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1. [Jackson, problem 14.4] Using the Liénard-Wiechert fields, discuss the time-averaged power
radiated per unit solid angle in nonrelativistic motion of a point particle with charge e, moving:

(a) along the z axis with instantaneous position z(t) = a cosω0(t) ,

(b) in a circle of radius R in the x–y plane with constant angular frequency ω0.

Sketch the angular distribution of the radiation of the radiation and determine the total power
radiated in each case.

(a) Case 1: Non-relativistic motion of a point particle with charge e moving along the z-axis
with instantaneous position z(t) = a cosω0(t) .

We make use of eq. (14.20) of Jackson, which is relevant for non-relativistic motion,
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Working out the absolute square of the triple product in eq. (1),
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In obtaining the final result above, we chose to work in a coordinate system in which the
origin corresponds to the instantaneous position of the charged particle, and the unit vector
n̂ has polar angle θ and azimuthal angle φ with respect to the z-axis,

n̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ . (3)

The time-averaged power is easily obtained by noting that1

〈cos2 ω0t〉 = 1
2
.

1To compute the time-average of cos2 ω0t, note that the time averages satisfy 〈cos2 ω0t〉 = 〈sin2 ω0t〉, and
cos2 ω0t+ sin2 ω0t = 1.

1



Hence, it follows that
〈

dP

dΩ

〉
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e2a2ω4

0

8πc3
sin2 θ . (4)

In Figure 1, the angular distribution of the radiated power is exhibited as a polar plot.

Figure 1: A polar plot of the angular distribution of the power radiated by a charged particle
moving non-relativistically along the z axis with instantaneous position z(t) = a cosω0(t). The
angular distribution is given by eq. (4) and is proportional to sin2 θ. This plot was created with
Maple software.

Integrating over the solid angle yields the total radiated power,

〈P 〉 = e2a2ω4
0

3c3
.

(b) Case 2: Non-relativistic motion of a point particle with charge e moving in a circle of
radius R in the x–y plane with constant angular frequency ω0.

For circular motion in the x–y plane, the trajectory of the particle is given by

~x(t) = R(x̂ cosω0t + ŷ sinω0t) .

Then, we easily compute
d~β

dt
=

1

c

d2~x

dt2
= −ω2

0

c
~x(t) .

We again choose to work in a coordinate system in which the origin corresponds to the
instantaneous position of the charged particle, and the unit vector n̂ given by eq. (3) has
polar angle θ and azimuthal angle φ with respect to the z-axis. Consequently,

n̂·
d~β

dt
= −ω2

0R

c
(cosω0t sin θ cosφ+ sinω0t sin θ sinφ) .
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Evaluating the absolute square of the triple cross product as in part (a) [cf. eq. (2)], we obtain:
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Using eq. (1), it follows that

dP

dΩ
=

e2ω4
0R

2

4πc3
[

1− sin2 θ cos2(ω0t− φ)
]

.

The time-averaged power is easily obtained by noting that 〈cos2(ω0t − φ)〉 = 1
2
. Employing

the trigonometric identity, 1− 1
2
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2
(1 + cos2 θ) , it follows that
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. (5)

In Figure 2, the angular distribution of the radiated power is exhibited as a polar plot.

Figure 2: A polar plot of the angular distribution of the power radiated by a charged particle
moving non-relativistically in a circle of radius R in the x–y plane with constant angular frequency
ω0. The angular distribution is given by eq. (5) and is proportional to 1 + cos2 θ. This plot was
created with Maple software.

Integrating over solid angles yields the total radiated power,

〈P 〉 = 2e2ω4
0R

2

3c3
.

2. [Jackson, problem 14.5] A nonrelativistic particle of charge ze, massm, and kinetic energy E
makes a head-on collision with a fixed central force field of finite range. The interaction is
repulsive and described by a potential V (r), which becomes greater than E at close distances.

(a) Show that the total energy radiated is given by
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where rmin is the closest distance of approach in the collision.
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Using Larmor’s formula given in eq. (14.22) of Jackson for a nonrelativistic particle of charge
ze and mass m,

P (t) =
2z2e2

3c3
|~a(t)|2 , (6)

where ~a is the acceleration of the particle (which depends on the time t). Newton’s second
law yields

~F = −~∇V = m~a , (7)

where V is the potential energy, which is assumed to depend on the radial coordinate r alone.
Thus, we can identify

~a = − 1

m

dV

dr
r̂ , (8)

where r̂ is a unit vector pointing in the radial direction. Inserting this result into eq. (6) yields
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The total energy radiated by the particle (denoted by ∆W below) is therefore given

∆W =
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P (t) dt =
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3m2c3
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where r = r(t) depends on the time coordinate t.
We can assume that at t = −∞, the particle is infinitely far from the fixed central force

field (whose center will define the origin of our coordinate system). It is convenient to choose
t = 0 to be the time of closest approach, in which the particle is at a distance rmin from the
origin. The result of the interaction is to turn the particle around. The particle now retraces
its original trajectory (in the opposite direction); ~v and ~a of the incoming charge simply
reverse their signs and the particle ends up infinitely far away at t = ∞. In particular, the
energy radiated by the particle on its way in is equal to the energy radiated on its way out.
Hence,
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It then follows that

∆W =
4z2e2

3m2c3

∫ ∞
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∣
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v
, (12)

after changing variables from t to r(t) and noting that dt/dr = (dr/dt)−1 = v−1, where v is
the velocity of the particle when the particle is located at r = r(t).

One can determine v(t) from the conservation of energy. The total energy of the particle
is given by

E = 1
2
mv2 + V (r) = constant , (13)

It then follows that

v =

√

2[E − V (r)]

m
. (14)
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Moreover, rmin is determined by the condition that v = 0 when r = rmin. Thus, E = V (rmin).
Hence,

v =

√

2[V (rmin)− V (r)]

m
. (15)

Inserting this result into eq. (12) yields
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(b) If the interaction is a Coulomb potential V (r) = zZe2/r, show that the total energy
radiated is

∆W =
8

45

zmv50
Zc3

where v0 is the velocity of the charge at infinity.

We now use eq. (13) by evaluating E at r = ∞. Since V (∞) = 0, it follows that E = 1
2
mv20 .

In part (a), we noted that E = V (rmin). It then follows that

V (rmin) =
zZe2

rmin
= 1

2
mv20 . (17)

Plugging the above expressions for V (r) and V (rmin) into eq. (16), we obtain
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where

rmin =
2zZe2

mv20
, (19)

in light of eq. (17). It is convenient to define x ≡ r/rmin, and change the integration variable
from r to x. Then,
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√

m

2

(zZe2)3/2

r
5/2
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∫ ∞

1

dx

x7/2
√
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. (20)

One more change of variables is needed to convert the integral into a more familiar form.
Defining y = 1/x, it follows that

∫ ∞

1

dx

x7/2
√
x− 1

=

∫ 1

0

y2 dy√
1− y

. (21)

Recall the well-known Beta integral,

B(p, q) =

∫ 1

0

tp−1(1− t)q−1 dt =
Γ(p)Γ(q)

Γ(p+ q)
, for Re p > 0 and Re q > 0, (22)
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where the gamma function satisfies Γ(x + 1) = xΓ(x), with Γ(n) = (n − 1)! for nonnegative
integers n. Hence,

∫ 1

0

y2 dy√
1− y

=
Γ(3)Γ(1

2
)

Γ(7
2
)
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2
)
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· 3
2
· 5
2
Γ(1

2
)
=

16

15
. (23)

Inserting the results of eqs. (19), (21), and (23) back into eq. (20), we end up with
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4

3

z2e2

m2c3

√

m

2
(zZe2)3/2

(

mv20
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)5/2
16

15
=

8
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zmv50
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. (24)

3. In class, we showed that the angular distribution of the power radiated by a point particle
of charge e moving along a trajectory ~r(t) at velocity c~β(t) ≡ d~r(t)/dt is given by:

dP

dΩ
= lim

r→∞

cr2

4π

∫ ∞

−∞

dω′

∫ ∞

−∞

dω′′ ~E
∗

ω′(~x) · ~Eω′′(~x) ei(ω
′−ω′′)t ,

where r is the distance of the observer from the origin and the Fourier coefficient of the electric
field vector is given by

Eω(~x) ≡
1

2π

∫ ∞

−∞

dt ~E(~x, t)eiωt (25)

(a) Derive the following expression for the Fourier coefficient,

Eω(~x) = −ie ω eiωr/c

2πrc

∫ ∞

−∞

dt n̂× (n̂ × ~β) eiω(t−n̂·~r(t)/c) ,

where n̂ is a unit vector pointing from the charge to the observer.2

If a point particle with charge e moves along a trajectory ~r(t) at velocity ~v ≡ c ~β with

acceleration ~a = c d~β/dt, then the leading order behavior of the electric and magnetic fields
at large distances (in gaussian units) is given by:

~E =
e

cr







n̂×

[

(n̂− ~β)×
d~β

dt

]

(1− n̂·~β)3







~x
′=~r(tret)

+O
(

1

r2

)

, (26)

~B = n̂× ~E +O
(

1

r2

)

, (27)

where the retarded time is defined as tret ≡ t −
∣

∣~x − ~r(tret)
∣

∣/c. Note that in eq. (26) the

velocity c~β is equal to the derivative of ~x ′ = ~r(tret) with respect to the retarded time,

~β ≡ ~β(tret) =
1

c

d~r(tret)

dtret
. (28)

2As noted by Jackson below his eq. (14.62), assuming that the observation point ~x is located very far away
from the region of space where the acceleration occurs, the unit vector n̂ can be very well approximated as
being constant in time.
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Inserting eq. (26) into eq. (25) yields,

~Eω(~x) =
e

2πcr

∫ ∞

−∞

dt eiωt







n̂×
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]

(1− n̂·~β)3







~x
′=~r(tret)

. (29)

Define t′ ≡ tret and change the variable of integration in eq. (29),

t = t′ +
1

c
|~x− ~r(t′)| =⇒ dt =

dt

dt′
dt′ =

(

1−
(

~x− ~r(t′)
)

·d~r/dt′

c|~x− ~r(t′)|

)

dt′ .

Noting that ~v = c~β = d~r(t′)/dt′ [cf. eq. (28)] and

n̂ =
~x− ~r(t′)

|~x− ~r(t′)| ,

it follows that dt = (1− n̂·~β)dt′. Hence,

~Eω(~x) =
e

2πcr

∫ ∞

−∞

dt′ eiω[t
′+|~x−~r(t′)|/c]







n̂×

[

(n̂− ~β)×
d~β

dt

]

(1− n̂·~β)2





 . (30)

For large values of r ≡ |~x|, we can approximate

n̂ =
~x− ~r(t′)

|~x− ~r(t′)| =
~x

r

[

1 +O
(

1

r

)]

,

so that ~x ≃ rn̂ and

t′ +
1

c
|~x− ~r(t′)| = t′ +

1

c

√

r2 − 2~x·~r(t′) + r′ 2 = t′ +
r

c

[

1− n̂·~r(t′)

r
+O

(

1

r2

)]

≃ t′ +
1

c

(

r − n̂·~r(t′)
)

,

where r′ ≡ |~r(t′)|. Inserting the above result into eq. (30) yields

~Eω(~x) =
e

2πcr
eiωr/c

∫ ∞

−∞

dt′ eiω[t
′−n̂·~r(t′)/c]







n̂×

[

(n̂− ~β)×
d~β

dt

]

(1− n̂·~β)2





 . (31)

Employing the identity,

n̂×

[

(n̂− ~β)×
d~β

dt

]

(1− n̂× ~β)2
=

d

dt′

(

n̂× (n̂× ~β)

1− n̂·~β

)

, (32)
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we can integrate by parts and drop the surface term.3 Hence, eqs. (31) and (32) yield,

~Eω(~x) = − e

2πcr
eiωr/c

∫ ∞

−∞

dt′







n̂×

[

(n̂− ~β)×
d~β

dt

]

1− n̂·~β







d

dt′
eiω[t

′−n̂·~r(t′)/c]

= − ieω

2πcr
eiωr/c

∫ ∞

−∞

dt n̂× (n̂× ~β) eiω[t−n̂·~r(t)/c] , (33)

after dropping the primed superscripts by writing t in place of t′ (which after all is just a

dummy integration variable), and using c ~β(t′) = d~r(t′)/dt′.

(b) [Jackson, problem 14.13] Using the results of part (a) and the Poisson sum formula,
show explicitly that if the motion of a radiating particle repeats itself with periodicity T ,
then the continuous frequency spectrum becomes a discrete spectrum containing frequencies
that are integral multiples of the fundamental. Show that a general expression for the time-
averaged power radiated per unit solid angle in each multiple m of the fundamental frequency
ω0 = 2π/T is given by

〈

dP

dΩ

〉

=
1

T

∫ T

0

dt
dP

dΩ
≡

∞
∑

m=1

dPm

dΩ
,

where
dPm

dΩ
=

e2ω4
0m

2

(2πc)3

∣

∣

∣

∣

∣

∫ 2π/ω0

0

~v(t)× n̂ exp

[

imω0

(

t− n̂·~r(t)

c

)]

dt

∣

∣

∣

∣

∣

2

. (34)

It is convenient to rewrite the integral in eq. (33) as
∫ ∞

−∞

dt n̂× (n̂× ~β) eiω[t−n̂·~r(t)/c] =

∞
∑

m=−∞

∫ (m+1)T

mT

dt n̂× (n̂× ~β) eiω[t−n̂·~r(t)/c] . (35)

Since the motion is periodic, we have

~r(t+ T ) = ~r(t) and ~β(t+ T ) = ~β(t) ,

where T ≡ 2π/ω0 defines the fundamental frequency ω0. Let us define a new variable, t′ ≡
t−mT . Then, eq. (35) takes the following form,
∫ ∞

−∞

dt n̂× (n̂× ~β) eiω[t−n̂·~r(t)/c] =
∞
∑

m=−∞

eiωmT

∫ T

0

dt′ n̂× (n̂× ~β ′) eiω[t
′−n̂·~r(t′)/c] , (36)

where ~β ′ ≡ ~β(t′).
At this point, we can apply the Poisson sum formula,4

1

2π

∞
∑

m=−∞

eiωmT =
∞
∑

m=−∞

δ(ωT − 2πm) .

3The justification for dropping the surface term is discussed on pp. 675–676 of Jackson.
4See Section 5 of the class handout entitled Generalized Functions for Physics.
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Hence, eq. (36) can be rewritten as

∫ ∞

−∞

dt n̂× (n̂× ~β) eiω[t−n̂ ·~r(t)/c] =

∞
∑

m=−∞

δ(ωT − 2πm)

∫ T

0

dt n̂× (n̂× ~β) eiω[t−n̂ ·~r(t)/c] ,

after again removing the superscript primes from t′ from the right hand side above as a
notational convenience. Note that the δ-function enforces the condition,

ω =
2πm

T
= mω0 , for m = 0,±1,±2, . . . ,

which implies that the frequency spectrum is discrete.
Thus we can rewrite eq. (33), obtained in part (a), as

~Eω(~x) = − ieω

2πcr
eiωr/c

∞
∑

m=−∞

δ(ωT − 2πm)

∫ T

0

dt n̂× (n̂× ~β) eiω[t−n̂·~r(t)/c] . (37)

The power radiated per unit solid angle (in gaussian units) is given by

dP

dΩ
= lim

r→∞
r2 ~S ·n̂ , where ~S =

c

4π
(~E × ~B) ,

and ~E and ~B are the real physical fields. For large distances r, we have ~B ≃ n̂× ~E, as noted
in eq. (27), in which case

~E × ~B = ~E × (n̂× ~E) = n̂|~E|2 ,

after using n̂· ~E = 0 (i.e., the electromagnetic radiation is transverse). Hence, it follows that

dP

dΩ
=

c

4π
lim
r→∞

r2|~E(~x, t)|2 . (38)

Inverting the Fourier transform defined in eq. (25),

~E(~x, t) =

∫ ∞

−∞

dω ~Eω(~x) e
−iωt ,

and inserting the result into eq. (38) yields

dP

dΩ
= lim

r→∞

cr2

4π

∫ ∞

−∞

dω′

∫ ∞

−∞

dω′′ ~E ∗
ω′ · ~Eω′′ ei(ω

′−ω′′)t .

Using eq. (37) in the above expression, we obtain

dP

dΩ
=

e2

4πc

∞
∑

m=−∞

∞
∑

n=−∞

∫ ∞

−∞

dω′

∫ ∞

−∞

dω′′ δ(ω′T − 2πm) δ(ω′′T − 2πn) ei(ω
′−ω′′)(t−r/c) ω′ω′′

×
∫ T

0

dt′ n̂× (n̂× ~β ′) eiω[t
′−n̂·~r(t′)/c]

∫ T

0

dt′′ n̂× (n̂× ~β ′′) eiω
′′[t′′−n̂·~r(t′′)/c] .
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We can now perform the integrals over ω′ and ω′′ using the δ-functions, which set ω′ = mω0

and ω′′ = nω0, respectively (where ω0 ≡ 2π/T ). Thus,

dP

dΩ
=

e2ω2
0

4πcT 2

∞
∑

m=−∞

∞
∑

n=−∞

mneiω0(m−n)(t−r/c)

∫ T

0

dt′n̂× (n̂× ~β ′) eiω[t
′−n̂·~r(t′)/c]

×
∫ T

0

dt′′ n̂× (n̂× ~β ′′) eiω
′′[t′′−n̂·~r(t′′)/c] . (39)

Since dP/dΩ depends on t, we shall integrate over one cycle,
〈

dP

dΩ

〉

=
1

T

∫ T

0

dP

dΩ
dt .

Taking the time-average of eq. (39), the integration over t is straightforward, as it depends
only on the following integral,

1

T

∫ T

0

eiω0t(m−n) dt = δmn .

The sums over m and n in eq. (39) now collapse into a single sum over m. Noting that
[

n̂× (n̂× ~β ′)
]

·
[

n̂× (n̂× ~β ′′)
]

= (n̂× ~β ′)·(n̂× ~β ′′) , (40)

the end result is,
〈

dP

dΩ

〉

=
e2ω2

0

4πcT 2

∞
∑

m=−∞

m2

∣

∣

∣

∣

∫ T

0

(n̂× ~β) eimω0(t−n̂ ·~r(t)/c)dt

∣

∣

∣

∣

2

=
e2ω2

0

2πcT 2

∞
∑

m=1

m2

∣

∣

∣

∣

∫ T

0

(n̂× ~β) eimω0(t−n̂·~r(t)/c)dt

∣

∣

∣

∣

2

, (41)

after noting that positive and negative m contribute equally to the sum over m (whereas the

m = 0 contribution to the sum vanishes). Thus, using ~v(t) = c~β and T = 2π/ω0 in eq. (41),
we can write:

〈

dP

dΩ

〉

=

∞
∑

m=1

dPm

dΩ
, (42)

where
dPm

dΩ
=

e2ω4
0m

2

(2πc)3

∣

∣

∣

∣

∣

∫ 2π/ω0

0

~v(t)× n̂ exp

[

imω0

(

t− n̂·~r(t)

c

)]

dt

∣

∣

∣

∣

∣

2

. (43)

4. [Jackson, problem 13.9] Assuming that Plexiglas or Lucite has an index of refraction of
1.50 in the visible region, compute the angle of emission of visible Cherenkov radiation for
electrons and protons as a function of their kinetic energies in MeV. Determine how many
quanta with wavelengths between 4000 and 6000 Å are emitted per centimeter of the path in
Lucite by a 1 MeV electron, a 500 MeV proton, and a 5 GeV proton.
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Using eq. (13.50) of Jackson, the angle of emission θc is obtained from:

cos θc =
1

β
√
ǫ
, (44)

and the index of refraction is nr =
√
ǫ. To compute β given the kinetic energy T , we recall

that

T = E −mc2 = γmc2 −mc2 = mc2
[
√

1

1− β2
− 1

]

.

Solving for β, it follows that

β2 = 1− 1
(

1 +
T

mc2

)2 ,

from which β is easily obtained,

β =
T

√

1 +
2mc2

T
T +mc2

.

Hence, eq. (44) yields

cos θc =
1

nr

(

1 +
mc2

T

)(

1 +
2mc2

T

)−1/2

. (45)

Note that mc2 = 0.511 MeV for the electron and mc2 = 938 MeV for the proton. Inserting
these numbers along with nr = 1.5 in eq. (45), one obtains the angle of emission of visible
Cherenkov radiation for electrons and protons as a function of their kinetic energies in MeV.

To determine the number of quanta emitted per path length, we first use eq. (13.48) of
Jackson:5

(

dE

dx

)

rad

=
e2

c2

∫

nr>1/β

ω

(

1− 1

β2n2
r

)

dω .

Assuming that nr is independent of ω in the frequency range of interest, we integrate from
ω = ω1 to ω = ω2 to obtain,

(

dE

dx

)

rad

=
e2

2c2

(

1− 1

β2n2
r

)

(ω2
2 − ω2

1) .

For the range 4000 Å≤ λ ≤ 6000Å, where 1 Å= 10−8 cm, we have

ω1 =
2πc

λ1
=

2π(3× 1010 cm·s−1)

4× 10−5 cm
= 4.71× 1015 s−1 ,

ω2 =
2πc

λ2
=

2

3
ω1 = 3.14× 1015 s−1 .

5Note that the charge of the moving particle is denoted by ze in Jackson. In this problem, z = ±1 for the
proton and electron, respectively, so that z2 = 1.
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The energy of one quantum is ~ω. Hence, it follows that

dN

dω dx
=

1

~ω

dE

dω dx
,

where N is the number of quanta radiated. Thus,
(

dN

dx

)

rad

=
e2

~c2

∫ ω2

ω1

(

1− 1

β2n2
r

)

dω =
e2

~c2

(

1− 1

β2n2
r

)

(ω2 − ω1) .

We can rewrite the above equation by using ω = kc/nr = 2πc/(nrλ) [cf. eq. (7.5) of Jackson]
and by introducing the fine structure constant,

α ≡ e2

~c
≃ 1

137
.

It follows that
(

dN

dx

)

rad

=
2πα

nr

(

1

λ2
− 1

λ1

)(

1− 1

β2n2
r

)

. (46)

We now plug in the relevant numbers into eq. (46).

Case 1: For a T = 1 MeV electron,

1

β
=

(

1 +
mc2

T

)(

1 +
2mc2

T

)−1/2

= 1.0626 .

Hence,

cos θc =
2

3β
= 0.7084 =⇒ θc = 44.9◦ ,

and

1− 1

β2n2
r

= 1− (1.0626)2

(1.5)2
= 0.4982 .

Eq. (46) then yields,

(

dN

dx

)

rad

=
2π

1.5

(

1

137

)(

1

4× 10−5 cm
− 1

6× 10−5 cm

)

(0.4982) = 127 quanta/cm .

Case 2: For a T = 500 MeV proton,

1

β
= 1.3193 .

Hence,
cos θc = 0.8795 =⇒ θ = 28.4◦ .

Eq. (46) then yields,
(

dN

dx

)

rad

= 58 quanta/cm .
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Case 3: For a T = 5 GeV proton,

1

β
= 1.0127 .

Hence,
cos θc = 0.6751 =⇒ θ = 47.5◦ .

Eq. (46) then yields,
(

dN

dx

)

rad

= 140 quanta/cm .

5. [Jackson, problem 10.1]

(a) Show that for arbitrary initial polarizations, the scattering cross section of a perfectly
conducting sphere of radius a, summed over outgoing polarizations, is given in the long-
wavelength limit by

dσ

dΩ
(ǫ̂0, n̂0, n̂) = k4a6

[

5
4
− |ǫ̂0 ·n̂|2 − 1

4
|n̂·(n̂0 × ǫ̂0)|2 − n̂0 ·n̂

]

,

where n̂0 and n̂ are the directions of the incident and scattered electromagnetic waves, re-
spectively, while ǫ̂0 is the (perhaps complex) unit polarization vector of the incident radiation
(ǫ̂∗0 ·ǫ̂0 = 1 ; n̂0 ·ǫ̂0 = 0.)

Our starting point is eq. (10.14) of Jackson,

dσ

dΩ
= k4a6

∣

∣ǫ̂∗ ·ǫ̂0 − 1
2
(n̂× ǫ̂∗)·(n̂0 × ǫ̂0)

∣

∣

2
.

For arbitrary initial polarization ǫ̂0, the scattering cross section summed over the final state
polarizations is

dσ

dΩ
= k4a6

∑

λ

∣

∣

∣
ǫ̂(λ) ∗ ·ǫ̂0 − 1

2
(n̂× ǫ̂(λ) ∗)·(n̂0 × ǫ̂0)

∣

∣

∣

2
. (47)

We shall evaluate the polarization sum using the following identity derived in the class
handout entitled Polarization Vectors and Polarization Sums,

∑

λ

ǫ̂
(λ) ∗
i ǫ̂

(λ)
j = δij − n̂in̂j , (48)

where the n̂i (i ∈ {1, 2, 3}) are the Cartesian components of the unit vector n̂ ≡ ~k/k.
Expanding out the terms in eq. (47), we first evaluate

∑

λ

|ǫ̂(λ) ∗ ·ǫ̂0|2 =
∑

λ

ǫ̂
(λ) ∗
i ǫ̂

(λ)
j (ǫ̂0)i(ǫ̂

∗
0)j = (ǫ̂0)i(ǫ̂

∗
0)j [δij − n̂in̂j] = 1− |n̂·ǫ̂0|2 , (49)

after using ǫ̂0 ·ǫ̂
∗
0 = 1 in the final step.
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Similarly,

∑

λ

|(n̂× ǫ̂(λ) ∗)·(n̂0 × ǫ̂0)|2 =
∑

λ

ǫ̂ijk n̂j ǫ̂
(λ) ∗
k ǫ̂ℓmn n̂mǫ̂

(λ)
n (n̂0 × ǫ̂0)i(n̂0 × ǫ̂∗0)ℓ ,

where the summation over repeated index pairs is implied by the Einstein summation con-
vention. Using the polarization sum identity given by eq. (48),

∑

λ

|(n̂× ǫ̂(λ) ∗)·(n̂× ǫ̂0)|2 = ǫijkǫℓmn(δkn − n̂kn̂n)(n̂0 × ǫ̂0)i(n̂0 × ǫ̂∗0)ℓ .

Since ǫijk is a totally antisymmetric tensor, it follows that ǫijk n̂jn̂k = 0. Employing the
identity,

ǫijkǫℓmnδkn = ǫijkǫℓmk = δiℓδjm − δimδjℓ ,

we end up with

∑

λ

|(n̂× ǫ̂(λ) ∗)·(n̂0 × ǫ̂0)|2 = (δiℓδjm − δimδjℓ)n̂jn̂m(n̂0 × ǫ̂0)i(n̂0 × ǫ̂∗0)ℓ

= |n̂0 × ǫ̂0|2 − |n̂·(n̂0 × ǫ̂0)|2 ,

after noting that n̂jn̂mδjm = n̂·n̂ = 1. Finally, we can expand out the square of the cross
product,

|n̂0 × ǫ̂0|2 = 1− |n̂·ǫ̂0|2 = 1 ,

after using n̂0 ·ǫ̂0 = 0 (which follows from the fact that the polarization vector is transverse
to the direction of propagation of the electromagnetic wave). Hence, we conclude that

∑

λ

|(n̂× ǫ̂(λ) ∗)·(n̂0 × ǫ̂0)|2 = 1− |n̂·(n̂0 × ǫ̂0)|2 .

All that remains is to evaluate the cross-term in eq. (47).

∑

λ

ǫ̂
(λ) ∗
i (ǫ̂0)i(n̂× ǫ̂(λ))j(n̂0 × ǫ̂∗0)j =

∑

λ

ǫjkℓ ǫ̂
(λ) ∗
i ǫ̂

(λ)
ℓ (ǫ̂0)in̂k(n̂0 × ǫ̂∗0)j

= ǫjkℓ(δiℓ − n̂in̂ℓ)(ǫ̂0)in̂k(n̂0 × ǫ̂∗0)j

= ǫjkℓ n̂k(ǫ̂0)ℓ(n̂0 × ǫ̂∗0)j = (n̂× ǫ̂0)·(n̂0 × ǫ̂∗0)

= (n̂·n̂0)(ǫ̂0 ·ǫ̂
∗
0)− |n̂·ǫ̂0|2

= n̂·n̂0 .

Collecting all the above results, it follows that

dσ

dΩ
= k4a6

{

1− |n̂·ǫ̂0|2 + 1
4

[

1− |n̂·(n̂0 × ǫ̂0)|2
]

− n̂·n̂0

}

,
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which simplifies to

dσ

dΩ
= k4a6

[

5
4
− |n̂·ǫ̂0|2 − 1

4
|n̂·(n̂0 × ǫ̂0)|2 − n̂·n̂0

]

, (50)

as required.

REMARK: If you express the square of the vector cross product in eq. (47) as the sum of
products of dot products before carrying out the polarization sums, you will arrive at a different
form for eq. (50). Nevertheless, it is possible to show that the two forms are equivalent. This
alternative method is provided at the end of this Solution Set.

(b) If the incident radiation is linearly polarized, show that cross section is

dσ

dΩ
(ǫ̂0, n̂0, n̂) = k4a6

[

5
8
(1 + cos2 θ)− cos θ − 3

8
sin2 θ cos 2φ

]

,

where n̂·n̂0 = cos θ and the azimuthal angle φ is measured from the direction of the linear
polarization.

We set up our coordinate system as follows:

n̂0

n̂0 × ǫ̂0

n̂

ǫ̂0

θ

φ

The components of the corresponding unit vectors are:

ǫ̂0 = (1 , 0 , 0), n̂0 × ǫ̂0 = (0 , 1 , 0) , n̂ = (sin θ cosφ , sin θ sinφ , cos θ) .

It follows that

ǫ̂0 ·n̂ = sin θ cosφ , n̂·(n̂0 × ǫ̂0) = sin θ sin φ , n̂0 ·n̂ = cos θ .
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Hence, eq. (50) yields

dσ

dΩ
= k4a6

[

5
4
− sin2 θ cos2 φ− 1

4
sin2 θ sin2 φ− cos θ

]

. (51)

Writing sin2 φ = 1
2
(1− cos 2φ) and cos2 φ = 1

2
(1 + cos 2φ), eq. (51) takes the following form,

dσ

dΩ
= k4a6

[

5
8
(1 + cos2 θ)− cos θ − 3

8
sin2 θ cos 2φ

]

. (52)

(c) What is the ratio of the scattered intensities at θ = 1
2
π, φ = 0 and θ = 1

2
π, φ = 1

2
π?

Explain physically in terms of the induced multipoles and their radiation patterns.

Using eq. (52), it follows that

dσ

dΩ

(

θ = 1
2
π , φ = 0

)

dσ

dΩ

(

θ = 1
2
π , φ = 1

2
π
)

=
1

4
.

If we trace back the origin of the various contributions, we see that the electric dipole
scattering originates from

1− |n̂·ǫ̂|2 = 1− sin2 θ cos2 φ −→
θ= 1

2
π

sin2 φ ,

whereas the magnetic dipole scattering originates from

1
4

[

1− |n̂·(n̂0 × ǫ̂0)|2
]

= 1
4

(

1− sin2 θ sin2 φ
)

−→
θ= 1

2
π

1
4
cos2 φ .

Thus, at θ = 1
2
π, φ = 0, we have pure magnetic dipole scattering. In contrast, at θ = 1

2
π,

φ = 1
2
π, we have pure electric dipole scattering, whose contribution is four times larger than

the magnetic dipole scattering contribution at θ = 1
2
π, φ = 0. The factor of four originates

from the relative factor of two between the electric dipole moment ~p [cf. eq. (10.12) of Jackson]
and the magnetic dipole moment ~m [cf. eq. (10.13) of Jackson] that are induced by the electric
and magnetic fields of the incoming plane wave.

At θ = 1
2
π, φ = 0, we see that n̂ points in the direction of ǫ̂0. But n̂ points in the direction

of the outgoing wave, whereas ǫ̂0 is parallel to the direction of the electric field of the incoming
plane wave. Since the latter is also parallel to the direction of ~p, we conclude that in this
case n̂ is parallel to ~p. It follows that ǫ̂∗ must be perpendicular to ~p (since the former is
necessarily perpendicular to n̂), in which case ǫ̂∗ ·~p = 0. Eq. (10.4) of Jackson then implies
that the scattering in this case is entirely due to the magnetic dipole term.

Similarly, at θ = 1
2
π, φ = 1

2
π, we see that n̂ points in the direction of n̂0 × ǫ̂0, which is

parallel to the direction of the magnetic field of the incoming plane wave. Since the latter is
also parallel to ~m, we conclude that in this case n̂ is parallel to ~m. It follows that n̂× ǫ̂∗0 must
be perpendicular to ~m, in which case (n̂ × ǫ̂∗0)· ~m = 0. Eq. (10.4) of Jackson then implies
that the scattering in this case is entirely due to the electric dipole term.
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Alternative evaluation of eq. (47)

In the evaluation of eq. (47), one might be tempted to employ the vector identity,

(n̂× ǫ̂(λ) ∗)·(n̂0 × ǫ̂0) = (n̂·n̂0)(ǫ̂
(λ) ∗

·ǫ̂0)− (n̂·ǫ̂0)(n̂0 ·ǫ̂
(λ) ∗) . (53)

Then, eq. (47) takes the following form:

dσ

dΩ
= k4a6

∑

λ

∣

∣

∣

(

ǫ̂(λ) ∗ ·ǫ̂0
)[

1− 1
2
(n̂·n̂0)

]

+ 1
2
(n̂·ǫ̂0)(n̂0 ·ǫ̂

(λ) ∗)
]

∣

∣

∣

2
. (54)

Expanding out the squared quantity yields

dσ

dΩ
= k4a6

[

[

1− 1
2
(n̂·n̂0)

]2
∑

λ

∣

∣ǫ̂(λ) ∗ ·ǫ̂0
∣

∣

2
+ 1

4

∣

∣n̂·ǫ̂0
∣

∣

2
∑

λ

∣

∣n̂0 ·ǫ̂
(λ) ∗
∣

∣

2

+Re

{

[

1− 1
2
(n̂·n̂0)

]

(n̂·ǫ̂∗0)
∑

λ

(

ǫ̂(λ) ∗ ·ǫ̂0
)

(n̂0 ·ǫ̂
(λ))

}]

. (55)

We have already used eqs. (48) and (49) to obtain,

∑

λ

|ǫ̂(λ) ∗ ·ǫ̂0|2 =
∑

λ

ǫ̂
(λ) ∗
i ǫ̂

(λ)
j (ǫ̂0)i(ǫ̂

∗
0)j = (ǫ̂0)i(ǫ̂

∗
0)j [δij − n̂in̂j] = 1− |n̂·ǫ̂0|2 . (56)

Similarly,

∑

λ

∣

∣n̂0 ·ǫ̂
(λ) ∗
∣

∣

2
=
∑

λ

ǫ̂
(λ) ∗
i ǫ̂

(λ)
j (n̂0)i(n̂0)j = (n̂0)i(n̂0)j [δij − n̂in̂j] = 1− (n̂·n̂0)

2 . (57)

and
∑

λ

(

ǫ̂(λ) ∗ ·ǫ̂0
)

(n̂0 ·ǫ̂
(λ)) =

∑

λ

ǫ̂
(λ) ∗
i ǫ̂

(λ)
j (ǫ̂0)i(n̂0)j = (ǫ̂0)i(n̂0)j [δij − n̂in̂j ] = −(n̂·ǫ̂0)(n̂·n̂0) ,

(58)
where we have used the fact that n̂0 ·ǫ̂0 = 0 (since the electromagnetic wave is transverse to
the direction of propagation). Inserting the polarization sums obtained above into eq. (55)
yields,

dσ

dΩ
= k4a6

{

[

1− 1
2
(n̂·n̂0)

]2[
1− |n̂·ǫ̂0|2

]

+ 1
4

∣

∣n̂·ǫ̂0
∣

∣

2[
1− (n̂·n̂0)

2
]

−
[

1− 1
2
(n̂·n̂0)

]

(n̂·n̂0)
∣

∣n̂·ǫ̂0
∣

∣

2
}

= k4a6
[

1− n̂·n̂0 +
1
4
(n̂·n̂0)

2 − 3
4

∣

∣n̂·ǫ̂0
∣

∣

2]
. (59)

To see that eq. (59) is equivalent to eq. (50), we need to evaluate

|n̂·(n̂0 × ǫ̂0)|2 = ǫijk n̂i(n̂0)j(ǫ̂0)k ǫmpqn̂m(n̂0)p(ǫ̂
∗
0)q , (60)
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where the Einstein summation convention is being used to sum over the repeated indices.
Eq. (60) can be simplified by employing the following identity,

ǫijkǫmpq = det





δim δip δiq
δjm δjp δjq
δkm δkp δkq





= δim(δjpδkq − δjqδkp)− δip(δjmδkq − δjqδkm) + δiq(δjmδkp − δjpδkm) . (61)

Thus, it follows that

|n̂·(n̂0 × ǫ̂0)|2 = ǫijkn̂i(n̂0)j(ǫ̂0)k ǫmpqn̂m(n̂0)p(ǫ̂
∗
0)q

=
[

δim(δjpδkq − δjqδkp)− δip(δjmδkq − δjqδkm) + δiq(δjmδkp − δjpδkm)
]

n̂i(n̂0)j(ǫ̂0)kn̂m(n̂0)p(ǫ̂
∗
0)q

= n̂·n̂
[

(n̂0 ·n̂0)(ǫ̂0 ·ǫ̂
∗
0)− (n̂0 ·ǫ̂0)(n̂0 ·ǫ̂

∗
0)
]

− n̂·n̂0

[

(n̂·n̂0)(ǫ̂0 ·ǫ̂
∗
0)− (n̂0 ·ǫ̂

∗
0)(n̂·ǫ̂0)

]

+n̂·ǫ̂∗0
[

(n̂·n̂0)(n̂0 ·ǫ̂0)− (n̂0 ·n̂0)(n̂·ǫ̂0)
]

. (62)

The above expression can be further simplified by using the fact that ǫ̂0 is a complex unit
vector that satisfies ǫ̂0 ·ǫ̂

∗
0 = 1 and the real unit vectors n̂ and n̂0 satisfy n̂·n̂ = n̂0 ·n̂0 = 1.

In addition, due to the transverse nature of the incoming electromagnetic wave, it follows that
n̂0 ·ǫ̂0 = n̂0 ·ǫ̂

∗
0 = 0, as previously noted. Thus, we end up with

|n̂·(n̂0 × ǫ̂0)|2 = 1− (n̂·n̂0)
2 −

∣

∣n̂·ǫ̂0
∣

∣

2
. (63)

Plugging the result of eq. (63) into eq. (50) yields,

dσ

dΩ
= k4a6

[

5
4
− |n̂·ǫ̂0|2 − 1

4

[

1− (n̂·n̂0)
2 −

∣

∣n̂·ǫ̂0
∣

∣

2]− n̂·n̂0

]

= k4a6
[

1− n̂·n̂0 +
1
4
(n̂·n̂0)

2 − 3
4

∣

∣n̂·ǫ̂0
∣

∣

2]
, (64)

which coincides with eq. (59).
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