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The Addition Theorem of Spherical Harmonics

The addition theorem for spherical harmonics states that

Pℓ(cos θ) =
4π

2ℓ+ 1

ℓ
∑

m=−ℓ

Yℓm(n̂
′)Y ∗

ℓm(n̂
′′) , where cos θ ≡ n̂′

·n̂′′. (1)

The standard proof of this theorem can be found on pp. 110–111 of John David Jackson, Classical
Electrodynamics, 3rd Edition (John Wiley & Sons, Inc., Hoboken, NJ, 1999). In this note, I
shall provide an alternative proof that makes use of the theory of angular momentum operators
in quantum mechanics.

An (actively) rotated state vector, corresponding to a state with no internal spin degrees of
freedom, is denoted by

|ψ〉R ≡ U [R]|ψ〉 , (2)

where R ≡ R(χû) is a counterclockwise rotation by an angle χ about a fixed axis along the unit

vector û, and U [R] = e−iχû·~L/~ is the corresponding unitary operator that acts on quantum
states of the Hilbert space. Likewise, the coordinate basis ket |~x〉 can also be rotated,

|~x′〉 = U [R]|~x〉 , where ~x′ = R~x . (3)

We also define unit vectors, n̂ ≡ ~x/|~x| and n̂′ ≡ ~x′/|~x′|, where n̂′ = Rn̂. With respect to a
fixed z-axis, n̂ points in a direction with polar angle θ and azimuthal angle φ, and n̂′ points in
a direction with polar angle θ′ and azimuthal angle φ′.

Since U [R] is a unitary operator, we can write,

ψ(~x) = 〈~x |ψ〉 = 〈~x|U †[R]U [R] |ψ〉 = 〈~x′ |ψ〉R = ψR(~x′) ,

after employing eqs. (2) and (3). That is,1

ψR(~x′) = ψ(~x) = ψ(R−1~x′) . (4)

Consider the state vector |ψ〉 = |ℓm〉, which is a simultaneous eigenstate of ~L2 and Lz with
corresponding eigenvalues ~2ℓ(ℓ+ 1) and ~m, respectively. Then, using eq. (2),

ψR(~x′) = 〈~x′ |ψ〉R = 〈~x′|U [R] |ℓm〉 =

∞
∑

ℓ=0

ℓ′
∑

m′=−ℓ′

〈~x′ | ℓ′m′〉〈ℓ′m′|U [R] |ℓm〉 . (5)

Note that D
(ℓ)
m′m(R) δℓℓ′ ≡ 〈ℓ′m′|U [R] |ℓm〉, since [~L, Li] = 0 implies that the matrix elements

of ~L (as well as any function of ~L) are diagonal in ℓ. In addition, Yℓ′m′(n̂′) = 〈~x′ | ℓ′m′〉.2 Hence,
eq. (5) yields

ψR(~x′) =

ℓ
∑

m′=−ℓ

Yℓm′(n̂′)D
(ℓ)
m′m[R] . (6)

1Since eq. (4) is true for any ~x′ (which can be treated as a dummy variable), we are free to drop the prime
superscript and write ψR(~x) = ψ(R−1~x).

2Since θ′ and φ′ are the polar and azimuthal angles of the unit vector n̂′, we denote Yℓ′m′(n̂′) ≡ Yℓ′m′(θ′, φ′).
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In light of eq. (4), ψR(~x′) = ψ(~x) = 〈~x | ℓm〉 = Yℓm(n̂). Hence, eq. (6) yields,

Yℓm(n̂) =
ℓ

∑

m′=−ℓ

Yℓm′(n̂′)D
(ℓ)
m′m[R] , where n̂′ = Rn̂. (7)

Note that an equivalent method for deriving eq. (7) starts from the observation that if
n̂′ = Rn̂, then |n̂′〉 = U [R]|n̂〉. It then follows that

〈n̂′| = 〈n̂|U †[R] . (8)

Since U [R] is a unitary operator, we can write,

〈n̂ | ℓm〉 = 〈n̂|U †[R]U [R] |ℓm〉 = 〈n̂′|U [R] |ℓm〉 =
∞
∑

ℓ=0

ℓ′
∑

m′=−ℓ′

〈n̂′ | ℓ′m′〉〈ℓ′m′|U [R] |ℓm〉

=
∞
∑

ℓ=0

ℓ′
∑

m′=−ℓ′

〈n̂′ | ℓ′m′〉D
(ℓ)
m′m[R] δℓℓ′ =

ℓ
∑

m′=−ℓ

〈n̂′ | ℓm′〉D
(ℓ)
m′m[R] ,

which is equivalent to eq. (7).
The z axis points along the unit vector ẑ. Given the rotation R that appears in eq. (7),

we define a unit vector n̂′′ ≡ Rẑ. If the rotation R = R(α, β, γ) is parameterized by its Euler
angles, α, β, γ, then R(α, β, γ) = R(αẑ)R(βŷ)R(γẑ), where the three rotations are applied
from right to left. Note that the direction of n̂′′ does not depend on γ, since R(γẑ)ẑ = ẑ.
Hence, n̂′′ = R(α, β, γ)ẑ = R(αẑ)R(βŷ)ẑ. That is, the unit vector n̂′′ has polar angle β and
azimuthal angle α with respect to the z-axis.

To obtain the addition theorem for spherical harmonics, we set m = 0 in eq. (7) and use the
identities,3

Yℓ0(n̂) =

√

2ℓ+ 1

4π
Pℓ(cos θ) , (9)

D
(ℓ)
m′0(α, β, γ) =

√

4π

2ℓ+ 1
Y ∗
ℓm′(n̂′′) , (10)

where θ is the polar angle of n̂ with respect to the z-axis. It then immediately follows that

Pℓ(cos θ) =
4π

2ℓ+ 1

ℓ
∑

m=−ℓ

Yℓm(n̂
′)Y ∗

ℓm(n̂
′′) . (11)

after relabeling m′ with m. Finally, we use n̂′ = Rn̂ and n̂′′ = Rẑ to obtain,4

n̂′
·n̂′′ = (Rijnj)(Rikzk) = δjknjzk = n̂·ẑ = cos θ . (12)

Hence, we have reproduced the addition theorem of spherical harmonics given in eq. (1).
3A proof of eq. (10) appears in Appendix C of the class handout entitled, Clebsch-Gordan coefficients and the

tensor spherical harmonics.
4In eq. (12), there is an implicit sum over the repeated indices. Since the rotation matrix R is orthogonal, it

follows that RijRik = RT

jiRik = (RTR)jk = δjk.
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