
Physics 214 Alternate Final Exam Solutions Winter 2024

1. Consider an oversimplified model of an antenna consisting of a thin wire of length ℓ
and negligible cross section, carrying a harmonically varying current density flowing in the
z direction. The (complex) current in the wire is given by Ie−iωt, where I is a constant
(independent of position).

(a) Show that the (complex) current density takes the form:

~J(~x, t) = ẑIe−iωtδ(x)δ(y)[Θ(z + 1

2
ℓ)−Θ(z − 1

2
ℓ)] , (1)

by verifying that eq. (1) implies that the corresponding current is given by Ie−iωt, where
the step function Θ(x) ≡ 1 if x > 0 and Θ(x) ≡ 0 if x < 0. Here, we assume that the point
z = 0 corresponds to the midpoint of the antenna.

First we note that

Θ(z + 1

2
ℓ)−Θ(z − 1

2
ℓ) =











0 , z > ℓ/2 ,

1 , |z| < ℓ/2 ,

0 , z < −ℓ/2 .

Thus, ~J = 0 if z > ℓ/2 or z < −ℓ/2. For |z| < ℓ/2,

Jz = Ie−iωtδ(x)δ(y) , Jx = Jy = 0 .

The current is obtained by computing
∫

~J · d~a =

∫

~J ·ẑ dxdy =

∫

Jz dxdy = Ie−iωt .

(b) Prove that there is an oscillating charge density at z = ±1

2
ℓ (i.e., at both ends of

the antenna), but the charge density vanishes at any interior point on the antenna.

The continuity equation is

~∇ · ~J +
∂ρ

∂t
= 0 .

For ~J(~x, t) = ~J(~x)e−iωt and ρ(~x, t) = ρ(~x)e−iωt, the continuity equation then reads:

~∇ · ~J = iωρ(~x) .

Using ~J given in part (a),

~∇ · ~J =
∂Jz

∂z
= Iδ(x)δ(y)

∂

∂z

[

Θ(z + 1

2
ℓ)−Θ(z − 1

2
ℓ)
]

= Iδ(x)δ(y)
[

δ(z + 1

2
ℓ)− δ(z − 1

2
ℓ)
]

.

1



Setting this result to iωρ(~x), we conclude that:

ρ(~x) = − iI

ω
δ(x)δ(y)

[

δ(z + 1

2
ℓ)− δ(z − 1

2
ℓ)
]

,

which corresponds to two point charges located at the two ends of the antenna. Moreover,
ρ(~x, t) = ρ(~x)e−iωt indicates that the point charges have magnitudes that oscillate in time.
(As usual, we take the real part of ρ(~x, t) to find the corresponding physical quantity.)

(c) Show that the antenna acts like an oscillating electric dipole moment, ~p e−iωt. Eval-
uate ~p in terms of the current I, the antenna length ℓ and the angular frequency ω.

The electric dipole moment is given by

~p(t) =

∫

~xρ(~x, t)d3x = e−iωt

∫

~x ρ(~x) d3x = ~p e−iωt , (2)

after employing ρ(~x, t) = ρ(~x)e−iωt and defining,

~p ≡
∫

~x ρ(~x) d3x . (3)

We therefore compute:

~p =

∫

~xρ(~x)d3x

=

∫

(xx̂+ yŷ + zẑ)

(−iI

ω

)

δ(x)δ(y)
[

δ(z + 1

2
ℓ)− δ(z − 1

2
ℓ)
]

dxdydz

=
−iI

ω
ẑ

∫

zdz
[

δ(z + 1

2
ℓ)− δ(z − 1

2
ℓ)
]

=
iIℓ

ω
ẑ .

(d) Calculate the angular distribution of the radiated power, dP/dΩ, assuming that
λ ≫ ℓ, where λ is the wavelength of the emitted radiation. Express your answer in terms
of the current I, the antenna length ℓ and the wavelength λ. Integrate over angles to obtain
the total radiated power.

For λ ≫ ℓ, the electric dipole approximation is very accurate. Hence, we can neglect all
other multipole contributions. Using eq. (9.23) of Jackson (in SI units),

dP

dΩ
=

c2Z0

32π2
k4|~p |2 sin2 θ =

c2Z0

32π2

I2ℓ2k4

ω2
sin2 θ , (4)

where Z0 ≡
√

µ0/ε0 is the impedance of free space. Recalling that ω = kc and k = 2π/λ,
the above result can be written as:

dP

dΩ
=

Z0I
2

8

(

ℓ

λ

)2

sin2 θ . (5)
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Integrating over angles by using

∫

sin2 θ dΩ = 2π

∫

1

−1

(1− cos2 θ) d cos θ =
8π

3
,

we end up with:

P =
πZ0I

2

3

(

ℓ

λ

)2

. (6)

Note that one can also derive eq. (6) by using eq. (9.24) of Jackson,

P =
c2Z0k

4

12π
|~p |2 = c2Z0

12π

(

2π

λ

)4 (

I2ℓ2

c2

) (

λ

2π

)2

=
πZ0I

2

3

(

ℓ

λ

)2

. (7)

The results above have been given in SI units. To convert eqs. (4)–(7) to Gaussian units,
one can simply replace Z0 → 4π/c. This can be understood by writing the impedance of
free space [cf. eq. (9.5) of Jackson] as,

Z0 =

√

µ0

ǫ0
=

1

ǫ0c
. (8)

Moreover, using Table 3 on p. 782 of Jackson, we must replace I →
√
4πǫ0 I, when con-

verting a formula expressed in SI units to gaussian units. Thus,

Z0I
2 → 1

ǫ0c
4πǫ0I

2 =
4πI2

c
(9)

which is consistent with replacing Z0 with 4π/c as asserted above.

2. An electron of charge e and mass m moves in a plane perpendicular to a uniform
magnetic field B. If the energy loss by radiation is neglected, the orbit is a circle of some
radius R. Let E be the total relativistic energy of the electron, and assume that E ≫ mc2

(corresponding to ultra-relativistic motion).

(a) Express B analytically in terms of the parameters given above. Compute numerically
the required magnetic field B, in gauss, for the case of R = 30 meters and E = 2.5 GeV.

For circular motion,

~a =
d~v

dt
= −v2

R
r̂ . (10)

Since the circular motion is in a plane that is perpendicular to the magnetic field ~B, it
follows that ~B, ~v and r̂ are mutually orthogonal vectors. Moreover, eqs. (12.38) and (12.39)
on p. 585 of Jackson yield (in gaussian units),

d~v

dt
=

e

γmc
~v × ~B . (11)
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Thus, if ~B points in the z-direction, then ~v = −vθ̂ and the circular motion is clockwise in
the x–y plane. Combining eqs. (10) and (11), it follows that

B =
γmvc

eR
.

In the ultra-relativistic limit, we have v ≃ c so that

B ≃ γmc2

eR
=

E

eR
, (12)

where E = γmc2 is the total relativistic energy of the electron. Note that eq. (12) has been
derived using gaussian units. Plugging in numbers, and recalling that 1 eV = 1.6×10−19 J
and 1 J = 107 ergs, it follows that

B =
(2.5× 109 eV)(1.6× 10−12 ergs/eV)

(4.8× 10−10 esu)(3× 103 cm)
= 2.78× 103 gauss . (13)

One can convert eq. (12) into SI units by replacing eB → ecB.1 In this case, eq. (13)
would be replaced by

B =
(2.5× 109 eV)(1.6× 10−19 J/eV)

(1.6× 10−19 C)(30 m)(3 × 108 m/s)
= 0.278 T .

Converting tesla to gauss using 1 T = 104 gauss using Table 4 on p. 783 of Jackson, we
recover the result of eq. (13).

(b) In fact, the electron radiates electromagnetic energy. Suppose that the energy loss
per revolution, ∆E, is small compared to E. Express the ratio ∆E/E analytically in terms
of the parameters given above.

Using eq. (14.46) on p. 671 of Jackson,

P =
2e2a2

c3
γ4 ,

where a ≡ |d~v/dt| and t is the charge’s own time (which is denoted by t′ in section 3 of
Chapter 14 of Jackson). For circular motion, the magnitude of the acceleration is a = v2/R.
One orbit covers a distance of 2πR in a time ∆t = 2πR/v. Thus, the energy lost per orbit
is

∆E = P ∆t =
2e2

c3

(

v2

R

)2 (

2πR

v

)

γ4 =
4πe2

3R

(v

c

)3

γ4 .

In the ultra-relativistic limit, v ≃ c, so we end up with

∆E ≃ 4πe2

3R
γ4 .

1The easiest way to see this is to note that the magnetic force on a charge e in SI units is e~v × ~B,

whereas in gaussian units, the magnetic force is given by e~v × ~B/c.
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Dividing by the total relativistic energy E = γmc2, and substituting γ ≡ E/(mc2), it
follows that

∆E

E
≃ 4πe2

3mc2R

(

E

mc2

)3

. (14)

(c) Evaluate the ratio obtained in part (b) numerically using the values of R and E
given in part (a). Note that the rest mass of the electron is mc2 = 511 keV.

Plugging in the numbers into eq. (14),

∆E

E
≃ 4π(4.8× 10−10 esu)2

3(0.511× 106 eV)(1.6× 10−12 ergs/eV)(3× 103 cm)

(

2.5× 109 eV

0.511× 106 eV

)3

= 4.6×10−5 .

(15)
To check the dimensions (since ∆E/E must be dimensionless), note that in gaussian units,

1 esu = 1 statcoulomb = 1 dyne1/2 ·cm = 1 (erg·cm)1/2. (16)

Eq. (14) has been derived using gaussian units. In SI units, e2 is replaced by e2/(4πǫ0).
In this case, using the numerical value of ǫ0 given at the bottom of Table 3 on p. 782 of
Jackson, the modified eq. (14) would yield

∆E

E
≃ (1.6× 10−19 C)2

3(0.511× 106 eV)(1.6× 10−19 J/eV)(30 m)(8.854× 10−12 F/m)

(

2.5× 109 eV

0.511× 106 eV

)3

= 4.6× 10−5 , (17)

which again produces the same result obtained in eq. (15). Note that the unit of capacitance
(farad) is given by 1 F = 1 C/volt = 1 C2/J, so that ∆E/E is dimensionless, as expected.

3. A charged particle of mass m and charge e with relativistic velocity ~v0 = v0ẑ enters a
medium where it is slowed down by a force that is proportional to its velocity. That is,
~F = d~p/dt = −η~v, where η is a positive dimensionful constant. The time t refers to the
moving charge and t = 0 when the particle enters the medium.

(a) Using relativistic mechanics, determine the acceleration of the charged particle as a
function of its velocity, mass and η.

This is a one dimensional problem, since the particle moves in a straight line. The rela-
tivistic equation of motion for the particle is given by:

~F =
d~p

dt
=

d

dt
(γm~v) ,

where ~p = γm~v is the relativistic momentum. Writing γ ≡ (1− v2/c2)−1/2, where v ≡ |~v|,
and remembering that the velocity ~v and γ depend on time,

d

dt
(γm~v) = m~v

dγ

dt
+ γm

d~v

dt
= γm

[

d~v

dt
+

γ2

c2
~v

(

~v ·
d~v

dt

)]

, (18)
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where we have used
dγ

dt
=

d

dt

(

1− v2

c2

)

−1/2

=
γ3

c2

(

~v ·
d~v

dt

)

.

For linear motion, ~v and d~v/dt are parallel vectors. Thus,

~v

(

~v ·
d~v

dt

)

= v2
d~v

dt
.

Inserting this result back into eq. (18) yields,

~F =
d

dt
(γm~v) = γm

d~v

dt

(

1 +
v2/c2

1− v2/c2

)

= γ3m
d~v

dt
. (19)

Here, we have rederived a result previously obtained in eq. (25) of the class handout entitled
Examples of four-vectors.

Using ~F = −η~v, we can solve eq. (19) for the acceleration ~a ≡ d~v/dt,

~a = − η

γ3m
~v .

If we denote ~a = av̂ and ~v = vv̂, where v̂ is a unit vector in the direction of the motion,
then

a = − ηv

γ3m
, (20)

which indicates that the particle is decelerating.

(b) Determine the angular distribution of the instantaneous power radiated once the
particle has entered the medium and slowed down to a velocity v. The polar and azimuthal
angles of the emitted radiation are defined relative to the z-axis which lies along the direc-
tion of the particle velocity. In your calculation, you may neglect the effect of the medium
on the emitted radiation (i.e., you should treat the radiation as if it were emitted in the
vacuum.)

Using the relativistic Larmor formula for an accelerating charge in linear motion given in
eq. (14.39) on p. 669 of Jackson,2

dP

dΩ
=

e2a2

4πc3
sin2 θ

(1− β cos θ)5
, (21)

where θ is the direction of emitted radiation and β ≡ v/c. Inserting the result for the
acceleration a obtained in eq. (20) into eq. (21), one obtains

dP

dΩ
=

e2η2v2

4πγ6m2c3
1− cos2 θ

(1− β cos θ)5
. (22)

2In this problem, the time t refers to the charge’s own time. This is what Jackson denotes by t′ = tret
in section 3 of Chapter 14.
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(c) How much energy is emitted in the form of electromagnetic radiation from the time
the particle enters the medium until it slows down and reaches zero velocity? Express your
answer in terms of the parameters e, m, c, η and v0.

To obtain the total instantaneous power emitted by the particle after slowing down to a
velocity v, we simply integrate eq. (22) over the polar and azimuthal angles,

P =
e2η2v2

4πγ6m2c3
2π

∫

1

−1

1− cos2 θ

(1− β cos θ)5
d cos θ .

Setting x = cos θ and using
∫

1

−1

1− x2

(1− βx)5
dx =

4

3
γ6 ,

we end up with

P =
2e2η2v2

3m2c3
. (23)

Note that the instantaneous radiated power integrated over all solid angles can be directly
obtained from eq. (14.26) on p. 666 of Jackson. Since the velocity and acceleration are
parallel, it follows that

P =
2e2a2

3c3
γ6 .

Using eq. (20) for the acceleration a in the above formula, we immediately recover eq. (23).
The power is defined by P = dE/dt. It is convenient to rewrite dt in terms of dv2. Note

that

dv2 = d(~v · ~v) = 2~v · d~v = 2~v ·
d~v

dt
dt = 2~v · ~a dt .

Using eq. (20), it follows that

dv2 = − 2ηv2

mγ3
dt .

or equivalently,

v2dt = −mγ3

2η
dv2 .

Writing γ3 = (1− v2/c2)−3/2, it follows that

E =

∫

P dt =
2e2η2

3m2c3

∫

v2dt = − e2η

3mc3

∫

0

v2
0

dv2

(1− v2/c2)3/2
,

where v0 ≡ v(t = 0). The last integral is elementary, and the final result is,

E =
2e2η

3mc
(γ0 − 1) ,

where γ0 ≡ (1− v2
0
/c2)−1/2.

NOTE: All the formulae given in Chapter 14 of Jackson are given in gaussian units. To
convert the results of Problem 3 to SI units, simply replace e2 → e2/(4πǫ0) as previously
noted below eq. (16).
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