁ>:Zoﬁ+O<ri2), (91)
after expanding out the triple product and using eq. (89).

Inserting eqs. (90) and (91) into eq. (81), and using €y Zy = o/ Zo = /€ofto = 1/c, it follows
that

7o —g—iRe/[ﬁ*(ﬁ . B) — B(n- )] d0.
Writing 7 = &/r and noting the vector identity,
@ (h-B)— B(h- B = —%i’x (B x 8",
we end up with* .
Z—;:;—ZReix(Exﬁ*). (92)

Eq. (92) provides an alternative expression for the rate of angular momentum transport and is
equivalent to eq. (81) in the limit of r — co.”
The infinitesimal area element is da = 7?2 d2, so eq. (92) can be rewritten as

dT 1 = -

— =—ReZXx (EXH". 93

70 = % ( ) (93)
Since ¥ = dL /dt, we interpret d7/da as the angular momentum flux that is transported from
the sources out to the observer located a long distance away. Eq. (93) should be compared with
the expression for the angular momentum density [cf. problem 7.27 of Jackson],

1 1

— Zx(ExB)=—2x (Ex H).
e ( ) 2 ( )

4For the record, the corresponding result in gaussian units is obtained by replacing H with B and multiplying
Eq. (92) by ¢/(4m).

°In this limit, ¥ approaches a constant value which is equal to the rate of angular momentum transported
to the surface at infinity by the radiation.
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The above result is applicable to the real fields. The corresponding result for the time-averaged
angular momentum density of a distribution of harmonic electromagnetic fields is given by

-1 Y=o
gzﬁRewx(ExH).

We conclude that 1 1
i:_Refx(Exﬁ*):c§+O<—) |

da  2c
That is, the angular momentum flux in the radiation zone is equal to ¢ times the angular

momentum density, although this identification is correct only at the lowest nontrivial order in

the inverse distance expansion.®

4. [Jackson, problem 9.16] A thin linear antenna of length d is excited in such a way that a
sinusoidal current makes a full wavelength of oscillation as shown in the figure below.

Figure 2: A thin linear antenna with a sinusoidal current that makes a full wavelength of oscillation.

(a) Calculate exactly the power radiated per unit solid angle and plot the angular distribu-

tion of radiation.
Choose the z-axis to lie along the antenna, and let z = 0 correspond to the center of the

antenna. Then, J(&,t) = J(&) e ™!, where

7 (27:72) 5(2)6(y) 5, for |2 < id, (94)

J(Z,t) = Isin

where d is the length of the antenna. In class, we derived the following results for the complex

magnetic and electric fields (assumed to be harmonic) in gaussian units,

— ) . - =) A 1
B(&.1) = 5 fu / &o' J(&') e * T 1 0 (ﬁ) ,

_ 1
E(Zt)=B(Zt)xn+0 (ﬁ) ,

where i = &/r and r = |€|. In SI units,” the above results take the following form,

6This added note was inspired by a treatment in Emil Jan Konopinski, Electromagnetic Fields and Relativistic
Particles (McGraw Hill Inc., New York, 1981). In particular, see the discussion on p. 226, including the very

enlightening footnote at the bottom of that page.
"To convert from gaussian to SI units, we must replace the fields E > VAaTeqy E, and B — /4Ampug ﬁ, where
¢ =1/\/éoio and the current J — J/\/dmey [cf. Table 3 on p. 782 of Jackson)].
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- ' , - gzl 1
H(&,t) = ——— it 3 x / Er' J(@&') e P40 (—) : (95)

E(Z )= ZoH(Z t) x i+ O (i) . (96)

Using eq. (9.21) of Jackson, the time-averaged power radiated per unit solid angle is given
by
dP — —
oo =iRe|ra.Ex .
In light of eq. (96), we compute

(Hxn)xH" =-H*"x (Hxn)=n(H-H*)—H(h-H*) =na|H?,
where at the last step we 7 - H* =0, which is a consequence of eq. (95). Hence,

ar
s

Thus, our task is to compute the integral,

=Lz HP. (97)

/dgl'/ j’(a—f/) e—iki”-ﬁ.

By assumption, the sinusoidal current makes a full wavelength, which implies that
2
==

Inserting eq. (94) into the integral above and employing rectangular coordinates,

k (98)

d/2
T = —ik&’-h A . —1
/d?’x'J(ac/)e ik ":zI/ sin kz e k=08l
—d/2

where 6 is the angle between 7 and the positive z-axis (which corresponds to the usual polar
angle of spherical coordinates). The following indefinite integral appears in many integration

tables,
/e“z sinksds — © (asinkz — kcoskz) .
a? + k2
Using eq. (98), the limits of integration are |z| < 7/k,

/W/k gin foz e~z 050 g — emhzeos0( ik cos fsin kz — k cos kz) [/F
—/k (—ik cos )2 + k2 e
p—imcos _ imcost
N k sin? 0

_ 2isin(m cos0)
- ksin” 6
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Using w = kc and A X £ = —sinf ¢, it follows that

Az 1) = 19 it S0TC0S0) oo L gy (T C0S0) g

- 2rker sin? 6 2mr sin 0

Plugging this result into eq. (97), we end up with

dP  ZyI® [sin(m cosf) ?
dQ 8?2 sin 0 ’

A plot of the angular distribution is shown in Figure 3.

Figure 3: A polar plot of the antenna pattern of a thin linear antenna with a sinusoidal current
that makes a full wavelength of oscillation. The angular distribution of the radiated power is given
by eq. (99) and is proportional to sin?(7 cosf)/sin? 6. Normalization has been chosen such that
ZoI? = 8m?. This plot was created with Mathematica software.

(b) Determine the total power radiated and find a numerical value for the radiation resis-
tance.

The total power is
dpP 'ap
P=[| —dQ=2 —
/de W/_ldecose,
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since the angular distribution obtained in eq. (99) is independent of the azimuthal angle ¢.
Defining o = cos#, and employing sin”# = 1 — cos?# in the denominator of eq. (99),

P_%P/%Mw@d_zﬁ/ﬂpmm%@m7

dr J_, 1—2a? R . 1—2a?

after employing a well-known trigonometric identity. We now apply the method of partial

fractions to write
L1
1—22 2\1—z 142z/)°

The resulting two integrals are equal after making a variable change © — —x in the first integral.
Thus,

_ ZoI? /1 1 — cos(27z) .

P
8t )4 1+

Next, we make a change of variables, t = 2w (1 + x), which converts the above integral into the

following form,
p_ ZoI? /47r 1 _COStdt.
8t Jo t
This integral can be evaluated in terms of the cosine integral, which is defined as

Ci(x) :—/ %Stdt.

It then follows that:®

“1—cost
/ %dtzv—l—lnx—(ﬁ(m), (100)
0
where v ~ 0.5772 is the Euler constant. Thus,
ZyI?
P =2 [y +1In(4r) — Ci(4r)] .
8T
Using the following numerical value, Ci(47) = —0.006,% we obtain
Zyl?
P = 3.114) .
o, (3-114)

The corresponding radiative resistance (in ohms) is equal to the coefficient of %I 2 [cf. the text
below eq. (9.29) of Jackson|. Thus, using Zy = 376.7 ohms [given below eq. (7.11)" of Jackson],

7
Riaq = (3.114) 4—0 — 93.3 ohms.. (101)
m

8See e.g. formula 8.230 no. 2 on p. 895 of 1.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and
Products (8th edition), edited by Daniel Zwillinger and Victor Moll (Academic Press, Elsevier, Inc., Waltham,
MA, 2015). Eq. (100) can also be found on p. 41 [cf. problem 3 on this page] of N.N. Lebedev, Special Functions
and Their Applications (Dover Publications, Inc., Mineola, NY, 1972).

9For example, one can consult Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions
(Dover Publications, Inc., Mineola, NY, 1965), which provides numerical tables of the cosine integral. Alter-
natively, one can use a mathematical program such as Mathematica or Maple to evaluate the cosine integral
directly.
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