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The Addition Theorem of Spherical Harmonics

The addition theorem for spherical harmonics states that
¢
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The standard proof of this theorem can be found on pp. 110-111 of John David Jackson, Classical
FElectrodynamics, 3rd Edition (John Wiley & Sons, Inc., Hoboken, NJ, 1999). In this note, I
shall provide an alternative proof that makes use of the theory of angular momentum operators
in quantum mechanics.

An (actively) rotated state vector, corresponding to a state with no internal spin degrees of
freedom, is denoted by

) r = U[R][Y), (2)
where R = R(x4) is a counterclockwise rotation by an angle y about a fixed axis along the unit
vector 4, and U[R] = e~X®L/I i the corresponding unitary operator that acts on quantum

states of the Hilbert space. Likewise, the coordinate basis ket |€) can also be rotated,
|2') = U[R]|Z) , where &' = RZ . (3)

We also define unit vectors, 7 = #/|Z| and A’ = &'/|%’|, where A’ = RA. With respect to a
fixed z-axis, f points in a direction with polar angle # and azimuthal angle ¢, and A" points in
a direction with polar angle #’ and azimuthal angle ¢'.

Since U[R] is a unitary operator, we can write,

V(&) = (& |¢) = (& UR|U[R] [¥) = (&' |Y)r = ¥r(Z),
after employing eqs. (2) and (3). That is,’
Ur(&) = (&) = (R™'@). (4)

Consider the state vector |¢) = |¢m), which is a simultaneous eigenstate of L? and L, with
corresponding eigenvalues h2((¢ + 1) and hm, respectively. Then, using eq. (2),

r(Z') = (& | V)r = (@&| U[R] |m) = ZZ (& [ ¢ m/)('m/| U[R] |tm) . (5)

=0 m'=—¢

Note that D w(R) 0o = (¢'m/|U[R] | m), since [L, L;] = 0 implies that the matrix elements
of L (as well as any function of L) are diagonal in £. In addition, Yy, (') = (& | ¢ m’).2 Hence,
eq. (5) yields

Z Yo (2') DY), [R]. (6)

1Since eq. (4) is true for any #& (which can be treated as a dummy variable), we are free to drop the prime
superscript and write ¥g(#) = Y(R™1%).
2Since 0" and ¢’ are the polar and azimuthal angles of the unit vector A’, we denote Yy, (') = Yo (67, ¢).
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Yom() = Y You(#/)DY) [R],  where #’ = Ri. (7)

Note that an equivalent method for deriving eq. (7) starts from the observation that if
n' = R, then |A’) = U[R]|A). Tt then follows that

(/| = (n| UTR]. (8)

Since U[R] is a unitary operator, we can write,
00 ¢
(8] Em) = (| VIR DR [Em) = (8| DTR][6m) = S 37 (8| (| U )
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= Z | ¢m') DY, (R 6w = Y (%] €m') DY), [R],
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which is equivalent to eq. (7).

The z axis points along the unit vector 2. Given the rotation R that appears in eq. (7),
we define a unit vector A” = R2. If the rotation R = R(«, 3,7) is parameterized by its Euler
angles, «, (3, v, then R(«,,v) = R(a2)R(59)R(v2), where the three rotations are applied
from right to left. Note that the direction of A" does not depend on v, since R(y2)Z2 = 2.
Hence, n” = R(a, 8,7)2 = R(a2)R(BY)2. That is, the unit vector 2" has polar angle 3 and
azimuthal angle o with respect to the z-axis.

To obtain the addition theorem for spherical harmonics, we set m = 0 in eq. (7) and use the

identities,?
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where 6 is the polar angle of i with respect to the z-axis. It then immediately follows that
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after relabeling m’ with m. Finally, we use 2’ = Rfi and A" = RZ to obtain,*
~) 1

0" = (Riyn;)(Rixze) = djun 2, = -2 = cos b (12)

Hence, we have reproduced the addition theorem of spherical harmonics given in eq. (1).

3A proof of eq. (10) appears in Appendix C of the class handout entitled, Clebsch-Gordan coefficients and the
tensor spherical harmonics.

4In eq. (12), there is an implicit sum over the repeated indices. Since the rotation matrix R is orthogonal, it
follows that Rij R, = RLRik = (RTR)jk = 5719



