The Addition Theorem of Spherical Harmonics

The addition theorem for spherical harmonics states that

\[P_\ell(\cos \theta) = \frac{4\pi}{2\ell + 1} \sum_{m=-\ell}^{\ell} Y_{\ell m}(\hat{n}') Y_{\ell m}^*(\hat{n}'') , \quad \text{where} \ \cos \theta \equiv \hat{n}' \cdot \hat{n}'' . \]

(1)

An (actively) rotated state vector, corresponding to a state with no internal spin degrees of freedom, is denoted by

\[|\psi\rangle_R \equiv U[R]|\psi\rangle , \]

(2)

where \(R \equiv R(\chi \hat{u}) \) is a counterclockwise rotation by an angle \(\chi \) about a fixed axis along the unit vector \(\hat{u} \), and \(U[R] = e^{-i\hat{u} \cdot \mathbf{L}/\hbar} \) is the corresponding unitary operator that acts on quantum states of the Hilbert space. Likewise, the coordinate basis ket \(|\vec{x}\rangle \) can also be rotated,

\[|\vec{x}'\rangle = U[R]|\vec{x}\rangle , \quad \text{where} \ \vec{x}' = R\vec{x} . \]

(3)

We also define unit vectors, \(\hat{n} \equiv \vec{x}/|\vec{x}| \) and \(\hat{n}' \equiv \vec{x}'/|\vec{x}'| \), where \(\hat{n}' = R\hat{n} \). With respect to a fixed z-axis, \(\hat{n} \) points in a direction with polar angle \(\theta \) and azimuthal angle \(\phi \), and \(\hat{n}' \) points in a direction with polar angle \(\theta' \) and azimuthal angle \(\phi' \).

Since \(U[R] \) is a unitary operator, we can write,

\[\psi(\vec{x}) = \langle \vec{x} | \psi \rangle = \langle \vec{x} | U^\dagger[R] U[R] | \psi \rangle = \langle \vec{x}' | \psi \rangle_R = \psi_R(\vec{x}') , \]

after employing eqs. (2) and (3). That is,

\[\psi_R(\vec{x}') = \psi(\vec{x}) = \psi(R^{-1}\vec{x}') . \]

(4)

Consider the state vector \(|\psi\rangle = |\ell \ m\rangle \), which is a simultaneous eigenstate of \(\mathbf{L}^2 \) and \(L_z \) with corresponding eigenvalues \(\hbar^2 \ell(\ell + 1) \) and \(\hbar m \), respectively. Then, using eq. (2),

\[\psi_R(\vec{x}') = \langle \vec{x}' | \psi \rangle_R = \langle \vec{x}' | U[R] | \ell \ m\rangle = \sum_{\ell=0}^{\infty} \sum_{m'=-\ell}^{\ell} \langle \vec{x}' | \ell \ m'\rangle \langle \ell \ m' | U[R] | \ell \ m \rangle . \]

(5)

Note that \(D_{m'm}^{(\ell)}(R) \delta_{\ell\ell'} \equiv \langle \ell \ m' | U[R] | \ell \ m \rangle \), since \(\{ \mathbf{L}, L_i \} = 0 \) implies that the matrix elements of \(\mathbf{L} \) (as well as any function of \(\mathbf{L} \)) are diagonal in \(\ell \). In addition, \(Y_{\ell m'}(\hat{n}') = \langle \vec{x}' | \ell \ m' \rangle \). Hence, eq. (5) yields

\[\psi_R(\vec{x}') = \sum_{m'=-\ell}^{\ell} Y_{\ell m'}(\hat{n}') D_{m'm}^{(\ell)}[R] . \]

(6)

\footnote{Since eq. (4) is true for any \(\vec{x}' \) (which can be treated as a dummy variable), we are free to drop the prime superscript and write \(\psi_R(\vec{x}) = \psi(R^{-1}\vec{x}) \).}

\footnote{Since \(\theta' \) and \(\phi' \) are the polar and azimuthal angles of the unit vector \(\hat{n}' \), we denote \(Y_{\ell m'}(\hat{n}') \equiv Y_{\ell m'}(\theta', \phi') \).}
In light of eq. (4), \(\psi_R(\bar{x}') = \psi(\bar{x}) = \langle \bar{x} | \ell m \rangle = Y_{\ell m}(\hat{n}). \) Hence, eq. (6) yields,

\[
Y_{\ell m}(\hat{n}) = \sum_{m'=-\ell}^{\ell} Y_{\ell m'}(\hat{n}') D_{m'm}^{(\ell)}[R], \quad \text{where } \hat{n}' = R\hat{n}.
\]

(7)

Note that an equivalent method for deriving eq. (7) starts from the observation that if \(\hat{n}' = R\hat{n} \), then \(|\hat{n}'\rangle = U[R]|\hat{n}\rangle \). It then follows that

\[
|\hat{n}'\rangle = |\hat{n}\rangle U^\dagger[R].
\]

(8)

Since \(U[R] \) is a unitary operator, we can write,

\[
|\hat{n} \ell m\rangle = |\hat{n}\rangle U^\dagger[R]U[R] |\ell m\rangle = \sum_{\ell'=0}^{\infty} \sum_{m'=-\ell'}^{\ell'} |\hat{n}' \ell' m'\rangle \langle \ell' m'|U[R]|\ell m\rangle
\]

\[
= \sum_{\ell=0}^{\infty} \sum_{m'=-\ell}^{\ell'} \langle \hat{n}' | \ell' m' \rangle D_{m'm}^{(\ell)}[R] \delta_{\ell\ell'} = \sum_{m'=-\ell}^{\ell} \langle \hat{n}' | \ell m' \rangle D_{m'm}^{(\ell)}[R],
\]

which is equivalent to eq. (7).

The \(z \) axis points along the unit vector \(\hat{z} \). Given the rotation \(R \) that appears in eq. (7), we define a unit vector \(\hat{n}'' \equiv R\hat{z} \). If the rotation \(R = R(\alpha, \beta, \gamma) \) is parameterized by its Euler angles, \(\alpha, \beta, \gamma \), then \(R(\alpha, \beta, \gamma) = R(\alpha\hat{z})R(\beta\hat{y})R(\gamma\hat{z}) \), where the three rotations are applied from right to left. Note that the direction of \(\hat{n}'' \) does not depend on \(\gamma \), since \(R(\gamma\hat{z})\hat{z} = \hat{z} \). Hence, \(\hat{n}'' = R(\alpha, \beta, \gamma)\hat{z} = R(\alpha\hat{z})R(\beta\hat{y})\hat{z} \). That is, the unit vector \(\hat{n}'' \) has polar angle \(\beta \) and azimuthal angle \(\alpha \) with respect to the \(z \)-axis.

To obtain the addition theorem for spherical harmonics, we set \(m = 0 \) in eq. (7) and use the identities,\(^3\)

\[
Y_{\ell 0}(\hat{n}) = \sqrt{\frac{2\ell + 1}{4\pi}} P_\ell(\cos \theta),
\]

(9)

\[
D_{m'0}^{(\ell)}(\alpha, \beta, \gamma) = \sqrt{\frac{4\pi}{2\ell + 1}} Y_{m'}^{*}(\hat{n}''),
\]

(10)

where \(\theta \) is the polar angle of \(\hat{n} \) with respect to the \(z \)-axis. It then immediately follows that

\[
P_\ell(\cos \theta) = \frac{4\pi}{2\ell + 1} \sum_{m'=-\ell}^{\ell} Y_{\ell m'}(\hat{n}') Y_{\ell m}^{*}(\hat{n}'').
\]

(11)

after relabeling \(m' \) with \(m \). Finally, we use \(\hat{n}' = R\hat{n} \) and \(\hat{n}'' = R\hat{z} \) to obtain,\(^4\)

\[
\hat{n}' \cdot \hat{n}'' = (R_{ij}n_j)(R_{ik}z_k) = \delta_{jk}n_jz_k = \hat{n} \cdot \hat{z} = \cos \theta.
\]

(12)

Hence, we have reproduced the addition theorem of spherical harmonics given in eq. (1).

\(^3\)A proof of eq. (10) appears in Appendix C of the class handout entitled, *Clebsch-Gordan coefficients and the tensor spherical harmonics*.

\(^4\)In eq. (12), there is an implicit sum over the repeated indices. Since the rotation matrix \(R \) is orthogonal, it follows that \(R_{ij}R_{ik} = R_{ij}^TR_{ik} = (R^T)_{jk} = \delta_{jk} \).