CHAPTER S

HILBERT SPACE—
COMPLETE ORTHONORMAL SETS OF FUNCTIONS

INTRODUCTION

The principal strands of mathematics—algebra, geometry, and analysis—are
joined when functions are viewed as vectors in a vector space. This unification
is the subject of this chapter; none of the results or methods of mathematics
has more relevance to modern physics.

Throughout this chapter we shall be using concepts, terminology, and theo-
rems from Chapters 3 and 4. The present chapter represents the infinite—
dimensional generalization of certain of the results obtained there. However,
the fact that the vectors are now functions means that there are a number of
additional considerations and possibilities in the development of the theory.
These result primarily from the attempt to represent a function as a linear com-
bination of some given set of functions—i. e., the problem of series expansions.
All the characteristic questions of analysis, such as those of convergence, there-
fore become relevant.

In particular, the so-called “special functions” of mathematical physics—
spherical harmonics, Legendre, Hermite, and Laguerre polynomials, to name a
few—are all conveniently treated within the framework of Hilbert space. As
we deal with the various special functions, we shall discuss the differential
equations of which they are solutions. But the treatment will not be based on
the differential equations. The framework of Hilbert space is a much more
comprehensive one, and unifies what is otherwise a bewildering maze of special
cases and properties.

There will be three stages in the discussion of these functions. In the first
stage, where we introduce the basic notions of Hilbert space, the treatment will
be quite abstract; the special functions will be mentioned only in passing. Then
we shall consider the special functions one by one, somewhat inductively, de-
emphasizing their common origins and properties. Finally, we shall return to
a more abstract level and systematize the properties of these functions in a single
comprehensive framework.

Hilbert space is the mathematical setting for quantum physics. Physical
observables are represented by operators in Hilbert space, and physical states are
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5.1 FUNCTION SPACE AND HILBERT SPACE 213

vectors (functions) in Hilbert space. There is no more important property of
the functions that describe the possible states of a physical system than that
they form a complete set. The whole of quantum theory is based on this fact.
Thus most of this chapter will in one way or another have to do with the com-
pleteness of sets of functions.

At the end of the chapter we shall bring together the key results of the
theory of Hilbert space that have been developed throughout the chapter, and
emphasize their role in the formulation of quantum mechanics.

5.1 FUNCTION SPACE AND HILBERT SPACE

In discussing finite-dimensional vector spaces, we referred several times to P,,
the vector space of polynomials of degree<n. The vectors in that vector space
are a class of simple functions, the polynomials.

We are now going to define another vectorspace whoseelementsare furictions.
The elements of this space are the complex-valued functions of a real variable
x, defined on the closed interval [a, b],* which are square integrable.! We shall
show that the set of square integrable functions forms a vector space. This
space is called L, by mathematicians: we shall call it function space. 1t will
be found to be an infinite-dimensional space.

Intuitively, it would seem that function space is far “larger” than the finite-
dimensional space P,, and in a sense this is so. However, suppose that the basis
functions for P,—the set {x", m = 0, 1, - - -, n}—were extended to contain all
possible powers of x by letting n — co. Weierstrass’s theorem, the central result
of this chapter, shows that this infinite set of functions is not as poverty-stricken
as it might appear. We shall shortly give a precise account of its latent powers.
First we return to the definition of function space.

Addition of the two vectors, f; and f,, in function space is defined according
to the natural rule:

i + £ (x) = filx) + /o)

and multiplication by a complex scalar « is defined as

(o) @) = af(x) .

The only possible difficulty in showing that these operations satisfy the various
axioms that define a vector space is establishing closure. That is, are the sums
and scalar multiples of square-integrable functions also square-integrable? The

* A closed interval, written [a, b], is the set of all points {x}such thata < x < b. An
open interval, which we write as (a, b), is the set of points {x}such thata < x < b. A
closed interval is always finite; if either a or b is infinite, the interval is open at that
end. Later in the chapter, when we deal with infinite intervals, we shall alert the reader
by explicit mention of the shift from finite to infinite intervals.

1 A function is square integrable on [a, b] if [5] f(x) |* dx exists and is finite.
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answer is yes, and so the space is in fact a vector space. We prove closure of
the sum.

Ifi + L = 1A+ |12+ L+ AfF
= |fil* + | fo]* + 2Re (f¥f)
< AP+ AP + 21 f1f
= AP+ AR+ 21414

(5.1)

Also,
0= (1Al = 1A = 1A + 1A = 2lAllAL
SO
LA+ 1AIP 2 214114

We use this last inequality to replace 2| fi|| f3| in Eq. (5.1) with something larger,
thereby preserving the inequality. Thus the inequality

\fi + A S 2047 + 2141, (5.2)

holds at every point in [a, b]. Integrating over both sides, we see that square
integrability of f; and f, ensures square integrability of their sum.
We now add an inner product to function space.

Definition 5.1. The inner product of two functions, f; and f,, belonging
to function space, is defined by

U £ = | FHWAE) dx. (53

b
Note that square integrability implies that (f, f) = || f]]* = S | f|? dx < oo,

The quantity ||f]|| is called the norm of f. The inner product for any pair of
square-integrable functions also exists. Since

|fEA] = 1AAL = 3141 + 1A

it follows that

[L1renl dx < BILAIR + 151D < o

but any function whose absolute value is integrable is itself integrable, so (fi, f2)
exists.

Verification that (f}, f3) as defined in Eq. (5.3) is an inner product proceeds
very smoothly until we come to the question of positive-definiteness. Clearly,

o =Nse = 1fraxz 0.

But does (f, f) = 0 imply that f(x) = 0 for all x in [a, b]? Not quite, for the
function f(x) can be nonzero at any finite number of points, and the integral
will not “notice” this. That is, there will be no contribution to the integral
even though the integrand is not identically zero throughout [a, b].
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The discussion of situations like these is facilitated if a stightly more general
notion of integration is used. The Riemann integral suffers from several diffi-
culties; for example, let us consider an extreme case by looking at the bizarre
function f(x) defined to be 1 for every rational number in [0, 1] and 0 for every
non-rational number. Now, since there are “very few” rationals, only a counta-
ble number in fact, we strongly suspect that the integral of this function is zero.
However, if we form the upper and lower Riemann integrals by partitioning
[0, 1] into small segments Ax;, and write

j dx—ZAxmax[f()] x; < x < x; + Ax;

S Jdr =30 Aximin (/9] x <x<x o+ A

in the usual way, we see that no matter how small the subinterval, Ax;, the
maximum of f(x) on this interval is always 1 and the minimum is always zero.
Thus

jf(x) dx = 1 and jf(x) dx =0,

so the Riemann integral does not exist.

In the theory of Lebesgue integration, this integral does exist and it equals
zero. Wesay that f(x) = 0excepton a set of points of measure zero, or f(x) = 0
almost everywhere. The intuitive content of this phrase is simple. If we have
a countable number of points on the real line and are given a small strip of
paper of length €, then we can paste a small piece of the strip over each ele-
ment of the set by dividing it into a countable number of pieces of width €/2".
Since Y 7.1€/2" = €, we use up only our given strip in the process. But since
the original strip can be arbitrarily small, the set of points on which f(x) is non-
zero is negligible with respect to the set on which it is zero, despite the fact that
every real number is arbitrarily close to some rational. Thus, the rationals are
a set of measure zero on the real line.

We shall go no further with the notion of the Lebesgue integral, since all
the functions which we will actually want to integrate in this book will be
Riemann integrable. For example, the Riemann integral always exists for the
class of piecewise continuous functions defined on closed intervals. In any case,
the Riemann integral, when it exists, is equal to the Lebesgue integral.

To summarize: If fis a function in fuaction space and (f, f) = 0, then
Sf(x) need not be identically zero for all x, but it can differ from zero only on
a set of measure zero. We say that (f, f) = 0 implies f(x) = 0 almost every-
where. Any function which equals zero almost everywhere is called the zero
function. With this broadened concept of the zero function, Axiom 3 for an
inner product is satisfied, so Definition 5.1 does define an inner product.

Thus we have a complex inner product defined in function space, which is
itself a complex vector space of complex square-integrable functions of a real
variable ranging through the closed interval [a, b].
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To be useful to the physicist, the inner-product space must also be complete.
A complete space is one in which there exists no Cauchy sequence of elements
of the space which tend toward limits outside the space.* An elementary ex-
ample of an incomplete space is the set of rational numbers. The sequence of
partial sums, Sy = 3 2, 1/n! is a sequence of rationals, but it converges to the
number e, which is irrational. However, a basic theorem of real analysis states
that the set of all real numbers is complete; one cannot get out of the set by
taking the limits of Cauchy sequences of real numbers.

Similarly, we want to discover a class of functions having the property
that there will be no Cauchy sequence of functions in this class whose limits do
not belong to the class. Such a class of functions is complete. This absolutely
fundamental problem in analysis is solved by the Riesz-Fischer theorem, which
states that the space of square-integrable functions, i.e., functions with a finite
norm, is complete. The proof may be found in any book on functional analysis
(e. g., Riesz and Nagy, Rudin). The theorem may be stated as follows.

Riesz-Fischer Theorem. Let the functions fi(x), fy(x), - - - be elements in
function space. If

b
lim Hfu _me2 = lim S |fn(x) _fm(x)‘z dx =0,
then there exists a square (Lebesgue) integrable function f(x) to which the
sequence f,(x) converges “in the mean”; i.e., there exists an f such that

b
tim [ 170 — S Pax = 0.
nh—oo a

We shall discuss convergence in the mean in greater detail in the following
section. It should be emphasized that this theorem is not true unless the integral
used is the Lebesgue integral.

Thus function space, as we have defined it, isin fact complete. Henceforth
we shall call this complete inner-product space by its usual name, Hilbert space,
although function space is not the only Hilbert space.

The notions of orthogonality, normalization, and orthonormal sets of func-
tions are defined exactly as for vectors. Thus the set of functions {f;} is said to
be orthonormal if

b
U s) = [ rresiw ds =3,
* A Cauchy sequence is a sequence {s,} which has the property that given an arbitrary
number € > 0, there is an index N(€) such that if m and n are larger than N(e),

Hsn - sm” < €,

If the sequence in question is a sequence of numbers, then the norm is interpreted as
the absolute value. If, as in our case, the sequence is a sequence of functions, then the

norm is given by
b 172
11l EH |f|2dx] .
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Example. The Fourier functions. Let f,(x) = e"*|4/2r, where n =0, *1,
42, .- The set {f,} is orthonormal over the interval [ —=x, 7].

Proof.

untd = [ ptfwax = =7 etmone e

1 . 4
— i(m—n)x — ; .
2w (m — n)ie :,-x 0. ifm#n;

£

(fnvfn):g?_rj ldx =1, ifm=n.

Therefore

(_/nr _/m) = 6nm .
An often used generalization of orthonormality is the following:

Definition 5.2. A set of functions {f,} is orthonormal with respect to a
nonnegative weight function w(x) on [a, b] if

(for fo) = j:f,’," (X)fm(X)w(x) dx = 0, .

We shall work almost exclusively with orthonormal sets of functions, be-
cause, as in finite-dimensional vector spaces, they greatly simplify computations.

5.2 COMPLETE ORTHONORMAL SETS OF FUNCTIONS

In the theory of finite-dimensional vector spaces, we found a numberof equivalent
alternative characterizations of a complete set of basis vectors (Theorem 4.3).
The corresponding problem in Hilbert space is that of representing a function
as a linear combination of some given set of functions, or, in other words, the
problem of series expansions of functions in terms of a given set. The prototype
of all such series expansions is the Fourier series. Our treatment, however, will
be a general one, embracing many of the functions of mathematical physics;
Fourier series will be treated within this framework as a special case.

The first question we must face is that of defining the completeness of an
orthonormal set of functions in Hilbert space. (Completeness of a sef of functions
is not the same as completeness of a space, mentioned briefly in the last section;
however, they are intimately connected as we shall see.) We could say thatan
orthonormal set of functions {f;(x)} is complete if any function f{x) in Hilbert
space is expressible as a linear combination of the f;(x):

o

) =2 afitx),

i=1

the series converging to f at every point x. This would provide a close analog
of the idea of completeness of a set of basis vectors in finite-dimensional spaces.
But this criterion of convergence is, for many purposes, ununecessarily severe
and exclusive, As we shall see, by this criterion there would exist no complete
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orthonormal set of functions in Hilbert space. So, instead of demanding strict
pointwise convergence, we shall weaken the convergence criterion, and in this
way permit the existence of complete sets of functions.

The appropriate weakening of the convergence criterion is suggested by the
slight difficulty we encountered with the positive-definiteness of the inner pro-
duct. There we found that

(r.0) = [ 1rpax=o

implied that f(x) vanished not at every point x in [a, b], but rather, almost
everywhere in [a, b]; that is, at all but a set of points of measure zero. Sim-
ilarly, we shall say that 3¢, f;(x) converges “in the mean” to f(x) if

tim [/ 1709 = 3 sl = 0.

This allows the series to differ from f(x) on a set of measure zero.

In order to develop the notion of completeness of an orthonormal set of
functions further, we need to define the different kinds of convergence we shall
be using:

1. Pointwise convergence;

2. Uniform convergence;

3. Convergence in the mean.

Definition 5.3. A sequence of functions, 4,(x), converges pointwise to h(x)
on [a, b] if for every x in [a, b] and every € > O there exists an integer
N(x, €) such that for n > N,

JA(x) — h,(x)] < €.

The h,(x) may themselves be the partial sums of another sequence; that is,

= i k;(x)

The definition of pointwise convergence, and the other types of convergence to
follow, may all be stated equivalently in terms of the infinite series >, k;(x),
which is the limit of the sequence A,(x) of partial sums. We say that this series
converges pointwise to h(x) on [a, b] if for every x in [a, b] and every € > 0,
there exists an integer N (x, €) such that for n > N,

1h(x) — ha(x) Z ki(x)| <e.
If there is a single N that works in the above definition for all x in [a, b],
the convergence is said to be uniform. Formally, we have:

Definition 5.4. A sequence of functions, 4,(x), converges uniformly to h(x)
on [a, b] if for every € > 0 there exists an integer N(e), independent of x,
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such that for n > N, |h(x) — h,(x)| < ¢, for all x in [a, b]. Clearly, uni-

form convergence implies pointwise convergence.

Note that this definition makes explicit mention of the limit 4(x) of the se-
quenceof functions, A,(x). The Cauchy criterion for uniform convergence supplies
us with a useful alternative to this definition, in which knowledge of the limit
function is not assumed. Cauchy’s criterion is proved in analysis courses; we
state it here.

Theorem 5.1. The sequence of functions 4,(x) converges uniformly on[a, b]
if for every € > O there exists an integer N(e) such that for all r > N,
s > N, and x in [a, b], |h.(x) — h(x)| < €.

In terms of the partial sums, A,(x) = Y./, k;(x), this becomes

) = hl)l =13 ke — Zkl—l > k] <e.
i=1 i=r+l
If we have uniform or pointwise convergence, we may write
h(x) = lim h,(x) = Y ki(x
n—oco i:l

The weaker convergence we discussed earlier can now be formalized pre-
cisely.

Definition 5.5. A sequence of functions 4,(x), converges in the mean to

h(x) on [a, b] if

b
limS lh(x) — hy(x)|2dx = 0,

n-+o

that is, if for every e there exists an N(e) such that for n > N,
b
j h(x) — hy(x)[Pdx < € .

The series Y.i=; k;(x) converges in the mean to A(x) if
b n
1imj Ih(x) — > ki(x)Pdx = 0.
n-+co a '=l

It is easy to see that uniform convergence implies mean convergence. For
if convergence is uniform, then for any e there exists an N such that for n > N,
|k — h,| < € for all x in [a, b]. Therefore

b b
j Ih—h,,lzdx<s edx = (b — a),

so the integral can be made arbitrarily small by choice of €. This is just the
statement that

n—+oo

b
limj lh— h,|*dx = 0,

and so we have mean convergence. Note, however, that pointwise convergence
does not imply mean convergence (Problem 19).
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It is in terms of mean convergence that the completeness of an orthonormal
set of functions is defined.

Definition 5.6. Let g(x) be any function in Hilbert space (i. €., any square-
integrable function) and let {f;(x)} be an orthonormal set of functions in
Hilbert space. If there exist constant coefficients {a,} such that the sequence
of partial sums g,(x) = Y_/-; a,f;(x) converges in the mean to g(x), then
the set of functions {f;} is a complete orthonormal set. Equivalently, if the
mean square error can be made arbitrarily small,

b b "

limj lg — g,)dx = limS lg — Z a;f;|*dx =0,

n—co a n—co a i=1

then the set {f;} is a complete orthonormal set of functions. It should be
noted that the coefficients {a;} are independent of n. Thus as n increases
and we include more terms in the partial sum approximating g, the earlier
coefficients do not change. We may say that as we extend the sum to infinity,
the infinite series

o

Z af:

i=1

approximates the arbitrary function g in the mean. We shall write this as

o

glx) = Z a;.fi(x) .

i=1
The dot over the equal sign serves to distinguish mean convergence from
pointwise convergence.

Since mean convergence does not necessarily imply pointwise or uniform
convergence, it should be clear that the completeness of an orthonormal set of
functions {f;}, expressed by the relation

b n
tim "1/ = 3 afiPdr =0,
a i=1

n—oo

or symbolically,

=S afil)

does not imply that

J) = 20 afilx) . (5.4)
i=1
We may only equate f(x) and the expansion series if the series converges point-
wise or uniformly to f(x).
Let f(x) be an arbitrary function in Hilbert space, and assume for the
moment that we have an orthonormal set of functions { f;(x)} such that the series
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Sy ¢ fi(x) converges uniformly to f(x):

fx) =2 afilx) .

i=1

The coefficients ¢; are called the generalized Fourier coefficients, or expansion
coefficients. The formula for them is especially simple because {f;} is an ortho-
normal set:

oo o

o ) =D clf f) =D, e =c0. (5.5)

i=1 i=1
Since the convergence is uniform, mean convergence is also implied. Therefore

lims-:lf— ic,f,-]zdx:O,

n -+

[where the ¢, are given by Eq. (5.5)], and, consequently, the set of functions {f;}
is complete.
Now consider the nonnegative quantity

n

M, =176 = 3 afi x>0, (5.6)

i=1

where {/f;} is an orthonormal set, and f is any function in Hilbert space. We
want to know: What values of the coefficients a; will minimize M,? Or, to put
it in the language of the physicist: What values of the a; will give the best least-
squares fit to the arbitrary function f(x)?

To answer this question, we expand Eq. (5.6) to obtain

Mzﬂuv_zmﬁﬁ—zmww+zﬁnmmw

i, j=1

=(f.f) — i aict — i ake; + i ata0;; .
i=1 =1 =1

where ¢; = (fi, f). Adding and subtracting the quantity > /.,|c;|% we have
M= (L) + 2 lai—alP= D) el >0.
i=1 i=1

It is clear that M, is minimized by choosing a; = ¢;. We then have
b n
M= (17w = X efin) P ax (5.7)
a i=1

=(ff) =2 lal>0,
i=1
which may be rewritten as

Mﬂz§ME§an3 (5.8)
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Writing s, = Y,/-,|¢:|% we see that the sequence s, 55, - -+, §,, + - - is monotoni-
cally increasing and bounded above by (f, f), (Eq. 5.8). Therefore s, tends
toward a limit as n becomes arbitrarily large, and we can write

V)2 Ylel (5.9)

Hence the infinite series ) :2i|¢;|> converges. Equation (5.9) is just Bessel’s
inequality (compare Theorem 4.2) in an infinite-dimensional space.

The orthonormal set {f;} is complete if and only if there exists a set {a;} such
that lim, ., M, = 0. If the set {f} is complete, then a, = ¢; and the equal sign
holds in Bessel’s inequality:

VoS = Sl = 10 NE, (5.10

for every f. This was also true in the finite-dimensional case (see Theorem 4.3).
Equation (5.10) is called the completeness relation. As in the finite-dimensional
case, it can also be stated in the form of Parseval’s equation:

©

(£.8 =2 (LN 8 - (5.11)
i=1
We leave the proof to the reader (Problem 14).

Another characterization of a complete set of n vectors is that there exists
no nonzero vector orthogonal to all n vectors in the set. The corresponding
statement holds for a complete orthonormal set of functions. We shall present
it as a therorem. It will prove very useful in what follows. To facilitate the
statement of the theorem, we first make a definition.

Definition 5.7. A set of orthonormal functions is said to be closed if no
nonzero function is orthogonal to every function in the set.

Theorem 5.2. A set of orthonormal functions in Hilbert space is complete
if and only if it is closed.

Proof. We first prove that completeness of the set implies that the set is closed.

Assume that there is a nonzero function f(x) (and let it be normalized), such
that

Unf) = e = FHE10) dx = 0
for all i. Then

n-+co

b n b
]img If — Zc,-f,|’dx:§ IflPde =10,
a i=1 a

(since f is normalized), so the set {f;} is not complete. Thus completeness of an
orthonormal set of functions implies that there are no functions that are ortho-
gonal to every member of the set.
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We now prove the converse: if the orthonormal set is closed, it is complete.
If it is not complete, then the completeness relation, Eq. (5.10), is not satisfied.
Thus there exists some function f(x) such that

AP > D el
n=1

wherec, = (f,, f). Butsince the above infinite series is convergent, the sequence
{gm(x)}, where

g"l(x) = Z c"fll(x)
n=1
is a Cauchy sequence in Hilbert space, and therefore, because of the completeness
of the space, the g, (x) must converge in the mean to a limit in the space, call it
g(x), such that ¢, = (f,, g). Therefore (f,, g) = (/.. f) so (f., f-g) = 0. Thus
f(x)-g(x) is orthogonal to f,(x) for all n. We now show that the norm of f{x)-
g(x) is not equal to zero, so {f,(x)} is not closed, contrary to our assumption.
It will then follow by contradiction that the set {f,(x)} is complete and the proof
will be finished.
Using the inequality

x =yl = Hxll =1yl |
(see Problem 4.7b), we have

Wf—zsll =If—&«— (&g — &nll lelf—gmll - llg—gmlll

for all m. Now as m — oo, we know that [|g — g.|| — 0, whereas

1S — &all'= IIf—Z_:c,.f,.Hz= IIfIIZ-—Z_;lcnI2 >0

for all m by assumption. Thus ||f — g|| > 0 and the proof is complete.

This theorem plays a key role in establishing the completeness of the various
orthonormal sets of functions which we shall treat in this chapter. Note the
crucial use that is made of the completeness of the Hilbert space in proving it.

We conclude this section with some observations on the uniqueness of the
representations of functions in series expansions. We first prove that a function
in Hilbert space is uniquely determined almost everywhere by its expansion
coefficients with respect to a given complete orthonormal set of functions {f}.
Suppose that two functions, f and g, have the same expansion coefficients, that
is,

= (fif) = 8.

Thus, (f;, f — g =0, so by Theorem 5.2, f— g = 0, and hence f= g.
Now consider the converse problem. Does a given function have a unique
set of expansion coefficients? Assume that

1im||f~2: e.fil| = lim Hf—Z difill =0;
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thatis, assume that there are two partial sums with different expansion coefficients
that converge in the mean to the same function f. If the expansion coefficients
are unique, then ¢, = d;. To prove this, we observe that

13 afi = S dsll = fi = £+ 7= 3 sl
<IIf- Zcf||+|lf Zdlfl”

where we have used the triangle inequality (see Problem 4.7c). Now given any
€, we can choose by assumption an n large enough so that both the last two
norms are less than €/2. Therefore, for such an n,

12
DS efi = 2o difill = 1120 (e = d)fil] = [Zm — ] <
i I i
But this can only be true if ¢; = d;. Therefore the expansion coefficients of a
given function are unique. Since the set {f;} is a complete orthonormal set of
functions, it follows from our earlier remarks that ¢; = d; = (f, f). the Fourier
coefficients.

5.3 THE DIRAC §-FUNCTION

In this section we introduce Dirac’s d-function in an informal way. The 0-func-
tion will play an important role in this book as it usually does in physics.

The first thing to understand about the d-function is that it is not a function
at all. A function is a rule that assigns another number to each number in a set
of numbers. The d-function, as used in physics, is instead a shorthand notation
for a rather complicated limiting process whose use greatly simplifies calculations.
It takes on a meaning only when it appears under an integral sign, in which
case it has the following effect:

[ rwow ax = 100 (5.12)
A special case of this is f(x) = 1. Then
Sla(x) dx=1. (5.13)
If the singular point is located at an arbitrary point x, then
rm FU)B(x! — x) dx’ = f(x) . (5.14)

Except at the singular point x = 0,

8(x) = 0. (5.15)

Thus d(x) behaves as an ordinary function almost everywhere. It vanishes
at all points where its argument is not zero, but at that one point it is undefined.
Nevertheless its behavior near this point is all that matters.
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Now the integral of any real function which vanishes everywhere except at
one point must be zero, regardless of the value of the function at the singular
point. Thus no function which satisfies Eq. (5.15) could possibly satisfy Eqgs.
(5.12) or (5.13). These equations must be interpreted as a symbolic notation
for a process of the following type.

Let d,(x) be a set of functions parametrized by the index &, which have the
properties

lim 0,(x) = 0 forall x %0,
a—0
'rw (5.16)

lim
a—0

" f(0(x) dx = (0) .

Our earlier equations result if we denote “lim,., 0.(x)” by d(x), and inter-
change the order of the limiting process and the integration, a procedure which
is not, in general, valid. The original equations defining the d-function must be
interpreted as standing for the limiting processes of Egs. (5.16).

Let us look at several sets of functions that have the properties described in
Egs. (5.16).

1. The simplest possible set of functions which has the proper limiting behavior
is depicted in Fig. 5.1(a). The function 0,.(x) is defined (for ¢>0) by

for |x| < g
0.(x) = (5.17)
for |x| > -2€ .

o

Clearly, lim,., 0.(x) = 0, at all x = 0. Also, [120.(x) dx = 1, independent of
¢. The function d.(x) (and it is a function) is defined for all ¢ # 0, and the
limit
lim r 5.(x) dx (5.18)
c=0 —co
is defined and equals 1. Also,
lim r F(x)6.(x) dx = £(0) | (5.19)
=0 J -0
which may be shown formally for continuous functions f(x) as follows:
. 0o . cl2 s 1 cl2
lim 5 S(x)6.(x) dx = Ilmj f(x)8.(x) dx = lim —j. S(x) dx ;
=0 J-oo =0 J—c/2 =0 C J—c/?

now, by the mean value theorem of integral calculus,

cl2

|7 rwax=rea |7 ar= ertee).

~cl2 —c/2
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Fig. 5.1. Representations of the d-function.

where —1/2 < § < 1/2. Letting ¢ — 0, we obtain
lim SW F(x)6.(x) dx = £(0) .
c—0 —oo

2. The sequence of Gaussian distribution functions

0.(x) = —=e e

1
av'n
provides another representation of the d-function (see Fig. 5.1b). Note that
limd,(x) =0 for all x # 0 ;
a-0
Sw 0.(x) dx =1, independent of a ;
lim 'r f(x)0.(x) dx = f(0) .
a-0 —~0o
The entire contribution to the integral, as @ — 0, comes from the neighborhood
of x = 0. Therefore we may write symbolically,

3(x) = lim 3, (x) = lim —m &=, (5.20)

a-0 a-0 QN/ T
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3. Another useful representation for the d-function is

— 1 —lml_ €
o(x) = 151_133 0(x) = 1‘1_1.51 el (5.21)

which the reader can establish as in the above example.

4, The final representation of the d-function is slightly different from the pre-
ceding three. It will play a central role in the proof of Weierstrass’s theorem,
the basic result of this chapter. It is defined as

¢, (1 — x¥)” for0 < |x] <1, n=1,2,3,---,
= 5.22
0u(x) {0 for |x| > 1, (5:22)
where the constant ¢, must be determined so that
1
s O,(x)dx =1, (5.23)

The functions d,(x) form a sequence whose limit is a d-function (see Fig. 5.1c).
We shall show, first informally, then rigorously in the proof of Weierstrass’s
theorem, that

lim j'_l F(x)8,(x) dx = £(0) . (5.24)

n-+oo

Thus
lim §,(x) = d(x) . (5.25)

n—-oco

This representation of the d-function differs from the others in that the defining
parameter n takes on integral values that increase to infinity, instead of decreas-
ing continuously to zero.

First we determine the normalization constant ¢,. We have

e, = jl_] (1 — x¥" dx = 2£(1 — X7 dx . (5.26)

Making the change of variable x = sin #, we obtain

2"+in!

1-3-5---2n + 1) (5:27)

1 /2
- = Zf cos 16 df =
C, 0

From Eq. (5.27), it follows that
¢, = (2n 4 1)12*(n1)?, (5.28)

It is not clear from this expression for ¢, how it behaves as n — co. We
can estimate its behavior from Eq. (5.26). Picking up again from there, we
have

1 1) yi
l/c, = ZL(I — x)"dx > 250 (1 —x)"dx, (5.29)
since 1/4/n < 1 foralln=1,2, ---, and since the integrand is positive through-
out [0, 1]. Now we shall show that for all n, the integrand (1 — x?)" > 1 — nx?
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for all x in [0, 1]. Consider the function g(x) = (1 — x)" — (1 — nx?. Since
g(0) =0, and

gx)=2nx[1 — (1 —x)"'] >0 forall0 < x< 1,

g(x) must be monotonically increasing in the interval [0, 1]. Therefore g(x) > 0,
or (1 — x)" > (1 — nx?, for all xin [0, 1]. Using thisinequality in Eq. (5.29),
we have

| v

l/c, > ZS (1 — nx?) dx = 4/3n"* > 1/n"*,

i
0
Therefore

c, < n'?, (5.30)

This result may also be obtained from Stirling’s formula.

As n — oo, the contribution to the integral [*, §,(x) dx comes increasingly
from the neighborhood surrounding the origin. To see this, note that for 0 <
<1,

5_: 0,(x) dx = S; 0,(x) dx , (5.31)

since §,(x) is an even function of x. Now
1
[[a0 ax < mnr — (1 = 9 < (1 — (5.32)
g

since ¢, < n"?[Eq. (5.30)], and (1 — x?" takes on its maximum value at x = ¢,
and therefore {3(1 — x?)"dx is bounded by the area of a rectangle of height
(1 — 0%"and base (1 — 0),since0 < § < 1. Itiswell known that the nth power
of any positive number less than 1 will decrease more rapidly with »n than any
power of n will increase. In particular, the behavior of the term (1— ¢%" will
dominate the term n'? as n — oo, and therefore

1
lims 0,(x)dx =0,
n—co J&

Since 0, (x) is continuous and never negative, it follows that lim, .., 8, (x) = 0
for 0 < x £ 1. Since we have already arranged that [, 0,(x)dx = 1 by our
choice of ¢, (Eq. 5.28), we obtain the result

lim j'_l 7(x)8,(x) dx = £(0) . (5.33)

n—co

5.4 WEIERSTRASS’S THEOREM: APPROXIMATION BY POLYNOMIALS

Weierstrass's famous approximation theorem proves that one can construct from
the set of powers of x a sequence of polynomials which converges uniformly to
any function that is continuous on the finite closed interval [a, b]. From this
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result, we can prove that there exists a complete orthonormal set of polynomials
on any interval [a, b]. Weierstrass’s theorem is the starting point for proving
the completeness properties of many of the functions of mathematical physics,
such as the Legendre polynomials, the trigonometric functions (Fourier series),
and the spherical harmonics.

Weierstrass’s Theorem. If f(x) is continuous on the closed interval [a, b],
there exists a sequence of polynomials P,(x) such that
lim P,(x) = f(x)

uniformly on [a, b].
Proof. We may assume without loss of generality that f(x) is defined on [0, 1].

Suppose that f(x) were defined on [a, b]. Then consider the function 4 defined
by

X —a\ _
/;(b - a) = flx) .
Clearly, fla) = h(0), f(b) = A(1), and any x in the interval [a, b] corresponds
toa z in [0, 1]. Thus if A(z) can be approximated by polynomials in z, then
since any polynomial in z = (x —a)/(b — a) is also a polynomial in x, we can go
from the polynomial approximating 4 to a polynomial approximating f. Fur-
thermore, we can assume that A(z) vanishes at z = 0 and z = 1, for if it does
not, we define

g(z) = h(z) — h(0) — 2[A(1) — A(0)]

for z in [0, 1]. Clearly, g(0) = 0 and g(1) = 0. Since g(z) and A(z) differ only
by a polynomial, if we can approximate g(z) by a polynomial, we can approxi-
mate 4(z) by that same polynomial plus the polynomial #(0) + [A(1) — A(0)]z.
Therefore we assume our original function f(x) to be defined on [0, 1] and
to vanish at x = 0 and x = 1. We may define f(x) as we choose outside [0, 1],
and we define it to be identically zero there,
Now we set
1
P(x) = S S+ 98,00 d,  0<x<1, (5.34)
—-1
where 9, (7) is the sequence of functions, defined in Eq. (5.22), that we claimed
represented a d-function:
fe (1 =) foro< <1,
(0 for [t] > 1.

If that claim were true, then

d,() =

lim P,(x) = f(x),
and the proof would be complete. We mention this just to indicate the motiv-
ation behind the rigorous proof we now present. This proof will also demon-
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strate that the sequence d,(f) as n — oo really does have the properties that
characterize a d-function.

We are assuming that f(x) vanishes outside [0, 1]. We may therefore write
Eq. (5.34) as

1—x

P = |7 s+ 0, ar,
where f(x 4+ ¢#) = 0 whenever t £ — xort = 1 — x. By a simple change of vari-
able (¢t — ¢ — x), we obtain

P,(x) = S;f(t)én (t — x) dt = S;f(t)cn[l — (e — X dt.

This last integral shows clearly that P,(x) is a polynomial (of degree 2n) in x.
The coefficients of the powers of x are definite integrals over t. Thus P,(x) is
a sequence of polynomials. We shall prove that this sequence converges uni-
formly to f(x).

In analysis it is shown that a function which is continuous on a finite closed
interval is uniformly continuous there. For those unfamiliar with this result,
its meaning may be abstracted from the following example. The function
q(x) = x~"'is continuous on the open interval (0, 1), but is not uniformly con-
tinuous there because

0
x(x 40’

and this difference cannot be made arbitrarily small for all x by a single choice
of 6. In fact, by choosing x sufficiently close to zero—yet still in (0, 1)—the
difference can be made arbitrarily large for any given § > 0. Thus there does
not exist a § > 0 independent of x such that |g(x + &) — g(x)| is arbitrarily
small, and the continuity is not uniform.

Since f(x) is continuous on the closed interval [0, 1], it is uniformly con-
tinuous there. As will be seen, uniform continuity is essential to this proof.
Therefore we know that given any € > 0, there exists a d such that

|flx 4+ 0) — fx)] < e

lg(x + 0) — q(x)| =

for all x in [0, 1].
Now, using Eq. (5.34) for P,(x), we form the quantity

|Pu(x) —f(x) | =1} [flx+ 1) — f(x)]d.() dt]

<

ey ey

1
U ) = S1010,00 dr,
since d,(f) > O for all 7in [—1, 1]. We now break up the range of integration
into three parts:

gll |f(x + 1) — flx)]0,(e) dt = S_”+S’ +Sl-

-1 -0 4
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Since f(x) is continuous on a closed interval, it is bounded there. Let the maxi-
mum value of |f(x)| = M. Then both [Z{ and [} are bounded by the quantity
2M n'?(1 — 6%)". We may see this as follows:

[1tc+ 0 = soiantoar < [, 116 + 1o de + [ 1 10,0)

1
< zMj 3.(f) dt < 2Mn(1 — )" .
[
Here we have used the fact that | f| < M and Egs. (5.31) and (5.32).
We may estimate the remaining integral, [?,, by using the uniform conti-
nuity of f(x), and interpreting the limits of integration as a ¢ which guarantees

[fix + 1) — flx)] <e/2, for |7] < .
We find

3 '
|17 0 = stante ar < 2 [ o0 ar < 2,
since [,0,(f) dt < 1.

Collecting these results, we have

|P,(x) — f(x)| < 4Mn'2(1 — &%)" + €/2 .

The value of n'?(1 — 0%)" for 0 < d < 1 can be made arbitrarily small for large
enough » and, in particular, smaller than ¢/2. Therefore there exists an N such
that for n > N,

|P.(x) — f(x)| <€,
for any arbitrarily small preassigned €, that is,

lim |P,(x) — f(x)]| = 0.
n—+co
This means that the sequence of polynomials P,(x) converges uniformly to
the continuous function f(x) on [0, 1], and so the proof is complete. In fact,
this holds for an arbitrary continuous function on an arbitrary finite closed
interval [a, b], as was demonstrated at the outset. QED
Thus Weierstrass’s theorem tells us that there exists a set of coefficients

Qum; n=0,+--,0, m=0,-,u=2n,

such that 37=a,, x™ tends uniformly to f(x) as n — co. It most emphatically
does not guarantee a uniformly convergent power series, which would consist
of a set of coefficients a,, (m = 0, - - -, o) such that 3} n=4 a,x™ tends uniformly
to f(x) as n — oco. The point is that the Weierstrass coefficients a,» are not in-
dependent of # for fixed m. As the approximation improves, by going to poly-
nomials of higher degree, the earlier coefficients change. The theorem would be
false if it claimed to produce a uniformly convergent power series. For example,
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there is no power series that converges uniformly to the continuous function
4/x in the interval [0, 1].

Weierstrass’s theorem for approximation by a sequence of polynomials is in
one sense, much stronger than Taylor’s theorem for expansion in power series.
To expand a function in a Taylor series, its derivatives of all orders must exist:
it must be “analytic.” In Weierstrass’s theorem, only continuity is needed. Fur-
thermore, Weierstrass’s theorem demonstrates the existence of polynomial
approximations outside the radius of convergence of a Taylor series. But there
is, in general, no possibility of rearranging the uniformly convergent sequence
of polynomials that approximate any continuous function so as to produce a
convergent power series (Taylor expansion).

In Taylor expansions we need to know the function and its derivatives locally,
at a point; the radius of convergence of the expansion may be finite or infinite.
Weierstrass’s theorem applies only to finite intervals, and we need to know the
function, but not its derivatives, globally, over the entire interval,

As a by-product of this theorem, we have established rigorously that the
representation of Dirac’s delta function given in Eq. (5.22) has the properties
claimed for it [Eq. (5.24)]. Thus Weierstrass, who proved this theorem in 1885
by the above method, anticipated Dirac considerably. In fact, he was not the
only one. Heaviside used a closely related symbolic function before Dirac. Yet
it was with Dirac’s introduction of symbolic functions in his classic book, The
Principles of Quantum Mechanics, which appeared in 1930, that their use became
widespread. Only relatively recently was the theory of d-functions, and other
related symbolic functions, established rigorously by the mathematician Laurent
Schwartz in his theory of distributions.

Weierstrass’s theorem may also be extended to functions of several variables.
By a straightforward generalization of the proof, it can be shown that if a

function f(x,, x5, - -+, x,,) is continuous in each variable x; for x; in [a;, b;]
(i=1,2,---,m), f may be approximated uniformly by the polynomials
by (hy bm
Pn(xlr X2y ", Xm) = S S tee S f(fl. ty v, tm)an(tl - Xl)
ay Jay am
0u(ts — x3)+ + +0u(t — xu) dty dty,- - - dlt,, . (5.35)

The completeness of the trigonometric functions follows from the special case
m = 2, as we shall see in Section 5.6.

We close this section with the statement of an important consequence of
our basic result. From Section 5.2 it follows that if the set P, defined in the
proof of Weierstrass’s theorem approximate any continuous function f uni-
formly, they also approximate any continuous function in the mean; that is,
given any e, there exists an » such that |[f — P,|| < e. Now it can be shown
that any function in the Hilbert space of square-integrable functions can be
approximated arbitrarily closely in the mean by a continuous function. This
is discussed further in Section 8.7. It follows that any function in this Hilbert
space can be approximated in the mean by some P,. This can be seen as follows.
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Let ¢ be a function in Hilbert space. Then the difference ¢ — P, can be written
as

¢_Pn=(¢_f)+(f_},n):

where f is a continuous function. By the triangle inequality, we have

g =Pl < |I¢ — Il + 11— Bl

Now f can be chosen so that ||¢ — f]|| is as small as we please; and by Weier-
strass’s theorem, n can be chosen so that ||f — P,|| is as small as we please.
Thus P, approximates ¢, an arbitrary function in Hilbert space, arbitrarily
closely in the mean. This fact will be needed in what follows. A complete
proof can be found in most analysis texts, e.g., Riesz and Nagy (Section 46) or
Rudin (Theorem 10.38).

5.5 LEGENDRE POLYNOMIALS

We are now in a position to demonstrate that there exists a complete orthonormal
set of polynomials on the finite closed interval [a, b]. The proof of completeness
follows from Weierstrass’s theorem. After establishing the general result, we
shall examine in detail one very important special case—the complete ortho-
normal set of polynomials on the interval [—1, 1], which, apart from constant
normalization factors, is the set of Legendre polynomials. We shall construct
the first three functions in this set explicitly, and then provide a formula for
calculating all the others.

Welierstrass’s theorem tells us that any continuous function f on [a, b] can be
approximated uniformly by a sequence of polynomials:

2n

Pn(x> = Z a,,,,,x”' .
m=0

Since the set {x",n =0, 1, ---} is linearly independent, we may apply the
Gram-Schmidt orthogonalization process to construct from it an orthonormal
basis {Q,(x)}, where Q,(x) is a polynomial of degree n. We may now express
the original functions as finite linear combinations of the orthonormal set:
x" = CmiQ;(x) .
i=0

It follows that the polynomials P,, which approximate the function f uniformly,
may be expressed as

2n m

Pyx) = D @ D, enii(X) .

m=0 i=0

We now prove that the orthonormal set {Q,} is complete by showing that it is
closed (Theorem 5.2). The orthonormal set {Q,} will be closed if the only function
orthogonal to all the Q, is the zero function. Assume that we have a function
in Hilbert space such that (f, Q,) = 0 for all n. It follows immediately from
the above equation that (f, P,) = 0 for all n, since the P, are linear combinations
of the O0,. However, we know from Weierstrass’s theorem that f may be ap-
proximated in the mean by the P,. Thus for any e there exists an n such that
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||f — P.|| < €. Butsince (f, P,) =0,
If = Pall = (f = Po S = PY? = [IIfI]* + ||Pa] 1.

Therefore

A+ P < €.

But this implies that || || is arbitrarily small, and hence f is equal to zero (almost
everywhere). Therefore theorthonormal set {Q,}is closed and hence, by Theorem
5.2, it is a complete orthonormal set of polynomials on [a, b].

The completeness of the set O, means (according to Definition 5.6) that there
exists a set of of constants {a;} such that any function g in the Hilbert space can
be approximated in the mean by the sequence of partial sums

n

8n = Z aiQi(x) .

i=0
But the a; are independent of n. Thus as we extend the sum to infinity, the
approximation improves without the earlier a, changing. Therefore we may say
that there exists an infinite series

o

Z aQ;

i=0
which approximates g in the mean. Symbolically, we write

g(x) = Z aiQi(x) .
i=0
We have shown that if we have a complete orthonormal set of functions,
the coefficients which provide the best approximation in the mean are the Fourier
coefficients. Thus the expansion coefficients in the infinite series are given by

a; = (Q, g) .
Let us now apply these considerations to a concrete case. We shall use the
Gram-Schmidt orthogonalization process applied to the basis {1, x, x?, - - -} to

construct the set of orthonormal polynomials on the interval [—1, 1]. By the
previous result we know that this set will be complete.

The first member of the orthonormal set is Py(x) = (§)'?, which is evidently
normalized for x in [—1, 1]. Using the prescription of Section 4.3, we have

Py(x) = ()",

1
P X — 1/2”25 . 1/2”2x dx (3>”2
P = l_ = | - X,
”x — 1/2'/25 12xdx| 2
-1

(5.36)

1 1
xt — 1/2'“5 1/2"2x*dx — (%)"’xg (3)"2x% dx §\112/3 1
1 1
| x? — 1/2"2§ 1/2"2x*dx — (%)‘”xj (3)"2x* dx ‘ 2 2 2
-1




5.5 LEGENDRE POLYNOMIALS 235

This is a tedious process; we have carried it out for these three cases only to
show that one can construct orthonormal functions directly. One would hope
that there is a better way to compute the orthonormal polynomials of higher
order, and, indeed, there is.

We claim that a general formula for the complete orthonormal set of poly-
nomials on [—1, 1] is

pay = (220

1 4
2"n tdx"

(x* — 1), (5.37)

The orthogonal, but unnormalized, polynomials

— 1 d" 2 n
Pifx) = 5o ol — 1) (5.38)

are known as the Legendre polynomials. Equation (5.38) is called Rodrigues’
Sformula.

Thus the Legendre polynomials differ from the orthonormal set {P,(x)} by
constant multiplicative factors. The problem now is to show that the Rodrigues
formula gives the same set of orthonormal polynomials as the Gram-Schmidt
orthogonalization process. Direct computation verifies that they agree through
the polynomials of second degree. To show that the Rodrigues formula holds
for all orders, we must show that:

1. On any fixed interval there can be only one complete orthonormal set of
polynomials in which the nth polynomial is of degree n.

2. The P,(x) given by the Rodrigues formula do in fact form a complete or-
thonormal set on [—1, 1].

The uniqueness property of the complete orthonormal set of polynomials
is embodied in the Gram-Schmidt process, which can generate one and only
one complete orthonormal set of polynomials (up to a phase factor) on[—1, 1],
or, in fact, on any given interval. Hence we have, in fact, already proved
condition (1).

To demonstrate condition (2), we now show that the set of polynomials
generated by the Rodrigues formula for the interval [ —1, 1] is orthonormal, and
that the function P,(x) given by Rodrigues’ formula is a polynomial of degree
n. Then completeness follows by our earlier proof. It isimmediately clear that
P,(x) is a polynomial of degree n. We prove orthonormality in the following
theorem.

Theorem 5.3.
1

(P, P,) = j Bo(x)Po(x) dx = Oy . (5.39)

Proof. We first prove orthogonality. We denote d"/dx" by d", and suppose
that n > m. Dropping constant factors, where we have integrated by parts,
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we have

Sl_l PP, dx = S'_l [@"(x* — 1)] [d"(x* — 1)"] dx

= [ — ) (e = 1)1 |

~ [\ a1 = e — 1y,

Since
d"'(x* — 1)" = (a polynomial)- (x* — 1),

the first term vanishes upon putting in the limits + 1, leaving the second term.
Therefore, after n partial integrations, we have

1
S (_ 1)1:(x2 _ 1)ndm+n(x2 . l)m dx ,
-1

since the term which is evaluated at +1 always vanishes because it is propor-

tional to some power of (x> — 1). Now, since n > m, n + m > 2m and so
d"*m(x* — 1)" = 0. Therefore

1
j PP,dx =0 form +# n.
-1
If m = n, then as before (but putting in constant factors),

1 _ n ("1
S P.P,dx = M—I)S (x* — 1)"d*»(x* — 1)"dx .
-1 22n+1(n !)2 -

But (x2 — 1)" is a polynomial of degree 2n, so the (2n)' derivative is just (2a)!.
The integral becomes

(121 4+ DU (o g —
WS ( Drdx =1,

where we have used Egs. (5.26) and (5.28).

The functions P,(x) = [(2n + 1)"?/2] P,(x) are therefore a complete ortho-
normal set on the interval [—1, 1], and they are the only such set.

We shall now work out several other results pertaining to the Legendre
polynomials P,(x). Our approach will be inductive and straightforward, a
continuation of the techniques used to prove orthonormality. There are more
elegant ways to obtain most of these results which will be used later to deal
with both the Legendre polynomials and other complete sets of functions. But
for the moment we proceed in a more pedestrian manner.

First we shall derive from the Rodrigues formula an explicit expression for
P,(x) as a polynomial. We apply the binomial theorem to the factor (x? — 1)"
to obtain

n

(x’—l)":Z(n

m=0 m

Yoo,
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where <:1> is the binomial coefficient:

(o) = it (5.40

Then, taking the nth derivative, we obtain

1 1 5 n\ - (2m)!
P,, x) = dn xZ _ 1 [ __1 n—m< ) x?m—-n , 5'41
) 2"n! ( ) 2"n! E,, (=1) m/ (2m — n)! ( )
where p = nf2 if niseven and p = (n + 1)/2 if n is odd.
We next prove that P,(1) = 1 for all n. In itself this is not of staggering
importance, although it is interesting. We prove it now to illustrate an impor-
tant technique. (We shall have an easier way later.) We write

1 n n n
Pn(x) = —d [(x—- 1) (x+ 1) ]v
2"n!
and evaluate the nth derivative of the product by Leibnitz’s rule (the “binomial
expansion” for the nth derivative of a product):

n

dn(u,v) — Z <”;>dmudn—-m,v — ud"'l) + ndudu—lv + Mz—'__l_)dzudu—zv + R

m=0
n!
+ ———dfud" v + -+ 4 vd"u. (5.42
k!'(n —k)! (5.42)
We now take u = (x — 1)" and v = (x + 1)". Itisclear that the only nonzero
term in the Leibnitz expansion at x = 1 is the term m = n, in which the factor
u = (x — 1)" is “differentiated down” to the constant n! and hence does not

vanish at x = 1. Therefore

dn[(x . l)n(x + l)n] - — dn(x — l)ndo(x + l)n . — n!2u s

and consequently,

P,(1) =1 for all n. (5.43)

The Legendre polynomials arose originally as the solution to a differential
equation, now called Legendre’s equation:

(1 — X3P/ (x) — 2xP/(x) + n(n + 1)P,(x) = 0. (5.44)

To prove that the elements of the complete orthonormal set of polynomials
on [—1, 1] satisfy this equation, we begin with the identity
d

(x* — 1)2; (x* — 1)" = 2nx(x* — 1),

Now differentiate both sides of this identity n + 1 times. With the help of
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Leibnitz’s formula (Eq. 5.42), we obtain for the left-hand side
A [(x* — 1)d(x* — 1)"] = (x? — 1)d"*?*(x* — 1)" + 2(n + D)xd"*'(x* — 1)"
+ n(n + Dd"(x* — 1)",
and for the right-hand side, we have
d"t'[2nx(x* — 1)"] = 2ax d"+'(x* — 1)" + 2n(n + Dd"(x* — 1)".

The difference of these two equations must vanish. Therefore

(x* — 1)d"*?* (x> — 1)" + 2xd"*'(x* — 1)" — n(n + 1)d"(x* — 1)" = 0.
Now, using the Rodrigues formula for P,(x), we obtain

(x*-= 1P +2x P’ —nn+ 1P, =0, (5.45)

which is equivalent to Legendre’s equation (5.44). It may also be written in
the form

[(1 = x3)P/(x)) + n(n+ H)P,(x) =0. (5.46)

Thus the P,(x) are solutions of Legendre’s equations; but they are not the only

solutions. There existsanother linearly independent solution called, collectively,

the Legendre functions of the second kind, denoted by Q,(x). However, these

functions are not finite at x = %1 as are the P,(x), and so are excluded as
possible solutions in many physical applications; they are not polynomials.

Thereisanalternative proof of the orthogonality of the Legendre polynomials

which follows directly from the differential equation (5.46) for P,(x). We
know that P, and P,, (n # m) satisfy the equations

41— AP+ nln + )P, =0,
dx

411 = P + mlm + )P =0,
dx

Multiplying these equations by P, and P, respectively, subtracting them, and
integrating from —1 to +1, we obtain

(n—myn+ m+ 1) Sl_l PP, dx
= [P (0= )Ry = P (1= )2 [
={[pu—mps | = ax-xpee

‘Pm—fMT‘qlﬁﬂ—ﬂmm}=m
-1 -1

here the two integrals cancel and the two other terms vanish, Since n # m, it
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follows that
1
(P,, P,) = j PP dx=0.
-1

This is actually a special case of a proof that holds for a wide variety of
functions arising as solutions to the Sturm-Liouville problem, which we shall
discuss in Section 5.10. The proof depends on the fact that the differential
equations obeyed by orthogonal functions have a certain form.

We have sampled only a few of the properties of the complete orthonormal
set of polynomials on [—1, 1]. We shall encounter them many times in the
course of the book (we met them once before in the multipole expansion (Egs.
1.100, 1.101, 1.102), and shall discuss their properties in more detail. Butour
main concern for the moment is the completeness of this set of polynomials, and
other sets of functions—not all the special properties these sets of functions
happen to have.

We now turn to the single most important complete set of functions, the
ancestor of them all: the trigonometric functions and Fourier series.

5.6 FOURIER SERIES

The completeness properties of the set of trigonometric functions {sin n, cos nf,
n=20,1,2, -, o} can be deduced from Weierstrass’s theorem for two vari-
ables. Equation 5.35 tells us that any function g(x, y) which is continuous in
both variables on specified finite closed intervals may be approximated uniformly

by the the sequence of functions
N

gn(x,y) = D Aimxmy™;
n,m=0

that is, limy_,. gv(x, ¥) = g(x, ), uniformly in x and y. The coefficients A’

are not independent of N for fixed n and m, so this is not a power-series ex-
pansion.

If we change to polar coordinates and restrict the domain of definition to
the unit circle, then x = cos @ and y = sin @ so that

N
glcos 8, sin0) = f(0) = lim Z AN cos "0 sin "6 . (5.47)

N—oo n,m=0

Clearly, the only functions f(#) which can satisfy this last equation are periodic
functions with periodicity 2z; this is a consequence of restricting x and y to
the unit circle. We shall generalize later to include functions having periodicities
different from 2x.

Using Euler’s formula,

e =cosf + isin@,

we obtain expressions for the nth powers of sin § and cos §:

cos "0 = [l el + e"")]n , sin"@ = l:l—< o e""’):ln .
2 2i
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Then Eq. (5.47) can be rewritten in the form
M c,(IM)
ﬂﬂﬂghmzﬁg;@WW% (5.48a)
where we have inserted the factor (2r)"? for later convenience, and have replaced
the variable 6 by x to emphasize the general nature of the result. Clearly, we
may write equivalently

flx) = lim fi,(x) = lim [a° + Z (@™ cos nx + b™ sin nx)] . (5.48Db)

Moo Moo n=1

The complex expansion coefficients in the exponential form of the series, and
the real coefficients in the trigonometric form, are related as follows:

1/2 112
aiM = 2 M (T (M)
= Cy = ’i dg ,

1/2
aW=QWM%+a>, or e =(2)" (@ — i), (5.49)
(M) — i (M) (M) on — (TN o (M)
b,. - (2 )1/2 (Cn - C—n) ’ Cow = '2" (all + lb ) *
T

The superscript M reminds us that the coefficients in the sequence are not inde-
pendent of M; the coefficients of earlier terms in the sequence may change as
M increases.

Thus any continuous function f(x), for which f(x) = f(x + 2x), can be
approximated uniformly by a sequence of trigonometric polynomials:

M (M)

— ™ einx = aa
Su(x) ':-;w (2”),,2
Now suppose that f(x) is any continuous function on the closed interval
{a, a + 2x], and assume further that f(x) does not satisfy the periodicity con-
dition f(a) = fla + 2x) at the endpoints of the interval. It is clear that for any
such function f, we can find a continuous function g(x) that both satisfies the
periodicity requirement and is such that the quantity

717w — gt ax

a

+ Z M cos nx + bM sin nx) .

can be made arbitrarily small. (See Courant-Hilbert for proof.) Therefore the
trigonometric sequence that converges uniformly to g(x) will converge in the mean
to f(x) on the interval [a, a + 2x]. In fact, since any function in Hilbert space
can be approximated in the mean to arbitrary precision by some continuous
function (see Section 5.4), this same result holds for any function in Hilbert
space.

We saw in Section 5.1 that the set of functions

{ 1 e, n=20,=x1,- -
(2m) '
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is orthonormal on the interval [—=, #]. We shall denote this orthonormal set
of functions by {T,}. We shall now show that this set is a complete orthonormal
set. We do this, exactly as we did for the orthonormal set of polynomials {Q,}
in the last section, by proving that the orthonormal set is closed. Thus, assuming
that (f, T,) = 0 forall n, we want to prove f = 0. It follows from Eq. (5.48a)
that (f, fi) = 0 for all M, because f,, is just a linear combination of tke
orthonormal funtions T,. However, we know that any function f may te
approximated in the mean by the sequence f),; that is,

S = Ful L = THAIP + 1A P < e

Thus f = 0 (almost everywhere). Therefore the orthonormal set {T,} is closed,
and hence by Theorem 5.2, it is a complete orthonormal set on [ —=, #]. Clearly,
the set of trigonometric functions which is orthonormal on [ —m=, 7],

1 1. 1 _
_—, — sin nx, — COS nx, n=1,2,---3%,
(271.)1/2 ' YT
is also complete.
It follows from the completeness of the orthonormal set {T,} that we may
approximate an arbitrary function f in the mean by an infinite series of the T,.
We write symbolically,

o o

f) =Y aTux) = D, —a_e = %’+ > (a. cos nx + b, sin nx). (5.50)
n=1

n=—eo e (2m) '

The expansion coefficients which here are constants, independent of M (compare
Eq. 5.48a), are given by

1

Chn = (Tmf) = (271_—)1,2

j_ flx)e=i dx . (5.51)

The coefficients a, and b, of the trigonometric series may be computed using
Eqgs. (5.49):

1. 1 2 * —inx nx
a, = )" (eo+c0) = <W> S_‘f(x) (e + e'™) dx
:1Sx f(x) cos nx dx forn=20,1, .- (5 52)
T -R
b,,:lsx f(x) sin nx dx forn=1,2,---
TJ-x

The series (5.50) with the coefficients (5.52) is known as the Fourier series.
Since the functions

T.x) = e'", n=20,=x1...

form a complete orthonormal set, the completeness relation (Eq. 5.10) must
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hold for it. This gives

U = fdx =% e =d %+ 3 @+0) |, (559
n=-~oo n=1
where we have used Eqgs. (5.49).

Let us now summarize the situation. We have shown that the Fourier series
converges in the mean to any function f(x) in Hilbert space on [—=, x]. We
also know that there exists some trigonometric sequence that converges uni-
Sformly to any continuous function f(x) on [—=, w] for which f(—=r) = f(x).
It is plausible therefore that the result for Fourier series, i.e., the particular
trigonometric series with the Fourier coefficients [Eqs. (5.48)], can be strength-
ened. However, it most definitely is not guaranteed that the particular choice
of coefficients which guarantees convergence in the mean, also yields uniform
convergence. The converse is easily proved, however; namely, if a trigonome-
tric series converges uniformly, then its coefficients are the Fourier coefficients.
This may be demonstrated by multiplying [Eq. (5.50)] by cos mx or sin mx
and integrating the uniformly convergent series term by term. But establishing
the conditions for uniform convergence is the real problem. We begin our
investigation of this question, which is the central question in the theory of
Fourier series, by proving a theorem.

Theorem 5.4. The convergence of the Fourier series to f(x) is uniform in
the closed interval [—m, x] if f(x) is continuous and its derivative is piece-
wise continuous in this interval, and f(—=) = f(z). If, in addition, f(x +
2z) = f(x), the convergence will be uniform everywhere.

An example of a continuous function with a piecewise continuous deriva-
tive is given in Fig. 5.2. Such functions are often referred to as piecewise smooth
functions.

Proof. We shall denote the Fourier coefficients of f/(x) by a and b.. Integrat-
ing by parts, we have

al = 15‘ f'(x) cos nxdx == S‘ f(x) sin nxdx = nb, ,
TJ-= TJ-=

bl = 1 S‘ S1(x) sin nx dx = —2S‘ f(x) cos nxdx = —na,, (5.54)
T J-x TJ-x

a) = Si‘f’(x) dx = flr) — fl—=x) = 0.

We have used the fact that f{z) = f(—=) in several places; the Fourier coef-
ficients of f(x) are denoted by a, and b, as before.

Since f7(x) is piecewise continuous on [ —rx, #], and hence square integrable,
it must satisfy Bessel’s inequality, Eqgs. (5.9) and (5.53):

.0 = 7{%{’2 + i (@ + b7 J = ), n*(b? + a)) (5.55)

n=1
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Fig. 5.2. Zig-zag function and its derivative.

where we have used Egs. (5.54).

[In fact, we know that the equality sign holds
by the completeness relation, Eq. (5.10)].

The preceding results are all preliminary. We now use the Cauchy criterion

to test for the uniform convergence of the Fourier series.

Let

:%"—}—Za,cospx+2b,sinpx.
p=1 p=1

By Theorem 5.1, if we can show that |S,

— S.| < € for all x in[—mx, =], and

for all n, m larger than some N(e), then we will have established uniform con-

vergence. We have

n

Z (a, cos px + b,sin px) }

1 (pa, cos px + pb, sin px) l

ISn - Sm, =
p=m+1
n
p=m+1 P
p=m+1 p=m+1

2
pa, cos px + pb, sin px‘ ,

where we have used Schwarz’s mcquallty [Eq. (4.8)]. This last expression may

be written as

1
|S; - S;J f; \/ =
er;:lp

> Pla, cos px + b, sin px|?

p=m+l1

\/; m+l

Pla, + b),

p= m+l

since |a, cos px + b, sin px| can be written as

[V @ + B cos (px —0)| <

where § = tan ~! b,/a,. Therefore

|Vai + 8,

"1

\/1 | 1w,
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where the term \/Z,';z,,mp’(a}, + b)) has been replaced by the equal or larger
term

\/ i pila + b)) < \/(1/,[) S_ |f | dox (5.56)

from Eq. (5.55). Now the series Y52, (1/p? converges (it is, in fact, the Riemann
zeta function evaluated at 2 and converges to 7%/6 as we shall show in Section
6.9). If we let

M= 1w,

then we know that M is finite, because f7(x) is piecewise continuous and always
finite.

The series Y o>, (1/p?), converges, so it must satisfy the Cauchy criterion.
Then for any positive number, which we take to be €*/M?, there exists an
integer N such that Xp_,.. (1/p) < €¢/M* when n, m > N. Taking the n and
m that appear in |S, — S, ]| larger than this ¥, we then have

IS, — Sl < (E/M)'PM =€,

and the proof of uniform convergence is complete. We know that the series
converges fo the function f(x) because its convergence in the mean to f(x) has
already been established.

Note that the completeness relation could have been used earlier in this
proof; there would then be an equals sign where we have an inequality in Eq.
(5.56). Tt is valid to use the completeness relation because completeness has
been proved already. But in order to demonstrate that prior knowledge of com-
pleteness is not required to prove uniform convergence, we have used Bessel’s
inequality instead. The piecewise continuity of f’(x) implies that M is finite,
and this is all that is needed to prove uniform convergence. However, to show
that the uniform convergence is 7o f(x) (since Cauchy’s criterion makes no men-
tion of the limit function) the convergence in the mean to f(x) (completeness) was
used at the very end of the proof. It is possible to prove independently that
the uniform convergence is to f(x), and then this result leads to an independent
proof of completeness.

This theorem may be extended to deal with the piecewise continuous func-
tions, such as step functions, which may have a finite number of finite discon-
tinuities in the interval [—m=, 7).

Theorem 5.5. If f(x)is piecewise continuous in [ —7, #],and has a piecewise
continuous derivative there, then its Fourier series converges uniformly to
f(x) in every closed subinterval of [—m, #] in which f(x) is continuous.
At points of discontinuity of f(x), its Fourier series converges to the arith-
metic mean of the left- and right-hand limits of the function. If f(x 4+ 2x)
= f(x), then these statements are true everywhere on the real line.
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It is interesting that although we know that there exists some trigonometric
sequence that converges uniformly to every continuous function on a closed
interval, continuity of f(x) alone is not sufficient to prove the covergence of its
Fourier series. There exist continuous functions which are not differentiable,
and their Fourier series need not converge. The additional condition of con-
tinuity of f7(x)}, however, ensures convergence. Also, the assumption that the
intervals be closed is vital to proving uniform convergence. The convergence of
the Fourier series for piecewise continuous functions—such as step functions—
will certainly not be uniform in open intervals (a, b), where one of the end-
points is a point of discontinuity. In fact, it may be shown that just before
the Fourier series passes over the discontinuity, it differs from the function
by a finite amount. This overshooting effect is called the Gibbs phenomenon
(see Problem 4c).

It is primarily the smoothness of the function that determines the size of
the Fourier coefficients—the smoother the function, the more rapidly these co-
efficients decrease and the more rapid is the convergence. The theory of Fourier
series is largely the study of the interplay between assumptions about smoothness
and conclusions about convergence.

Fejer has constructed a theory of Fourier series based on a special type of
series summation (called Cesaro summation) in which one considers the sequence
of arithmetic means of the partial sums. If a series is convergent in the usual
sense, then it is Cesaro summable to the same value. But many divergent series
are Cesaro summable; thus Cesaro summability is a natural generalization since
it preserves the usual summation as a special case. It was shown by Fejer that
the Fourier series of any continuous function f(x) is uniformly Cesaro sum-
mable to f(x) (see Rudin or Apostol). No assumptions on smoothness are re-
quired. This result is to be contrasted to the fact that there are continuous
functions whose Fourier series are divergent at a point.

So far we have restricted our attention to functions defined on the interval
[—m, ). If these functions are periodic of period 27, the expansions are as good
everywhere as within the interval [—m, #]. It is a simple matter to generalize
these results to the interval [—/, /], and functions of period 2/. But the require-
mentof periodicity cannot be removed if the series is to converge outside the basic
interval.

Clearly the set of functions

el'nxxll
{—— , n=20, £1, £2,
(21)2

is a complete orthonormal set on the interval [—/, /]. All our results go through

for this set of functions exactly as before. For the complex exponential series,
we obtain

oo

eiuxxll

fx) :n;»c" W ,

(5.57)

1 ! —ingx
Chn = Wj—lf(x)e dx .
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Similarly, for the trigonometric series,
aq - nre - . nw
x) =2 a, CoS — X b, sin—x,
fo) =2+ 2 X+ 2 ;
! nm
S f(x) cosTx dx forn=0,1, -, (5.58)
-

]
S f(x)sinr%xdx forn=1,2, -

These formulas hold in the interval { —/, /] under the conditions of the theorems,
and will hold outside this interval only if f(x + 2/} = f(x).

For any / (including ! = x}, if f(x) is an even function, then b, = 0 for all
n and we have a Fourier cosine series; and if f(x) is an odd function, a, = 0
for each n and we have a Fourier sine series.

We close this section with a very simple, but very important observation.
It will be recalled that the Legendre polynomials, which we have shown to be
a complete orthonormal set, satisfy a second-order differential equation (Eq.
5.44). In this section we have been discussing the more familiar trigonometric
functions, and have found that they also are a complete orthonormal set of
functions. As we study other such sets of functions we shall always make note
of the fact that these functions are the solutions of certain differential equations.
Our treatment will not be derived from these differential equations, but rather
will culminate in them, deriving them as a by-product of other considerations.
Finally, by way of a summary, we shall, in Section 5.11, view all the special
polynomials in their capacity as the solutions of second-order differential equa-
tions.

The trigonometric functions will, of course, not be included in this sum-
mary, sincc they are not polynomials. For completeness sake, and to help
motivate the next section on Fourier integrals, we state the well-known differen-
tial equation satisfied by the sine and cosine functions:

2
a;zu-{-wzu:O. (5.59)

This second-order differential equation has the two linearly independent solutions
u, = sin wx, U, = COS WX . (5.60)

If w* = n?, where n is an integer, these solutions give the Fourier functions as
n runs from 0 to oo. It is instructive to prove the orthogonality of these func-
tions from the form of the differential equation as was done for the Legendre
polynomials.

5.7. FOURIER INTEGRALS

The restriction of the validity of Fourier series expansions to the basic interval
[—1,1] unless the expanded function is periodic is annoying because many
functions are not periodic. However, a way around this difficulty is suggested
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by the generalization we made in the last section: If we want to expand a non-
periodic function over any specified finite range, all we have to do is expand
the function in an interval [—/, I] large enough to contain the specified range.
But what if we want an expansion for a nonperiodic function that is valid
everywhere, over the whole real line? Throwing all considerations of rigor aside,
we shall here derive heuristically a plausible answer to this question. (When a
physicist speaks of a “heuristic” derivation, he is usually apologizing in advance
for a sloppy, nonrigorous one; actually, the word means “serving to help toward
discovery.”) We shall take up these matters again, in a more rigorous fashion,
in Chapter 9 (corollary to Theorem 9.11).

It is reasonable to try to get around the periodicity requirement by letting
| — oo in Egs. (5.57). To carry this out, set (z/l)"*’x = yand n(z/l)''* = k,, so
(nrc/l) x = k,yand Ak, = k,y, — k, = (z/l)"?, and 1/(2))"* = Ak, /(27)"*. Then,
replacing ¢, by g,, Eqs. (5.57) become

1 « ey
= e“nr Ak, ,
f(y) (Zﬂ)”zk":z_m gkn
where
g, = — " f(y)e "> dy
7 2m) L,—, '

and k, changes by steps of Ak, = (/l)"?, corresponding to steps of An =1 in
the original sum. Now let /| - co. As /— oo, Ak, — 0 and k, takes on all
real values. Therefore the sum over k, becomes an integral over a continuous
variable (which we denote by k), and we have, replacing y by x,

—_1 [ i
flx) = T S_m glk)e' dk ,

p— 1 “ —lkx
) = i | e
The function g(k) is called the Fourier transform of f(x), and vice versa. Two
functions which satisfy Eqs. (5.61) are called a Fourier transform pair. This
pair may be regarded as the statement and solution of an integral equation of
a particular type.
By an easy extension of these results, we get the three-dimensional Fourier
integral :

(5.61)

1 < ik.r
A = La(k)e dk

- " (5.62)
6 = i L, Flr)e=™* dr |

Here r stands for x, y, z, and dr = dx dy dz; similarly, k stands for k,, k,, k,,
and dk = dk,dk,dk,. Thus k-r = k.x + k,y + k,z. The integrals are three-
fold. We shall use this three-dimensional Fourier transform pair to solve some
of the partial differential equations of physics in Chapter 7,
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Equation (5.61) may be proved rigorously if one assumes that f(x) is piece-
wise smooth and that [2_]f(x)| dx exists (see Courant-Hilbert), but we shall
not go into these issues here (see Section 9.6). Instead, we shall focus on the
uses of the Fourier transform in physics.

Example. An interesting result may be obtained if we combine Egs. (5.61)
into the single equation

oy = L [ e aw e,

2” —oo —o

and then interchange the orders of integration to get

1) = Sm % [L S‘” gikts=x1 dk] dx'
—e 2 J-e
The expression in brackets within the integration over x’ must be a d-func-
tion if this equation is to hold. Therefore we have an integral representation
of the d-function:
o — x) = o |7 e a. (5.63)
2m J -
This equation is to be interpreted as meaning that the expression on either side
of it will have the same effect under an integral sign. This “derivation” shows
clearly that the d-functions (as naively conceived and used) originate as a con-
sequence of the illegitimate business of interchanging orders of integration; the
original crime must be paid for by the introduction of the extraordinary new
mathematical objects called d-functions. Their symbolic use isso simple, how-
ever, that one is apt to get the impression that the crime paid. In a sense it
did: violations of the existing rules in mathematics and physics are always
required to reach the new, which then turns out to hide the old as a special
case.
The J-function in three dimensions is
O(r — rg) = 0(x — xq)d(y — yo)0(z — z0) = —L—S ek r=ro gk | (5.64)
(2m)* J -
The integral representation of the d-function can be used to prove the com-
pleteness relation (sometimes called Parseval’s theorem) for the Fourier integral.
Thus

S‘” | f(x)|?dx = S:Q dx .(Erl)_l.l.z Si’m g*(k)e~'** dk _(51)_”3 S:c gk’ e = di’

= dk’ g(k') [_21_ Sw P dx:[
(=] 7r — QO

o

g* (k) g(k) dk = S g (k) |? dic .

—~o0

|
- S‘” dk g* (k) S:dk' glk)3(k! — k)
|
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If x is the time ¢, and k is the frequency v, then Parseval’s theorem has a
simple physical interpretation. It reads

[ irora={" wraw.

—oo

If, for example, f(f) is a radiated electric field, then |f(f)|? is proportional to
the total radiated power, and the integral is a measure of the total radiated
energy. On the right-hand side is the integral over all frequencies of the spec-
trum amplitude squared, |g(v)|?, which is proportional to the energy radiated
per unit frequency interval. Thus Parseval’s theorem expresses the conservation
of energy.

Before turning to some applications, we state and prove the convolution
theorem for Fourier transforms. We shall use it in Chapter 7. Let fi(x) and
fa(x) be two functions whose Fourier transforms, g(k) and g.(k), are given by
Eq. (5.61).

The quantity

I

1 o0

F(x —-———S Nfalx — ) dt

W) = T ) SO = 0

is called the convolution of the functions f; and f;. The convolution theorem

states that
l =]

F(x :———-j k) g,(k)e'** dk . 5.65

¥ = i) e (5.65)

By taking the Fourier transform of this last equation, and thus solving for

the product g (k) g.(k), we see that the convolution theorem may also be ex-

pressed as follows: The Fourier transforms of the convolution of two functions

is the product of the Fourier transforms of these two functions. Denoting the
Fourier transform of F(x) by G(k) this may be written

Glk) = g (k) &(k) .

The proof follows immediately from the properties of the Fourjer-transform
pair. Thus

P = o [T A0t — 0
- (27:) 7 S A [ﬁ j.l ga(k)e'* <=0 dk] dt
B (2;)*/2 rm [(2;) i S:, filge™ dt] galk)e™* d
- (2,%)1,7 S:, gi(k) ga(k)e" dc ,

which establishes the convolution theorem.
We shall now examine, in some detail, an example of the use of Fourier
transforms, and incidentally, the calculation of some specific transforms.
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We consider an undamped, one-dimensional harmonic oscillator acted upon
by a time-varying but spatially uniform (no x-dependence) external force F(z).
This might be, for example, a spring hanging from a board which is jerked
upward. We want to compute the energy transferred to the oscillator by such
a force. Throughout this example, we shall limit ourselves to force functions
F(1) for which the Fourier transform exists.

The equation of motion is

%+ o’ = (1/m)F(1) , (5.66)

where m is the mass and  is the natural frequency of the oscillator. We may
rewrite this as

: —iwz = (1/m)F(2) , (5.67)
where z = X + iwx. The energy of the oscillator at any time ¢ is given by
E(f) = mx*2 + mo*x*2 = (m[2)|z{t)|*.

Let us now assume that the oscillator is originally at rest (x = x =z = 0 for
t < T)). Since the oscillator initially has zero energy, the energy AE transferred
to the oscillator by F(r) is E(co). We now compute this quantity; we shall find
that it depends in a simple way on the Fourier transform of F(f).

Multiplying both sides of Eq. (5.67) by exp (—iwt) and integrating from
T, to T, (arbitrary times), we obtain

ST’ (¢ — iwz) e dt = (1/m) S'z Fli)e-"*' dt .

T Ty

Integration by parts of the term on the left gives

T
z(Ty)e '*T2 = (1/m) S : F(f)e~*' dt ,

Ty
where we have used the boundary condition that z vanishes for 1 < T;. Since
F(f) vanishes for ¢t < T, we may extend the lower limit of the integration to
—oo. The energy transfer is then given by

AE =lim 2 |z(Ty)|?
Ty s 2

2

T
=lim 2 e”"TZLS ! F(t)e~'* dt
Ty 2 mJ—o

(5.68)
D U 1ot g|*

= F(t)e™'*' dt

2m |\ J-=

1

E'z—mlf(w)lz;

where f(w) is the Fourier transform of F(#) evaluated at the natural frequency
of the oscillator:

flw) = r F(e~'*dt .
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Thus F(f) is given in terms of f(w) by

Fi) =L r flw)e' dw .

We have consolidated the factors of (2z) ' in one member of this transform
pair, which therefore differs slightly in appearance from the symmetric form
of Egs. (5.61). Thus the energy transfer is essentially the absolute value squared
of the Fourier component of the force function whose frequency is the natural
frequency of the oscillator. The energy transfer can only occur at the resonant
frequency ®, because only the w-component of the Fourier transform of F(z)
enters into the formula for AE.

To solve the energy transfer problem for a specific force function, we must
find its Fourier transform. We develop here some formulas which facilitate
the determination of Fourier transforms. Let

n—1
Rg=200 Ry =ro,

fulw) = S F (e dt |

An integration by parts gives

1 1 ot
.fn(w) = <_,—>fn+l(w) - Fn(t)e ! I:' .
iw iw —o
This formula will be useless unless F,(— o) = F,(+ o) = 0. We therefore con-
sider only such cases. Then, by repeated integration by parts (i.e., iteration of
the above formula), we can express fi(w), the Fourier transform needed for this
problem, in terms of the Fourier transform of some higher derivative of F().
This may facilitate the determination of f}(w) if the Fourier transform of a higher
derivative is known. We obtain for f\(0) = f(o),
1 n—1
flo) = (__ () . (5.69)
iw
The index » is arbitrary, but in using the formula one naturally chooses the
smallest n for which f, () is known.
We shall now compute the Fourier transforms of several force functions,
and the energy transferred to an oscillator subjected to these forces.
Example 1. Impulsive force: F(f) = Pyd(t). We obtain
1

o 2
AE =L S Pé()e-dt| = Pifam.
2m | J-c

This result may also be obtained by simply dropping the term w*x in the equa-
tion of motion (5.66), the so-called impulse approximation.

Example 2. Gaussian force: F(1) = (Po/+/nt)e”"" (Fig. 5.3). The width of
the Gaussian pulse at half-maximum is 24/In27. The Fourier transform may
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F(f) (in dimensionless units) F(1)/F
1.0 1.0 —/
Fig. 5.3. Fig. 5.4.

be computed directly by completing the square in the exponent:

flo) = —X0 Sw e~ Iemiot gy

Ve -
— fn e—02r2/4 Sw e—u+wr2/z)2/r1 dt
V7t —eo
Py o2 (™ x2 g p~a2e2a
=0 I e > dx = Pe I,
Y e

By using techniques that will be developed in Section 6.9, we can show that
this formal procedure for evaluating the integral is in fact valid. Note that the
Fourier transform of a Gaussian is a Gaussian, For the energy transferred to
the oscillator, we find that

AE = (P}2m)e=""

In the “sudden” limit (r < < w™!), AE = (P}/2m), as in Example 1. This is to
be expected because in the limit ¢ — 0, the Gaussian force function becomes a
o-function (see Example 2, Section 5.3). In the adiabatic limit (z >> w™),
there is no energy transferred to the oscillator which also makes sense physi-
cally.

Example 3. Probability integral:
t
Fli) = (Faf/77) S 1% gyt
(Fig. 5.4). In this case the Fourier integral does not really exist because the
function assumes a nonzero value (F,) asymptotically as ¢t — co, We may still
use Eqgs. (5.68) and (5.69) to calculate the energy transfer, imagining that the
constant force is turned off adiabatically at very large times. This will not affect

the net energy transfer, and will bring about convergence of the Fourier integral.
We have already determined the Fourier transform of

dF(f)jdt = B(t) = (Fo+/7r)e "
in Example 2. Using Eq. (5.69) with n = 2 and Eq. (5.68), we obtain for the
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2
= L (Rfo)ien.

%>f2(w) 2m

Again, in the adiabatic limit, AE — 0; in the sudden limit, AE — 1/2m
(Folw)®. In the latter case, the mass, because of its inertia, suddenly finds itself
displaced a distance /, = (Fy/mw? from equilibrium and hence acquires the energy
(3mw?l}) corresponding to the full displacement. It has no time to follow the
shifting equilibrium position in the sudden limit, This result for the sudden
limit should agree with the limiting behavior of the energy transfer for the force
functions of Problems 7 and 8.

1

2m

AE_——‘f

5.8 SPHERICAL HARMONICS AND
ASSOCIATED LEGENDRE FUNCTIONS

We have derived the completeness of the Legendre polynomials from Weier-
strass’s theorem in one variable. From the two-variable generalization of
Weierstrass’s theorem, we proved the completeness of the trigonometric func-
tions. We now derive the completeness of the spherical harmonics from
Weierstrass’s for three variables. It tells us that a function F of x, y, z (that
is, r) can be approximated uniformly by a sequence of partial sums as follows:

M
F(r) = lim Fy,(x) = lim 37 ciixixixs . (5.70)
- e m, n,p=0

We may also express Fy,(r) in terms of the three variables:
2, = x, + ix, = rsin @e'?,
2, = x; — ix, = rsinfe~ ",

Zy=Xx3=rcos@,

which are linear combinations of x;, x,, x;. Thus
M
M
Fy(r) = Z AN 25225
a,f =0

M
rY Al PP sin P G cos” 6 . (5.71)

1=0 a, B, r=0
(ﬂ+ﬂ+7 )

I
M

In the last expression we have converted the unrestricted sum over all values of
@, B, 7 to a sum over just those combinations of a, 8, 7 that sum to the integer
/. But then we sum over all possible restrictions (all /), which in effect removes
the restriction on a, 8, y and gives the same results as the original unrestricted
sum.

We now restrict F(r) to the unit sphere by requiring that » = 1; also, we
set (@ — B) = m. We shall need the following facts: Since a, 8, and y are
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all positive or zero, we have
a+pB=m+28>0.
Also,
a+p=la—pl=Im==a+p—|ml=m—|m+28>0.
Furthermore, (@ + B — |m|) isalways even because 23 is even and m — |m| = 0
ifm>0and m — |m| = —2m if m < 0. We now rewrite Eq. (5.71) in the

form
IM M

w0, @) = Z Z AMemé gin@thf-imb g cos” @ sin'™ 6 .

=0 a,B,r=0
(a+B+7=0)

By a trigonometric identity,
sin@+f=1mDg cos” § = (1 — cos? @) *HF-ImNlcog7 § ,

which is a polynomial in cos 6 of maximum degree + 8+ 7 — |m| =1 — |m|,
since (@ + B — |m]) is even. Denoting this polynomial by f, (cosf), we get
M

Fuy(0, 0) Z Z BiMeim? sin'™ §f,,, (cos 6) .
1=0
The range of the summation over m is still to be specified. Since m = a — B,
m < I; also, since we sum only over nonnegative a, 8, 7, a + B+ 7y — |m| =
! — |m| > 0. Therefore, in changing to a sum over m, we must only sum over
those m’s such that |m| < /. Thus the last equation becomes

M m=l

Z Z B(M)elm¢ Slnl'"\ ofl (COS 0) (5.72)

=0 m=-—1

Therefore the sequence of functions
Yin(0, ¢) = €™ sin'™ 6f,, (cos 6) ,

where f},, (cos 6) is a polynomial in cos 8 of degree (/ — |m]), provides a uni-
form approximation to any continuous function defined on the unit sphere—
that is, over the range 0 < @ <z and 0 < ¢ < 2x. If we can now construct
from this set of functions an orthonormal set of functions, then by reasoning
exactly analogous to that applied to the Legendre polynomials and the trigo-
nometric functions, we will know that this set of functions is complete. This
is just another instance of the use of our basic result on completeness: when-
ever we can uniformly approximate an arbitrary function in Hilbert space by
a sequence of partial sums which are themselves linear combinations of a set
of orthonormal functions, then this set is a complete orthonormal set in Hilbert
space.
Thus let us look for functions Y, satisfying

b14 x
S Ylf':n’ Ylm dQ = S d¢ S Sin 0 do Yli':n’ Ylm = 6ll’6mm' . (5~73)
Q 0 0
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This orthonormality condition uniquely determines the functions Y, up to a
phase factor, exactly as in the case of the normalized Legendre polynomials,
P,. Thus there can only be one complete set of orthonormal functions defined
on the unit sphere. We shall calculate a few of the Y}, explicitly.

If I = m = 0, we obtain Yo = (1/47)"%. If ] = 1, then m may equal —1,
0, or +1. Recalling that f,,, (cos 6) is a polynomial in cos @ of degree I — |m|,
we obtain

Yo=a,cos8 + a,,
Yy =ae?sind,
Y, ., =ase ®sinf .

The constants a,, a,, as, a, are determined by imposing orthonormality. Thus

0 = d0i0p = SYoéc Yy d()

2n 4
=1 j d¢5 dfsin 6(a,cos @ + a;) —> a, =0,
(4m)"* Jo 0

1/2
L= oo = [IVald =0 = (2)".
47

Similarly, a; = —a, =— (3/8x)"%. We choose the minus sign to be consistent
with the convention to be adopted later, in Eq. (5.75). Therefore the first few
members of the complete orthonormal set of functions on the unit sphere are

(1 ()
= | — , = —| — e'? sin ’
® 4 " 8 : )
12 172 5.74
Y, = (i) cos @, Y, = (i> e~ *sin @ .
47 8

Note that for a given [ there are 2/ + 1 functions Y,,. The functions Y,, are
called spherical harmonics. They are a sort of two-dimensional generalization
and combination of the Fourier functions and the Legendre polynomials, since
they do for the spherical surface what the Fourier functions and the Legendre
polynomials do for their respective linear intervals,

We give next a general formula for the Y. Since we know that the Y,,
are unique, the formula is true if we establish orthonormality—just as in the
case of the Legendre polynomials, The formula is

—_ m 2[ 1 (l - m)!:'llz m im

Y,,,0, = (—1 [———-—-————— P, cos f)e ¢, m>0, 5.75

wl0, ) = (1) [ LEL L e cos) (5.73
YI.—m - (_l)nl Yhﬁ ’ m 2 O y

where

mf2 dm

Brx) = (1= 2

Px), m>0, (5.76)
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are called the associated Legendre functions. Thus the functions
1/2 12
Yol0, ¢) = <_) (2’ + 1) Py (cos )

are an orthonormal set of functions on the unit sphere.
We shall first show that if u is a solution of Legendre’s differential equa-
tion, that is,

1 —x)u —2xu’ + I+ Nu=0, (5.77)
then v = (1 — x3)™?*(d™/dx™)u, for integral m > 0, is a solution of the equation
(1 —x)v"" —2xv' + [+ 1) —m*(l — Hw =10, (5.78)
known as Legendre’s associated equation. Let d"u/dx™ = d™u = w. Then
v= (1 —x)"w, v = (1 — x)™W — mx(l — x})™2"y
v = (1 — X)W’ — 2mx(l — x?) ™=y — m(1 — x?) ™21y
+ mx*(m — 2)(1 — x?) ™22y,

Substituting into (5.78) and replacing w by d™u, the left-hand side of Eq. (5.78)
becomes

(I —x)d™u — 2(m + VD)xd™'w + [I(l + 1) — m(m + 1)]d"u . (5.79)
We shall now show that this expression can be written in the form
d™[(1 — x)u'’ — 2xu’ + Il + Du], (5.80)

which vanishes, by comparison with Eq. (5.77). This completes the proof that
v = (1 — x?)™*(d™uldx™) is a solution of Legendre's associated equation. Using
Leibnitz’s formula [Eq. (5.42)], we obtain

d"[(1 — x)u'"] = Zm: ('::) d"(1 — x})dm"+y

= (1 — x})d™*u — 2xmd™*'u — m(m — 1)d"™u ,

and also

[ 2xu'] = —2xd™*'u — 2md™u

dl’l

Combining the last two lines and the term /(/ 4+ 1})d"u from Eq. (5.80) estab-

lishes the equivalence of Egs. (5.79) and (5.80) and completes the proof that
the functions

: d- 1 d'sn
Pn — . y2\m|2 —_ — y2\m/2
P = (= XSS A = o (1 — e L

are solutions of Legendre’s associated equation (5.78). We note that P}(x) =
P,(x) .

(@ — 1) (5.81)
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Using the same procedure that led to the orthonormality relations for the
Legendre polynomials, we can show that

5' PrxPrdx=LEm! 2 5 (5.82)
-1 —mt2+1

Once this result has been established, the normalization constant of the Y, (Eq.
5.75) follows immediately, as the integration over ¢ merely produces a factor
of 2w. There is, of course, a free choice of phase factor; ours is a common
choice in the physics literature. However, one must be careful, because different
authors choose different phase factors for the spherical harmonics. The P"(x)
are not another orthonormal set of polynomials on [—1, 1], challenging the
uniqueness of the Legendre polynomials, for the simple reason that they are
not polynomials at all! Equation (5.81) shows this most clearly.

The P/"(x) are not the only solutions to Legendre’s associated equation. Just
as there is a second set of solutions to Legendre’s equation (5.77), so too there
is a second set of solutions to Eq. (5.78). However, they also are not finite at
x = =*1.

At this point we state an important result; the addition theorem for sphe-
rical harmonics. If two vectors x(r, 8, ¢) and x’(r’, §’, ¢’) have an angle
between them, then

!

Picosy) = Z Y40, ") Ym0, 8) , (5.83)
where
/
osy = | x|'|x'| = cos @ cos 8’ + sin § sin 8’ cos (¢ — ¢') . (5.84)
x| |x

Thus the addition theorem expresses a Legendre polynomial of order / in the
angle 7 in terms of a sum over products of spherical harmonics of the angles
0, ¢ and ¢’, ¢’. We omit the proof; note, however, that for the case / =1,
Eq. (5.83) is just a statement of the familiar result of Eq. (5.84).

There is a raft of other properties of the spherical harmonics and associated
Legendre functions that are straightforward, but messy, generalizations of the
identities proved for Legendre polynomials. We shall not go into these further.

We devote the remainder of this section to a discussion of the spherical
harmonics in their capacity as solutions to the angular part of Laplace’s equation
in spherical coordinates. Since the angular part of the Laplacian is essentially
the quantum-mechanical operator that represents the total angular momentum
squared, the spherical harmonics play a prominent role in quantum theory.
The operator that represents the square of the total angular momentum is

0 0 1 @
= —h2<._ 60— ._...._..__> . 5.85
sin 6 06 sin 60) + sin? @ 0¢? (5.83)

Let us first see why this is the angular-momentum operator. Classically,
L =r X p. If we make the usual Schrédinger substitution for p: p — ihV, we
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find that

L, = —zh<y—a- — zi> )
0z oy

L= —m(zﬁ — x-a—> : (5.86)
ox 0z

L. = ——1h<x—?— — y£>
oy Ox

Now we transform to spherical coordinates. The equations of transformation
of coordinates are:

x:rsin0¢os¢, r:(x2+y2+zz)”2’
y = rsin @ sin ¢, ¢ = tan"'y/x,
2 2\1/2
z=rcosb, 0:tan"—————-(x + ) .
z
Therefore
2 _o0 000, 00
0x Ordx 000x 0¢ 0x
::sinﬁcos¢_a_ + cosfcosd 0 _ ls____lnqii .
or r 00  rsin60¢
Similarly,
0 N e | ., 0 | lcos¢g 0
— =sin#sin ¢ — + = cos fsin p— + = =L — |
oy ¢ or r ¢6 r sin 6 0¢
9 _ cos&ﬁ _5inf 8 .
0z or r 00

Using these relations in Egs. (5.86), we obtain after some manipulation,

L, = +ih<sin ¢-a% + cos ¢ cot 0%) ,
L, = —i"(cos¢2—— sin¢cot0—a—) , (5.87)
’ 06 ¢
L, = ——iﬁi .
¢

Now we form L?:

B 0? 0 0?
L =12+ Lf. 4+ L = —hz[ﬁ ~+ cot 06_0 + (1 + COt20)a_¢‘5]

Tl 9/ .0 1@
_ _hz[ __< 0_) __} , 5.88
smo e "2 T s ag (5.88)

We observe [see Eq. (1.68)] that the L? operator is essentially the angular part
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of the Laplacian in spherical coordinates:
14 ] L?
V2=_—< 2_)——. 5.89
rtor ’ or Hr? ( )
Thus we may write Laplace’s equation in the form
10/ ,0¢ L%
Vi = __(rz_) ~Lg_y,
4 rror\ or nr?
or (5.90)
8(8) 1y,
or\ or W2

In order to solve this equation, let us assume that ¢(r, g, @) is a product of
two functions, one depending on r alone, and the other on ¢ and ¢:

$(r, 0, 9) = R(nNY(O, ¢) .

If we substitute a solution of this form into Eq. (5.90), and divide the equation
by ¢ = RY, we obtain

1 9(.0RM\_ 1,
R(r)@r(r 6r> Y0, ¢)LY(0'¢)'

The left-hand side is a function of r alone, and the right-hand side is a function
only of # and ¢. This can only hold if both sides equal the same constant, for
otherwise we could vary r and yet the right-hand side, depending only on § and
¢, would not change. Let us call the constant 2. Then we have the two equa-

tions
d zdR(") _—
GG = ke 551
L2Y(0, ¢) = hAY(0, @) . (5.92)

It will be shown below that a solution for the angular equation (5.92) is just
the spherical harmonic, Y,,, with 2 = I(/ 4 1). In other words, the spherical
harmonics are eigenvectors of the operator L? corresponding to eigenvalues
B+ 1). For 2 =1I(/ + 1), the radial equation (5.91) may be solved by
letting R(r) = U(r)/r. It then becomes

U(r)

r2

=0, (5.93)

d2
S50l = 10+ 1)

which has the solution
U(r) = rR(r) = Ar'*' + Br', (5.94)

where A4 and B are constants. Together with the spherical harmonics, these
radial functions give a solution to Laplace’s equation in spherical coordinates.
A function which satisfies Laplace’s equation is called a harmonic function.
This explains the origin of the name ‘‘spherical harmonics’’: these functions
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are harmonic, since they satisfy the angular part of Laplace’s equation, and they
are defined on the surface of the unit sphere.

The most general solution is a linear combination of solutions for given
values of / and m. Thus

o

¢(r0,8) = D Z [Amr' + Biur™'""1Y,(0, 8) . (5.95)

1=0 m=-—|

It is of interest to separate the variables again, in Eq. (5.92). That is, let
Yin = P (¢) P(6), substitute into the equation, and divide through by ¥ = ®P,
The result may be written

—sin @ d( dP> .,
0 — I+ 1 0 = ——.
P db n db I+ 1) sin D d?

The 6- and ¢-dependences have thus been isolated and so the expressions on both
sides of the equation must equal the same constant, call it —m?. We then have
the two equations

1 dd

a®

-d—¢2— = —md , (5.96)
1 d(. dpP [ m? :’
—( sin 6 — IW+1) — P=0. 5.97
o) T LY i (5.97)
The azimuthal equation (in @), Eq. (5.96), is immediately solved:
D(P) = Ae*i™, (5.98)

For ®(¢) to be single-valued over the range [0, 2x], m must be an integer. This
result was anticipated in choosing the form of the separation constant. The equa-
tion in § (Eq. 5.97) will assume a recognizable form if we simply change vari-
ables. Letting cos § = x, so dx = d(cos §), and sin § = (1 — x¥'?, it becomes

2
(1 — x)P'" — 2xP' + [1(1+ 1) — 1 u JP =0, (5.99)
— X
which, due to our earlier choice of 2 = /(I + 1), is just Legendre’s associated
equation (5.78). The solutions are the associated Legendre functions P(x) =
P/(x) given in Eq. (5.81). This proves that the spherical harmonics are eigen-
vectors of L? with eigenvalues #/(l + 1), as stated above.

It should be noted that we really found two solutions to the second-order
differential equation (5.91), R(r) = r' and R(r) = r~'~*. This was also true for
the differential equation (5.96), where we found the two solutions given by Eq.
(5.98). However, for Eq. (5.99), which is also a second order differential equa-
tion, we have stated only one solution, P/"(x). There is, of course, a second
solution, just as there was to the other two equations. The second solution is
rarely used in physical problems, however, because it is singular at x = +1
(6 = 0, w) and must usually be rejected in order to satisfy boundary conditions.

Usually one first encounters all these functions in their capacity as solutions
to differential equations that arise in physics. Our approach has been different.
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We have emphasized the completeness properties of these sets of functions, touch-
ing only incidentally on them as solutions to differential equations.

5.9 HERMITE POLYNOMIALS

In the next section we shall developthe properties of the various sets of orthogonal
polynomials as special cases of a single comprehensive framework. But in order
for us to be able to see the trees, and not just the forest, we shall first work
out some of the properties of the Hermite polynomials in an inductive way.
We first encountered these polynomials in the discussion of the eigenvalue prob-
lem for the quantum-mechanical harmonic oscillator (see Section 3.10).

The Hermite polynomials, H,(x), are the orthogonal polynomials on the
infinite interval [— oo, co] with respect to the nonnegative weight function e=**,
That is, for m + n,

j T H(XH, (e dx = 0. (5.100)

-0

Thus they differ in two important ways from the orthonormal sets of functions
dealt with so far. First, they are defined from —oo to +oco. Therefore Wei-
erstrass’ theorem, which deals only with finite intervals, does not apply.
Secondly, they are orthogonal with respect to a weight function (see Definition
5.2). The Hermite polynomials are most conveniently defined in terms of a
generating function ¢(x, #):

> Hhlx)

dix, 1) = o= 12HUx — o= U-02 —
n=0 n!

r, (5.101)

From this implicit definition of H,(x), we can get an explicit formula, It is clear

that
H,(x) = [M_@f_ﬂ] - [exz_aie_u_x)z]
.o - (5.102)
L] g don
dyn y=—x d_x"

This is the Rodrigues formula for the Hermite polynomials. It shows that they
are indeed polynomials of degree n.

We next derive some recursion relations for the Hermite polynomials. Since
it is true of the generating function that

M = 2td(x, 1),
ox

it follows that

Z H,(x)¢t" _ Z 2H,,(x)t”+’.

n n! n n!
Equating the coefficients of equal powers of ¢, we get
H)(x) = 2nH,_(x), n>1, (5.103)
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Likewise, from

aﬁl’é’;'_’) +2(t —x)¢(x,0) =0,

it follows that
H,, (x) — 2xH,(x) + 2nH,_i(x) = 0, n>1. (5.104)

The reader may show that, by differentiating these recursion relations and com-
bining them properly, the following differential equation for the H,(x) can be
derived:

H!'(x) — 2x Hi(x) + 2nH,(x) =0, n>0. (5.105)

There are many ways to prove orthogonality of the H,(x) with respect to
the weight function e~*’. The two methods we have used for the Legendre
polynomials—repeated integration by parts, and the proof based directly on the
differential equation—also work for the Hermite polynomials. However, we
shall use a different method, based on the generating function, in order to illus-
trate still another technique. Consider the integral

1= sm e~ HHUxg= P4 dxg—x? gy — Z £'s” Sm H,H,e ** dx .
i n,m=0 n'm' -

We want to prove that the integral on the right is zero for m # n. The integral

on the left is

I = e—(!2+:2) Yo e—X2+Z(J+I)x dx = e—(:2+:2)n.|/2e(:+:)2 = g2t :
—o0
the integral is done by completing the square. Expanding this expression for I
in a Taylor series, we have

I =gz Z (251)" = Z r's” S“" H.,H, e *dx .

n=0 n! n,m=0n!m!

If equal powers of s and ¢ are equated in this identity, we find that

5 H,H,e ** dx = 7"2"n8,, . (5.106)
Thus the functions u, (x) = N,H,(x)e~**? with N, = (1/z"?2"n!)'"* are orthonormal
on the interval (—oo, co). The functions u,(x) are the eigenfunctions of the
quantum oscillator. We may say equivalently that the set of Hermite poly-
nomials H,(x) are orthonormal on the interval (—oo, oo) with respect to the
weight function N2,

Another important set of polynomials are the Laguerre polynomials, L, (x).
They are orthogonal on the interval [0, co] with respect to the weight function
e~*, that is

r L,(x)L,(x)e=*dx =0 forn # m. (5.107)

0
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Everything that we have done for Hermite polynomials can be done for Laguerre
polynomials (Problem 6.36).

5.10 STURM-LIOUVILLE SYSTEMS—ORTHOGONAL POLYNOMIALS

All the special functions we have studied so far are solutions to differential
equations. These equations and their solutions look rather different at first,
but, in fact, they have a great deal in common. In this section we shall view
them as special cases in a single general framework.

All the equations are second-order, linear differential equations of the form

Lu = Au (5.108)
where

L=al) Lt g9 L 4 70, (5.109)

and 2 is a constant; a, 8, and 7 are real functions of x. The operators L have
an important property in common that until now we have not mentioned.
Namely, they are Hermitian if (1) we use the inner product

(.8 = | rmstowtn ax, (5.110)

[where the weight function w(x) > 0], and, (2) the functions u satisfy appro-
priate boundary conditions. We have not yet committed ourselves to a choice
of w(x), and we will find that this freedom is crucial in attaining the generality
which we want.

In quantum mechanics, all the operators which correspond to physical
observables are Hermitian. It will be recalled that a Hermitian operator H
satisfies the equation

(Hx, y) = (x, Hy) ,

where x and y are vectors.!
Now suppose that f and g are two vectors (functions) in Hilbert space.
For the inner product we defined above, the condition that L be Hermitian is

(1f) = " (L) etnt ds = | () *Lelwix) dx = (7, Lg)
(5.111)

Henceforth, we restrict attention to such operators.
To investigate the hermiticity of L, we compute (f, Lg) and (Lf, g) and
then form their difference; L is Hermitian if and only if this difference is zero.

t Operators, H, satisfying (Hx, y) = (x, Hy) on an infinite dimensional vector space
are called symmetric operators by mathematicians. We will refer to them as Hermitian
operators. They clearly have real eigenvalves and orthonormal eigenfunctions accord-
ing to our work in Chapter 4.
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We have
(f, Lg) = r wf*ag'' dx + Sw wf*Bg’ dx + Sw wf*rgdx .

Integrating the first two integrals by parts once, we get

(f, Lg) = wef*g/ 1 — g“’ [(wa)/f*g’ + (wa)f*'g'] dx

et — |7 Lwp) e+ wp)rreldx + {7 wrrreds

We now subtract the corresponding expression for (Lf, g), which may be
obtained from the above by simply interchanging f* and g, and obtain

(f, Lg) — (Lf, 8) = [walf*e’ — f¥'8)1%
— {7 twa) — (e — ) ax.

For L to be Hermitian, this last expression must be equal to zero for all f and
g. Therefore the necessary and sufficient conditions for L to be Hermitian are

1. [wa(f*g — gf*) ]2 =0, (5.112)
2. (wa)! = wp . (5.113)

Clearly, the weight function w(x) plays an important role in the Hermiticity
requirement. In fact, the second equation above actually determines w(x) up
to a multiplicative constant, since a(x) and B(x) are given functions. The
first equation illustrates the importance of the endpoint conditions in determin-
ing Hermiticity. For example, if the functions on which L operates vanish
sufficiently rapidly at the boundaries, then the first condition above is satisfied.
The reader can easily show that there are several less stringent conditions which
will fulfill condition one. On the other hand, if wa vanishes sufficiently rapidly
at both endpoints, then the functions upon which L operates need not satisfy
any special boundary conditions and condition (1) will still be satisfied. The
requirement that wa vanish sufficiently rapidly at the endpoints can be met
either by having we identically zero outside some infinite interval [a, b] or
having wa fall off sufficiently rapidly at arbitrarily large distances. In what
follows, we shall have occasion to utilize both possibilities.

Since w(x) has not been specified, we may consider condition (2) as an
equation to be solved for w(x). We rewrite it as

(wa)’::gwa. (5.114)

A simple integration gives

wa:C-exp[Sgdx] (5.115)
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in any region in which (wa)’ is continuous. The integral is an indefinite inte-
gral; C is an arbitrary constant. Note in particular that C = 0 (wa = 0) isa
solution. For future use, we should point out that it is possible to join a solu-
tion war # 0 to a solution wa = 0 at some point x = a, if wa is continuous at
this point, that is, wa = 0 just to the right and the left of x = a on the real
line.

In the region where war # 0, a(x) must either be nonnegative or nonposi-
tive since we require w(x) > 0. In the former case, we must choose C positive,
in the latter case, C must be negative. Without loss of generality, we can take
a(x) > 0 and C > 0. In summary, for any given a(x) and B(x) there exists a
weight function w(x) given in any region where wa % 0 by Eq. (5.115). This
guarantees that condition (2) is satisfied.

Any equation of the form we are studying,

Lu = a(x)u’’ + B(x)u’ + y(x)u = Au, (5.116)
can be written in the equivalent form
d l: du]
adl ke — 2 =90 5.117
dx v dx + o ( )

by choosing the weight function w(x) according to Eq. (5.113). An equation
of the form (5.117), together with the boundary condition stated in Eq. (5.112),
is called a Sturm-Liouville system. 1In Eq. (5.46), Legendre’s differential equation
appears in Sturm-Liouville form. We used this form of Legendre’s equation to
prove the orthogonality of eigenfunctions belonging to distinct eigenvalues. We
shall now give a general proof of this result, valid for any Sturm-Liouville system.
Let 2, and 2, (4, # 4,) be two eigenvalues of Eq. (5.117). Then
d du,,

£[imte] - 0.

and

d [ du*:,
—| (wa) == |+ (y — 2, )wu} = 0.
L[ ) B ] 4y — 2
Multiplying the first of these equations by u}, the second by u,, and forming
their difference, we obtain

wt L wa)u] — wn L [wa)ur’] = — (A0 — A)witkuy .
dx dx

The left-hand side of this expression is a total derivative. Rewriting this, and
integrating over both sides, we find that

[wa(ufuh, — uui}') 1% = — (A — An) S wuku,, dx .

—co

The left-hand side vanishes identically by assumption [Eq. (5.112)]; and since
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A, # A, it follows that

(U, u,) = S wh(x)u,(x)w(x)dx = 0.

Therefore eigenfunctions belonging to distinct eigenvalues are orthogonal with
respect to the weight function w(x). This result merely translates into function
language the result on the orthogonality of the eigenvectors of Hermitian
operators belonging to distinct eigenvalues (Theorem 4.18).

Let us now restrict our attention to polynomial Sturm-Liouville systems.
That is, we shall assume that the functions u,(x) are polynomials of degree n.
We denote them by Q,(x). Then

LQ, = 4.9., (5.118)
where
_ d? d
L=a® L +pxL 470, (5.119)
dx* dx
as before, and
So_o OHx)Qn(x)w(x) dx = 0 (5.120)

if m # n, in keeping with the above discussion of orthogonality.
For this case, where Q, is a polynomial of degree n, the real functions
a(x), B(x), and y(x) must have the form

alx) = apx* + ax + ay, (5.121)
B(x) = Box + Bi, (5.122)
r(x) =10 (5.123)

That this is the most general form possible is a consequence of the fact that
the differential equation is of second order and that we are considering only
polynomial solutions. We prove this by letting n = 0, 1, and 2 in Eq. (5.118).
Then

TQo: Xoon)’: A= Too

— 2
ﬂQ{+ )’Qn :'21Q1—_—:>ﬂ: Xl—Q‘,‘—OQl = ﬁox‘l' ﬁxy
1

aQy + O+ 10, = A= a = 4

— 2 A — A
0= e 00!

= ax* + ax + a, .

We note that 8 can never be identically zero because if it were, then it follows
from Eq. (5.113) that wa = const. But this makes it impossible to satisfy the
other requirement for Hermiticity (Eq. 5.112), since polynomials do not vanish
at oo,
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Thus there are no polynomial solutions to the Sturm-Liouville problem
(Hermitian L) if 8(x) = 0. If we do not insist on L being Hermitian, there
are polynomial solutions of all degrees with eigenvalues equal to n(n — 1)a,.
The eigenvectors will not be orthogonal. The general expression for 8(x) above
shows that 4, = 4, if B(x) = 0. Conversely, if B(x) # 0, then 4, # A, and
Bo # 0 because Q, has a leading term proportional to x.

The restriction to polynomial solutions yields only a few of the possible
Sturm-Liouville systems. For example, the well-known Bessel functions do not
fall into this category. To ensure the Hermiticity of L, we shall satisfy Eq.
(5.112) by choosing wa to vanish as |x| — co. In fact, since in Eq. (5.112)
we is multiplied by f*g’ and gf*’ which are now by assumption polynomials
in x, we see that wae must actually tend to zero faster than any inverse power
of x as |x| tends to infinity. This also follows from the requirement that (f, f)
< oo for all f in our space.

With these assumptions, all the properties of a polynomial Sturm-Liouville
system now are determined by the six parameters a,, ay, a,, B, B, and 7.
However, there are four degrees of freedom for inessential changes in L:

1. L can be multiplied by a constant C;. This leaves Q, unchanged and multi-
plies the eigenvalues by C;.

2. The independent variable x may be shifted by some constant C;. Thus Q,(x)
is replaced by Q,(x + C,), and the eigenvalues are unchanged.

3. The independent variable x may be scaled by a constant Cs: x — Csx. Thus
0,(x) is replaced by Q,(Csx), and the eigenvalues are left unchanged.

4. A constant may be added to L, that is, to y,. This leaves Q, unchanged,

and 4, is replaced by 2, + C,. Throughout this section we shall, for con-
venience, choose C; so that y, = 0.

With 7, fixed (equal to zero), we have only five parameters left which
characterize the Sturm-Liouville system (a,, ay, a,, B, and B,); but there are
three inessential degrees of freedom remaining. Thus, in fact, the polynomial
Sturm-Liouville system is completely characterized by 5 — 3 = 2 parameters.
We now consider the following three cases:

1. a(x) is quadratic;

2. a(x) is linear (@, = 0), and

3. a(x) is a constant (@p = 0 = a;).

Our discussion will completely exhaust the possible polynomial solutions to the
second-order Sturm-Liouville differential equation. The reader will never be
able to discover a new system of Sturm-Liouville polynomials and have them
named after himself'!

CASE 1. a(x) is quadratic. In this case, Eq. (5.115) is

wo = C-exp[g—-z-@ﬁ-—ﬂ'——dx], (5.124)
X + ax + a;
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where ap # 0. There are two subcases to distinguish, depending on whether
a(x) has real or complex roots. Let us consider the case of complex roots first,
and for convenience pick C, so that ap = 1. Then a(x) = (x — &) (x — &*),
where £ and £* are the two complex roots of a(x) (the asterisk, as usual, denotes
complex conjugation). The integral in Eq. (5.124) is

wa = Cla(x) " exp [W tan™! (5—;1—123] )

|Tm £| |Im £|

where Re £ and Im £ denote, respectively, the real and imaginary parts of «.
Since a(x) is a polynomial in x, wa cannot vanish faster than some inverse
power of x as x tends to infinity (the precise power being determined by ),
so it fails to satisfy our previously derived endpoint requirements, Eq. (5.112).
Also, wa is never zero, so we cannot join it onto a solution wa = 0 outside
some finite interval. Thus our only hope is to consider the case where a(x) has
two real roots. For convenience in this case, let us choose the three inessential

parameters so that @, = —1 and the roots of «(x) are at x =1 and x = —1.
Thus a(x) = 1 — x’. Furthermore, let us adopt as a notational convenience
the relations 8, = q — p, By = — (p + g + 2); this particular convention is

made so that w(x) will work out in a nice form; p and q are real but need not
be integers. Thus

B_—lp+q+2x+qg—p_q+1 _ p+1
a 1 —x* 14+x 1—x'

and by doing the simple integral in Eq. (5.115) we get
wa = C(1 + x)7*(1 — x)»*! or w(x) = C(1 + x)*(1 — x)*.

Once again it turns out that, at large distances, wa can tend to zero only
as fast as some fixed inverse power of x (depending on the specific values of p
and g), so in this form our endpoint requirements cannot be satisfied. However,
ifg> —landp > —1, wa vanishes at x = 1 and x = — 1, so we can join the
above expression for w(x) on [—1, 1] to the solution w(x) identically equal to
zero outside [—1, 1]. (Note that a, and S, always have the same sign, a fact
we shall use subsequently.) Therefore all the objections we raised in the case
of complex roots are overcome, and we have an acceptable weight function
for the interval [—1, 1]:

wix) = (I + x)°(1 — x)*,
where we have set C = 1.

The Q,(x) that correspond to these choices of the essential parameters for
the case of a(x) quadratic are called Jacobi polynomials of index p, q, and they
shall be designated J{* ?(x). (The upper indices distinguish them from Bessel
functions.) By making a linear change of the independent variable, they may

be recast in another form. Letting x — 1 — 2x in the differential equation
(5.119), we obtain

afx) = x(1 —x) >0in{0,1], Blx)=—(p+g+2x+(p+1).



5.10 STURM-LIOUVILLE SYSTEMS 269

Thus the left-hand endpoint is now x = 0; 8, = 8(0) =p + 1; and
Bo=p(1) —p0)=—(p+q+2)

is unchanged. It follows that aw = x?*!(1 — x)9*!, so p,q > —1, as before.
The weight function is, therefore, now

w(x) = x?(1 — x)7.

The set of polynomials which are orthogonal to the interval [—1, 1] with re-
spect to the weight function w(x) = (1 — x)?(1 + x)?, and the polynomials
orthogonal on [0, 1] with respect to w(x) = x?(1 — x)?, differ only by a linear
change of variable. Both are referred to as the Jacobi polynomials of index
b, q.

We now deal with a number of special cases of the Jacobi polynomials as
defined on [—1,1]. For p =g =m{m > —1), w(x) = (1 — x)™. The cor-
responding polynomials are called ultraspherical or Gegenbauer polynomials of
integral index m. We designate them by

GIl) = T

Note that p = g implies 8, = 0, which means that the operator L is unaltered
by the change of variable x — —x. If we call P the operator which changes x
into —x, then the invariance of L under x — — x may be expressed in operator
notation as PLf(x) = LPf(x) for all f(x), so

PL=1LP,

which according to Theorem (4.22) tells us that any eigenfunction of L can be
chosen to be simultaneously an eigenfunction of P. Since P*f(x) = f(x) for all
f(x), we see that P2 = I, the identity operator. This places severe limitations
on the eigenvalues of P. Consider Pf(x) = 2f(x). This implies

Pif(x) = APflx) = Xf(x) = flx),

since P2 =1 Thus 2> =1, so A = +1. This means that any Gegenbauer
polynomial can be characterized by a subscript + or —, depending on whether
it is an eigenfunction of P with eigenvalue +1 or —1 (see Problem 5.15).

P is called the parity operator. It plays a fundamental role in many areas
of physics. According to the above discussion, one speaks of eigenvectors of
positive or negative parity. Since the leading term in G} (x) is proportional to
x" and since Px" = (—1)"x", we see that the Gegenbauer polynomials have
positive or negative parity depending on whether n is even or odd. If n is
even, Gu'(x) contains only even powers of x, whereas if nis odd, G'(x) contains
only odd powers of x. The Gegenbauer polynomials occur in the solution of
certain relativistically invariant equations in the quantum theory of elementary
particles.

If we consider the Jacobi polynomials with p=¢g = —4, then w(x) =
(1 — x3)~"2, We designate these polynomials

T,(x) = J, U210 (x)
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The orthogonality relation is
l n
(T T) = | TARTL 00 =) 7 dx =0, (1 ).
If we set x = cos @, we get the alternate expression

(T T.) = | T (cos )2 (cos 6) do = 0.
The only set of polynomials in cos § which obeys this relationship on [—r, 7]
is

T, (cos 8) oc cos nf .
Therefore in the x-variable on [—1, 1],
T,(x) occos (ncos™' x) ,

so this set of polynomials is determined explicitly up to a constant factor.
These polynomials are known as the Tschebycheff polynomials. 1t is probably
correct to say that, until now, no two authors have ever spelled their name the
same way.

The most familiar of all the polynomials, the Legendre polynomials, are
sure to be found somewhere in this cascade of special cases. We see that they
result if we take p =¢ = m = 0. Then w(x) = 1; thus J®%(x) = P,(x) up
to constant factor.

There is a theorem (Problem 20) which tells us that if {Q,} is an ortho-
normal system of Sturm-Liouville polynomials, then the set {Q4, n > 1} is a
system of orthogonal polynomials with weight function wa. In the case of the
Legendre polynomials, where w = 1 in [—1, 1] and @ = (1 — x7), this result,
applied g times, tells us immediately that the set of polynomials (d“/dx*)P, is
orthogonal on [—1, 1] with respect to the weight function a* = (I — x?)*,
The uniqueness of sets of orthonormal polynomials on given intervals means
that these polynomials are none other than the Gegenbauer polynomials:

G, =Lp,
dx*
which is the only orthonormal set of polynomials with weight function w =
(1 —x)*on[—1,1].
It also follows that the set of functions

Prx) = (1 — x) L p )
dx"

is orthogonal with weight function 1 on [—1, 1]. These functions are the as-
sociated Legendre functions.

CASE 2. a(x) is a linear function. Under these circumstances, a(x) = x + a,,
where we have chosen C, so that @, = 1. Also, a@(x) has one real zero at x =
—a,; adjusting our constant C,, let us shift the zero to the origin, so finally
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a(x) = x. Thus
wa = C-exp [S @"XTH;ldx:l

= C-exp (Box + Bi1nx) = CxPiefo~ ,

If we choose 8, < 0, then wa — 0 as x — + oo, but wa grows exponentially as
x — —oo. Thus to satisfy the boundary conditions, w(x) must be chosen to
vanish identically for all x < a, if possible. gq is still to be determined. If we
choose B, > 0, then wa = 0 at x = 0 and the integral of wB over an interval
of length € around x = 0 goes to zero as € tends to zero, so we may correctly
join our identically zero solution (for x < 0) to the above nontrivial solution at
this point. By adjusting C; we may set 8, = —1 for convenience. (Note that
if we choose 8, > 0, this would just reverse the situation, and wa would have to
vanish on the positive x-axis. The choice 8, < 0 is conventional.) Calling
Bi=s+1,5s> —1, we have

w(x) = x‘e*

for positive x and w(x) = 0 for negative x. The @, that correspond to these
conditions are the associated Laguerre polynomials of order s. They are de-
signated by Lj(x). If s =0, the functions LS(x) = L(x) are called the Laguerre
polynomials. The presence of only one free parameter (s) reflects the fact that
a(x) is linear in x: a, = 0, and since three of the four remaining coefficients

in a(x) and B(x) may be chosen arbitrarily, there is just a single free parameter
left.

CASE 3. a(x)is a constant. Here ay = 0 = «a,, and by a judicious choice of C,
we can arrange that a, = 1. Thus

wa = C-exp[s (Box + B) dx} = C-exp(\ﬁ—z"x2 + ,ch)

2
:C’-exp[éi’(x + é)}
2 Bo
If we choose B, < 0, then wae = w falls off exponentially as |x| — oo, so this
expression for w(x) is acceptable as it stands; choosing C; and C;appropriately,

we can make B, = —2 and 8, = 0, so setting C’ = 1, we get

w(x) = e

The corresponding Q,(x) are the Hermite polynomials. We have now run
through all the possibilities: there are no more Sturm-Liouville polynomials

that are solutions of second-order differential equations. Table 5.1 summarizes
the results obtained thus far.

We now work out the eigenvalues belonging to each of the three basic cases.
We need only collect the terms in x” in the differential equation. This gives

Ay = agn(n — 1) + Bon = nlan + o — ao) . (5.125)
It follows immediately that the eigenvalues are spaced linearly for the Hermite
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and Laguerre equations (for which a, = 0), and quadratically for Jacobi’s equa-
tion, and all the special cases of it.

In particular, for Hermite’s equation we have 2, = —2n, and for Laguerre’s
equation we have 2, = —n. For Jacobi’s equation the eigenvalues are 4, =
—n(n + p + g + 1) regardless of whether the equation is the one whose solu-
tions are orthogonal on [0, 1] or the equation whose solutions are orthogonal
on [—1, 1]. The Gegenbauer special case (p = g = m) has eigenvalues 1, =
—n(n + 2m + 1). The two further specialized cases, Tschebycheff’s (m = —{)
and Legendre’s (m = 0) equations, have eigenvalues 1, = —n® and 2, =
—n (n+ 1), respectively. It should be clear that whether the eigenvalues are
positive or negative is merely a matter of the specific sign conventions adopted
elsewhere in the treatment.

We conclude this discussion of polynomial Sturm-Liouville systems by
proving a general Rodrigues formula which provides explicit expressions for
all the polynomials up to a constant factor. The general formula is
1d

0.(x) = K, =

"w) , 5.126
L e (5126

where the choice of the constant K, depends on the physical application. The
proof we shall give is a general version of the one in Section 5.5 for the Legendre
polynomials. Any set of polynomials is uniquely determined by the require-
ment that Q,(x) is a polynomial of nth degree that satisfies the orthogonality
relation

b
[lozomax=0, fornsm. (5.127)

Thus we only have to show that the Q,(x), as given by the generalized Rodrigues
formula [Eq. (5.126)], are polynomials of degree n, and satisfy Eq. (5.127) and
we shall have proved Eq. (5.126).

We first prove a preliminary result: If f(x) = a*wr(x), where r(x) is a
polynomial of degree /, then f’(x) = a*~'ws,;,(x), where s,,(x) is a polynomial
of degree / + 1. To prove this we simply differentiate f(x):

S1(x) = (@) (aw)r + a*aw)'r + a*~'(aw)r’

= (k — L)a*%a (aw)r + a*"(Bw)r + a*"{aw)r’

=a"w[pr + (k — 1)a’r + ar’]

= a*wlro(fo + (k1 — D xt 4 -]

= a* 'wsiy (x) .
We have written r(x) = rox' + - . Since B, # 0, and since a, and S, have
the same sign if a, # 0, then the expression in brackets is a polynomial of
degree I + 1 if k > 1 which is the only situation of interest. From this result
applied n times to a"w, (r = 1), we infer that

n

ax"

(a"w) = a®wt(x) = wt,(x) ,
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where t(x) is a polynomial of degree n. It follows from Eq. (5.126) that Q,(x)
is indeed a polynomial of degree n.

We can now prove the orthogonality of the Q,(x) with respect to w(x). We
have

[" ormesmm ar =" oxt) & @w) o
= Sl (o) e ]
+ (—1)"51(5;"—" t,)a"wdx. (5.128)

Here we have integrated by parts n times. If n > m, the integral vanishes, so
orthogonality will be satisfied if we can show that the terms d'/dx'(a"w), 0 <
I < n—1, all vanish at the endpoints faster than any inverse power of x.
But this follows from the preliminary result which tells us that
dl n n—1

— (a"w) = a"'wy,(x) ,
I (a"w) 1(x)
where v,(x) is a polynomial of degree /. Since by assumption aw vanishes at the
endpoints faster than any inverse power of x, so will a"~'wv,(x) for all 0 </
< n — 1, and the proof of Eq. (5.126) is complete.

In carrying out this proof we have shown that, in general,

S R(x)Q,(x)w(x) dx = (—1)" S ‘g—{{a"w dx . (5.129)
—oo — x'

This relation can be useful in the evaluation of integrals. In particular, if we
take R(x) = Q,(x), the normalization integral is

S 2(x)w(x) dx = (—1)"n! g, 5 a'wdx ,
where ¢, is the leading coefficient of Q,(x), as given in Eq. (5.126).

We can now use this generalized Rodrigues formula to obtain expressions
for the polynomials we have considered. The Rodrigues formula will only
provide us with expressions up to constant factors, which may then be selected
in several ways. In some books they are selected in such a way as to make the
coefficient of the highest power in Q,(x) equal to one for all n. Sometimes they
are chosen so as to normalize the polynomials with respect to the corresponding
weight function; and sometimes in still other ways. For example, the Legendre
polynomials defined in Eq. (5.38) are not normalized on [—1, 1]. The nor-
malized Legendre polynomials are given by (n + 4)"* P,(x). One must beware
of the multiple inconsistent conventions that exist in the literature in defining
the various sets of orthogonal polynomials. We shall not put in explicit ex-
pressions for the constant factors in the list that follows, except for the Legendre
and Hermite polynomials, which we have worked out earlier.
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Now, using the generalized Rodrigues formula (Eq. 5.126), we obtain for
the Jacobi polynomials,

T (5) = AP = 071+ )7L (1 — e = x)2(1 4 07 ], (5.130)
X
where A9 is a constant factor depending on p, ¢, and n.
For the Gegenbauer polynomials, p = ¢ = m, so this becomes

m dar
—= (

Grx) = B(1 — x*
(x) ( )

1 _ x2)n+m , (5.131)

where B} is a constant factor depending on m and n.
For the Tschebycheff (m = —1) and Legendre (m = 0) polynomials, we
have

T,(x) = Co(1 — x) (1 — - (5.132)

xll
where C, is a constant factor depending on #;

_l)n dn
P, :(————1—~ 7, 5.133
() = E 2l — ) (5.133)

For the associated Laguerre polynomials, we obtain
Li(x) = Dix—ter L (xrtee—s) | (5.134)
dx"

where D; is a constant factor which may depend on s and n; conventions vary
widely in its choice. The Laguerre polynomials are the case s = 0:

L,(x) = D,,e"%(n"e"‘) ; (5.135)

here D, depends only on n.
Finally, the Hermite polynomials are given by

H,(x) = (—1)e?L o2, (5.136)
dx"
We close this section by showing that all the Sturm-Liouville polynomials
form complete sets in Hilbert space when the inner product in Hilbert space is
given by

(1.9 = | _rrwstw ds,

with w(x) given for the various polynomials in Table 5.1. In this discussion
we shall take into account the Hermite and Laguerre polynomials which are
defined on infinite intervals and therefore do not fall within the scope of Wei-
erstrass’s Theorem. The proof of completeness is based on Theorem 5.2 which
says that if a set of orthonormal functions is closed, then it is complete.
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Completeness Theorem. The orthonormal set of Sturm-Liouville poly-
nomials {Q,(x)} is complete in Hilbert space.

Proof. We shall show that the set {Q,(x)} is closed. Suppose there is some
function f(x) orthogonal to all the Q,(x), so that (f, Q,) = 0 for all n. Since
x™ can be written as a finite linear combination of the Q,(x), the first m + 1 to
be exact, we see immediately that (x™, f) = 0 for all m. Now consider

g = (e, f) = |7 ripwieeds,

for all real k. Because of the presence of w(x) in the inner product, e~** will
belong to Hilbert space for any w(x) appropriate to a Sturm-Liouville poly-

nomial; so will x". Now, if we expand e~"** as

o
e-ikx — Z —lk X

m=0

and use (x™, f) = 0, we see that g(k) = 0 for all k. But g(k) is precisely the
Fourier transform of f(x) w(x). Hence by our discussion in Section 5.7, f(x)
w(x) = 0 almost everywhere. Thus we conclude that on any interval where
w(x) # 0, f(x) = 0 almost everywhere. We are only interested in f(x) on
intervals where w(x) # 0, since we can define f(x) to be anything we like
where w(x) = 0. Another way to put this is to say that the Hilbert space is
really defined only on the interval where w(x) # 0, since when w(x) = 0 on
some finite interval, the inner product gives no structure there at all.

In summary, we conclude that f(x) = 0 almost everywhere, so the set
{0.(x)} is closed, and therefore it is a complete orthonormal set. QED

These sets of orthogonal polynomials have many additional polynomials.
For example, using the generalized Rodrigues formula, one can derive recursion
relations for the various sets of polynomials. Also, the zeros of the polynomials
can be characterized in some detail. The interested reader is referred to Lyus-
ternik or Wilf. In Section 6.10 we shall go on to establish the equivalence of
the explicit Rodrigues representation of some of these polynomials and their
implicit representation in terms of a generating function.

All these sets of functions are solutions to differential equations, as are the
common trigonometric functions. All of them are related by various identities,
just as the sine and cosine functions are. It is useful to think about them in
this light. We study sines and cosines first, but these particular functions are
not essentially different from Legendre or Hermite polynomials, or any of the
other special functions of physics. They are more familiar to us only because
we can apply them to the measurement of distances and because they turn up
in macroscopic simple harmonic motion. If we imagine very small intelligent
beings who do not measure large distances and instead first investigate quantum
effects, it is reasonable to suppose that they discover Hermite polynomials at an
early date by investigating the quantum oscillator. After centuries of work,
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they spend half their Gross National Product to build a (to us) macroscopic
oscillator (to them it will be absolutely gigantic), and, in the course of this
project, they discover the trigonometric functions. To them, sines and cosines
will seem complicated and troublesome compared to the old familiar Hermite
polynomials.

5.11 A MATHEMATICAL FORMULATION OF QUANTUM MECHANICS

In this and in the preceding chapters we have developed many of the mathe-
matical ideas used in the formulation of quantum mechanics, namely, the con-
cepts of vector spaces and, in particular, Hilbert space. We shall now write
and interpret the axioms of quantum mechanics in terms of these mathematical
tools. What we give here is not a rigorous axiomatization, but rather an intro-
duction to a profound and beautiful subject. For more complete treatments,
the reader should see J. M. Jauch’s book, Foundations of Quantum Mechanics,
or J. Von Neumann’s classic work, Mathematical Foundations of Quantum
Mechanics.

The mathematical setting for quantum mechanics is Hilbert space, that is, a
complete complex inner-product space. As we have seen, the elements of this
space are functions. To give a mathematical formulation of quantum me-
chanics, we must also make use of operators on Hilbert space. In our discussion
of the properties of these operators, we will rely heavily on the results of Chapters
3 and 4. We have already noted that the validity of many of the theorems in
Chapters 3 and 4 is not restricted to finite-dimensional spaces, and we shall make
use of these theorems where they are applicable. We shall also use them to
arrive intuitively at certain important generalizations of finite-dimensional re-
sults which will be central to our treatment.

We begin by discussing the notion of a projection operator (Problem 4.17),
which will prove very useful in the mathematical formulation of quantum me-
chanics. We do this in the context of some familiar finite-dimensional results.
Consider an Hermitian operator, 4, whose eigenvalues and eigenvectors are {4,}
and {@,} respectively (n =1, 2, ---, N). We assume, for notational conveni-
ence, that 4, is nondegenerate. We now define the operator I by

Iy = Z Bu(Bur )

for any ¢ in the finite-dimensional space in question. According to the com-
pleteness theorem (Theorem 4.20), this sum is equal to ¢, so that the operator
defined in this way is in fact the identity operator, as we had anticipated by our
choice of notation. If we define P, by

P =¢.(¢u ¢) (5.137)

then I can be written as
N
1= P, .
=1}

n
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The reader can easily verify that P? = P,, P} = P,, and P,P, = 0 if m + n.
P, is a projection operator, so called because it projects any vector into the one-
dimensional subspace of V spanned by ¢,.

What can we say about the operator, B, defined by

N
B= ) P
n=1

Since

B(p == Z '2n¢"(¢"' (/)) ’

it is immediately clear that B has eigenvalues {4,} with corresponding eigen-
vectors {¢,}. It must therefore be equal to A4 (the reader will find it instructive
to prove this). In summary, we have

N N
I=>p,, A=) AP,. (5.138)
n=1i n=1

Thus we may restate the completeness theorem as follows: For every self-
adjoint operator, A4, there exists a set of orthogonal projections, {P,}, such that
Eqs. (5.138) are satisfied. By orthogonal projections, we mean projections
which satisfy P,P, = O for m = n. It is in this language that one can gener-
alize the completeness theorem to infinite-dimensional spaces. However, it
turns out that only for a special type of infinite-dimensional operator (the com-
pletely continuous type, which we will discuss in Chapters 8 and 9) do Egs.
(5.138) generalize directly.

In an infinite-dimensional space, there arises the possibility of “eigenvalues”
which are infinitely closely spaced, so that the above formulation needs some
alteration. To get the flavor of what these alterations involve, we must say a
word about an important generalization of the Riemann integral—the Stieltjes
integral. We define

b
[ 10 deto) = tim 32 ts)etosn) = i), (5.139)
where the points x;, x,, * -+, x,4; represent a partition of the interval [a, b],
and x; is any point in the ith interval. “Lim” denotes the passage to very small
partition intervals. Obviously, if g(x) is a nice differentiable function, we may
write

[l s dgte) = | 1) 2 ax

and we get back to the familiar Riemann integral. However, g(x) need not be
differentiable or even continuous. Consider the function

1 if x>0
gl = {o it x<o0.
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N
E Pn=1

n=1
Pi+Po+P3i
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P i
1 1 1
N A2 A3 N

Fig. 5.5. A schematic plot of E(2) for the special case of a finite-dimen-
sional self-adjoint operator whose eigenvalues are 21, 42, -+, An .

According to the definition of Eq. (5.139), we have simply

[" s gt = 100,
since only an arbitrarily small interval around x = 0 can contribute to the sum
in Eq. (5.139). This result is a -function type equation, which is not surprising
since in the imprecise d-function language,

d
—gx)=0(x) .

75 8= 0(x)
However, in the Stieltjes treatment, we never go beyond the domain of very
traditional mathematics.

Now let us define an operator-valued function E(2) as follows:

0 for A<<A4,
ZPII fOI' 2u<2<2u+|y U:ly"';N"‘I’
E(Z): n=1
N
ZP,, for 2> 2y ;
n=|

the P, and A, are defined above. This operator-valued function is “plotted”
schematically in Fig. 5.5. Note that

E(—o0)=0 and E(4+o0)= L
The reader can easily verify that

E()E(4) = E(4),

where 1 is the smaller of 4, and 2, (this follows from the fact that the P, are
orthogonal projections), and that

(E@A)) = E().

Using the definition of the Stieltjes integral (Eq. 5.139), we see that

L dE(}) = Z P,
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if A lies between 2, and 4,,,. The only contributions to this integral come from
the points at which E(4) changes discontinuously; at each such point, 4, (which
must be an eigenvalue of 4 by construction), we pick up the projection operator
onto the one-dimensional subspace of ¥ which is spanned by ¢;. In this new
way of writing things, the first of Eqs. (5.138) becomes

= r dE()) |
and the second of Eqgs. (5.138) can be written as

A= S AdE() .
Thus we have succeeded in making the simple finite-dimensional completeness
theorem look extremely complicated.

Now let us look at the virtues of this complexity. Consider the familiar
problem

Eh.0) _ 34 1x
L0 ~ 10(x)

We know that with periodic boundary conditions on [~ L, L]

,,:——l.=e"""’“", 2,,-:@, n=0, x1, £2, ---

V2L L?
As we let L become very large, the eigenvalues cluster very close together, so
that in Fig. 5.5 the intervals of constancy of E(2) become increasingly small.
We may imagine that in this limit E(4) tends to a continuous operator-valued
function. It is this phenomenon which is given the name of “continuous spec-
trum,” and it is very familiar in quantum mechanics—indeed, it may be said
to lie at the heart of quantum mechanics.

Having introduced the function E(4) on a finite-dimensional space, we will
generalize, without proof, to an infinite-dimensional Hilbert space. The follow-
ing theorem is one of the most powerful results obtained in mathematics and is
the key to a rigorous formulation of quantum mechanics.

Spectral Theorem. To every self-adjoint operator, 4, on a Hilbert space,
H, there corresponds an operator-valued function (unique), E(4), such that

1. EQ)EQR) = E@); 2=min(, &),
2. limE(Q) =0, lim E(d =1,

A0

3. 1= S:dE(Z) ,

4. A= Slsz(z) .
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E(2) is called a resolution of the identity belonging to A. The set of points
at which E(R) is nonconstant is referred to as the spectrum of A. For all 2,
E(2) commutes with 4 and with any transformation which commutes with
A.

Obviously, the spectral theorem reduces to the familiar completeness theorem
in a finite-dimensional space. There are several remarks which should be made
at this point. First, note that we have not been precise in saying what we mean
by the limit of a sequence of operators (see Part 2 of the above theorem). We
shall say more on this point in Chapters 8 and 9, but it is worth remarking that
in nonrelativistic quantum mechanics, the spectrum is always bounded below
(i.e., we cannot have bound states with arbitrarily large negative energy) so
that the limit  — — oo is unambiguous. Second, we remark that if 4 is an un-
bounded operator (i.e., if there are elements of H on which A4 is not defined)
then self-adjoint does not mean merely (Af, g) = (f, 4Ag) whenever Af and Ag
are defined. We will not dwell on this point; suffice it to say that all interest-
ing operators which occur in nonrelativistic quantum mechanics are self-
adjoint.

With these mathematical preliminaries out of the way, we now proceed to
discuss the axioms of quantum mechanics.

Axiom I. Any physical system is completely described by a normalized
vector ¢ (the state vector or wave function) in Hilbert space. All possible
information about the system can be derived from this state vector by rules
which will be given in the following axioms.

Axiom II. To every physical observable there corresponds a self-adjoint
operator on Hilbert space.

Examples of observables are position, momentum, energy, angular momen-
tum, spin, etc. This axiom brings with it the powerful machinery associated
with the spectral theorem. Notice that Axiom II does not specify how one is
to discover the self-adjoint operator which corresponds to a given observable.
It merely says that one exists. In practice, the use of classical expressions such
as L=r X p, E=p*2m+ V(r), etc., along with the operator substitutions
p— —ikV and r — r has been very successful. However, in the case of electron
spin, one is forced beyond classical analogy to find the required operator.

Axiom III. The only allowed physical results of measurements of the
observable A are the elements of the spectrum of the operator which corre-
sponds to 4.

We have already discussed some examples in which the spectrum is dis-
crete. For instance, the operator L? of Section 5.8, which corresponds to the
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square of the total angular momentum of a particle, satisfies
LY, =ml(l+ 1Y, .

Here there are 2/ + 1 eigenvectors corresponding to each eigenvalue, #2(I + 1).
Another system whose spectrum is particularly simple is the quantum harmonic
oscillator. The classical Hamiltonian of this system is

X = p’[2m + }kx?,
and by making the operator substitutions suggested above, we find

3 2
H= ——-_h_ ii__ + ._1_ka
2mdx* 2
for the operator H corresponding to the energy. We saw in Sections 3.10 and
4.4 that this operator has eigenvalues 2, = #iwy(n + %), where w, = (k/m)"?, and
normalized eigenvectors

¢"(x) — (\/E 2,.’1!)—llen(ax)e—aZxZ/Z ,
where
a = (moy/h)'"*,

and H, is the nth Hermite polynomial. We have already seen in this chapter
that this set of ¢, is a complete orthonormal set in Hilbert space.

Now let us look at the situation for a very simple quantum-mechanical
system whose spectrum is strictly continuous. The operator corresponding to
the momentum of a particle is p, = —ifid/dx (we consider just the x-compo-
nent). In the space of square-integrable functions (such functions must tend to
zero at large distances), p, is self-adjoint, so according to the spectral theorem,
we expect that we should be able to find a resolution of the identity belonging
to p,. If we were very free and easy about this problem, we would simply say
that p, had “eigenfunctions” ¢, = (2x)~"2e'** and “eigenvalues” 7k for all k.
The factor (27)~"* in ¢, is chosen to “normalize e'** to a d-function,” that is,

[" ptmsetar= L[ ewncax = —n) .
- 27 J -
Also,

[" stwsirae= L[ evorn = 01,

which one often thinks of as being analogous to

N
2 Ph=1
n=1
in finite-dimensional spaces. That is, we imagine a P, defined by

P f= ¢k(¢ln f) ’
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where k is a continuous variable (—oo < k < o). Note, however, that P, is
not a conventional operator, since it pushes vectors out of Hilbert space. This
is due to the fact that ¢, is not an element of Hilbert space, and hence is not an
eigenvector of p, in the customary sense. However, this approach does suggest
what a correct solution of the problem would be. On the basis of our earlier
work, we expect that if we want to obtain a resolution of the identity, E(k),
then this resolution should be the sum of all the projection operators P, with
k' < k. Thus we might try

EWf = | _dulu k.

Written out in detail, this is

s = = [ e[ = e fiay Jan,

or

E(k)flx) = X (k') di’ (5.140)

l k
75
where f (k') is the Fourier transform of f(x). We have already indicated that
the Fourier transform of every element in the space of square-integrable func-
tions exists and is itself square-integrable (we will prove this rigorously in
Chapter 9). Since f(k’) is square-integrable, the integral in Eq. (5.140) clearly
exists. It is a simple exercise to show that the vector E(k)f(x) lies in Hilbert
space.

We see by inspection that E(co) = I, by our main result on the inversion
of Fourier transforms, and since f (k') is square-integrable, E(—oo) = 0. Now
we must show that E(k,) E(k,) = E(k,) (where we assume without loss of gener-
ality that &k, < k;). We reason as follows:

Ell) ] = Ell) = | e/ ") di

LM
=1 S e F (k) dk
2

where F(k) denotes the Fourier transform of
k.
Sz e f (k') dk’
considered as a function of x. This transform is readily computed:

1 (™ i V' 2x (k) if k> k
Fk — ______j e lk.\j e"‘ X k/ dk/ dx — { 2 ’
) V21 J-e ALY 0 it k,<k.
This result can be most simply obtained by the use of Eq. (5.63). Thus, since
kl < er

—00

E(k) Elley)f = 712_; K;e”“f(k) dk = E(k)f ,
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as required. Finally, the reader can verify for himself that

r dE (k) =1,

—oo

so we have indeed found a resolution of the identity,

To complete our task, we need only show that the above resolution be-
longs to p,, that is, that

Dy =

b3
[
>
8
w-
),
&
=

This is easily done. We write

|:h S:k dE (k)] f= 77127 s:’k d [ S’:me”"" £ (k') dk’:|

for any f for which df/dx lies in our Hilbert space (under these conditions the
abgve interchange of integration and differentiation is permissible). Thus we
have found the resolution of the identity belonging to p,. Of course, the spec-
tral theorem tells us that such a resolution must exist; we have now explicitly
constructed it. As we expect, the spectrum of p, is purely continuous, consist-
ing of all real numbers. Using the informal ideas above, the reader should be
able to show that the resolution of the identity to the position operator X, de-
fined by Xf(x) = xf(x), is the operator-valued function E (&), specified by

Qs = (W Y s
0 if x> ¢&.
For more complicated self-adjoint operators, it is more difficult to find an ex-
plicit resolution of I, but it is always possible in principle.
We are now in a position to state the central axiom of quantum mechanics.

Axiom IV. If, on a system in the state ¢, we make a measurement of the
observable 4, then the probability that the value 2 obtained by this measure-
ment will lie between 2, and 2, (4, > 2,) is given by

P4, &) = ||[E(2) — EQ)14|]*,

when E(2) is the resolution of the identity belonging to 4 (by Axiom II
plus the Spectral theorem).
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Since ||¢]] = 1, we see that the probability of finding 1 between — oo and
+oo is 1, as it must be if the theory is to make sense physically. If E(2) is
constant between 4, and 2, (i.e., if there are no points of the spectrum of 4
between 2, and 4,), then E(2,) — E(4,) = 0, so a value can never be found in
this range. This is in accord with Axiom III; in fact, it is clear that Axiom
11 is contained in Axiom IV. We have put in Axiom III only because its state-
ment is such a familiar part of elementary quantum mechanics; if we were
trying for minimal redundancy, we would omit Axiom III.

A particularly important case is that in which E(4) is constant between 4,
and 2, except for a discontinuous jump at 2. We will look at this case in some
detail both for its importance to physics and because it enables us to show
how a discrete spectrum can emerge from the projection-operator formalism.
Intuitively, we should expect from our original motivations that whenever we
have a discontinuity in E(4) at, say, 4, on each side of which are intervals of
constancy of E(4), we should find an eigenfunction of 4. This is easily shown
to be the case. Let 4, be any point in the interval of constancy to the right of
A, and let 2_ be any point in the interval of constancy to the left of 1. By
analogy with our starting point in finite-dimensional spaces, we expect that if
¢ is any element of H such that ¢; =[E(2,) — E(A_)}¢ # O, then ¢; is an
cigenfunction of 4. We argue as follows:

ALEQ) — E0Y = |7 AdEQEL) - ERL)W)

= [" aaE@ea)g) - |7 2diE@Ea)g)

= (" aaeg) - [ 2aEwe)
= (" aa@g .

But by our assumption of intervals of constancy on either side of 4, we have

Ay _ -
[ 2arpwe) = 2EG) — EG)W = 395
Hence
Agi = 243,
so 2 is an eigenvalue of 4, and ¢; is an eigenvector belonging to that eigen-
value. ~
Of course, ¢; may not be the only eigenvector belonging to 4. If one picked
a different ¢ to start with (note that it is always possible to find a ¢ such that
[E(2,) — E(.))¢ # 0), one might find a vector ¢; which belongs to 4 but is
not just a multiple of ¢;. In this case, we say that 4 has multiplicity g > 1.
We leave it as an exercise for the reader to show that if &z is the unique nor-
malized eigenvector belonging to 4 (that is, 4 has multiplicity 1), then for any
$eH,
[E(dy) — EQ2.)]fp = P3(P3, ¢) (5.141)
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where 4, and A_ are as chosen above. Thus, just as we would expect from our
original finite-dimensional analogy, the discontinuity in E(2) at an eigenvalue
A is just the projection operator onto the one-dimensional subspace of H span-
ned by ®;. If 2 has multiplicity o greater than one, then the discontinuity in
E(4) at 2 is just the projection operator onto the u-dimensional subspace of H
spanned by the g eigenvectors belonging to 2. Thus, in general, we may write

[E(A,) — EQ))p = Z@‘“’ @, ¢ (5.142)

where g is the multiplicity of 4 (see Problem 5.25).

Returning now to our interpretation of Axiom IV, we see that in the case
of a discontinuous jump in £(1) between A, and 4,, the probability of obtaining
a measured value of A4 between 2, and 4, is, according to Eq. (5.141), just

P, ) = |(®5 9)1°

where 2 is the point of discontinuity; we have assumed that 2 has multiplicity
1. Thus P(4;, 4,) is just the modulus squared of the component of ¢ along the
“‘direction’” in Hilbert space defined by the eigenvector ®; belonging to 4.
More generally, if 2 has multiplicity g,

P(2,, 2, Z| @Y, ¢)|? (5.143)

Hence Egs. (5.141) and (5.142) lead to very simple results for the probability of
finding an observable 4 in the discrete spectrum.

If we choose an observable with a continuous spectrum, the situation is
similar. Consider the x-component of the momentum, p,. By our previous
work, the probability of finding p, between 7k, and 7k, is just

Py, ky) = ||[E(ks) — E(ki)14l|

= 7=l e'“*” ) k|
= S:]w(k)wk ,

where we have again used Eq. (5.63). In a more conventional language, P(k,,
k,) is just the continuous superposition of “plane-wave” probability amplitudes.
We now define the expectation value of A.

Definition. <{4) =1lim ¥ A4||[EQR + A) — E(2)]¢||? is the expectation
value of the observable A4 for the system described by the state vector ¢.
Here we have divided the spectrum into intervals of length A, and 2; is
any point in the ith interval. By lim we mean the limit as the interval
size tends to zero.

The physical meaning of the expectation value is very simple. It is just
the value that would be found by taking the average of many measurements of
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A on a large collection of systems all in the state ¢». Each possible result, 1;, of
a measurement is weighted by the probability of finding a result in the vicinity
of ;. Note that {A4) is a number, not an operator.

Theorem. <{A4) = (¢, A¢P).
Proof. According to the definition (Eq. 5.139) of the Stieltjes integral,

. 49) = [ 2dLp. EQ9))
= lim 37, (B + &) — E@)g) -

But [E(4; + A) — E(A)]* = [E(A; + A) — E(4,)], so using the self-adjointness
of E, we have

(@, 4g) = lim 3 L[EQR + &) — E@)]g, [ER + &) — E(2)]9)
= lim 25 2B + &) — E@)p|* = <4)

by definition.
In terms of the expectation value of A, we define the mean-square deviation
(AA)?, which measures the dispersion around the mean value {4).

Definition. (AA)?is the expectation value of [4 — (A4>]* in the state ¢ in
which {(A4) is computed.

Theorem. (AA)* = (4% — (4)*.

Proof. (Ad)? = (4 — {DHT) = (¢, [4 — (DT

= (@.[4 — 244 + {A4)')))

= (¢, AP) — 2(p, AP)<A) + {4)

= 47 — (4)*,
as required. We have used the previous theorem several times in obtaining this
result.

Note that according to our definition,

(A4) = (@, [4 — KDTY) = ([A4 — (D, [4 — {AJ) ,

because 4 is self-adjoint and {A4) is real. Thus

(AA)? = [|[4 = <DWII*

so if A4 =0 for some ¢, we must have [4 — {4A>]¢ = 0; that is, ¢ is an
eigenvector of A4 with eigenvalue {(4). This has the important implication that
unless ¢ is an eigenstate of A4, one cannot make a perfectly precise measure-
ment of A4 in that state. Thus only values of A lying in the discrete spectrum
of A can be determined with perfect accuracy. For other values, one must al-
ways have some dispersion, A4, associated with measurements.
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It is instructive to check that if ¢y = ®,, a normalized eigenstate of 4 with
eigenvalue 4,, then indeed A4 = 0. We have

A4y = (@, 4D,) = 2, ,
A = (@,, 4P, = (AD,, AD,) = 2,
SO
A =LA ==L —4=0.

Furthermore, if ¢ = ®,, the probability of obtaining a value 1 between 4, and
A, when 4 is measured is zero if [4,, 4,] does not contain 4,, and this probability
is 1 if [4,, 4,] contains 4,. This follows simply by showing that the probability
of finding 2 in a small interval around 4, is 1. According to Axiom IV,

P(A, ~— €, 4, + €) = ||[E(Ad,+¢€) — E(R, — €)]D,]|?
= (@, ®)|*=1,

where we have made use of Eq. (5.142). Thus the probability of the measured
value of 4 being 4, is 1. In other words, if a system is in an eigenstate, so that
its state vector happens to be an eigenvector of 4 and not a superposition of
many eigenvectors, then the result of a measurement of 4 is certain to be the
eigenvalue corresponding to that eigenvector.

Having considered in detail the case of a single measurement, let us men-
tion briefly an important generalization of Axiom IV which admits the pos-
sibility of simultaneous measurement of several observables.

Axiom IV’. Let 4, B, and C be observables whose corresponding linear
operators commute, that is, [4, B] =[4, C] = [B, C] = 0. Then the pro-
bability that a simultaneous measurement of 4, B, and C in a system whose
state vector is ¢ will yield a value of 4 between a, and a,, B between b*
and b,, and C between ¢, and ¢, is

Pla,, a; by, by; ¢y, c) = [[[Eala) — Eql@)][Es(b) — Ep(b)]
X[Eclca) — Ecle)1gl|?,

where E (a), Ez(b), and E¢(c) are the resolutions of the identity belonging
to 4, B, and C, respectively.

In the case of a single measurement, Axiom IV’ is clearly equivalent to
Axiom IV.

Note that since 4, B, and C commute, so do E,(a), Es(b), and Ec(c), and
therefore the ordering of the projection operators on the right-hand side of the
above equation is immaterial. Clearly, if their order were significant, the con-
cept of simultaneous measurement would be untenable. The possibility of
simultaneous measurement of noncommuting observables is denied in quantum
mechanics; thus p, and x, which satisfy [x, p.] = ik, cannot be measured
simultaneously. The importance of simultaneous measurement of observables
will become apparent when we discuss Axiom VI below.
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Everything said so far has been concerned with the properties of a system
at a fixed time. We now must say what happens to the system as the time
changes.

Axiom V. For every system, there exists an Hermitian operator, H, the
Hamiltonian or energy operator, which determines the time development
of the state vector, ¥, of the system through the time-dependent Schrodinger
equation:

H'\If‘(_x’ [) = l‘ha_\,y_(x’_t) , (5.144)

ot

provided that the system is not disturbed (by a measurement, for example).
Here 7 is a constant equal to 1.054 X 10~7 erg-sec.

Axiom I says that the state vector ¥ is normalized. To be certain that
our axioms are consistent, we must therefore show that this normalization is
preserved in time by the above equation which governs the time dependence
of the state vector. Thus we prove the following result:

Theorem.
O, w)=o0.
at
Proof.
o = (G )+ (v 5).
But
o _lpy,
ot ih
50,
9w, v = (1 HY W) (\P H\I’)
ot
= —-;—_(H‘I’, ¥) + (¥, H‘\I’)_".
i ik
=L Hw) + (v, HO) L =0,
ik i

since H is self-adjoint. Thus Axiom I is consistent with Axiom V.

In general, the solution of Schrédinger’s time-dependent equation for a
Hamiltonian with complicated time dependence is a difficult job. However,
if the Hamiltonian is time-independent, then matters simplify considerably.
In this case, it is elementary to verify that the solution to Eq. (5.144), which
reduces to W(x, 0) at ¢ = 0, is simply

W(x, 1) = e " (x, 0) . (5.145)
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Since H is self-adjoint, we have a resolution of the identity belonging to H,
and therefore Eq. (5.145) can be written as

—co

Vx, 1) = S"’ e[ E(e) P (x, 0)] . (5.146)

Again, it is elementary to verify directly that this W(x, ¢) satisfies Eq. (5.144).
Note that if the spectrum of H is purely discrete, then according to Eq. (5.143),
Eq. (5.146) takes on the simple form

Wix, 1) = D e i@, ¥t =0))d,(x) , (5.147)

where the ¢, are the eigenvectors of H and the €, are its eigenvalues. Accord-
ing to Axiom 1V, the probability of finding a value ¢, for the energy of the
system whose state vector is ¥ (x, 0) is just

Ple,; 1 =0) = |(g,, ¥(t=0)[.

Using Eq. (5.147), we see that at time ¢, the probability of measuring H and
finding €, is

Ple,; 1) = lem"""(g,, ¥(t = 0)]* = |(¢,, ¥(t = 0))]* = Ple.; t = 0);
that is, the probability of finding a particular value of the energy does not
change with time.

Let us now see what happens for more general observables. Suppose that
A is any observable, with associated resolution of the identity, £,(4). Accord-

ing to Axiom IV, the probability of finding a value of A4 between A, and 2, is
just

P(Ai, 35 1) = |[[EA(Z) — E4(A)]e~ """ ¥ (x, 0)]]?,

where we have made use of Eq. (5.145) and are continuing to assume that H
is independent of time. It is clear that, in general, P(A,, 4,; ¢) will depend on
time, but there are two important situations in which P(4,, 4,; #) will be time-
independent.

1. ¥(x,0) = ¢,(x), where ¢,(x) is an eigenvector of H.
In this case,

P(le 22, l) = HEA(XZ) - EA('ZI)]e_“"IM¢n(X)I|2 ’

i€, |h

but since e~ is just a complex number with modulus 1, it cannot affect the
norm of a vector, so

P(Xl, A ’) = [|[EA('22) - EA(XI)]SZSnHZ = P(ZI, Ayt = 0) .
2. H commutes with A4,
In this case, H also commutes with E,(2), so

P&, 3 1) = ||e"IE4() — E4(4)]¥(x, 0)]]7 .
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But according to Theorem 4.13, this is simply
Py, 25 1) = [[[E4(X) — EL(A4)]¥(x,0)|]> = P4, 4,; t=0) ,

since exp [—iHt[h] is a unitary operator. This tells us that the results of
measuring an observable which commutes with the Hamiltonian are indepen-
dent of the time at which they are measured.

By way of illustration, let us now investigate the situation for a particular
observable, the position of a particle. We have already introduced the operator
X defined by Xf(x) = xf(x) and have stated (see Problem 5.26) that its resolu-
tion of the identity is given by

Edgsw ={/0 Tt

We now ask, what is the probability of obtaining a value of the position be-
tween &, and &, for a particle in a state ¥'? According to Axiom IV,

PG, & 1) = ||I[Ex(&) — Ex(6)] ¥ (x, )]]*.

From the definition of Ey (&), we see that the vector whose norm is to be evalu-
ated is just the function which is zero outside [&,, &,] and equal to ¥ (x, £) inside

[51: Ez] Thus
P, & 1) = fmx, ))Pdx .
1

Note that the probability of finding the particle someplace is 1, since ¥ is nor-
malized. If weset § =& — A/2and & = & + A/2, then for A small, we see
that the probability of finding the particle in a small interval of length A about
& is just P= |W(&, 1)?A; thus |V (x, £)|* is called the probability density, p(x, 1).
This result is often stated at the beginning of quantum mechanics courses. It
arose first, historically, in the pioneering work of Born on the probabilistic
interpretation of quantum mechanics. Here the result is presented as a special
case of Axiom IV. Note that, in general, the probability of finding the particle
in a particular region varies with time; however, if W(x, #) is an eigenstate of the
Hamiltonian, then W(x, 7) is related to ¥(x, 0) just by a multiplicative phase
factor, so |W(x, ) |2*=|¥(x, 0)|%, and the probability of finding the particleinany
region is constant in time. This is why eigenstates of the Hamiltonian are often
called stationary states.

Finally, let us use Axiom V to obtain P(§,, &,; ) in terms of a particular
initial state, ¥(x, t = 0). For simplicity, we assume that ¥ (x, 0) is given by

Y(x, 0) = (1/a/7a)e"*1

Thus the initial probability density is equal to (1/x'2a)e=**/#*, so that the prob-
ability of finding the particle at a distance greater than a from the origin is very
small compared with the probability of finding the particle within a distance a
on either side of the origin. Let us assume that we are dealing with a free par-
ticle {and confine our attention to the x-dependence of- the problem). The
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Hamiltonian is just H = p%/2m, where m is the particle’s mass, so according to
Axiom V and Eq. (5.145),

.2
‘I’(x, t) — e—lelIZInﬁ 1 e—x2/2a2 .
Yy
wa

Using Eq. (5.146) and the spectral resolution which we have already determined
for p, we have immediately

I
v'ra*

But according to our previous work,

W(x, 1) = Sw e!™2im gl E (k) e=*12]

1 k ,
Ek x:—:—_s e”‘x k’ dk/,
/00 = —= e /)
where /' denotes the Fourier transform of f. The Fourier transform of ¥(x, 0)
is easily computed; we find

‘i’(k, 0) = (/E e-ak2

(1
Thus

3 (e ) k - ,
\I’(x, t) — 4 41_3 S e—,ﬁk2:/2m d I:S eik'x Lf_“zk 22 dk/:l
n J— -

— (/Z jm e~—ihk21/2m e—a2k2/2 elkx dk .
4 J-w
This last integral is readily evaluated. We find that

1 1 x?
'\I’ ’ l) = — ——ee [—’_—"_—_} ’
0 _ \/a N iﬂeXp 2a(a + iht/ma)
ma

and therefore the probability density is given by
p(xv t) = I\I,(X, I)I2 = (1/.\/@) o282 ’

where A= a? + (ht/ma)*. Thus the width of the probability distribution increases
in time. This phenomenon is known as “the spreading of the wave packet.” The
initial width was equal to 2a; the width at time 7 is 24/a? + (ht/ma)?. To geta
feeling for the magnitudes involved, suppose that we are dealing with electrons
and that ¢ = 1 mm. This might describe a case in which one creates a beam of
electrons collimated by a slit of width approximately equal to one millimeter.
Then if we use m = 9 X 107®gm and h = 10~? erg-sec, we find that the width
has doubled in about 15 msec. This is a very short time on a macroscopic scale,
but on a scale appropriate to electrons, it is a very large time. For example, a
velocity of 10® cm/sec is not unusual for an electron; in 15 msec, such an electron
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would travel 1.5 X 10°cm, or 15km! Thusa beam of electrons initially having
a width of 1 mm and moving with a velocity of 10®cm/sec would travel 15km
before doubling in width. This assumes, of course, that the electrons are truly
free; i.e., we neglect collisions, electromagnetic forces, gravitational forces,
etc.

Before we can claim to have a complete system of axioms, we must give
some method by which one can gain information about the state vector ¥ that
figures so prominently in the previous axioms. The key to this problem, which
is clearly of paramount practical importance, is the following axiom.

Axiom VI. If at time ¢ = 0 one measures simultaneously the commuting
observables 4, B, and C, and finds with certainty that the values of these
observables lie between a, and a,, b, and b,, and ¢, and ¢, respectively, then
immediately after the measurement, the state vector of the system satisfies
the relation

[Ei(as) — Eq(a) N Es(b) — Ep(by)[Eclcs) — Ecle)] ¥ =¥ . (5.148)

We may say that the measurements project the original wave function into
the subspace of Hilbert space associated with the projection operator

[E(ar) — E4(a))[Ep(bs) — Ep(b)[Ec(c) — Ec(ci)] -

Note that because of Axiom IV, Eq. (5.148) implies that if we remeasure 4 (or
B or C) immediately after our first measurement, we will find a value between
a, and a, (or b, and b,, or ¢, and ¢,) with certainty.

Let us first consider the measurement of a single observable, say 4. If there
is only one point, a, in the spectrum of A between a, and a,, then according to
Eq. (5.141),

¥ = P, ,

if a is nondegenerate, when @, is the normalized eigenvector of 4 belonging to
a and €™ is a phase factor which is indeterminate. Clearly, according to our
previous axioms, this phase factor can have no observable consequences. In this
case, the measurement of A has, so to speak, “forced” the system into an eigen-
state of 4. Note that this does not tell us that the system was in the state ®,
before the measurement, but only that it is in the state P, after the measure-
ment. We have “prepared” the system in the state ®,. If the eigenvalue a has
multiplicity g, > 1, then according to Eq. (5.142), after the measurement of 4,
we can only say that the state vector lies in the subspace of Hilbert space spanned
by the g, orthonormal eigenvector of A4 belonging to a, that is,

Ha
Y= cd,
v=1
where

Ha
S lel=1.
v=1



294 HILBERT SPACE—ORTHONORMAL SETS OF FUNCTIONS 5.11

Thus in this case we have not completely specified the state vector by measuring
A.

However, according to Axiom VI, we have additional resources at our dis-
posal; we can choose another observable, B, whose self-adjoint operator com-
mutes with 4, and measure 4 and B simultaneously. Suppose we discover that
the value of A lies with certainty between a; and a, and the value of B lies with
certainty between b, and b,. Again, we imagine that a is the only point in the
spectrum of A between a; and a, and that a has multiplicity g,. Hence

[Eda) — Eda)]¥ = 3 e, . (5.149)

We assume also that there is only one point, b, between b, and b, in the spec-
trum of B, and that b has multiplicity g,. Using Eqgs. (5.142) and (5.149), we
find that

Ha Hp
[Ea(bz) - EB(bl)][EA(aZ) - EA(al)]\I, = Z Z C”((I)[(f), q)f(zv)) D .
u=1 wu=1
We know from Theorem 4.22 that every eigenvector of 4 must be an eigen-
vector of B and vice versa, so (B, D) = 1 if PP = P, and vanishes other-
wise. It may happen that there is only one pair, (4, V), for which (P, )
= 1. In this case, Axiom VI tells us that

V=’ PP = e PP |

so that we have uniquely specified the state vector of the system.
If there is more than one pair for which (@, ®”) fails to vanish, then
calling these pairs (4;, v;), we have

T =36, =30,
i i

that is, ‘¥ lies in the subspace of Hilbert space spanned by the mutual eigen-
vectors of 4 and B belonging to @ and b. In this last case, the state vector is
not uniquely determined, so we must find a new observable, C, which commutes
with 4 and B, and repeat the process. In this manner we eventually will specify
the state uniquely.

A collection of commuting observables which has the property that simul-
taneous measurement of the observables specifies uniquely the state vector of a
system is called a complete set of commuting observables. For example, if we
consider an electron in a coulomb field and neglect electron spin, then H, L?,
and L, (where H = p?/2m — &*/r and L is the orbital angular momentum of the
electron) constitute such a set; H and L? alone do not constitute a complete set
of observables, for after a measurement of the energy and the total angular
momentum, there is still a degeneracy corresponding to the possible values of
the z-component of the angular momentum. If we include the spin of the elec-
tron, then H, L?, S? J?, and J, constitute a complete set, where S is the elec-
tron’s spin angular momentum, and J = L + S is the total angular momentum
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of the electron. This set is not unique; H, L?, L, S?and S, would do just as
well. Which set is more useful depends on the practical situation. If we wish
to take into account relativistic effects by including magnetic interactions via a
term in the Hamiltonian of the form AL-S/r*, then the second set mentioned
above is no longer a complete commuting set, whereas the first is (because

L-S=(J?— L*— §%/2).

Thus Axiom VI enables us to perform the all-important task of controlling
the initial conditions of an experiment by the process of preparing quantum
states. Without this axiom, Axiom IV would have no content, since if one
never knew what the state vector of a system was, one could never hope to
compute the probability of obtaining a particular result in a measurement.

PROBLEMS

1
1. Prove that S P.(x)dx = 0 for n # 0 in two ways.
-1
2. A metal spherical shell of radius R with its center at x = y = z =0 is cut in half
along its intersection with the plane z = 0. The two halves are separated by an
infinitesimal gap and the upper and lower hemispheres are brought to voltages + ¥
and — ¥V respectively. Show that the potential inside the sphere is

L)Z'“ (201 41+3
R (2122142

o0 = 3 (—1( Pas (cos 0),
1=0

where 6 is the polar angle measured relative to the positive z-axis.
Hint: V?*) =0 inside and on a spherical shell. ¢ is clearly independent of ¢.
Following the usual procedure of separation of variables, we find that the solution
is of the form

$(r,8) = D, [Air' + Bir'~'1[CiPi(cos 6) + DiQ: (cos 6)].

1=0

Immediately set B, = 0 (all /) so ¢(0, §) is finite and set D, = 0 (all /) so ¢(r, 0) and
¢(r, #) are finite. The problem is now one of mathematics—determining the
constants 4;C; = a; such that the boundary conditions are satisfied:

_ YV for 0<o0< /2,
9[)(R’a)—_{—V for 2<0< .

3. A conducting sphere of radius d sits in a charge-free region in an electric field.
Its surface is kept at a fixed distribution of electric potential V' = F(6), where (r,
@, 8) are spherical coordinates with the origin at the center of the sphere. Deter-
mine the potential at all points in the space inside and outside the sphere; i.e.,
solve Laplace’s equation V2V = 0, assuming the following boundary conditions:

i lirgV(r,ﬂ)ZF(ﬂ), 0<o<r,
ii. limV(r, 8) =0

r—oo

(potential vanishes at points infinitely far away from sphere).
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Hint: Use the method of separation of variables. Solve the r equation by making
the substitution r = e’. When it is solved, set the exponent —} + (2 + })!/2=n
so that 2 = n(n + 1) (2 = separation constant). Solve the § equation by an appro-
priate change of variable.

Answer:
, 2n+1r !
Inside sphere: V(r,8) = Z — P,. (cos @) | F(x)Pa(x) dx
n=0 2 ar -1
r=d, F(0) = flcos 6) .
Outside sphere:. V(r,0) = 2n2+ 1 d" P, (cos 6) 5 F(x)P,(x) dx .
r

n=0

4. a) Show that the 2r periodic Fourier series representation of the square wave (step
function)

_ /-1, —7<x<0, :4°°
%) {+1, PSISY s s 7[-;‘

sm (2n — 1)x.

Compare this result with the expansion of the same function in Legendre poly-
nomials—see Jackson, Classical Electrodynamics, pp. 58-59.

Derive from the Fourier series obtained in (a) a simple infinite series expression
for =; preferably one with rapid convergence. It is instructive to plot several of
the approximations to f(x); that is, plot

b

A

Sml(x) = 7—4; Z 2n 3 sin (2n — 1)x

n=1

for several values of m to see how Swu(x) — f(x) with increasing m.
c) Gibbs’ phenomenon: Show that the Fourier series overshoots the function just
to the right and left of the origin by about 18 %;. This is not easy. Guidance
may be found in Sommerfeld’s Partial Differential Equations in Physics, pp. 7-
12, or in Morse and Feshbach, p. 747.
5. Prove that if f(x) is real,
flx) = 1s dus £() cos ule — x) dt .

TJo

6. Solve the integral equation

® e—ax for x >0
t tdt = 0) .
So glr) cos x {e‘” for x < 0} (a>0)
Answer:
a
t
glt) = ral+2°

7. a) Show that the energy transferred to a spring by a time-dependent force F(f) de-
fined by (Fig. 5.6)

0’ ’< -7 i ,
F(t) = {Fo(t/2r + 1/2), |t| <<} s AE:l(Fo/wV(Sm a)'r).
2m wT
Fo, t>‘t'
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Hint: Take derivatives of F(f) until you reach a function whose Fourier transform

is known.

b) Show that the energy transfers in the adiabatic and sudden limits agree with
these limits as determined for the probability integral force function (Example
3, Section 5.7).

c) For certain finite values of wr there will be no energy transfer to the spring.
Determine these values and explain their origin physically.

F()/Fo F(1)/Fo
Lo+ 1.0+
0.5 0.5
e+ LA S At
Fig. 5.6. Fig. 5.7.

8. Work Problem 7 for the force function (Fig. 5.7)

o, t< —7,
1 1//3¢ £\?

Flt) ={Fo| = +-((Z)= (1)) |, <.

0=1r[3+i((H-@)] 1<
Fo , t>7.

Answer:

AE:—I—(Fo/w)2 9 (sin wor — woT COS wot)? .

2m (wor)®

The adiabatic and sudden limits must and do (prove this) agree with those of Pro-
blem 7. For part (c), settle for a determination of the position of the first node of
AE. You should get

or =4.49,
9. Compute the three-dimensional Fourier transforms of the following functions:
a) Hi) =S
[l
b) Fir) = |_:‘_| [To save work consider F(r) as a special case of H(r).]
c) Y(r) = e AI7l [The Fourier transform of this function can be obtained from

that of H(r) also.]
10. Maxwell’s equations in free space in Gaussian units are:

curlE= -1 Gig=—0, =12  GvE=0.
c ot c ot



298 HILBERT SPACE—ORTHONORMAL SETS OF FUNCTIONS

At any time ¢ the electric (and magnetic) fields may be Fourier analyzed:
1 © .
Elr, 5 = (ZW_)J/ZS_OOEU" e'*'Tdk, etc.

[Here the Fourier components of E(r, ) have been written E(k, ); the argument
identifies E(k, #) as the Fourier component of the field, distinguishing it from the
field itself, which has argument r. If you don’t like this notation, adopt another.]
a) Prove that the Fourier components of the electric and magnetic fields satisfy
the following equations:
i) Hik, ) = —ic(k X E(k, #)
ii) k'E(k,#) =0
i) E(k, £) = ic(k X H(k, #)
iv) k-H(k,?) =0.
These four equations are equivalent to Maxwell’sequations. This reformulation
is well-suited as a starting point for quantum mechanical considerations of the
electromagnetic field.
b) Using the results of part(a), prove that the Fourier components of the electric
field satisfy the homogeneous wave equation. That is, prove

2 L e Bk, 1) =0
ﬁ_*_c , ) =0.

11. Show informally that

lim 328X gx, g>0,
g WX
is a representation of the Dirac d-function.

12. Prove that

i (e = (5)])
d(x) = {Mm la] " a } it 0< |x| <|al,
0 otherwise

is also a representation of the d-function, where ¢, is given in Eq. (5.28). Show,
therefore, that d(ax) = (1/|al) 6(x).
13. Show that if r = (x* + »* + z?)'/?, then

VZG) = — 4x3%(r)

[Hint: Use Green's Theorem.]

14. Prove Parseval’s equation (5.11) in Hilbert space by applying Bessel’s completeness
relation (5.10) to the function f + g and then subtracting the corresponding equa-
tions for fand g.

15. The parity operator P plays a fundamental role in many areas of physics. Show
that the Gegenbauer polynomials are eigenfunctions of P; that is, if the leading
power of x in G7(x) is even, then GJ(x) contains only even powers of x. One way
to do this is to assume the contrary. Write GJ(x) = g(x) + uZ(x), where gI'(x)
contains only even powers of x and u}'(x) contains only odd powers, and coaclude
that (L — 2,)gr =0 and (L — 2,)ul =0, where L is the Sturm-Liouville operator
which has the Gegenbauer polynomials as eigenfunctions. Thus g7(x} and u(x)



16.

17.

18.

19.

20.

21.

22,

23.
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are linearly independent (because they belong to different eigenvalues of P) solu-
tions of the Gegenbauer equation, and they are both polynomial solutions. From
this conclude that u)(x) =0. [Hint: we know that for the Gegenbauer poly-
nomials 2, = —n(n+ 2m + 1).] Thus G, (x) contains only even powers of x and
has parity eigenvalue +1.
Prove that the complete set of orthonormal functions on the unit sphere, Y, is
unique up to a phase factor. Use induction on / for m = m’ fixed.
If [xi, pj] = ihdij, where the indices run from one to three, and if we define L =r X p,
then show that
[Li, Lj]= iﬁzfijkLk.
k
Defining L, = L, +iL, and L_= L, —iL,, show that [Ly, L_] = 2AL,. Show
that if we define
P = L,++"I ¢, L¢.,=0,
where / is an integer, then
L—¢m = ﬁ(l + m) (I —m+ 1)¢m—l .

H,(x) are the Hermite polynomials. Prove for arbitrary n:

a) Hl0) = (—1) 22 b) H (0) =0,

!
o) Hausn(0) =0, Q) Hiuar(0) = (—1)2Z2 1L
It should be clear from the definitions that pointwise convergence does not
imply uniform convergence. The question comes up, Does pointwise convergence

imply convergence in the mean? Show that the sequence of functions

2n'2 2
w(x) = — xe—(nx)
1) = g
converges pointwise for all x to the function zero, that is,
lim fu(x) =0,

n—oco

but does not converge in the mean to the function zero; i. e.,

limr 0 — ful?dx=1%+0.

n—o

Let {Q.} be an orthonormal system of Sturm-Liouville polynomials. Prove that the
functions Qf, @3, - -+ form an orthogonal system of polynomials with weight func-
tion wa, where the notation is that of Section 5.10.
Show that the set of functions [x™, x™*!, ---] is a complete set in the mean on
[—1, +1] for m > 1. (Of course, by Weierstrass’s theorem, the above is true for
m=0.)
Obtain the first four orthonormal polynomials for the complete set [x, x?, x3, -+ ]
on the interval [—1, +11, and write the first few terms of the expansion of f(x)
=1 in terms of this set. What do the first two approximations look like graphi-
cally ?
Consider Bessel’s equation Bf, = n®f, on the interval [0, co], where

, 42 d

B=x'"—+x-—+x*.
xdx2+xdx+x



300
a)

b)

c)

d)

HILBERT SPACE-—ORTHONORMAL SETS OF FUNCTIONS

Using the methods discussed in Section 5.10, find the weight function appro-
priate to Bessel’s equation.

Show that if n #+ m and w(x) is the weight function of Part (a), then
s J20 () J2m (x)w(x) dx = S Janst () J2mer (x)w(x)dx = 0 .
0 [}

You may make use of the fact that for small x,

= ()]

while for large x,

Ju(x) = \/% [cos(x - %—%) (1 + O(x?)

4____.”2_1_1 i _nr_z 2
S xsm(x > 4)(l+0(x)):l.

Both of these results can be readily derived from complex variable techniques,
which will be discussed in Chapter 6.
Using the asymptotic formulas given in Part (b), evaluate

5‘” ot () Jam () w () dx .
0

Is the operator, B, in Bessel’s equation an Hermitian operator with respect to
the space of functions which satisfy

S“’ | Fx) [Pwix) dx < oo,

where w(x) is given by Part (a)? [It is understood, of course, that B can act
only on functions f having the property that Bf lies in the Hilbert space if f
does.]

24. We have shown that the Legendre polynomials, P;(x), are solutions to

(1 =x)f"(x) =2xfllx) + U+ 1) flx) =0, =0,1,2,---,

which are orthogonal on[—1, 1]. However, these are not the only solutions; they
are merely the only polynomial solutions.

a)

c)

To reassure yourself on this point, show that the function

_ 1 14 x>
tanh™' x = =1 —_—
anh™! x 3 og(1 —_—
satisfies Legendre’s equation with / = 0. Note that this function is singular at
x = =x1.
Show that if we look for a solution of Legendre’s equation of the form
Qi(x) = Pi(x) tanh~'x + II;{x) ,

then a solution of this form always exists where I1;(x) is a polynomial of degree
I — 1. Find the inhomogeneous differential equation that IT,(x) must satisfy,
and show that this equation always has a solution. What type of boundary
condition has been applied in taking II;(x) to be a polynomial of order / — 1?7
Since IT,(x) is a polynomial of degree I — 1 on [—1, 1], it can be written as a
linear combination of Legendre polynomials. Find an expression for the co-
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efficients in this linear combination. To be precise, show that

2n + 1
H’(x)_z?o:l i

where the sum begins at n = 0 if / is odd and at n = 1 if [ is even. The prime
on the summation indicates that the sum runs in steps of two.

d) Show that (Qs, P)) = 0.
[Hint: Don’t do any integrals.]

e) From their form it is clear that the Q,(x) lie in the Hilbert space of square-
integrable functions on [—1, 1]. Do they form an orthogonal set of functions
on [—1, 1]? Explain.

Let us define E(2), an operator-valued function, as in Section 5.11. Denote by 2,
and ¢, (n =1, 2, - -+, N) the nondegenerate eigenvalues and corresponding eigen-
vectors of an Hermitian operator, 4, and call P, the projection operator associated
with ¢,. Then define

Ofor1<11,
Pyfor 2, <2< Avpr s v=12,---,N—1,
E(X): n=1
N
> Pu=1Ifor 2> in.
n=|
Show that

i) E(A)E(22) = E(Amin), where Amia = min (2, 22}, ii) E(2)? = E(a).

Let X be the self-adjoint operator on the Hilbert space of square-integrable func-
tions defined by Xf(x) = xf(x) .
i) Is X well defined on all elements of the space?
If not, characterize the elements for which it is defined.
ii) Prove that Ex(§), defined by

R U

is the resolution of the identity belonging to X.

Show that if E«(2) suffers a discontinuous jump at an eigenvalue 2 of 4, then
n
[EalRs) — E4))p = ) @ (@, 4) ,
v=0

where g is the multiplicity of 2 and {®{’: v=1,2, -+, p} is a set of g ortho-
normal eigenvectors of A4 belonging to 2, and 4, and 2_ are points on either side
of 7 in the intervals of constancy of E(1); that is, E(A) is constant in the intervals
[Z, 4] and [2_, 2]. A is any self-adjoint operator.

Given that E4(2) is the resolution of the identity belonging to A4, show that
[Es(22) — E4(21))7 = [Ea(Z2) — Ea(Z1)]
if 22> A1,
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29. i) What is the expectation value of the operator X of Problem 5.26 in the state
= (1) ra?) e+

ii) What is the dispersion, AX, about this average value?
iii) What is the expectation value of p. = —ikd[dx in the above state?
iv) What is the dispersion, A px, about this average value?
Note that as the dispersion in X gets smaller (i.e., as a gets smaller, which means
that the wave function ¥ becomes more sharply peaked about x = 0), the disper-
sion in px gets larger. The product of the two dispersions, AX A px, is a constant,
equal to 7/2. One can show that for any state ¥ we must always have AXAp, >
fif2.

30. Verify that for all z not in the spectrum of 4,

(A —z20) = r

where A is a self-adjoint operator whose associated spectral resolution is E4(2).

31. Suppose that we wish to find an eigenvector and an eigenvalue of a self-adjoint
operator 4 = Ao + €A;. Imagine that we know the resolution of the identity,
E 4,(%), belonging to Ao, and assume that for e sufficiently small any eigenvalue of
A can be written as

E
oolz—‘zd A(),

=20 + " + D + ..
and that the corresponding eigenvector can be written as
D= B0+ B+ PP+ -
where 4op® = 224 Show in the manner of Section 4.11 that we can find an

inhomogeneous equation for ¢{", and that the solution to this equation which
satisfies (¢, ¢{") = 0 is

"= 'L o dlEa(d) (A = 201901, (1)
0 n

where 2" = (6@, 4,6”) and S, denotes the entire spectrum of Ao except for an
arbitrarily small closed interval about the point 2. We assume that the spectra
of A and Ao are nondegenerate. Show that in the case of a finite-dimensional vector
space, the results of Section 4.11 are obtained from Eq. (1).

32. i) Let A be a self-adjoint operator on a Hilbert space H. Assume that the spec-
trum of A consists of a finite set of points, {2, < 0: i =1, 2, ---, N}, plus the
positive real line. Show that if the lowest (i.e., most negative) eigenvalue of A4,
21, is nondegenerate, then A, = TEIE (¢, AP) ,

where ¢ is constrained by ||¢|| = 1.
[Hint: Note that any vector in H can be written as

¢ = codo + Zci¢i ,

where ¢; are the eigenvectors of A, and ¢, is a vector orthogonal to all the ¢;
(i=1,2,:-+). Thus show that

(¢, 49) = Z|c,|x.,



FURTHER READINGS 303

where {2;: i =1, 2, - -} is the set of eigenvalues of 4 and 2o is a positive num-
ber. Now proceed as in Section 4.9.]

ii) Write down and prove a result analogous to Eq. (1) for 2. How would the re-
sult generalize for 2,?

33. Consider the quantum-mechanical observables L., L,, and L,, which are repre-
sented as matrices as follows:

0O 1 o0 0 —i 0 1 0 o0
Le=|1 0 11, Ly=|i o0 —il» L:={0 0 o0f-
0 1 0 0 i 0 0 0 —1

The Hamiltonian for this system has the form H = Hy + aL,, where Hy commutes

with Ly, Ly, and L,.

a) Suppose that at + = 0 we have prepared the system in an eigenstate of L.,
namely, the state belonging to the eigenvalue m = +1 of L,. If we measure
L, at the later time r = T, what is the probability that we will find the value
+1? the value 0? the value —17

b) Suppose that instead of measuring L, at time # = T, we measure L.. What are
the possible values of L, which we can find? What is the probability of finding
each of these values?

¢) Suppose that at + = T we measure L. and find with certainty the value —1.
After a time ¢ has elapsed (i.e., at t = T 4+ ), we remeasure L,. What is the
probability of finding the various allowed values of L.?
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