
Physics 214 Solution Set 4 Winter 2024

1. [Jackson, problem 9.12] An almost spherical surface is defined by

R(θ) = R0 [1 + β P2(cos θ)] (1)

has inside of it a uniform volume distribution of charge totaling Q. The small parameter β
varies harmonically in time at frequency ω. This corresponds to surface waves on the sphere.
Keeping only lowest order terms in β and making the long-wavelength approximation, cal-
culate the nonvanishing multipole moments, the angular distribution of radiation, and the
total power radiated.

First, we need to evaluate the charge density ρ(~x, t). It is a constant ρ0 for r ≤ R(θ) and
zero otherwise. Since the total charge Q is conserved (and hence time independent),

Q =

∫

d3x ρ(~x, t) = ρ0

∫

r2 dr d cos θ dφΘ(R(θ)− r) ,

where the step function is defined as,

Θ(x) =

{

1 , for x > 0 ,

0 , for x < 0 .

Thus,

Q = 2πρ0

∫ 1

−1

d cos θ

∫ R(θ)

0

r2 dr =
2πR3

0ρ0
3

∫ 1

−1

d cos θ [1 + β P2(cos θ)]
3 .

Assuming that |β| ≪ 1 and dropping terms of O(β2), it follows that

Q =
2πR3

0ρ0
3

∫ 1

−1

d cos θ
[

1 + 3β P2(cos θ) +O(β2)
]

=
4πR3

0ρ0
3

[

1 +O(β2)
]

,

after using the orthogonality relation,

∫ 1

−1

d cos θ Pℓ(cos θ)Pℓ′(cos θ) =
2

2ℓ+ 1
δℓℓ′ .

The parameter β varies harmonically with time. Using complex notation,

β = β0e
−iωt

Hence, including all terms up to and including O(β0),

ρ(~x, t) =
3Q

4πR3
0

Θ(R0 +R0β0P2(cos θ)e
−iωt − r) . (2)
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Next, we compute the elements of the multipole tensor in the spherical basis,

Qℓm(t) =

∫

d3x rℓ Y ∗
ℓm(θ, φ) ρ(~x, t)

=
3Q

4πR3
0

∫

dΩY ∗
ℓm(θ, φ)

∫ R(θ)

0

rℓ+2 dr

=
3QRℓ

0

4π(ℓ+ 3)

∫

dΩY ∗
ℓm(θ, φ)

[

1 + β0Pℓ(cos θ)e
−iωt
]ℓ+3

,

where ℓ = 1, 2, 3, . . . and m = −ℓ,−ℓ + 1, . . . , ℓ − 1, ℓ. Note that the ℓ = m = 0 moment
does not enter the multipole expansion of the radiation fields. Working to first order in β0,
we can approximate

[

1 + β0Pℓ(cos θ)e
−iωt
]ℓ+3

= 1 + (ℓ+ 3)β0Pℓ(cos θ)e
−iωt +O(β2

0) .

Writing

Pℓ(cos θ) =

√

4π

2ℓ+ 1
Yℓ0(θ, φ) ,

it follows that for ℓ 6= 0,

Qℓm(t) =
3QRℓ

0

4π(ℓ+ 3)

∫

dΩY ∗
ℓm(θ, φ)

[

1 + (ℓ+ 3)β0 e
−iωt

√

4π

5
Y20(θ, φ)

]

=
3QRℓ

0

(ℓ+ 3)
√
4π

[

(ℓ+ 3)β0 e
−iωt

√
5

δℓ2 δm0

]

, (3)

after employing the orthogonality relation of the spherical harmonics [cf. eq. (3.55) of Jack-
son],

∫

Y ∗
ℓm(θ, φ) Yℓ′m′(θ, φ) dΩ = δℓℓ′ δmm′ .

Writing Qℓm(t) = Qℓme
−iωt, it follows that

Qℓm =
3Qβ0R

2
0√

20π
δℓ,2 δm,0 .

That is, the only non-zero electric multipole moment is

Q20 =
3Qβ0R

2
0√

20π
. (4)

An alternative derivation of eq. (4)

Since we are working to first order in β0, it is convenient to expand the Θ-function that
appears in eq. (2) using the fact that δ(x) = dΘ(x)/dx. Thus, to O(β0),

ρ(~x, t) =
3Q

4πR3
0

[

Θ(R0 − r) +R0β0P2(cos θ) e
−iωt δ(R0 − r)

]

. (5)
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Using eq. (9.170) of Jackson, we can evaluate the multipole moments for ℓ 6= 0,

Qℓm(t) =

∫

d3x rℓ Y ∗
ℓm(θ, φ) ρ(~x, t)

=
3Q

4πR3
0

∫

d3x rℓ Y ∗
ℓm(θ, φ)

[

Θ(R0 − r) +R0β0P2(cos θ) e
−iωt δ(R0 − r)

]

=
3QR0

4πR3
0

[

√

4π

5
Rℓ+3

0 β0 e
−iωt δℓ2 δm0

]

, (6)

which reproduces eq. (3).
As for the other possible multipole moments, we first note that there is no magnetization

in this problem so that Q′
ℓm = M ′

ℓm = 0. [cf. eqs.(9.170) and (9.172) of Jackson]. However,
there is a non-zero harmonic current density due to motion of electric charges. The azimuthal
symmetry of the problem implies that ~J(~x, t), when written in spherical coordinates, has no
φ̂ component and is independent of φ.1 That is,

~J(~x, t) =
[

Jr(r, θ) n̂+ Jθ(r, θ) θ̂
]

e−iωt ,

where n̂ ≡ ~x/r is the unit vector in the radial direction. Using eq. (9.172) of Jackson (in SI

units), with ~J(~x, t) = ~J(~x) e−iωt,

Mℓm = − 1

ℓ+ 1

∫

d3x rℓ Y ∗
ℓm(θ, φ) ~∇ · (~x× ~J(~x)) . (7)

Using,
~x× ~J(~x) = r n̂× ~J(~x) = r Jθ(r, θ) φ̂ ,

we conclude that
~∇ · (~x× ~J(~x)) =

1

sin θ

∂Jθ

dφ
= 0 .

Hence, it follows from eq. (7) that
Mℓm = 0 .

The angular distribution of the radiated power can be obtained from eqs. (9.151) and
(9.169) of Jackson,

dP

dΩ
= 1

2
Z0c

2k2ℓ+2 ℓ+ 1

ℓ[(2ℓ+ 1)!!]2
|Qℓm|2 | ~Xℓm|2 , (8)

where
~Xℓm =

1
√

ℓ(ℓ+ 1)
~LYℓm(θ, φ) ,

is a vector spherical harmonic. Integrating over solid angles is trivial since the ~Xℓm are
normalized to unity. Thus,

P = 1
2
Z0c

2k2ℓ+2 ℓ+ 1

ℓ[(2ℓ+ 1)!!]2
|Qℓm|2 . (9)

1An explicit expression for ~J(~x, t) will be given in an added note following this solution.

3



Inserting the value for Q20 obtained in eq. (4) into the above formulae, and noting that

| ~X20|2 =
15

8π
sin2 θ cos2 θ ,

according to Table 9.1 on p. 437 of Jackson, it follows that

dP

dΩ
=

3Z0c
2Q2β2

0R
4
0k

6

2000π

15

8π
sin2 θ cos2 θ ,

and

P =
3Z0c

2Q2β2
0R

4
0k

6

2000π
.

ADDED NOTE:

In this added note, we shall obtain an explicit form for ~J(~x, t) which is valid to first order

in β. As noted previously, the azimuthal symmetry of the problem implies that ~J(~x, t) has
no φ̂ component and is independent of the azimuthal angle φ. That is,

~J(~x, t) =
[

Jr(r, θ)n̂ + Jθ(r, θ)θ̂
]

e−iωt ,

where n̂ ≡ ~x/r is the unit vector in the radial direction. Using the continuity equation,

~∇ · ~J +
dρ

dt
= 0 ,

we can compute ~∇ · ~J using the result for ρ obtained in eq. (5). Hence,

~∇ · ~J = −∂ρ

∂t
=

3iωQβ0

4πR2
0

P2(cos θ) e
−iωt δ(R0 − r) . (10)

In spherical coordinates, we have

~∇ · ~J =
1

r2 sin θ

[

sin θ
∂

∂r

(

r2Jr

)

+ r
∂

∂θ
(sin θ Jθ) + r

∂Jφ

∂φ

]

.

Since ~J arises due to charges in motion, it must be proportional to β. Thus, to leading
order in β, it must also be true that ~J is proportional to Θ(R0 − r) since we can drop any
β-dependence in the argument of the Θ-function (as the dropped terms will only contribute
at higher order in β). Hence, as Jφ = 0, we can write:

~J(~x, t) = β0 e
−iωtΘ(R0 − r)

[

J1n̂+ J2θ̂
]

. (11)

Using eq. (11), we compute

~∇ · ~J = β0 e
−iωt

{

1

r2
∂

∂r

(

r2Θ(R0 − r)J1

)

+
1

r sin θ
Θ(R0 − r)

∂

∂θ
(sin θ J2)

}

= β0 e
−iωt

{

−J1 δ(R0 − r) + Θ(R0 − r)

[

1

r2
∂

∂r

(

r2J1

)

+
1

r sin θ

∂

∂θ
(sin θ J2)

]}

. (12)
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Comparing this result with eq. (10), we can immediately equate the coefficients of the delta
function, which yields

J1 = −3iωQβ0

4πR2
0

P2(cos θ) . (13)

Inserting this result back into eq. (12), and comparing again with eq. (10), we conclude that
the overall coefficient of the step function must vanish. That is,

−3iωQβ0

4πR2
0

P2(cos θ)
2

r
+

1

r sin θ

∂

∂θ
(sin θ J2) = 0 .

Using P2(cos θ) =
1
2
(3 cos2 θ − 1), we obtain

−3iωQβ0

4πR2
0

sin θ
(

3 cos2 θ − 1
)

+
∂

∂θ
(sin θ J2) = 0 .

Hence,

J2 sin θ = −3iωQβ0

4πR2
0

∫

(

3 cos2 θ − 1
)

d cos θ =
3iωQ

4πR2
0

cos θ(1− cos2 θ) ,

or equivalently,2

J2 =
3iωQβ0

8πR2
0

sin 2θ . (14)

Inserting eqs. (13) and (14) back into eq. (11) yields the final result, which is valid at first
order in β0,

~J(~x, t) = −3iωQβ0

8πR2
0

e−iωt Θ(R0 − r)
[

(3 cos2 θ − 1)n̂− sin 2θ θ̂
]

.

2. [Jackson, problem 9.17] Treat the linear antenna of Jackson, problem 9.16 (on Problem
Set 3) by the multipole expansion method.

(a) Calculate the multipole moments (electric dipole, magnetic dipole, and electric quadru-
pole) exactly and in the long-wavelengths approximation.

As in Jackson, problem 9.16, we shall choose the z-axis to lie along the antenna, and let
z = 0 correspond to the center of the antenna. Then, ~J(~x, t) = ~J(~x) e−iωt, where

~J(~x, t) = I sin

(

2πz

d

)

δ(x) δ(y) ẑ , for |z| ≤ 1
2
d , (15)

where d is the length of the antenna. It is convenient to rewrite this in spherical coordinates.
Note that ẑ = n̂ for cos θ = 1 (i.e., θ = 0) and ẑ = −n̂ for cos θ = −1 (i.e., θ = π), where n̂

2In evaluation of the indefinite integral, the constant of integration must be set to zero, since J2 must be
non-singular at θ = 0 and at θ = π.
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is a unit vector pointing in the radial direction, and r ≡ |~x| is the radial coordinate. Hence,
we may write3

~J(~x) =
I

2πr2
sin

(

2πr

d

)

[

δ(cos θ − 1) + δ(cos θ + 1)
]

Θ(1
2
d− r)n̂ , (16)

where I have inserted the Heavyside step function since the current I(z, t) = 0 for |z| > 1
2
d.

In obtaining eq. (16), I used the fact that

sin

(

2πz

d

)

= sin

(

2πrε(z)

d

)

= ε(z) sin

(

2πr

d

)

,

where the sign function ε(z) is defined as

ε(z) =

{

+1 , for z > 0,

−1 , for z < 0.

Finally, we note that n̂ = ǫ(z)ẑ along the z-axis.
We shall make use of eqs. (9.167) and (9.168) of Jackson for the electric and magnetic

multipole coefficients. In the absence of magnetization, in MKS units,

aE(ℓ,m) =
k2

i
√

ℓ(ℓ+ 1)

∫

Y ∗
ℓm(θ, φ)

{

cρ(~x)
∂

∂r

[

rjℓ(kr)
]

+ ik ~x· ~J(~x)jℓ(kr)

}

d3x , (17)

aB(ℓ,m) =
k2

i
√

ℓ(ℓ+ 1)

∫

Y ∗
ℓm(θ, φ)~∇·

(

~x× ~J(~x)
)

jℓ(kr)d
3x . (18)

It is convenient to integrate by parts in evaluating the first term of the integrand in eq. (17).
The surface term can be dropped, since the charge density is localized. Since d3x = r2 dr dΩ,
after integrating by parts, one obtains

− ∂

∂r

[

r2ρ(~x)
]

dr = −
(

∂ρ(~x)

∂r
+

2

r
ρ(~x)

)

r2 dr .

It then follows that

aE(ℓ,m) =
k2

i
√

ℓ(ℓ+ 1)

∫

Y ∗
ℓm(θ, φ)jℓ(kr)

{

−c

(

2 + r
∂

∂r

)

ρ(~x) + ik ~x· ~J(~x)

}

d3x , (19)

which is the version obtained in class.4

3Note that this differs from eq. (9.179) of Jackson by a relative sign. This difference is due to the fact
that for the antenna showed in Figure 9.6 of Jackson, we have I(−z) = I(z). In contrast, in this problem,
eq. (15) yields I(−z) = −I(z).

4One small advantage of using eq. (17) instead of eq. (19) is that no delta functions arise in the computation
[cf. eq. (32) below]. By employing eq. (17), Jackson can simply set the limits of the radial integration to
0 ≤ r ≤ 1

2
d, and otherwise ignore the implicit Heavyside step function in his analysis of the linear, centerfed

antenna on pp. 445–446.
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First consider the computation of aB(ℓ,m). Using the vector identity,

~∇·
(

~x× ~J ) = ~J ·(~∇× ~x)− ~x·(~∇× ~J) = −~x·(~∇× ~J) ,

after using ~∇×~x = 0. However, the current density given in eq. (16) is purely radial, which

implies that ~∇× ~J = 0. Therefore, we conclude that ~∇·
(

~x× ~J) = 0, which implies that
aB(ℓ,m) = 0. That is, all the magnetic multipole coefficients vanish.

To evaluate the electric multipole coefficients, aE(ℓ,m), we can either use eq. (17) or
eq. (19). We shall first employ eq. (17), and then in an addendum we will provide details of
the calculation that makes use of eq. (19).

For harmonic sources [cf. eq. (9.15) of Jackson], ~∇· ~J = iωρ . Using eq. (16), we see that
~J is purely radial, ~J = Jrn̂, and

~∇· ~J =
1

r2
∂

∂r

(

r2Jr

)

=
I

r2
[

δ(cos θ − 1) + δ(cos θ + 1)
]

×
{

1

d
cos

(

2πr

d

)

Θ(1
2
d− r)− 1

2π
sin

(

2πr

d

)

δ(1
2
d− r)

}

.

Noting that sin(2πr/d)δ(1
2
d− r) = sin π δ(1

2
d− r) = 0, we can drop the delta function in the

previous equation. We conclude that

ρ(~x) =
1

ikc
~∇· ~J(~x) =

I

ikcr2d
cos

(

2πr

d

)

[

δ(cos θ − 1) + δ(cos θ + 1)
]

Θ(1
2
d− r) , (20)

after making use of ω = kc. We also note that eq. (16) yields

~x· ~J(~x) =
I

2πr
sin

(

2πr

d

)

[

δ(cos θ − 1) + δ(cos θ + 1)
]

Θ(1
2
d− r) . (21)

after using ~x·n̂ = r.
Plugging eqs. (20) and (21) into eq. (17), and evaluating the integral using spherical

coordinates, d3x = r2 dr dΩ,

aE(ℓ,m) =
Ik

d
√

ℓ(ℓ+ 1)

∫

Y ∗
ℓm(θ, φ)

[

δ(cos θ − 1) + δ(cos θ + 1)
]

dΩ

×
∫ d/2

0

r dr

{

− cos

(

2πr

d

)

1

r

∂

∂r

[

rjℓ(kr)
]

+
k2

2π
sin

(

2πr

d

)

jℓ(kr)

}

. (22)

We first evaluate the angular integral above. Writing dΩ = d cos θ dφ, consider the integral

1

2π

∫

Y ∗
ℓm(θ, φ)

[

δ(cos θ − 1) + δ(cos θ + 1)
]

d cos θ dφ .

Since Y ∗
ℓm(θ, φ) ∝ e−imφ, the φ integral yields

∫ 2π

0

e−imφdφ = δm0 .
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Thus, in light of eq. (3.57) of Jackson and the properties of the Legendre polynomials,

1

2π

∫

Y ∗
ℓm(θ, φ)

[

δ(cos θ − 1) + δ(cos θ + 1)
]

d cos θ dφ = δm0

[

Y ∗
ℓ0(0, φ) + Y ∗

ℓ0,φ(π)
]

= δm0

(

2ℓ+ 1

4π

)1/2
[

1 + (−1)ℓ
]

. (23)

Plugging eq. (23) back into eq. (22),

aE(ℓ,m) =
Ik

d

√

π(2ℓ+ 1)

ℓ(ℓ+ 1)
δm0

[

1+(−1)ℓ
]

∫ d/2

0

{

− cos

(

2πr

d

)

∂

∂r

[

rjℓ(kr)
]

+
k2rd

2π
sin

(

2πr

d

)

jℓ(kr)

}

dr .

The first term of the integrand above can be rewritten using an integration by parts,

∫ d/2

0

cos

(

2πr

d

)

∂

∂r

[

rjℓ(kr)
]

= cos

(

2πr

d

)

rjℓ(kr)

∣

∣

∣

∣

d/2

0

+
2π

d

∫ d/2

0

r sin

(

2πr

d

)

jℓ(kr)dr

= −1
2
d jℓ
(

1
2
kd
)

+
2π

d

∫ d/2

0

r sin

(

2πr

d

)

jℓ(kr)dr .

We then end up with

aE(ℓ,m) =
Ik

2

√

2ℓ+ 1

πℓ(ℓ+ 1)
δm0

[

1+(−1)ℓ
]

{

πjℓ
(

1
2
kd
)

+

[

k2 −
(

2π

d

)2
]

∫ d/2

0

sin

(

2πr

d

)

jℓ(kr) r dr

}

.

(24)
By assumption, the sinusoidal current makes a full wavelength, which implies that

k =
2π

d
. (25)

Hence, after setting kd = 2π in eq. (24), we arrive at the final result,

aE(ℓ,m) =
Ik

2

√

π(2ℓ+ 1)

ℓ(ℓ+ 1)
δm0

[

1 + (−1)ℓ
]

jℓ(π) . (26)

We now consider the long wavelength approximation, kd ≪ 1. We will do the computa-
tion in two ways. First we will start with eq. (24) and use the small argument approximation
for the spherical Bessel function,

jℓ(kr) ≃
(kr)ℓ

(2ℓ+ 1)!!
.

Changing variables to x ≡ 2r/d,

aE(ℓ,m) ≃ Ik

2(2ℓ+ 1)!!

√

π(2ℓ+ 1)

ℓ(ℓ+ 1)
δm0

[

1 + (−1)ℓ
]

(

kd

2

)ℓ{

1− π

∫ 1

0

xℓ+1 sin(πx)dx

}

,
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after dropping theO(k2) term in the factor that multiplies the integral in eq. (24). Integrating
by parts yields

π

∫ 1

0

xℓ+1 sin(πx)dx = 1 + (ℓ+ 1)

∫ 1

0

xℓ cos(πx)dx .

Hence, we obtain a slightly simpler result,

aE(ℓ,m) ≃ − Ik

2(2ℓ+ 1)!!

√

π(ℓ+ 1)(2ℓ+ 1)

ℓ
δm0

[

1 + (−1)ℓ
]

(

kd

2

)ℓ ∫ 1

0

xℓ cos(πx)dx . (27)

As a check of eq. (27), we can perform thee computation using eqs. (9.169)–(9.170) of
Jackson (after setting the magnetization to zero),

aE(ℓ,m) ≃ ckℓ+2

i(2ℓ+ 1)!!

(

ℓ+ 1

ℓ

)1/2

Qℓm , (28)

where

Qℓm =

∫

rℓY ∗
ℓm(θ, φ)ρ(~x) d

3x . (29)

Inserting eq. (20) into eq. (29), and making use of eq. (23),

Qℓm =
I
√

π(2ℓ+ 1)

ikcd
δm0

[

1 + (−1)ℓ
]

∫ d/2

0

rℓ cos

(

2πr

d

)

dr ,

after using ω = kc. Changing variables to x = 2r/d,

Qℓm =
I
√

π(2ℓ+ 1)

2ikc
δm0

(

d

2

)ℓ
[

1 + (−1)ℓ
]

∫ 1

0

xℓ cos(πx)dx .

Plugging this result into eq. (28) yields

aE(ℓ,m) ≃ − Ik

2(2ℓ+ 1)!!

√

π(ℓ+ 1)(2ℓ+ 1)

ℓ
δm0

[

1 + (−1)ℓ
]

(

kd

2

)ℓ ∫ 1

0

xℓ cos(πx)dx ,

in agreement with eq. (27)
We now evaluate these results explicitly for the electric dipole (ℓ = 1) and the electric

quadrupole (ℓ = 2). Due to the factor of 1 + (−1)ℓ, we immediately see that only even ℓ
multipoles survive. Hence, the electric dipole coefficient vanishes. Thus, we henceforth focus
on the electric quadrupole coefficient. First, we use the exact result given in eq. (26). Using

j2(x) =

(

3

x3
− 1

x

)

sin x− 3

x2
cosx ,

it follows that j2(π) = 3/π2. Hence, for kd = 2π and ℓ = 2, eq. (26) yields

aE(2, 0) = Ik

√

15

2π3
. (30)
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Let us compare this result with eq. (27), which was obtained in the long wavelength approx-
imation.

aE(2, 0) ≃ −Ik

√

π

30

(

kd

2

)2 ∫ 1

0

x2 cos(πx)dx .

Performing the integral,
∫ 1

0

x2 cos(πx)dx =
1

π3

[

2πx cos(πx) + (π2x2 − 2) sin(πx)
]

∣

∣

∣

∣

1

0

= − 2

π2
,

we end up with

aE(2, 0) ≃ Ik

√

2

15π3

(

kd

2

)2

.

This result should only be valid for kd ≪ 1. Nevertheless, to compare with eq. (30), we
bravely put kd = 2π to obtain

aE(2, 0) ≃ Ik

√

2π

15
, (31)

which is larger than the exact result given in eq. (30) by a factor of 2π2/15 ≃ 1.316. Not
too bad!

ADDENDUM:

As promised, we exhibit the necessary calculations to obtain aE(ℓ,m) starting from
eq. (19). In this method, one needs to keep track of the Heavyside step function, since
it will generate a delta function when computing ∂ρ/∂r that cannot be ignored, as noted in
footnote 4.

In this method, we use eq. (20) to compute

−
(

2 + r
∂

∂r

)

ρ(~x) =
[

δ(cos θ−1)+δ(cos θ+1)
] I

ickrd

{

2π

d
sin

(

2πr

d

)

Θ(1
2
d−r)+cos

(

2πr

d

)

δ(r−1
2
d)

}

.

The delta function piece can be simplified by using cos(2πr/d)δ(r− 1
2
d) = cos π δ(r− 1

2
d) =

−δ(r − 1
2
d). Hence,

−
(

2 + r
∂

∂r

)

ρ(~x) =
[

δ(cos θ−1)+δ(cos θ+1)
] I

ickrd

{

2π

d
sin

(

2πr

d

)

Θ(1
2
d−r)−δ(r− 1

2
d)

}

.

(32)
Using eq. (21), we end up with

−c

(

2 + r
∂

∂r

)

ρ+ ik~x· ~J =
2πI

ikrd2

{[

1−
(

kd

2π

)2
]

sin

(

2πr

d

)

Θ(1
2
d− r)− d

2π
δ(r − 1

2
d)

}

×
[

δ(cos θ − 1) + δ(cos θ + 1)
]

. (33)

We now insert eq. (33) into eq. (19). Using eq. (23), and performing some algebraic simpli-
fications, it follows that

aE(ℓ,m) =
Ik

2

√

2ℓ+ 1

πℓ(ℓ+ 1)
δm0

[

1+(−1)ℓ
]

{

πjℓ
(

1
2
kd
)

+

[

k2 −
(

2π

d

)2
]

∫ d/2

0

sin

(

2πr

d

)

jℓ(kr) r dr

}

,

which reproduces eq. (24).
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(b) Compare the shape of the angular distribution of the radiated power for the lowest
nonvanishing multipole with the exact distribution obtained in Jackson, problem 9.16 (on
Problem Set 3)

Using eq. (9.151) of Jackson, the angular distribution of power for a pure electric multipole
of order (ℓ,m) is given by,

dP (ℓ,m)

dΩ
=

Z0

2k2
|aE(ℓ,m)|2| ~Xℓm|2 .

We apply this result to the exact form of the pure electric multipole of order (ℓ,m) = (2, 0)
obtained in eq. (30), which we rewrite again here,

aE(2, 0) = Ik

√

15

2π3
.

Using Table 9.1 on p. 437 of Jackson,

| ~Xℓm|2 =
15

8π
sin2 θ cos2 θ ,

Hence,
dP (2, 0)

dΩ
=

225Z0I
2

32π4
sin2 θ cos2 θ . (34)

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1: A polar plot of the antenna pattern of a thin linear antenna with a sinusoidal current that
makes a full wavelength of oscillation. Normalization has been chosen such that Z0I

2 = 8π2. The
angular distribution of the radiated power, shown in red, is given by eq. (35). This is compared
with the corresponding angular distribution of the electric quadrupole component, shown in blue,
which is given by eq. (34). This plot was created with Mathematica software.
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This should be compared with the exact result,

dP

dΩ
=

Z0I
2

8π2

[

sin(π cos θ)

sin θ

]2

. (35)

obtained in Jackson, problem 9.16.

(c) Determine the total power radiated for the lowest multipole and the corresponding
radiation resistance using both multipole moments from part (a). Compare with part (b) of
Jackson, problem 9.16. Is there a paradox here?

The total power radiated by a pure electric multipole of order (ℓ,m) is given by eq. (9.154)
of Jackson,

P (ℓ,m) =
Z0

2k2
|a(ℓ,m)|2 .

In part (b) we obtained two expressions for aE(2, 0). The first expression was exact for
kd = 2π [cf. eq. (30)],

aE(2, 0) = Ik

√

15

2π3
. (36)

The second was computed in the long-wavelength limit, but with kd = 2π [cf. eq. (31)],

aE(2, 0) ≃ Ik

√

2π

15
. (37)

If we use the exact electric quadrupole result [eq. (36)], then we obtain

P (2, 0) =
15Z0I

2

4π3
.

The corresponding radiative resistance (in ohms) is equal to the coefficient of 1
2
I2 [cf. the

text below eq. (9.29) of Jackson]. Thus, using Z0 = 376.7 ohms [given below eq. (7.11)′ of
Jackson],

Rrad =
15Z0

2π3
= 91.1 ohms , (38)

which is remarkably close to the exact result,

Rrad = (3.114)
Z0

4π
= 93.3 ohms [exact result] , (39)

obtained in part (b) of Jackson, problem 9.16. In contrast, had we used eq. (37), we would
have obtained Rrad = 2πZ0/15 = 157.8 ohms, which is a terrible approximation, as one
might have expected.

There is no paradox here. The discussion in Jackson on pp. 446–448 makes clear that
keeping the lowest nonvanishing multipole but computing it exactly (i.e., without assuming
that kd ≪ 1) yields an accurate result to the exact antenna problem even for values of kd
as large as 2π. Presumably, if one computes the next non-trivial multipole (in this problem,

12



that wold be ℓ = 4) its numerical contribution, the result would be a rather small correction
to the power even when kd = 2π.

Perhaps the paradox that Jackson is alluding to is based on the expectation that,

P (2, 0) < Pexact ,

since according to eq. (9.155) of Jackson, the total power is equal to an incoherent sum of
contributions from all the multipoles. Indeed in our computations above, we did confirm
that P (2, 0) < Pexact, or equivalently the radiation resistance of the electric quadrupole
contribution given in eq. (38) is less than the exact result obtained in eq. (39). In contrast,
the opposite (incorrect) conclusion would have been drawn had we used the expression for
P (2, 0) based on setting kd = 2π in the long wavelength limit [e.g., eq. (37)]. Of course, this
latter result is an artifact of a poor approximation.

3. [Jackson, problem 12.1]

(a) Show that the Lorentz invariant Lagrangian (in the sense of Section 12.1B)

L = −1
2
muαu

α − q

c
uαA

α (40)

gives the correct relativistic equations of motion for a particle of mass m and charge q
interacting with an external field described by the 4-vector potential Aα(x).

The Lagrangian given in eq. (40) is a function of the coordinates xα and the velocities uα,
each of which implicitly depends on the proper time τ . In particular, the dependence on
the coordinates arises via the 4-vector potential Aα(x). Lagrange’s equations of motion are
derived from

d

dτ

(

∂L

∂uλ

)

− ∂L

∂xλ
= 0 , (41)

where τ is the proper time. Note that one must employ the proper time here (which is a
Lorentz invariant quantity) in order that both terms in eq. (41) transform under a Lorentz
transformation as four-vectors (in order to maintain the covariance of this equation). To
compute the relevant derivatives, we first rewrite eq. (40) as

L = −1
2
mgαβu

αuβ − q

c
uαAα(x) . (42)

Then, it follows that

∂

∂uλ

(

gαβu
αuβ
)

= gαβ
(

δαλu
β + δβλu

α
)

= gλβu
β + gαλu

α = 2uλ . (43)

∂

∂uλ

(

uαAα(x)
)

= δαλAα(x) = Aλ(x) . (44)

Hence, eq. (41) yields

− d

dτ

(

muλ +
q

c
Aλ(x)

)

+
q

c
uα∂λAα(x) = 0 , (45)

where ∂λ ≡ ∂/∂xλ.
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Since the coordinates xα implicitly depend on τ , we can use to chain rule to evaluate:

d

dτ
Aλ(x) =

dxα

dτ

∂

∂xα
Aλ(x) = uα∂αAλ(x) . (46)

Inserting this result back into eq. (45) yields

duλ

dτ
=

q

mc
uα
(

∂λAα − ∂αAλ

)

. (47)

Using the electromagnetic field strength tensor, Fλα = ∂λAα − ∂αAλ, we end up with

duλ

dτ
=

q

mc
Fλαu

α , (48)

which is the covariant form of the Lorentz force equation [cf. Jackson eq. (12.3)].

(b) Define the canonical momenta and write out the effective Hamiltonian in both co-
variant and space-time form. The effective Hamiltonian is a Lorentz invariant. What is its
value?

Following Jackson eq. (12.33), the canonical four-vector momentum is defined by

Pλ = − ∂L

∂uλ
= muλ +

q

c
Aλ(x) , (49)

where we have used eqs. (43) and (44) to evaluate the derivatives.
Following Jackson eq. (12.34), the Hamiltonian is given by

H(x, P ) = Pαu
α + L(x, u) , (50)

Using eqs. (40) and (49),

H =
(

muα +
q

c
Aα(x)

)

uα − 1
2
muαu

α − q

c
uαA

α = 1
2
muαu

α . (51)

However, since the Hamiltonian is a function of the coordinates and the canonical momenta,
we must eliminate uα in favor of P α. We use eq. (49) to express uα in terms of P α,

uα =
1

m

(

P α − q

c
Aα(x)

)

. (52)

Inserting this result back into eq. (51), we end up with

H(x, P ) =
1

2m

(

Pα − q

c
Aα(x)

)(

P α − q

c
Aα(x)

)

. (53)

In spacetime form, eq. (53) reads:

H =
1

2m

[

(

P0 −
q

c
A0(x)

)2

−
(

~P − q

c
~A(x)

)2
]

. (54)

The value of the Hamiltonian can be deduced most easily from eq. (51). Since uα = (γc ; γ~v)
and γ ≡ (1− v2/c2)−1/2, it follows that uαu

α = c2. Hence eq. (51) yields H = 1
2
mc2.
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4. [Jackson, problem 12.3] A particle with mass m and charge e moves in a uniform, static,

electric field ~E0.

(a) Solve for the velocity and position of the particle as explicit functions of time, assum-
ing that the initial velocity ~v0 was perpendicular to the electric field.

Using eqs. (12.1) and (12.2) of Jackson and setting ~B = 0, we have:

d~p

dt
= e~E ,

dW

dt
= e~v · ~E ,

where W is the total mechanical energy (usually called E, but we have renamed this W in
order to better distinguish it from the electric field) and ~v is the particle velocity (which is
denoted as ~u by Jackson).

Clearly, the motion takes place in a plane containing the ~E-field. Without loss of gener-
ality, we assume that

~E = Ex̂ ,

and assume that the motion takes place in the x–y plane. By assumption, ~v · ~E = 0 at t = 0,
in which case px = 0 at t = 0. Solving the equations,

dpx
dt

= eE ,
dpy
dt

= 0 , (55)

in follows that
px = eEt , py = p0 ,

where p0 is a constant.
Using ~p = γm~v and W = γmc2, it follows that5

~v =
c2~p

W
=

c2~p
√

|~p|2c2 +m2c4
. (56)

Hence,

vx =
c2eEt

√

(p20 + e2E2t2)c2 +m2c4
, vy =

c2p0
√

(p20 + e2E2t2)c2 +m2c4
. (57)

Since ~v = d~x/dt, it follows that

x = c2eE

∫

tdt
√

W 2
0 + (ceEt)2

, y = c2p0

∫

dt
√

W 2
0 + (ceEt)2

, (58)

where W 2
0 = p20c

2 +m2c4.
We shall define the origin of the coordinate system to coincide with t = 0. Then com-

puting the integrals in eq. (58) yields

x(t) =
1

eE

[

√

W 2
0 + (ceEt)2 −W0

]

, y(t) =
p0c

eE
sinh−1

(

ceEt

W0

)

. (59)

5Normally, we write the relativistic energy is given by E = γmc2. However, to avoid confusion with the
electric field, I have denoted the relativistic energy by W .
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REMARKS:

There is some temptation to first derive a differential equation for ~v before attempting a
solution. For example, starting from ~v = c2~p/W [cf. eq. (56)], it follows that

d~v

dt
=

c2

W

d~p

dt
− c2~p

W 2

dW

dt
=

ec2

W
~E − ec2~p

W 2
~v · ~E . (60)

Using ~p = γm~v and E = γmc2, we obtain

d~v

dt
=

e

γm

[

~E − ~v

c

(

~v

c
· ~E

)]

. (61)

In terms of the x and y components of the velocity, eq. (61) is equivalent to:

dvx
dt

=
eE

γm

(

1− v2x
c2

)

, (62)

dvy
dt

= −eEvxvy
γmc2

, (63)

where

γ ≡
(

1−
v2x + v2y

c2

)−1/2

, (64)

subject to the boundary condition vx(t = 0) = 0 and vy(t = 0) ≡ v0.
If we were tasked to solve eqs. (62) and (63), it might not be obvious how to proceed.

However, in light of the solution to eq. (55), the method is clear. Namely, we can multiply
eqs. (62) and (63) by γ and use

γ
d~v

dt
=

d

dt

(

γ~v)− ~v
dγ

dt
. (65)

Next we would make use of

dγ

dt
=

d

dt

(

1− ~v · ~v

c2

)−1/2

=
γ3

c2
~v ·

d~v

dt
=

e

mc2
~v · ~E =

eEvx
mc2

, (66)

after employing eq. (61) in the penultimate step above. Thus, eqs. (62) and (63) yield

d

dt

(

γvx
)

= vx
dγ

dt
+

eE

m

(

1− v2x
c2

)

=
eE

m
, (67)

d

dt

(

γvy
)

= vy
dγ

dt
− eEvxvy

mc2
= 0 , (68)

subject to the boundary condition vx(t = 0) = 0 and vy(t = 0) ≡ v0. Of course, we have
simply reproduced eq. (55). For completeness, we can now trivially solve eqs. (67) and (68):

γvx =
eEt

m
, γvy = γ0v0 =

p0
m

, (69)
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where γ0 ≡ (1−v20/c
2)−1/2 and we have taken the constant of integration to be γ0v0 ≡ p0/m,

which defines p0. Squaring these two equations and adding, we obtain

γ2v2 =
p20 + e2E2t2

m2
, (70)

where v2 = v2x + v2y . Inserting γ2v2 = c2(γ2 − 1) above, it follows that

γ =

√

m2c2 + p20 + e2E2t2

mc
. (71)

Plugging eq. (71) into eq. (69), we recover the expressions for vx and vy previously obtained
in eq. (57).

(b) Eliminate the time to obtain the trajectory of the particle in space. Discuss the shape
of the path for short and long times (define “short” and “long” times).

We can eliminate t from eq. (59),

t =
W0

ceE
sinh

(

eEy

p0c

)

.

Inserting this into the equation for x(t) and using the identity cosh2 z−sinh2 z = 1, it follows
that

x =
W0

eE

[

cosh

(

eEy

p0c

)

− 1

]

,

which is the equation for a catenary curve.
To describe the shape of the path for short and long times, we note that W0/(ceE)

has units of time. This we can define short and long times relative to this quantity. For
t ≪ W0/(ceE), we have

√

W 2
0 + (ceEt)2 ≃ W0 +

(ceEt)2

2W0

, sinh−1

(

ceEt

W0

)

≃ ceEt

W0

.

Hence the approximate form of eq. (59) is

x(t) ≃ c2eEt2

2W0
, y(t) ≃ p0c

2t

W0
.

Solving for t and inserting the result back into the above equations yields

x ≃ eEW0y
2

2p20c
2

.

Since v0 = c2p0/W0, we can eliminate W0 from the above expression to obtain,

x ≃ eEy2

2p0v0
. (72)
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That is, as short times, the motion is parabolic.6

For t ≫ W0/(ceE), eq. (59) yields:

x(t) ≃ ct , y(t) ≃ p0c

eE
ln

(

2ceEt

W0

)

.

In the latter case, we used:

sinh−1 z = ln
(

z +
√
z2 + 1

)

≃ ln 2z , for z ≫ 1 .

Hence, to a good approximation,

y ≃ p0c

eE
ln

(

2eEx

W0

)

,

or equivalently,

x ≃ W0

2eE
exp

(

eEy

p0c

)

.

That is, at long times the motion is exponential.

5. [Jackson, problem 12.11] Consider the precession of the spin of a muon, initially longitudi-
nally polarized, as the muon moves in a circular orbit in a plane perpendicular to a uniform
magnetic field ~B.

(a) Show that the difference Ω of the spin precession frequency and the orbital gyration
frequency is

Ω =
eBa

mµc
,

independent of the muon’s energy, where a = 1
2
(g−2) is the magnetic moment anomaly. Find

the equations of motion for the components of the spin along the mutually perpendicular
directions defined by the particle’s velocity, the radius vector from the center of the circle to
the particle, and the magnetic field.

Our starting point is the Thomas equation, which Jackson writes in the following form
[cf. eq. (11.170) of Jackson]:

d~s

dt
=

e

mc
~s×

{(

g

2
− 1 +

1

γ

)

~B −
(g

2
− 1
) γ

γ + 1
(~β · ~B)~β −

(

g

2
− γ

γ + 1

)

~β × ~E

}

, (73)

6The result of eq. (72) also coincides with the non-relativistic limit (in which case p0 = mv0). To verify
this assertion, we can perform a formal expansion in powers of 1/c. In this limit, W0 ≃ mc2 and

t ≪ W0

ceE
≃ mc

eE
,

which is always true in the limit of c → ∞ (which is equivalent to taking the non-relativistic limit).
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where the time derivative of the velocity vector is given by [cf. eq. (11.168) of Jackson]:

d~β

dt
=

e

γmc

[

~E + ~β × ~B − ~β(~β · ~E)
]

. (74)

For a particle moving in a circular orbit in a plane perpendicular to a uniform magnetic
field ~B, we have ~β · ~B = 0, where ~v ≡ c~β is the particle velocity. Hence, eqs. (73) and (74)
reduce to

d~s

dt
=

e

mc

(

g

2
− 1 +

1

γ

)

~s× ~B ,
d~v

dt
=

e

γmc
~v × ~B , (75)

since by assumption there is no electric field present (~E = 0). That is, eq. (75) can be
written in the form of precession equations,

d~s

dt
= ~s× ~ω ,

d~v

dt
= ~v × ~ωB ,

where the spin precession frequency ~ω and the orbital gyration frequency ~ωB are given by:

~ω ≡ e

γmc

[

1 +

(

g − 2

2

)

γ

]

~B , ~ωB ≡ e

γmc
~B .

The difference of these two frequencies is

~Ω ≡ ~ω − ~ωB =
e

mc

(

g − 2

2

)

~B ,

and the magnitude of this frequency difference is given by

Ω =
eBa

mc
, where a = 1

2
(g − 2) .

To find the equations of motion for the components of the spin vector, we first decompose
this vector into longitudinal and transverse components with respect to the direction of the
velocity, β̂ ≡ ~β/β. That is, ~s = ~s‖ + ~s⊥, where

~s‖ = (β̂ · ~s)β̂ , ~s⊥ = ~s− ~s‖ .

By construction,
~s⊥ · β̂ = 0 . (76)

We first work out d~s‖/dt.

d~s‖
dt

=
d

dt

(

(β̂ · ~s)β̂
)

= β̂
d

dt

(

β̂ · ~s
)

+ ~s · β̂
dβ̂

dt
. (77)

Jackson gives the following result in his eq. (11.171),

d

dt

(

β̂ · ~s
)

= − e

mc
~s⊥ ·

[

(g

2
− 1
)

β̂ × ~B +

(

gβ

2
− 1

β

)

~E

]

.
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Setting ~E = 0, we obtain

d

dt

(

β̂ · ~s
)

= −eB

mc

(

g − 2

2

)

~s⊥ · (β̂ × B̂) . (78)

We also need to work out dβ̂/dt.

dβ̂

dt
=

d

dt

(

~β

β

)

=
1

β

d~β

dt
−

~β

β2

dβ

dt
. (79)

Using

dβ

dt
=

d

dt

(

~β · ~β
)

1/2
=

1

2

(

~β · ~β
)

−1/2 d

dt

(

~β · ~β
)

=
1

2β
2~β ·

d~β

dt
= β̂ ·

d~β

dt
,

in eq. (79), we conclude that

dβ̂

dt
=

1

β

[

d~β

dt
− β̂

(

β̂ ·
d~β

dt

)]

.

From eq. (75), we obtain

d~β

dt
=

e

γmc
~β × ~B .

Hence β̂ · d~β/dt = 0, and we end up with

dβ̂

dt
=

eB

γmc
β̂ × B̂ . (80)

Inserting eqs. (78) and (80) into eq. (77), we obtain

ds‖
dt

= −eB

mc

(

g − 2

2

)

[~s⊥ · (β̂ × B̂)]β̂ +
eB

γmc
~s · β̂(β̂ × B̂) .

Since ~s‖ ≡ (~s · β̂)β̂, it immediately follows that

~s · β̂(β̂ × B̂) = ~s‖ ×
~B .

We can further simplify the quantity [~s⊥ · (β̂ × B̂)]β̂ by using ~s⊥ · β̂ = 0 [cf. eq. (76)] and

β̂ · B̂ = 0. First, consider the triple cross product

~s⊥ ×

[

β̂ × (β̂ × B̂)
]

= [~s⊥ · (β̂ × B̂)]β̂ − (β̂ × B̂)~s⊥ · β̂ = [~s⊥ · (β̂ × B̂)]β̂ .

However, β̂ × (β̂ × B̂) = β̂(β̂ · B̂)− B̂ = −B̂. Hence,

[~s⊥ · (β̂ × B̂)]β̂ = −~s⊥ × B̂ .
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Inserting eqs. (82) and (83) into eq. (81) then yields

d~s‖
dt

=
eB

mc

[(

g − 2

2

)

~s⊥ +
1

γ
~s‖

]

× B̂

Using this result, we can evaluate d~s⊥/dt.

d~s⊥
dt

=
d

dt

(

~s− ~s‖

)

=
eB

mc

(

g

2
− 1 +

1

γ

)

(~s‖ + ~s⊥)×
~B =

eB

mc

[(

g − 2

2

)

~s⊥ +
1

γ
~s‖

]

× B̂ ,

which simplifies to

d~s⊥
dt

=
eB

mc

[(

g − 2

2

)

~s‖ +
1

γ
~s⊥

]

× B̂

Finally, we need to further decompose ~s⊥ into components along the direction of the
magnetic field and along the direction of the unit radius vector r̂ that points to the center
of the circular path of the moving spin. In light of eq. (74) [with ~E = 0], d~v/dt ∝ β̂ × B̂,
where β̂ ·B̂ = 0. But for circular motion, r̂ ·β̂ = 0 and the acceleration d~v/dt points radially
into the origin, i.e. d~v/dt ∝ −r̂. It follows that r̂ = B̂ × β̂, and we conclude that the unit
vectors {B̂ , β̂ , r̂} form a mutually orthonormal right-handed triad of vectors. Thus, we
can write:

~s⊥ ≡ ~sB + ~sr , where ~sB ≡ (~s · B̂)B̂ and ~sr ≡ (~s · r̂)r̂ . (81)

Note that
d~sB
dt

=

(

B̂ ·
d~s

dt

)

B̂ = 0 , (82)

since ~B is time-independent by assumption and

~B ·
d~s

dt
∝ ~B · (~s× ~B) = 0 ,

in light of eq. (75). Thus, ~sB is a constant in time, from which it follows that

d~sr
dt

=
d

dt
(~s⊥ + ~sB) =

d~s⊥
dt

. (83)

Hence, the equations of motion for the components of the spin vector are:

d~sB
dt

= 0 ,

d~sr
dt

=
eB

mc

[(

g − 2

2

)

~s‖ +
1

γ
~sr

]

× B̂ ,

d~s‖
dt

=
eB

mc

[(

g − 2

2

)

~sr +
1

γ
~s‖

]

× B̂ ,

after using ~sB × B̂ = (~s · B̂)B̂ × B̂ = 0.
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(b) For the CERN Muon Storage Ring, the orbit radius is R = 2.5 meters and B =
17 × 103 gauss. What is the momentum of the muon? What is the time dilation factor
γ? How many periods of precession T = 2π/Ω occur per observed laboratory mean lifetime
of the muons? [Relevant data: mµ = 105.66 MeV, τ0 = 2.2 × 10−6 s, a ≃ α/(2π) where
α ≃ 1/137.]

For circular motion,

~a =
d~v

dt
= −v2

R
r̂ . (84)

Since the circular motion is in a plane that is perpendicular to the magnetic field ~B, it
follows that ~B, ~v and r̂ are mutually orthogonal vectors. Moreover, eqs. (12.38) and (12.39)
of Jackson yield

d~v

dt
=

e

γmc
~v × ~B . (85)

Thus, if ~B points in the z-direction, then ~v = −vθ̂ and the circular motion is clockwise in
the x–y plane. Combining eqs. (84) and (85), it follows that

γmv =
eBR

c
, (86)

which we recognize as the relativistic momentum of the muon, pµ. Using eq. (12.42) of
Jackson, we can rewrite eq. (86) as

pµ (MeV/c) = 3× 10−4 BR (gauss-cm) . (87)

The factor of 3 × 10−4 in eq. (87) arises as follows. In gaussian units, e = 4.8 × 10−10 esu
and 1 MeV= 1.6× 10−6 ergs. Hence, the conversion factor between ergs and MeV is

4.8× 10−10/1.6× 10−6 = 3× 10−4.

Thus we end up with

pµ = (3× 10−4)(1.7× 104)(250) MeV/c = 1.275× 103 MeV/c .

The γ-factor is

γ =
E

mc2
=

(p2c2 +m2c4)1/2

mc2
=

(

p2

m2c2
+ 1

)1/2

.

The muon rest energy is mc2 = 105.66 MeV. Hence,

γ =

[

1 +
(1.275× 103)2

(105.66)2

]1/2

= 12.11 .

The number of periods of precession, T = 2π/Ω, occurring per observed mean muon
lifetime, γτ0 = γ(2.2× 10−6 s), is given by7

γτ0
T

=
γτ0Ω

2π
=

γτ0eBa

2πmc
=

γ2τ0va

2πR
,

7Note that in the laboratory frame, the observed muon lifetime is given by γτ0, where τ0 is the muon
lifetime in the muon rest frame.
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where eq. (86) was used to arrive at the final result above. Since γ ≫ 1, we can approximate
v ≃ c. In addition, we take

a = 1
2
(g − 2) ≃ α

2π
, where α ≃ 1

137
,

as predicted at lowest non-trivial order in quantum electrodynamics. Hence,

γτ0
T

≃ γ2τ0cα

4π2R
=

(12.11)2(2.2× 10−6 s)(3× 1010 cm s−1)

4π2(250 cm)(137)
= 7.156 .

(c) Express the difference frequency Ω in units of orbital rotation frequency and compute
how many precessional periods (at the difference frequency) occur per rotation for a 300 MeV
muon, a 300 MeV electron, a 5 GeV electron (this last typical of the e+e− storage ring at
Cornell).

NOTE: The energy values above correspond to the total relativistic energies.

For a 300 MeV muon,

γ =
E

mc2
=

300

105.66
= 2.839 ,

and

Ω =
eBa

mc
= γωBa ≃ γωBα

2π
= 3.3× 10−3ωB .

One revolution occurs in time t = 2πR/v. In this time, the number of periods of precession,
T = 2π/Ω, is given by

t

T
=

(

2πR

v

)(

Ω

2π

)

=
ΩR

v
.

We can rewrite the above result using eq. (86), which yields

R

v
=

γmc

eB
=

1

ωB

.

Hence, for a 300 MeV muon, we have

t

T
=

Ω

ωB

≃ γα

2π
= 3.3× 10−3 .

For a 300 MeV electron, we use mec
2 = 511 keV to obtain γ = 300/0.511 = 587. Hence,

t

T
=

Ω

ωB

≃ γα

2π
= 0.682 .

Finally, for a 5 GeV electron, we have γ = 500/0.511 = 9.785× 103. It follows that

t

T
=

Ω

ωB

≃ γα

2π
= 11.37 .
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